Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging
Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative...
Saved in:
Published in | Oral diseases Vol. 29; no. 8; pp. 3325 - 3336 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Denmark
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1354-523X 1601-0825 1601-0825 |
DOI | 10.1111/odi.14474 |
Cover
Loading…
Abstract | Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.
Materials and Methods
Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.
Results
The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.
Conclusion
Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction. |
---|---|
AbstractList | ObjectivesImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.Materials and MethodsUsing the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.ResultsThe model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.ConclusionOur results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction. Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs.OBJECTIVESImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs.Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians.MATERIALS AND METHODSUsing the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians.The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared.RESULTSThe model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared.Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.CONCLUSIONOur results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction. Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs. Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians. The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared. Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction. Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction. |
Author | Shen, Xue‐Meng Sun, Zhi‐Jun Chai, Zi‐Kang Yang, Zhi‐Yi Mao, Liang Xu, Yongchao Sun, Ting‐Guan |
Author_xml | – sequence: 1 givenname: Xue‐Meng surname: Shen fullname: Shen, Xue‐Meng organization: Wuhan University – sequence: 2 givenname: Liang surname: Mao fullname: Mao, Liang organization: Wuhan University – sequence: 3 givenname: Zhi‐Yi surname: Yang fullname: Yang, Zhi‐Yi organization: Wuhan University – sequence: 4 givenname: Zi‐Kang surname: Chai fullname: Chai, Zi‐Kang organization: Wuhan University – sequence: 5 givenname: Ting‐Guan surname: Sun fullname: Sun, Ting‐Guan organization: Wuhan University – sequence: 6 givenname: Yongchao surname: Xu fullname: Xu, Yongchao email: yongchao.xu@whu.edu.cn organization: Wuhan University – sequence: 7 givenname: Zhi‐Jun orcidid: 0000-0003-0932-8013 surname: Sun fullname: Sun, Zhi‐Jun email: sunzj@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36520552$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OGzEURq0K1BDaRV-gstQNLCb4d8ZZVqEUJCQ2ILGz7tie1Ghip_aMUHY8As_Ik9RNwgaBN7blcz5d3ztFByEGh9A3Sma0rLNo_YwK0YhP6IjWhFZEMXlQzlyKSjJ-P0HTnB8Ioc2cs89owmvJiJTsCLXnzq1x7yAFH5YvT8-Qs8-Ds9h6WIZYLjh2eA0pDt7iZQ_B4mFcxZRxu8FjLhY2MQwJ8lB0F_5AMEVf3GK_gmV5_oIOO-iz-7rfj9Hdxa_bxWV1ffP7avHzujJcclFR3nbKciOoYgKAENswQ2rbtVY1jIEDpjhwRwg0hrXgpBJWGAuUAtRzyo_RyS53neLf0eVBr3w2ri8luzhmzRoplJwrwQv64w36EMcUSnWaqUIwOa9Zob7vqbFdOavXqfwobfRr9wpwtgNMijkn12njBxj8th2-15To__PRZT56O59inL4xXkPfY_fpj753m49BfXN-tTP-ATLNoPc |
CitedBy_id | crossref_primary_10_1007_s00330_024_10719_2 crossref_primary_10_1007_s10278_024_01137_3 crossref_primary_10_1016_j_jormas_2024_102030 crossref_primary_10_3389_fonc_2024_1383323 crossref_primary_10_3389_fonc_2024_1384105 crossref_primary_10_1186_s12885_024_12277_8 crossref_primary_10_3389_fonc_2024_1417330 crossref_primary_10_58600_eurjther2612 crossref_primary_10_1007_s10278_024_01307_3 crossref_primary_10_3390_jcm12226973 |
Cites_doi | 10.1016/S0385‐8146(85)80044‐4 10.1097/PAP.0b013e318202645a 10.1038/nature21056 10.1148/radiol.2493072045 10.1145/3065386 10.1007/s11263‐019‐01228‐7 10.1111/j.2517‐6161.1995.tb02031.x 10.3390/cancers13153910 10.3322/canjclin.34.1.24 10.1109/TPAMI.2021.3115825 10.5858/2009‐0527‐RS.1 10.1038/nature14539 10.1016/j.otc.2015.11.001 10.1109/ISBI.2017.7950485 10.1102/1470‐7330.2007.0008 10.1155/2022/8192999 10.1371/journal.pmed.1002711 10.1001/jamanetworkopen.2019.5600 10.1111/his.14322 10.1109/MSP.2012.2205597 10.1055/s‐0042‐109171 10.1146/annurev‐bioeng‐071516‐044442 10.1038/s41591‐018‐0316‐z 10.3174/ajnr.A2520 10.1111/j.1600‐0757.2011.00385.x 10.3389/fonc.2021.632104 10.1109/ACCESS.2021.3064752 10.1093/neuonc/noz199 10.1002/(SICI)1097‐0258(19980430)17:8<857::AID‐SIM777>3.0.CO;2‐E 10.1038/ncomms5006 10.1007/s00405‐022‐07455‐y 10.1371/journal.pone.0118432 10.6004/jnccn.2020.0031 10.1016/j.ejrad.2008.01.027 10.1016/j.oraloncology.2015.04.005 10.1017/S0022215100104402 10.1109/CVPR.2017.243 10.1109/TNNLS.2017.2732482 10.1002/nbm.4408 10.1148/radiology.214.1.r00ja05231 10.1053/j.seminoncol.2008.03.009 10.1038/s41591‐020‐0867‐7 10.1038/s41591‐018‐0147‐y 10.1055/s‐0031‐1299130 10.1109/TETCI.2021.3100641 10.1016/j.inffus.2021.06.008 10.1038/s41598‐020‐76389‐4 10.1200/JCO.21.00449 10.1001/jama.2016.17216 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC |
DBID | AAYXX CITATION NPM 7QP K9. 7X8 |
DOI | 10.1111/odi.14474 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Dentistry |
EISSN | 1601-0825 |
EndPage | 3336 |
ExternalDocumentID | 36520552 10_1111_odi_14474 ODI14474 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 82072996; 82103333 – fundername: Central University Basic Research Fund of China funderid: 2042021kf0174; 2042021kf0216 – fundername: Central University Basic Research Fund of China grantid: 2042021kf0174 – fundername: National Natural Science Foundation of China grantid: 82103333 – fundername: National Natural Science Foundation of China grantid: 82072996 – fundername: Central University Basic Research Fund of China grantid: 2042021kf0216 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29N 31~ 33P 34H 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHMBA AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CWXXS D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBD EBS EJD F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WBNRW WIH WIJ WIK WOHZO WPGGZ WQJ WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT NPM WRC 7QP K9. 7X8 |
ID | FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913 |
IEDL.DBID | DR2 |
ISSN | 1354-523X 1601-0825 |
IngestDate | Fri Jul 11 00:27:53 EDT 2025 Wed Aug 13 04:52:39 EDT 2025 Wed Feb 19 02:26:08 EST 2025 Tue Jul 01 00:53:24 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Sun Jul 06 04:45:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | deep learning contrast-enhanced computed tomography (CECT) binary classification parotid gland tumor convolutional neural network |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913 |
Notes | Xue‐Meng Shen, Liang Mao and Zhi‐Yi Yang have contributed equally to this work and share first authorship. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0932-8013 |
PMID | 36520552 |
PQID | 2898425962 |
PQPubID | 105433 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2754859843 proquest_journals_2898425962 pubmed_primary_36520552 crossref_citationtrail_10_1111_odi_14474 crossref_primary_10_1111_odi_14474 wiley_primary_10_1111_odi_14474_ODI14474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationPlace | Denmark |
PublicationPlace_xml | – name: Denmark – name: Malden |
PublicationTitle | Oral diseases |
PublicationTitleAlternate | Oral Dis |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2018; 29 2011; 135 2021; 5 2017; 60 2021; 44 2000; 214 2015; 51 2015; 521 2019; 2 1995; 57 2015; 10 1988; 102 2020; 128 2011; 32 2008; 35 2008; 249 2011; 57 2020; 10 2016; 37 2012; 33 2011; 18 2022; 279 2020; 18 2018; 24 2021; 79 2021; 13 1998; 17 2014; 5 2021; 76 2021; 34 2022; 2022 2021; 11 2016; 316 2021; 39 1984; 34 2019; 25 2020; 26 2017 2007; 7 2012; 29 2017; 19 2008; 66 2020; 22 1985; 12 2017; 542 2016; 49 2018; 15 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 11 year: 2021 article-title: Deep learning for differentiating benign from malignant parotid lesions on MR images publication-title: Frontiers in Oncology – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 135 start-page: 511 issue: 4 year: 2011 end-page: 515 article-title: Adenoid cystic carcinoma publication-title: Archives of Pathology & Laboratory Medicine – volume: 34 start-page: 24 issue: 1 year: 1984 end-page: 39 article-title: Tumors of the major and minor salivary glands publication-title: CA: A Cancer Journal for Clinicians – volume: 37 start-page: 454 issue: 5 year: 2016 end-page: 471 article-title: Parotid gland lesions: Multiparametric ultrasound and MRI features publication-title: Ultraschall in der Medizin ‐ European Journal of Ultrasound – volume: 10 start-page: 19388 issue: 1 year: 2020 article-title: Diagnostic accuracy of deep‐learning with anomaly detection for a small amount of imbalanced data: Discriminating malignant parotid tumors in MRI publication-title: Scientific Reports – volume: 13 issue: 15 year: 2021 article-title: An overview on the histogenesis and morphogenesis of salivary gland neoplasms and evolving diagnostic approaches publication-title: Cancers – volume: 18 start-page: 873 issue: 7 year: 2020 end-page: 898 article-title: Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology publication-title: Journal of the National Comprehensive Cancer Network – volume: 214 start-page: 231 issue: 1 year: 2000 end-page: 236 article-title: Salivary gland tumors: Evaluation with two‐phase helical CT publication-title: Radiology – volume: 25 start-page: 24 issue: 1 year: 2019 end-page: 29 article-title: A guide to deep learning in healthcare publication-title: Nature Medicine – volume: 51 start-page: 652 issue: 7 year: 2015 end-page: 661 article-title: Adenoid cystic carcinoma of the head and neck – An update publication-title: Oral Oncology – volume: 34 issue: 1 year: 2021 article-title: Classification of parotid gland tumors by using multimodal MRI and deep learning publication-title: NMR in Biomedicine – volume: 5 start-page: 4006 issue: 1 year: 2014 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nature Communications – volume: 32 start-page: 1202 issue: 7 year: 2011 end-page: 1207 article-title: MR imaging of parotid tumors: Typical lesion characteristics in MR imaging improve discrimination between benign and malignant disease publication-title: American Journal of Neuroradiology – volume: 79 start-page: 279 issue: 3 year: 2021 end-page: 290 article-title: Pleomorphic adenoma: The great mimicker of malignancy publication-title: Histopathology – volume: 39 start-page: 1909 issue: 17 year: 2021 end-page: 1941 article-title: Management of salivary gland malignancy: ASCO guideline publication-title: Journal of Clinical Oncology – volume: 66 start-page: 419 issue: 3 year: 2008 end-page: 436 article-title: Imaging of salivary gland tumours publication-title: European Journal of Radiology – volume: 542 start-page: 115 issue: 7639 year: 2017 end-page: 118 article-title: Dermatologist‐level classification of skin cancer with deep neural networks publication-title: Nature – volume: 12 start-page: S122 year: 1985 end-page: S127 article-title: The management of salivary neoplasms an overview publication-title: Auris Nasus Larynx – start-page: 130 year: 2017 end-page: 134 – volume: 2 issue: 6 year: 2019 article-title: Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model publication-title: JAMA Network Open – volume: 44 start-page: 1 year: 2021 article-title: Learning deformable image registration from optimization: Perspective, modules, bilevel training and beyond publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 10 issue: 3 year: 2015 article-title: The precision‐recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS ONE – volume: 102 start-page: 163 issue: 2 year: 1988 end-page: 168 article-title: CT sialography and conventional sialography in the evaluation of parotid gland neoplasms publication-title: The Journal of Laryngology & Otology – volume: 29 start-page: 82 issue: 6 year: 2012 end-page: 97 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine – volume: 2022 year: 2022 article-title: The diagnostic value of ultrasound‐based deep learning in differentiating parotid gland tumors publication-title: Journal of Oncology – volume: 76 start-page: 323 year: 2021 end-page: 336 article-title: Image fusion meets deep learning: A survey and perspective publication-title: Information Fusion – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 29 start-page: 3573 issue: 8 year: 2018 end-page: 3587 article-title: Cost‐sensitive learning of deep feature representations from imbalanced data publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 316 start-page: 2402 issue: 22 year: 2016 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 33 start-page: 283 issue: 3 year: 2012 end-page: 288 article-title: Evaluation of parotid gland lesions with standard ultrasound, color duplex sonography, Sonoelastography, and acoustic radiation force impulse imaging – A pilot study publication-title: Ultraschall in der Medizin ‐ European Journal of Ultrasound – volume: 18 start-page: 29 issue: 1 year: 2011 end-page: 45 article-title: Histologic grading and prognostic biomarkers in salivary gland carcinomas publication-title: Advances in Anatomic Pathology – volume: 57 start-page: 150 issue: 1 year: 2011 end-page: 159 article-title: Salivary tumours: Salivary tumours publication-title: Periodontology 2000 – volume: 5 start-page: 726 issue: 5 year: 2021 end-page: 742 article-title: A survey on neural network interpretability publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 279 start-page: 5389 issue: 11 year: 2022 end-page: 5399 article-title: Deep learning model developed by multiparametric MRI in differential diagnosis of parotid gland tumors publication-title: European Archives of Oto‐Rhino‐Laryngology – volume: 128 start-page: 336 issue: 2 year: 2020 end-page: 359 article-title: Grad‐CAM: Visual explanations from deep networks via gradient‐based localization publication-title: International Journal of Computer Vision – volume: 35 start-page: 309 issue: 3 year: 2008 end-page: 319 article-title: Salivary gland malignancies: The role for chemotherapy and molecular targeted agents publication-title: Seminars in Oncology – volume: 9 start-page: 40360 year: 2021 end-page: 40371 article-title: Research on the classification of benign and malignant parotid tumors based on transfer learning and a convolutional neural network publication-title: IEEE Access – volume: 17 start-page: 857 issue: 8 year: 1998 end-page: 872 article-title: Two‐sided confidence intervals for the single proportion: Comparison of seven methods publication-title: Statistics in Medicine – volume: 7 start-page: 52 issue: 1 year: 2007 end-page: 62 article-title: Imaging of salivary gland tumours publication-title: Cancer Imaging – volume: 249 start-page: 909 issue: 3 year: 2008 end-page: 916 article-title: Parotid gland tumors: Can addition of diffusion‐weighted MR imaging to dynamic contrast‐enhanced MR imaging improve diagnostic accuracy in characterization? publication-title: Radiology – volume: 15 issue: 11 year: 2018 article-title: Deep learning for lung cancer prognostication: A retrospective multi‐cohort radiomics study publication-title: PLoS Medicine – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: 24 start-page: 1337 issue: 9 year: 2018 end-page: 1341 article-title: Automated deep‐neural‐network surveillance of cranial images for acute neurologic events publication-title: Nature Medicine – start-page: 2261 year: 2017 end-page: 2269 – volume: 49 start-page: 343 issue: 2 year: 2016 end-page: 380 article-title: Diagnosis and management of malignant salivary gland tumors of the parotid gland publication-title: Otolaryngologic Clinics of North America – volume: 19 start-page: 221 issue: 1 year: 2017 end-page: 248 article-title: Deep learning in medical image analysis publication-title: Annual Review of Biomedical Engineering – volume: 26 start-page: 892 issue: 6 year: 2020 end-page: 899 article-title: Predicting conversion to wet age‐related macular degeneration using deep learning publication-title: Nature Medicine – volume: 22 start-page: 402 issue: 3 year: 2020 end-page: 411 article-title: A novel fully automated MRI‐based deep‐learning method for classification of IDH mutation status in brain gliomas publication-title: Neuro‐Oncology – ident: e_1_2_11_40_1 doi: 10.1016/S0385‐8146(85)80044‐4 – ident: e_1_2_11_37_1 doi: 10.1097/PAP.0b013e318202645a – ident: e_1_2_11_11_1 doi: 10.1038/nature21056 – ident: e_1_2_11_46_1 doi: 10.1148/radiol.2493072045 – ident: e_1_2_11_25_1 doi: 10.1145/3065386 – ident: e_1_2_11_38_1 doi: 10.1007/s11263‐019‐01228‐7 – ident: e_1_2_11_4_1 doi: 10.1111/j.2517‐6161.1995.tb02031.x – ident: e_1_2_11_22_1 doi: 10.3390/cancers13153910 – ident: e_1_2_11_32_1 doi: 10.3322/canjclin.34.1.24 – ident: e_1_2_11_29_1 doi: 10.1109/TPAMI.2021.3115825 – ident: e_1_2_11_23_1 doi: 10.5858/2009‐0527‐RS.1 – ident: e_1_2_11_26_1 doi: 10.1038/nature14539 – ident: e_1_2_11_28_1 doi: 10.1016/j.otc.2015.11.001 – ident: e_1_2_11_6_1 doi: 10.1109/ISBI.2017.7950485 – ident: e_1_2_11_42_1 doi: 10.1102/1470‐7330.2007.0008 – ident: e_1_2_11_44_1 doi: 10.1155/2022/8192999 – ident: e_1_2_11_20_1 doi: 10.1371/journal.pmed.1002711 – ident: e_1_2_11_34_1 doi: 10.1001/jamanetworkopen.2019.5600 – ident: e_1_2_11_18_1 doi: 10.1111/his.14322 – ident: e_1_2_11_19_1 doi: 10.1109/MSP.2012.2205597 – ident: e_1_2_11_5_1 doi: 10.1055/s‐0042‐109171 – ident: e_1_2_11_39_1 doi: 10.1146/annurev‐bioeng‐071516‐044442 – ident: e_1_2_11_12_1 doi: 10.1038/s41591‐018‐0316‐z – ident: e_1_2_11_9_1 doi: 10.3174/ajnr.A2520 – ident: e_1_2_11_13_1 doi: 10.1111/j.1600‐0757.2011.00385.x – ident: e_1_2_11_45_1 doi: 10.3389/fonc.2021.632104 – ident: e_1_2_11_48_1 doi: 10.1109/ACCESS.2021.3064752 – ident: e_1_2_11_3_1 doi: 10.1093/neuonc/noz199 – ident: e_1_2_11_33_1 doi: 10.1002/(SICI)1097‐0258(19980430)17:8<857::AID‐SIM777>3.0.CO;2‐E – ident: e_1_2_11_2_1 doi: 10.1038/ncomms5006 – ident: e_1_2_11_16_1 doi: 10.1007/s00405‐022‐07455‐y – ident: e_1_2_11_36_1 doi: 10.1371/journal.pone.0118432 – ident: e_1_2_11_35_1 doi: 10.6004/jnccn.2020.0031 – ident: e_1_2_11_27_1 doi: 10.1016/j.ejrad.2008.01.027 – ident: e_1_2_11_10_1 doi: 10.1016/j.oraloncology.2015.04.005 – ident: e_1_2_11_17_1 doi: 10.1017/S0022215100104402 – ident: e_1_2_11_21_1 doi: 10.1109/CVPR.2017.243 – ident: e_1_2_11_24_1 doi: 10.1109/TNNLS.2017.2732482 – ident: e_1_2_11_7_1 doi: 10.1002/nbm.4408 – ident: e_1_2_11_8_1 doi: 10.1148/radiology.214.1.r00ja05231 – ident: e_1_2_11_41_1 doi: 10.1053/j.seminoncol.2008.03.009 – ident: e_1_2_11_47_1 doi: 10.1038/s41591‐020‐0867‐7 – ident: e_1_2_11_43_1 doi: 10.1038/s41591‐018‐0147‐y – ident: e_1_2_11_30_1 doi: 10.1055/s‐0031‐1299130 – ident: e_1_2_11_50_1 doi: 10.1109/TETCI.2021.3100641 – ident: e_1_2_11_49_1 doi: 10.1016/j.inffus.2021.06.008 – ident: e_1_2_11_31_1 doi: 10.1038/s41598‐020‐76389‐4 – ident: e_1_2_11_14_1 doi: 10.1200/JCO.21.00449 – ident: e_1_2_11_15_1 doi: 10.1001/jama.2016.17216 |
SSID | ssj0017932 |
Score | 2.4326553 |
Snippet | Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of... Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and... ObjectivesImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3325 |
SubjectTerms | binary classification Computed tomography contrast‐enhanced computed tomography (CECT) convolutional neural network Deep learning Exocrine glands Malignancy Oral cancer Parotid gland parotid gland tumor Statistical analysis Tumors |
Title | Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fodi.14474 https://www.ncbi.nlm.nih.gov/pubmed/36520552 https://www.proquest.com/docview/2898425962 https://www.proquest.com/docview/2754859843 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CDmkvzaOvTdKilh5ycbDl1y49lWxCWtgWSgJ7KJiRJW2WNPay9h7aU35CfmN-SWfkB90-oPRm8AjZ0oz0jebTDMAb5GimHCaesVp5kY1TbySDyEsxsYkZWTSSbyNPPibnl9GHaTzdgLfdXZgmP0R_4MaW4dZrNnBU1U9GXuo5RyZTzgXKXC0GRJ_71FGsdy7SGcYRO1vTNqsQs3j6lut70W8Acx2vug3nbBu-dJ_a8Eyuj1e1Os6__5LF8T__ZQcetUBUvGs0Zxc2TLEHD8ZMHuL6b3uwNWnD7o9BjY1ZiLbAxOz-9o4QN6uHFrph6s0rUVqxwGVZz7VwZUFEvbopl5VQ3wRz62fCkeKxqqm5Ka4c8UCcXIj5jauT9AQuz04vTs69tjiDl4dxGHlBqOxQh3lEDkqE6Ps6lbmfaKv0MJUSDRJwwdD4Pqa5VGgI6ego1xgEiMkoCJ_CZlEW5jkIY9DG0reS1IUcMMIcSa6kVprRFa0ZAzjqpinL28zlXEDja9Z5MDR-mRu_AbzuRRdNuo4_CR12c521Fltl5HhyRHKUyAG86l-TrXEABQtTrkgmJf8uJrlwAM8aHel7IQ2UfhxT6yM303_vPvs0fu8e9v9d9AAecp375hLkIWzWy5V5QWioVi-d2v8A-vcHzQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlEuBQqlCwUM4tBLqsR2kl2JC-pSbaFbJLSV9oIiO7bLijZZ7WYP5cQj8Ix9ks44P6L8SIhbpIzlxJ6xv_GM5wN4rSiayftJYJ3RgXRxGgx4JINUJS6xA6csp9vI45NkdCrfT-PpGrxp78LU9SG6AzeyDL9ek4HTgfRPVl6aGYUmU3kLbhOjN_EXDD91xaNI83ysU8SS3K1pU1eI8ni6pjd3o98g5k3E6recw3vwuf3YOtPk6_6q0vv5t1_qOP7v39yHzQaLsre18jyANVtswcaQ8oeIAm4L7oybyPtD0ENr56zhmDi7-v4DQTdpiGGmTtabLVnp2FwtympmmGcGYdXqolwsmb5klF5_xnxevFpW2NwWX3zuATuYsNmFp0p6BKeH7yYHo6DhZwhyEQsZREK7vhG5RB9FKhWGJuV5mBinTT_lXFmF2EUJG4YqzblWFsGOkblRUaRUMojENqwXZWF3gFmrXMxDx1Fj0AdD2JHkmhttCGDhstGDvXaesrwpXk4cGudZ68Tg-GV-_HrwqhOd1xU7_iS020521hjtMkPfk4KSg4T34GX3Gs2NYiiqsOUKZVJ08WKUEz14XCtJ14tI8BfiGFvv-an-e_fZx-GRf3jy76IvYGM0GR9nx0cnH57CXaK9r-9E7sJ6tVjZZwiOKv3c28A1XucL5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuPAqlCwUM4tBLqsR2nF1xQl1WLdCCUCvtASmyY7usaJPVbvYAJ34Cv5FfwozzEOUhIW6RMpZje8b-JjOeD-CZpmgmH6rIeWsi6dMsGvFERplWXrmR147TbeSjY3VwKl9N0-kaPO_uwjT1IfofbmQZYb8mA59b_5ORV3ZGkclMXoGrUqGxECJ639eOIsULoU6RSvK2pm1ZIUrj6ZtePox-Q5iXAWs4cSY34UP3rU2iyae9VW32ii-_lHH8z8HcghstEmUvGtW5DWuu3IRrY8oeIgK4Tdg4auPud8CMnZuzlmHi7PvXbwi5ST8ss02q3mzJKs_melHVM8sCLwirVxfVYsnMZ0bJ9WcsZMXrZY3NXfkxZB6w_RM2uwhESXfhdPLyZP8gatkZokKkQkaJMH5oRSHRQ5Fax7HNeBEr640dZpxrpxG5aOHiWGcFN9oh1LGysDpJtFajRGzBelmVbhuYc9qnPPYc9QU9MAQdqjDcGkvwCjeNAex2y5QXbelyYtA4zzsXBucvD_M3gKe96Lyp1_EnoZ1urfPWZJc5ep4UkhwpPoAn_Ws0Noqg6NJVK5TJ0MFLUU4M4F6jI30vQuEQ0hRb74aV_nv3-dvxYXi4_--ij2Hj3XiSvzk8fv0ArhPnfXMhcgfW68XKPURkVJtHwQJ-AFf5Cp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-assisted+diagnosis+of+parotid+gland+tumors+by+using+contrast-enhanced+CT+imaging&rft.jtitle=Oral+diseases&rft.au=Shen%2C+Xue-Meng&rft.au=Mao%2C+Liang&rft.au=Yang%2C+Zhi-Yi&rft.au=Chai%2C+Zi-Kang&rft.date=2023-11-01&rft.issn=1601-0825&rft.eissn=1601-0825&rft.volume=29&rft.issue=8&rft.spage=3325&rft_id=info:doi/10.1111%2Fodi.14474&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-523X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-523X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-523X&client=summon |