HELLS Regulates Chromatin Remodeling and Epigenetic Silencing of Multiple Tumor Suppressor Genes in Human Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of c...

Full description

Saved in:
Bibliographic Details
Published inHepatology (Baltimore, Md.) Vol. 69; no. 5; pp. 2013 - 2030
Main Authors Law, Cheuk‐Ting, Wei, Lai, Tsang, Felice Ho‐Ching, Chan, Cerise Yuen‐Ki, Xu, Iris Ming‐Jing, Lai, Robin Kit‐Ho, Ho, Daniel Wai‐Hung, Lee, Joyce Man‐Fong, Wong, Carmen Chak‐Lui, Ng, Irene Oi‐Lin, Wong, Chun‐Ming
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer Health, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid‐specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up‐regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain‐of‐function and loss‐of‐function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome‐free region (NFR) at the transcription start site. Though this mechanism, up‐regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E‐cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.
AbstractList Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid‐specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up‐regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain‐of‐function and loss‐of‐function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome‐free region (NFR) at the transcription start site. Though this mechanism, up‐regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E‐cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.
Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid-specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up-regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain-of-function and loss-of-function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome-free region (NFR) at the transcription start site. Though this mechanism, up-regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E-cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid-specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up-regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain-of-function and loss-of-function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome-free region (NFR) at the transcription start site. Though this mechanism, up-regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E-cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.
Author Ho, Daniel Wai‐Hung
Lee, Joyce Man‐Fong
Wei, Lai
Tsang, Felice Ho‐Ching
Chan, Cerise Yuen‐Ki
Wong, Carmen Chak‐Lui
Wong, Chun‐Ming
Lai, Robin Kit‐Ho
Law, Cheuk‐Ting
Ng, Irene Oi‐Lin
Xu, Iris Ming‐Jing
Author_xml – sequence: 1
  givenname: Cheuk‐Ting
  surname: Law
  fullname: Law, Cheuk‐Ting
  organization: University of Hong Kong
– sequence: 2
  givenname: Lai
  surname: Wei
  fullname: Wei, Lai
  organization: The University of Hong Kong Shenzhen Institute of Research and Innovation
– sequence: 3
  givenname: Felice Ho‐Ching
  surname: Tsang
  fullname: Tsang, Felice Ho‐Ching
  organization: The University of Hong Kong Shenzhen Institute of Research and Innovation
– sequence: 4
  givenname: Cerise Yuen‐Ki
  surname: Chan
  fullname: Chan, Cerise Yuen‐Ki
  organization: University of Hong Kong
– sequence: 5
  givenname: Iris Ming‐Jing
  surname: Xu
  fullname: Xu, Iris Ming‐Jing
  organization: University of Hong Kong
– sequence: 6
  givenname: Robin Kit‐Ho
  surname: Lai
  fullname: Lai, Robin Kit‐Ho
  organization: University of Hong Kong
– sequence: 7
  givenname: Daniel Wai‐Hung
  surname: Ho
  fullname: Ho, Daniel Wai‐Hung
  organization: University of Hong Kong
– sequence: 8
  givenname: Joyce Man‐Fong
  surname: Lee
  fullname: Lee, Joyce Man‐Fong
  organization: University of Hong Kong
– sequence: 9
  givenname: Carmen Chak‐Lui
  surname: Wong
  fullname: Wong, Carmen Chak‐Lui
  organization: University of Hong Kong
– sequence: 10
  givenname: Irene Oi‐Lin
  orcidid: 0000-0001-7532-2029
  surname: Ng
  fullname: Ng, Irene Oi‐Lin
  email: iolng@hku.hk
  organization: University of Hong Kong
– sequence: 11
  givenname: Chun‐Ming
  orcidid: 0000-0002-2497-7858
  surname: Wong
  fullname: Wong, Chun‐Ming
  email: jackwong@pathology.hku.hk
  organization: The University of Hong Kong Shenzhen Institute of Research and Innovation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30516846$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFvEzEQhS1URNPAgT-ALHGhh23H9no3e0RRaJCCQKScLcc7m7ratRd7rapXfjlOk14quNjW-Js3T_MuyJnzDgl5z-CKAfDrOxyvBJSsfEVmTPK6EELCGZkBr6FomGjOyUWM9wDQlHzxhpwLkKxalNWM_FmvNpst_Yn71OsJI13eBT_oybpcG3yLvXV7ql1LV6Pdo8PJGrq1PTpz-PAd_Zb6yY490ts0-EC3aRwDxpifNxmPNCut06DziaOevMG-z6MCXeqQJfKst-R1p_uI7073nPz6srpdrovN95uvy8-bwggpykJ0VYWoW9iZTnZlJTtodxJ3nLWIhi3qGlilTcegNVI3lSjZopWtANFwWRsQc_LpqDsG_zthnNRg48GOduhTVJxJkEJkoYx-fIHe-xRcdqc4h7oRFWRPc_LhRKXdgK0agx10eFTP283A9REwwccYsFPGTnm33k1B214xUIf8VM5PPeWXOy5fdDyL_os9qT_kOB7_D6r16sex4y-TCans
CitedBy_id crossref_primary_10_1016_j_gene_2022_146595
crossref_primary_10_1097_MD_0000000000026530
crossref_primary_10_1002_jcp_30022
crossref_primary_10_1515_med_2021_0229
crossref_primary_10_2147_OTT_S273195
crossref_primary_10_1007_s10142_023_01019_x
crossref_primary_10_1016_j_ijthermalsci_2020_106540
crossref_primary_10_3389_fonc_2021_616390
crossref_primary_10_3389_fonc_2021_774558
crossref_primary_10_3390_ijms23169313
crossref_primary_10_1155_2021_4654302
crossref_primary_10_3389_fonc_2022_935877
crossref_primary_10_3390_cancers15143638
crossref_primary_10_1093_nar_gkab626
crossref_primary_10_1038_s41419_022_05279_6
crossref_primary_10_1097_HEP_0000000000000266
crossref_primary_10_3389_fmolb_2023_1188027
crossref_primary_10_1016_j_ijbiomac_2024_139273
crossref_primary_10_3389_fgene_2022_919210
crossref_primary_10_1186_s12964_020_00539_4
crossref_primary_10_2174_0109298665315841240731060636
crossref_primary_10_3390_biomedicines9121883
crossref_primary_10_1016_j_nantod_2022_101734
crossref_primary_10_1111_cas_14037
crossref_primary_10_3390_ijms20236041
crossref_primary_10_1155_2020_9593254
crossref_primary_10_3390_cancers14020459
crossref_primary_10_1371_journal_pone_0262234
crossref_primary_10_1016_j_biopha_2023_115335
crossref_primary_10_3389_fonc_2022_933925
crossref_primary_10_1038_s41416_021_01543_2
crossref_primary_10_7717_peerj_8731
crossref_primary_10_1038_s42003_021_02405_6
crossref_primary_10_1186_s12920_021_01043_5
crossref_primary_10_1016_j_apsb_2023_12_003
crossref_primary_10_12998_wjcc_v10_i15_4737
crossref_primary_10_1166_jbn_2024_3810
crossref_primary_10_1002_cam4_3627
crossref_primary_10_1016_j_omtn_2020_09_021
crossref_primary_10_1093_nar_gkae239
crossref_primary_10_1002_advs_202102051
crossref_primary_10_7717_peerj_16451
crossref_primary_10_18632_aging_103254
crossref_primary_10_1093_bfgp_elaa001
crossref_primary_10_1182_blood_2022016880
crossref_primary_10_1038_s41392_024_02030_9
crossref_primary_10_1016_j_aquaculture_2023_740320
crossref_primary_10_1016_j_jpha_2023_11_012
crossref_primary_10_1038_s41598_019_56883_0
crossref_primary_10_3390_cancers14235746
crossref_primary_10_3390_cells12141885
crossref_primary_10_3390_cancers13205250
crossref_primary_10_1038_s41419_021_03425_0
crossref_primary_10_1038_s41389_020_0210_7
Cites_doi 10.1002/hep.28304
10.18632/oncotarget.2468
10.1038/nrg3682
10.1038/nature08911
10.1158/0008-5472.CAN-15-2601
10.1038/ncponc0354
10.1038/ng.2256
10.18632/oncotarget.2114
10.1038/nrg3890
10.1038/sj.onc.1210864
10.1016/j.ydbio.2009.06.012
10.1038/sj.emboj.7600925
10.1002/hep.25679
10.1006/geno.1998.5557
10.1093/nar/gku1371
10.1016/j.tig.2010.08.003
10.1038/nature14136
10.1101/gr.172015.114
10.1093/nar/gkv149
10.1101/gr.108498.110
10.1128/MCB.01073-07
10.1371/journal.pone.0034329
10.1126/science.8316832
10.1101/gad.1176104
10.1073/pnas.1717509115
10.3322/caac.21262
10.1158/0008-5472.CAN-16-0268
10.18632/oncotarget.6811
10.1053/j.gastro.2008.09.063
10.1002/hep.26083
10.1186/1475-2867-3-17
10.1093/nar/gki332
10.1093/nar/gkp533
10.1016/j.jhep.2017.05.015
10.1158/2159-8290.CD-12-0361
10.1093/nar/gkr611
10.1158/1078-0432.CCR-15-1987
ContentType Journal Article
Copyright 2019 by the American Association for the Study of Liver Diseases.
Copyright_xml – notice: 2019 by the American Association for the Study of Liver Diseases.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
H94
K9.
7X8
DOI 10.1002/hep.30414
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-3350
EndPage 2030
ExternalDocumentID 30516846
10_1002_hep_30414
HEP30414
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: HKU Seed Funding Program for Basic Research
  funderid: 201311159075
– fundername: Hong Kong Research Grants Council (RGC) Theme‐based Research Scheme
  funderid: T12-704/16R
– fundername: Hong Kong Research Grants Council (RGC) General Research Fund
  funderid: 17115815
– fundername: National Natural Science Foundation of China General Program
  funderid: 81572446
– fundername: Theme-based Research Scheme
  grantid: T12-704/16R
– fundername: Hong Kong Research Grants Council General Research Fund
  grantid: 17115815
– fundername: National Natural Science Foundation of China General Program
  grantid: 81572446
– fundername: Hong Kong Research Grants Council (RGC) General Research Fund
  grantid: 17115815
– fundername: HKU Seed Funding Program for Basic Research
  grantid: 201311159075
– fundername: Hong Kong Research Grants Council (RGC) Theme-based Research Scheme
  grantid: T12-704/16R
GroupedDBID ---
--K
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1B1
1CY
1L6
1OB
1OC
1ZS
1~5
24P
31~
33P
3O-
3SF
3WU
4.4
4G.
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AALRI
AANHP
AAONW
AAQFI
AAQQT
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABMAC
ABOCM
ABPVW
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACLDA
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AECAP
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFFNX
AFGKR
AFPWT
AFUWQ
AFZJQ
AHMBA
AIACR
AIURR
AIWBW
AJAOE
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
F00
F01
F04
F5P
FD8
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IHE
IX1
J0M
J5H
JPC
KBYEO
KQQ
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
M65
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
NQ-
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
R2-
RGB
RIG
RIWAO
RJQFR
ROL
RPZ
RWI
RX1
RYL
SEW
SSZ
SUPJJ
TEORI
UB1
V2E
V9Y
W2D
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ABJNI
ACZKN
AFNMH
AGQPQ
AHQVU
CITATION
MEWTI
WXSBR
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TM
7TO
7U9
AAMMB
ADSXY
AEFGJ
AGXDD
AIDQK
AIDYY
H94
K9.
7X8
ID FETCH-LOGICAL-c3534-3f66eead0bcf5f465f0db5eb21deec1877016acf10dc5a963418d5d3039257c03
IEDL.DBID DR2
ISSN 0270-9139
1527-3350
IngestDate Thu Jul 10 17:35:35 EDT 2025
Wed Aug 13 10:37:30 EDT 2025
Thu Apr 03 07:08:07 EDT 2025
Tue Jul 01 03:33:54 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Wed Jan 22 16:40:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2019 by the American Association for the Study of Liver Diseases.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-3f66eead0bcf5f465f0db5eb21deec1877016acf10dc5a963418d5d3039257c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2497-7858
0000-0001-7532-2029
PMID 30516846
PQID 2207936035
PQPubID 996352
PageCount 0
ParticipantIDs proquest_miscellaneous_2150533877
proquest_journals_2207936035
pubmed_primary_30516846
crossref_citationtrail_10_1002_hep_30414
crossref_primary_10_1002_hep_30414
wiley_primary_10_1002_hep_30414_HEP30414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Hepatology (Baltimore, Md.)
PublicationTitleAlternate Hepatology
PublicationYear 2019
Publisher Wolters Kluwer Health, Inc
Publisher_xml – name: Wolters Kluwer Health, Inc
References 2013; 3
2015; 16
2017; 67
2016; 76
1993; 260
2010; 463
2014; 24
2011; 39
2012; 56
2009; 136
2016; 7
2014; 5
2010; 26
2004; 18
2010; 339
2013; 57
2018; 115
2006; 25
2008; 27
2015; 65
2008; 28
2015; 43
2003; 3
2014; 15
2016; 63
2015; 517
2011; 21
2005; 2
2012; 7
1998; 54
2012; 44
2005; 33
2009; 37
2016; 22
Zhou (R35-20-20241017) 2009; 37
Benavente (R16-20-20241017) 2014; 5
Shlyueva (R37-20-20241017) 2014; 15
Jimeno-González (R28-20-20241017) 2015; 43
Myant (R34-20-20241017) 2011; 21
Wu (R8-20-20241017) 2013; 3
He (R15-20-20241017) 2016; 76
Yu (R33-20-20241017) 2014; 24
Sun (R12-20-20241017) 2004; 18
Geiman (R11-20-20241017) 1998; 54
Konermann (R19-20-20241017) 2015; 517
Myant (R13-20-20241017) 2008; 28
Chin (R23-20-20241017) 2005; 33
Radman‐Livaja (R30-20-20241017) 2010; 339
Wong (R6-20-20241017) 2016; 63
Teh (R17-20-20241017) 2012; 7
Au (R4-20-20241017) 2012; 56
Tao (R18-20-20241017) 2011; 39
Torre (R1-20-20241017) 2015; 65
Jenness (R14-20-20241017) 2018; 115
Bai (R9-20-20241017) 2010; 26
Druliner (R10-20-20241017) 2016; 7
Ho (R31-20-20241017) 2010; 463
Zhu (R27-20-20241017) 2014; 5
Ohta (R26-20-20241017) 2009; 136
Makova (R29-20-20241017) 2015; 16
Vongs (R32-20-20241017) 1993; 260
Ren (R36-20-20241017) 2015; 43
Guichard (R2-20-20241017) 2012; 44
Pecina‐Slaus (R22-20-20241017) 2003; 3
Lai (R20-20-20241017) 2016; 22
Baylin (R3-20-20241017) 2005; 2
Torng (R25-20-20241017) 2008; 27
Zhu (R21-20-20241017) 2006; 25
Fan (R5-20-20241017) 2013; 57
Hirata (R24-20-20241017) 2016; 76
Wei (R7-20-20241017) 2017; 67
References_xml – volume: 33
  start-page: 1859
  year: 2005
  end-page: 1873
  article-title: The liver‐enriched transcription factor CREB‐H is a growth suppressor protein underexpressed in hepatocellular carcinoma
  publication-title: Nucleic Acids Res
– volume: 15
  start-page: 272
  year: 2014
  end-page: 286
  article-title: Transcriptional enhancers: from properties to genome‐wide predictions
  publication-title: Nat Rev Genet
– volume: 44
  start-page: 694
  year: 2012
  end-page: 698
  article-title: Integrated analysis of somatic mutations and focal copy‐number changes identifies key genes and pathways in hepatocellular carcinoma
  publication-title: Nat Genet
– volume: 16
  start-page: 213
  year: 2015
  end-page: 223
  article-title: The effects of chromatin organization on variation in mutation rates in the genome
  publication-title: Nat Rev Genet
– volume: 5
  start-page: 9594
  year: 2014
  end-page: 9608
  article-title: Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression
  publication-title: Oncotarget
– volume: 43
  start-page: 3068
  year: 2015
  end-page: 3078
  article-title: A positioned +1 nucleosome enhances promoter-proximal pausing
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 1035
  year: 2004
  end-page: 1046
  article-title: Growth retardation and premature aging phenotypes in mice with disruption of the SNF2‐like gene, PASG
  publication-title: Genes Dev
– volume: 136
  start-page: 206
  year: 2009
  end-page: 216
  article-title: Decreased expression of the RAS‐GTPase activating protein RASAL1 is associated with colorectal tumor progression
  publication-title: Gastroenterology
– volume: 5
  start-page: 5403
  year: 2014
  end-page: 5415
  article-title: Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma
  publication-title: Oncotarget
– volume: 65
  start-page: 87
  year: 2015
  end-page: 108
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
– volume: 27
  start-page: 2137
  year: 2008
  end-page: 2147
  article-title: Insulin‐like growth factor binding protein‐3 (IGFBP‐3) acts as an invasion‐metastasis suppressor in ovarian endometrioid carcinoma
  publication-title: Oncogene
– volume: 37
  start-page: 5183
  year: 2009
  end-page: 5196
  article-title: Senescence delay and repression of p16INK4a by Lsh via recruitment of histone deacetylases in human diploid fibroblasts
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 13429
  year: 2016
  end-page: 13445
  article-title: Comprehensive nucleosome mapping of the human genome in cancer progression
  publication-title: Oncotarget
– volume: 260
  start-page: 1926
  year: 1993
  end-page: 1928
  article-title: DNA methylation mutants
  publication-title: Science
– volume: 76
  start-page: 3265
  year: 2016
  end-page: 3276
  article-title: Decreased expression of fructose‐1,6‐bisphosphatase associates with glucose metabolism and tumor progression in hepatocellular carcinoma
  publication-title: Cancer Res
– volume: 25
  start-page: 335
  year: 2006
  end-page: 345
  article-title: Lsh is involved in methylation of DNA
  publication-title: EMBO J
– volume: 63
  start-page: 474
  year: 2016
  end-page: 487
  article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
– volume: 76
  start-page: 5743
  year: 2016
  end-page: 5755
  article-title: Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase
  publication-title: Cancer Res
– volume: 28
  start-page: 215
  year: 2008
  end-page: 226
  article-title: LSH cooperates with DNA methyltransferases to repress transcription
  publication-title: Mol Cell Biol
– volume: 21
  start-page: 83
  year: 2011
  end-page: 94
  article-title: LSH and G9a/GLP complex are required for developmentally programmed DNA methylation
  publication-title: Genome Res
– volume: 67
  start-page: 758
  year: 2017
  end-page: 769
  article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3
  publication-title: J Hepatol
– volume: 517
  start-page: 583
  year: 2015
  end-page: 588
  article-title: Genome‐scale transcriptional activation by an engineered CRISPR–Cas9 complex
  publication-title: Nature
– volume: 339
  start-page: 258
  year: 2010
  end-page: 266
  article-title: Nucleosome positioning: how is it established, and why does it matter?
  publication-title: Dev Biol
– volume: 2
  start-page: S4
  issue: Suppl. 1
  year: 2005
  end-page: S11
  article-title: DNA methylation and gene silencing in cancer
  publication-title: Nat Clin Pract Oncol
– volume: 43
  start-page: 1444
  year: 2015
  end-page: 1455
  article-title: The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and DNA methylation at repeat sequences
  publication-title: Nucleic Acids Res
– volume: 26
  start-page: 476
  year: 2010
  end-page: 483
  article-title: Gene regulation by nucleosome positioning
  publication-title: Trends Genet
– volume: 22
  start-page: 3105
  year: 2016
  end-page: 3117
  article-title: NDUFA4L2 fine‐tunes oxidative stress in hepatocellular carcinoma
  publication-title: Clin Cancer Res
– volume: 463
  start-page: 474
  year: 2010
  end-page: 484
  article-title: Chromatin remodelling during development
  publication-title: Nature
– volume: 115
  start-page: E876
  year: 2018
  end-page: E885
  article-title: HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome
  publication-title: Proc Natl Acad Sci USA
– volume: 57
  start-page: 637
  year: 2013
  end-page: 647
  article-title: Histone lysine methyltransferase, suppressor of variegation 3–9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b
  publication-title: Hepatology
– volume: 3
  start-page: 35
  year: 2013
  end-page: 43
  article-title: ARID1A mutations in cancer: another epigenetic tumor suppressor?
  publication-title: Cancer Discov
– volume: 39
  start-page: 9508
  year: 2011
  end-page: 9520
  article-title: Treatment of breast cancer cells with DNA demethylating agents leads to a release of Pol II stalling at genes with DNA‐hypermethylated regions upstream of TSS
  publication-title: Nucleic Acids Res
– volume: 54
  start-page: 477
  year: 1998
  end-page: 483
  article-title: Characterization of gene expression, genomic structure, and chromosomal localization of Hells (Lsh)
  publication-title: Genomics
– volume: 7
  start-page: e34329
  year: 2012
  article-title: FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma
  publication-title: PLoS ONE
– volume: 56
  start-page: 622
  year: 2012
  end-page: 631
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
– volume: 3
  start-page: 17
  year: 2003
  article-title: Tumor suppressor gene E‐cadherin and its role in normal and malignant cells
  publication-title: Cancer Cell Int
– volume: 24
  start-page: 1613
  year: 2014
  end-page: 1623
  article-title: Genome‐wide DNA methylation patterns in LSH mutant reveals de‐repression of repeat elements and redundant epigenetic silencing pathways
  publication-title: Genome Res
– volume: 63
  start-page: 474
  year: 2016
  ident: R6-20-20241017
  article-title: Up‐regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.28304
– volume: 5
  start-page: 9594
  year: 2014
  ident: R16-20-20241017
  article-title: Chromatin remodelers HELLS and UHRF1 mediate the epigenetic deregulation of genes that drive retinoblastoma tumor progression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2468
– volume: 15
  start-page: 272
  year: 2014
  ident: R37-20-20241017
  article-title: Transcriptional enhancers: from properties to genome‐wide predictions
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3682
– volume: 463
  start-page: 474
  year: 2010
  ident: R31-20-20241017
  article-title: Chromatin remodelling during development
  publication-title: Nature
  doi: 10.1038/nature08911
– volume: 76
  start-page: 3265
  year: 2016
  ident: R24-20-20241017
  article-title: Decreased expression of fructose‐1,6‐bisphosphatase associates with glucose metabolism and tumor progression in hepatocellular carcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-2601
– volume: 2
  start-page: S4
  year: 2005
  ident: R3-20-20241017
  article-title: DNA methylation and gene silencing in cancer
  publication-title: Nat Clin Pract Oncol
  doi: 10.1038/ncponc0354
– volume: 44
  start-page: 694
  year: 2012
  ident: R2-20-20241017
  article-title: Integrated analysis of somatic mutations and focal copy‐number changes identifies key genes and pathways in hepatocellular carcinoma
  publication-title: Nat Genet
  doi: 10.1038/ng.2256
– volume: 5
  start-page: 5403
  year: 2014
  ident: R27-20-20241017
  article-title: Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.2114
– volume: 16
  start-page: 213
  year: 2015
  ident: R29-20-20241017
  article-title: The effects of chromatin organization on variation in mutation rates in the genome
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3890
– volume: 27
  start-page: 2137
  year: 2008
  ident: R25-20-20241017
  article-title: Insulin‐like growth factor binding protein‐3 (IGFBP‐3) acts as an invasion‐metastasis suppressor in ovarian endometrioid carcinoma
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210864
– volume: 339
  start-page: 258
  year: 2010
  ident: R30-20-20241017
  article-title: Nucleosome positioning: how is it established, and why does it matter?
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2009.06.012
– volume: 25
  start-page: 335
  year: 2006
  ident: R21-20-20241017
  article-title: Lsh is involved in de novo methylation of DNA
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600925
– volume: 56
  start-page: 622
  year: 2012
  ident: R4-20-20241017
  article-title: Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis
  publication-title: Hepatology
  doi: 10.1002/hep.25679
– volume: 54
  start-page: 477
  year: 1998
  ident: R11-20-20241017
  article-title: Characterization of gene expression, genomic structure, and chromosomal localization of Hells (Lsh)
  publication-title: Genomics
  doi: 10.1006/geno.1998.5557
– volume: 43
  start-page: 1444
  year: 2015
  ident: R36-20-20241017
  article-title: The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1371
– volume: 26
  start-page: 476
  year: 2010
  ident: R9-20-20241017
  article-title: Gene regulation by nucleosome positioning
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2010.08.003
– volume: 517
  start-page: 583
  year: 2015
  ident: R19-20-20241017
  article-title: Genome‐scale transcriptional activation by an engineered CRISPR–Cas9 complex
  publication-title: Nature
  doi: 10.1038/nature14136
– volume: 24
  start-page: 1613
  year: 2014
  ident: R33-20-20241017
  article-title: Genome‐wide DNA methylation patterns in LSH mutant reveals de‐repression of repeat elements and redundant epigenetic silencing pathways
  publication-title: Genome Res
  doi: 10.1101/gr.172015.114
– volume: 43
  start-page: 3068
  year: 2015
  ident: R28-20-20241017
  article-title: A positioned +1 nucleosome enhances promoter-proximal pausing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv149
– volume: 21
  start-page: 83
  year: 2011
  ident: R34-20-20241017
  article-title: LSH and G9a/GLP complex are required for developmentally programmed DNA methylation
  publication-title: Genome Res
  doi: 10.1101/gr.108498.110
– volume: 28
  start-page: 215
  year: 2008
  ident: R13-20-20241017
  article-title: LSH cooperates with DNA methyltransferases to repress transcription
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.01073-07
– volume: 7
  start-page: e34329
  year: 2012
  ident: R17-20-20241017
  article-title: FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0034329
– volume: 260
  start-page: 1926
  year: 1993
  ident: R32-20-20241017
  article-title: Arabidopsis thaliana DNA methylation mutants
  publication-title: Science
  doi: 10.1126/science.8316832
– volume: 18
  start-page: 1035
  year: 2004
  ident: R12-20-20241017
  article-title: Growth retardation and premature aging phenotypes in mice with disruption of the SNF2‐like gene, PASG
  publication-title: Genes Dev
  doi: 10.1101/gad.1176104
– volume: 115
  start-page: E876
  year: 2018
  ident: R14-20-20241017
  article-title: HELLS and CDCA7 comprise a bipartite nucleosome remodeling complex defective in ICF syndrome
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1717509115
– volume: 65
  start-page: 87
  year: 2015
  ident: R1-20-20241017
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21262
– volume: 76
  start-page: 5743
  year: 2016
  ident: R15-20-20241017
  article-title: Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-0268
– volume: 7
  start-page: 13429
  year: 2016
  ident: R10-20-20241017
  article-title: Comprehensive nucleosome mapping of the human genome in cancer progression
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6811
– volume: 136
  start-page: 206
  year: 2009
  ident: R26-20-20241017
  article-title: Decreased expression of the RAS‐GTPase activating protein RASAL1 is associated with colorectal tumor progression
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.09.063
– volume: 57
  start-page: 637
  year: 2013
  ident: R5-20-20241017
  article-title: Histone lysine methyltransferase, suppressor of variegation 3–9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA‐125b
  publication-title: Hepatology
  doi: 10.1002/hep.26083
– volume: 3
  start-page: 17
  year: 2003
  ident: R22-20-20241017
  article-title: Tumor suppressor gene E‐cadherin and its role in normal and malignant cells
  publication-title: Cancer Cell Int
  doi: 10.1186/1475-2867-3-17
– volume: 33
  start-page: 1859
  year: 2005
  ident: R23-20-20241017
  article-title: The liver‐enriched transcription factor CREB‐H is a growth suppressor protein underexpressed in hepatocellular carcinoma
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki332
– volume: 37
  start-page: 5183
  year: 2009
  ident: R35-20-20241017
  article-title: Senescence delay and repression of p16INK4a by Lsh via recruitment of histone deacetylases in human diploid fibroblasts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp533
– volume: 67
  start-page: 758
  year: 2017
  ident: R7-20-20241017
  article-title: Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.05.015
– volume: 3
  start-page: 35
  year: 2013
  ident: R8-20-20241017
  article-title: ARID1A mutations in cancer: another epigenetic tumor suppressor?
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-12-0361
– volume: 39
  start-page: 9508
  year: 2011
  ident: R18-20-20241017
  article-title: Treatment of breast cancer cells with DNA demethylating agents leads to a release of Pol II stalling at genes with DNA‐hypermethylated regions upstream of TSS
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr611
– volume: 22
  start-page: 3105
  year: 2016
  ident: R20-20-20241017
  article-title: NDUFA4L2 fine‐tunes oxidative stress in hepatocellular carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-1987
SSID ssj0009428
Score 2.524188
Snippet Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2013
SubjectTerms Animals
Antigens, CD - metabolism
Cadherins - metabolism
Carcinogenesis
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - etiology
Cell Line, Tumor
Cell migration
Cell proliferation
Chromatin Assembly and Disassembly
Chromatin remodeling
CRISPR
DNA helicase
DNA Helicases - genetics
DNA Helicases - metabolism
DNA methylation
Enhancers
Epigenesis, Genetic
Epigenetics
Gene Expression Regulation, Neoplastic
Genes, Tumor Suppressor
Genome editing
Genomes
Hepatocellular carcinoma
Hepatology
Humans
Insulin-like growth factor-binding protein 3
Liver cancer
Liver Neoplasms, Experimental - enzymology
Liver Neoplasms, Experimental - etiology
Metastases
Mice, Knockout
Mice, Nude
Neoplasm Metastasis
Nuclease
Nucleosomes - metabolism
Ribonucleic acid
RNA
Sp1 protein
Sp1 Transcription Factor - metabolism
Tumor suppressor genes
Title HELLS Regulates Chromatin Remodeling and Epigenetic Silencing of Multiple Tumor Suppressor Genes in Human Hepatocellular Carcinoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhep.30414
https://www.ncbi.nlm.nih.gov/pubmed/30516846
https://www.proquest.com/docview/2207936035
https://www.proquest.com/docview/2150533877
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hDqiXFiilWx5yKw69BJyHvRtxQmhRVLEV4iFxqBTFL4GgCWJ3Lz32lzNjJ0E8KqHerNiJE4_H8008_gZgxyppeBXnUepGWZRpIaNRKqtImjjX6EG7xBPPT37K4iL7cSkuF2C_OwsT-CH6H26kGX69JgWv1HTvkTT0yqLDzkMSa4rVIkB0-kgdlWc-ryp6XZx2l_OOVYgne_2dT23RC4D5FK96g3P0AX51rxriTG525zO1q_88Y3H8z29ZhvctEGUHYeaswIKtV2Fp0m61f4S_xfj4-Iydhlz1dsqIRpfgbY3XfP4cNHqsqg0b3xGjJx2GZGfXdIaJKhrHJm2sIjuf_27uGeUPJd8ei8R1PWX4JL-FwAo0ibOGthAoJpYdUnqjGvtag4uj8flhEbUJGyKdijRDeUtpcWpypZ1wmRSOGyXQd4-NtToeDYcIMCvtYm60qFD1s3hkhEErmuPKoXn6CRbrprafgaHIXJJULsHpk0mlco3YwvGhciYd4jo0gO-d6ErdsplTUo3bMvAwJyWOaenHdADf-qZ3gcLjtUabnfzLVounZZIQfaDkqRjA174a9Y9GpKptM8c2iKgRMuO3DWA9zJu-F1xLY4kAD1_WS__f3ZfF-MQXvry96Qa8Q_SWh-jLTVic3c_tFiKkmdr2qvAAlj4L2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgGX8oYtBQwCiUtax3G8mwMH1G6V0t0KtVuptzTxg1ZAUnV3VZUjv4e_wn9ixnlU5SFx6YGblVixM56nPf4G4JUtlOF5mASRG8hA6lgFg0jlgTJhojGCdsIDz493VLov3x_EBwvwvb0LU-NDdBtuJBleX5OA04b02gVq6JHFiJ3LUDYpldv2_AwDtunbrQ1c3ddCbA4n62nQ1BQIdBRHEqeklEXq8UK72EkVO26KGMPL0Firw0G_jz5Qrl3IjY5z5E4ZDkxsUNEnyNyaR_jda3CdKogTUv_G7gVYVSJ9JVeM8zidZyctjhEXa91UL1u_31zayx6yN3Gbt-FHS5w6s-XT6nxWrOqvv-BG_i_UuwNLja_N3tXCcRcWbHkPboybbIL78C0djkZ7bNd-pBpmdsoIKZg8-BKf-RJBaNdZXho2PCHQUrrvyfaO6ZoWvagcGzfpmGwy_1KdMiqRStsX2CQ47ynDL_lTEpai1Z9VdEpCab9snSo4lTjWA9i_Ego8hMWyKu1jYMgjTojcCZQQqYoi0eg-Od4vnIn6qGp78KbllUw3gO1UN-RzVkNNiwzXMPNr2IOXXdeTGqXkT51WWobLGkU1zYQghETFo7gHL7rXqGKIInlpqzn2waABowL8tx48qhm1GwXNRajQh8XJenb7-_BZOvzgG8v_3vU53Ewn41E22trZfgK30FlN6mTTFVicnc7tU3QIZ8UzL4cMDq-adX8CIvRqmA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIlVcyhsWChgEEpe0juN4NwcOqLurlO5WVR9SbyHxgyIgWXV3heDI3-Gv8KOYcR5VeUhceuAWxZbtjOcZj78BeG4LZXgeJkHkBjKQOlbBIFJ5oEyYaIygnfDA89M9lR7LNyfxyQp8b-_C1PgQ3Q83kgyvr0nAZ8ZtnYOGnloM2LkMZZNRuWu_fMZ4bf5qZ4ib-0KI8ehoOw2akgKBjuJI4oqUskg8XmgXO6lix00RY3QZGmt1OOj30QXKtQu50XGOzCnDgYkN6vkEeVvzCMe9Alel4gnViRgenGNVJdIXcsUwj9NxdtLCGHGx1S31ovH7zaO96CB7Cze-Dj9a2tSJLR82l4tiU3_9BTbyPyHeDVhvPG32uhaNm7Biy1uwNm1yCW7Dt3Q0mRyyA_uOKpjZOSOcYPLfS3znCwShVWd5adhoRpCldNuTHb6nS1rUUDk2bZIx2dHyU3XGqEAq_bzARwLznjMcyZ-RsBRt_qKiMxJK-mXbVL-pxLnuwPGlUOAurJZVae8DQxZxQuROoHxIVRSJRufJ8X7hTNRHRduDly2rZLqBa6eqIR-zGmhaZLiHmd_DHjzrus5qjJI_ddpo-S1r1NQ8E4LwERWP4h487ZpRwRBF8tJWS-yDIQPGBPhtPbhX82k3CxqLUKEHi4v13Pb36bN0tO8fHvx71yewtj8cZ5Odvd2HcA091aTONN2A1cXZ0j5Cb3BRPPZSyODtZXPuT2YfaUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HELLS+Regulates+Chromatin+Remodeling+and+Epigenetic+Silencing+of+Multiple+Tumor+Suppressor+Genes+in+Human+Hepatocellular+Carcinoma&rft.jtitle=Hepatology+%28Baltimore%2C+Md.%29&rft.au=Cheuk%E2%80%90Ting+Law&rft.au=Lai%2C+Wei&rft.au=Felice+Ho%E2%80%90Ching+Tsang&rft.au=Cerise+Yuen%E2%80%90Ki+Chan&rft.date=2019-05-01&rft.pub=Wolters+Kluwer+Health%2C+Inc&rft.issn=0270-9139&rft.eissn=1527-3350&rft.volume=69&rft.issue=5&rft.spage=2013&rft.epage=2030&rft_id=info:doi/10.1002%2Fhep.30414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-9139&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-9139&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-9139&client=summon