Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging

Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative...

Full description

Saved in:
Bibliographic Details
Published inOral diseases Vol. 29; no. 8; pp. 3325 - 3336
Main Authors Shen, Xue‐Meng, Mao, Liang, Yang, Zhi‐Yi, Chai, Zi‐Kang, Sun, Ting‐Guan, Xu, Yongchao, Sun, Zhi‐Jun
Format Journal Article
LanguageEnglish
Published Denmark Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text
ISSN1354-523X
1601-0825
1601-0825
DOI10.1111/odi.14474

Cover

Loading…
Abstract Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.
AbstractList ObjectivesImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.Materials and MethodsUsing the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.ResultsThe model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.ConclusionOur results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs.OBJECTIVESImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs.Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians.MATERIALS AND METHODSUsing the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians.The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared.RESULTSThe model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared.Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.CONCLUSIONOur results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning-based method for preoperative stratification of PGTs. Using the 3D DenseNet-121 architecture and a dataset consisting of 117 volumetric arterial-phase contrast-enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model-assisted performance of junior clinicians. The model finally reached the sensitivity, specificity, PPV, NPV, F1-score of 0.955 (95% CI 0.751-0.998), 0.667 (95% CI 0.241-0.940), 0.913 (95% CI 0.705-0.985), 0.800 (95% CI 0.299-0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1-score in differentiating benign from malignant PGTs when unassisted and model-assisted performance of junior clinicians were compared. Our results provide evidence that deep learning-based method may offer assistance for PGT's binary distinction.
Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.
Author Shen, Xue‐Meng
Sun, Zhi‐Jun
Chai, Zi‐Kang
Yang, Zhi‐Yi
Mao, Liang
Xu, Yongchao
Sun, Ting‐Guan
Author_xml – sequence: 1
  givenname: Xue‐Meng
  surname: Shen
  fullname: Shen, Xue‐Meng
  organization: Wuhan University
– sequence: 2
  givenname: Liang
  surname: Mao
  fullname: Mao, Liang
  organization: Wuhan University
– sequence: 3
  givenname: Zhi‐Yi
  surname: Yang
  fullname: Yang, Zhi‐Yi
  organization: Wuhan University
– sequence: 4
  givenname: Zi‐Kang
  surname: Chai
  fullname: Chai, Zi‐Kang
  organization: Wuhan University
– sequence: 5
  givenname: Ting‐Guan
  surname: Sun
  fullname: Sun, Ting‐Guan
  organization: Wuhan University
– sequence: 6
  givenname: Yongchao
  surname: Xu
  fullname: Xu, Yongchao
  email: yongchao.xu@whu.edu.cn
  organization: Wuhan University
– sequence: 7
  givenname: Zhi‐Jun
  orcidid: 0000-0003-0932-8013
  surname: Sun
  fullname: Sun, Zhi‐Jun
  email: sunzj@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36520552$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEURq0K1BDaRV-gstQNLCb4d8ZZVqEUJCQ2ILGz7tie1Ghip_aMUHY8As_Ik9RNwgaBN7blcz5d3ztFByEGh9A3Sma0rLNo_YwK0YhP6IjWhFZEMXlQzlyKSjJ-P0HTnB8Ioc2cs89owmvJiJTsCLXnzq1x7yAFH5YvT8-Qs8-Ds9h6WIZYLjh2eA0pDt7iZQ_B4mFcxZRxu8FjLhY2MQwJ8lB0F_5AMEVf3GK_gmV5_oIOO-iz-7rfj9Hdxa_bxWV1ffP7avHzujJcclFR3nbKciOoYgKAENswQ2rbtVY1jIEDpjhwRwg0hrXgpBJWGAuUAtRzyo_RyS53neLf0eVBr3w2ri8luzhmzRoplJwrwQv64w36EMcUSnWaqUIwOa9Zob7vqbFdOavXqfwobfRr9wpwtgNMijkn12njBxj8th2-15To__PRZT56O59inL4xXkPfY_fpj753m49BfXN-tTP-ATLNoPc
CitedBy_id crossref_primary_10_1007_s00330_024_10719_2
crossref_primary_10_1007_s10278_024_01137_3
crossref_primary_10_1016_j_jormas_2024_102030
crossref_primary_10_3389_fonc_2024_1383323
crossref_primary_10_3389_fonc_2024_1384105
crossref_primary_10_1186_s12885_024_12277_8
crossref_primary_10_3389_fonc_2024_1417330
crossref_primary_10_58600_eurjther2612
crossref_primary_10_1007_s10278_024_01307_3
crossref_primary_10_3390_jcm12226973
Cites_doi 10.1016/S0385‐8146(85)80044‐4
10.1097/PAP.0b013e318202645a
10.1038/nature21056
10.1148/radiol.2493072045
10.1145/3065386
10.1007/s11263‐019‐01228‐7
10.1111/j.2517‐6161.1995.tb02031.x
10.3390/cancers13153910
10.3322/canjclin.34.1.24
10.1109/TPAMI.2021.3115825
10.5858/2009‐0527‐RS.1
10.1038/nature14539
10.1016/j.otc.2015.11.001
10.1109/ISBI.2017.7950485
10.1102/1470‐7330.2007.0008
10.1155/2022/8192999
10.1371/journal.pmed.1002711
10.1001/jamanetworkopen.2019.5600
10.1111/his.14322
10.1109/MSP.2012.2205597
10.1055/s‐0042‐109171
10.1146/annurev‐bioeng‐071516‐044442
10.1038/s41591‐018‐0316‐z
10.3174/ajnr.A2520
10.1111/j.1600‐0757.2011.00385.x
10.3389/fonc.2021.632104
10.1109/ACCESS.2021.3064752
10.1093/neuonc/noz199
10.1002/(SICI)1097‐0258(19980430)17:8<857::AID‐SIM777>3.0.CO;2‐E
10.1038/ncomms5006
10.1007/s00405‐022‐07455‐y
10.1371/journal.pone.0118432
10.6004/jnccn.2020.0031
10.1016/j.ejrad.2008.01.027
10.1016/j.oraloncology.2015.04.005
10.1017/S0022215100104402
10.1109/CVPR.2017.243
10.1109/TNNLS.2017.2732482
10.1002/nbm.4408
10.1148/radiology.214.1.r00ja05231
10.1053/j.seminoncol.2008.03.009
10.1038/s41591‐020‐0867‐7
10.1038/s41591‐018‐0147‐y
10.1055/s‐0031‐1299130
10.1109/TETCI.2021.3100641
10.1016/j.inffus.2021.06.008
10.1038/s41598‐020‐76389‐4
10.1200/JCO.21.00449
10.1001/jama.2016.17216
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC
DBID AAYXX
CITATION
NPM
7QP
K9.
7X8
DOI 10.1111/odi.14474
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1601-0825
EndPage 3336
ExternalDocumentID 36520552
10_1111_odi_14474
ODI14474
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 82072996; 82103333
– fundername: Central University Basic Research Fund of China
  funderid: 2042021kf0174; 2042021kf0216
– fundername: Central University Basic Research Fund of China
  grantid: 2042021kf0174
– fundername: National Natural Science Foundation of China
  grantid: 82103333
– fundername: National Natural Science Foundation of China
  grantid: 82072996
– fundername: Central University Basic Research Fund of China
  grantid: 2042021kf0216
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29N
31~
33P
34H
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CWXXS
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WBNRW
WIH
WIJ
WIK
WOHZO
WPGGZ
WQJ
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
NPM
WRC
7QP
K9.
7X8
ID FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913
IEDL.DBID DR2
ISSN 1354-523X
1601-0825
IngestDate Fri Jul 11 00:27:53 EDT 2025
Wed Aug 13 04:52:39 EDT 2025
Wed Feb 19 02:26:08 EST 2025
Tue Jul 01 00:53:24 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Sun Jul 06 04:45:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords deep learning
contrast-enhanced computed tomography (CECT)
binary classification
parotid gland tumor
convolutional neural network
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913
Notes Xue‐Meng Shen, Liang Mao and Zhi‐Yi Yang have contributed equally to this work and share first authorship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0932-8013
PMID 36520552
PQID 2898425962
PQPubID 105433
PageCount 12
ParticipantIDs proquest_miscellaneous_2754859843
proquest_journals_2898425962
pubmed_primary_36520552
crossref_citationtrail_10_1111_odi_14474
crossref_primary_10_1111_odi_14474
wiley_primary_10_1111_odi_14474_ODI14474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Malden
PublicationTitle Oral diseases
PublicationTitleAlternate Oral Dis
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2018; 29
2011; 135
2021; 5
2017; 60
2021; 44
2000; 214
2015; 51
2015; 521
2019; 2
1995; 57
2015; 10
1988; 102
2020; 128
2011; 32
2008; 35
2008; 249
2011; 57
2020; 10
2016; 37
2012; 33
2011; 18
2022; 279
2020; 18
2018; 24
2021; 79
2021; 13
1998; 17
2014; 5
2021; 76
2021; 34
2022; 2022
2021; 11
2016; 316
2021; 39
1984; 34
2019; 25
2020; 26
2017
2007; 7
2012; 29
2017; 19
2008; 66
2020; 22
1985; 12
2017; 542
2016; 49
2018; 15
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 11
  year: 2021
  article-title: Deep learning for differentiating benign from malignant parotid lesions on MR images
  publication-title: Frontiers in Oncology
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 135
  start-page: 511
  issue: 4
  year: 2011
  end-page: 515
  article-title: Adenoid cystic carcinoma
  publication-title: Archives of Pathology & Laboratory Medicine
– volume: 34
  start-page: 24
  issue: 1
  year: 1984
  end-page: 39
  article-title: Tumors of the major and minor salivary glands
  publication-title: CA: A Cancer Journal for Clinicians
– volume: 37
  start-page: 454
  issue: 5
  year: 2016
  end-page: 471
  article-title: Parotid gland lesions: Multiparametric ultrasound and MRI features
  publication-title: Ultraschall in der Medizin ‐ European Journal of Ultrasound
– volume: 10
  start-page: 19388
  issue: 1
  year: 2020
  article-title: Diagnostic accuracy of deep‐learning with anomaly detection for a small amount of imbalanced data: Discriminating malignant parotid tumors in MRI
  publication-title: Scientific Reports
– volume: 13
  issue: 15
  year: 2021
  article-title: An overview on the histogenesis and morphogenesis of salivary gland neoplasms and evolving diagnostic approaches
  publication-title: Cancers
– volume: 18
  start-page: 873
  issue: 7
  year: 2020
  end-page: 898
  article-title: Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology
  publication-title: Journal of the National Comprehensive Cancer Network
– volume: 214
  start-page: 231
  issue: 1
  year: 2000
  end-page: 236
  article-title: Salivary gland tumors: Evaluation with two‐phase helical CT
  publication-title: Radiology
– volume: 25
  start-page: 24
  issue: 1
  year: 2019
  end-page: 29
  article-title: A guide to deep learning in healthcare
  publication-title: Nature Medicine
– volume: 51
  start-page: 652
  issue: 7
  year: 2015
  end-page: 661
  article-title: Adenoid cystic carcinoma of the head and neck – An update
  publication-title: Oral Oncology
– volume: 34
  issue: 1
  year: 2021
  article-title: Classification of parotid gland tumors by using multimodal MRI and deep learning
  publication-title: NMR in Biomedicine
– volume: 5
  start-page: 4006
  issue: 1
  year: 2014
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nature Communications
– volume: 32
  start-page: 1202
  issue: 7
  year: 2011
  end-page: 1207
  article-title: MR imaging of parotid tumors: Typical lesion characteristics in MR imaging improve discrimination between benign and malignant disease
  publication-title: American Journal of Neuroradiology
– volume: 79
  start-page: 279
  issue: 3
  year: 2021
  end-page: 290
  article-title: Pleomorphic adenoma: The great mimicker of malignancy
  publication-title: Histopathology
– volume: 39
  start-page: 1909
  issue: 17
  year: 2021
  end-page: 1941
  article-title: Management of salivary gland malignancy: ASCO guideline
  publication-title: Journal of Clinical Oncology
– volume: 66
  start-page: 419
  issue: 3
  year: 2008
  end-page: 436
  article-title: Imaging of salivary gland tumours
  publication-title: European Journal of Radiology
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  end-page: 118
  article-title: Dermatologist‐level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 12
  start-page: S122
  year: 1985
  end-page: S127
  article-title: The management of salivary neoplasms an overview
  publication-title: Auris Nasus Larynx
– start-page: 130
  year: 2017
  end-page: 134
– volume: 2
  issue: 6
  year: 2019
  article-title: Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet model
  publication-title: JAMA Network Open
– volume: 44
  start-page: 1
  year: 2021
  article-title: Learning deformable image registration from optimization: Perspective, modules, bilevel training and beyond
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 10
  issue: 3
  year: 2015
  article-title: The precision‐recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS ONE
– volume: 102
  start-page: 163
  issue: 2
  year: 1988
  end-page: 168
  article-title: CT sialography and conventional sialography in the evaluation of parotid gland neoplasms
  publication-title: The Journal of Laryngology & Otology
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  end-page: 97
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Processing Magazine
– volume: 2022
  year: 2022
  article-title: The diagnostic value of ultrasound‐based deep learning in differentiating parotid gland tumors
  publication-title: Journal of Oncology
– volume: 76
  start-page: 323
  year: 2021
  end-page: 336
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Information Fusion
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 29
  start-page: 3573
  issue: 8
  year: 2018
  end-page: 3587
  article-title: Cost‐sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 33
  start-page: 283
  issue: 3
  year: 2012
  end-page: 288
  article-title: Evaluation of parotid gland lesions with standard ultrasound, color duplex sonography, Sonoelastography, and acoustic radiation force impulse imaging – A pilot study
  publication-title: Ultraschall in der Medizin ‐ European Journal of Ultrasound
– volume: 18
  start-page: 29
  issue: 1
  year: 2011
  end-page: 45
  article-title: Histologic grading and prognostic biomarkers in salivary gland carcinomas
  publication-title: Advances in Anatomic Pathology
– volume: 57
  start-page: 150
  issue: 1
  year: 2011
  end-page: 159
  article-title: Salivary tumours: Salivary tumours
  publication-title: Periodontology 2000
– volume: 5
  start-page: 726
  issue: 5
  year: 2021
  end-page: 742
  article-title: A survey on neural network interpretability
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 279
  start-page: 5389
  issue: 11
  year: 2022
  end-page: 5399
  article-title: Deep learning model developed by multiparametric MRI in differential diagnosis of parotid gland tumors
  publication-title: European Archives of Oto‐Rhino‐Laryngology
– volume: 128
  start-page: 336
  issue: 2
  year: 2020
  end-page: 359
  article-title: Grad‐CAM: Visual explanations from deep networks via gradient‐based localization
  publication-title: International Journal of Computer Vision
– volume: 35
  start-page: 309
  issue: 3
  year: 2008
  end-page: 319
  article-title: Salivary gland malignancies: The role for chemotherapy and molecular targeted agents
  publication-title: Seminars in Oncology
– volume: 9
  start-page: 40360
  year: 2021
  end-page: 40371
  article-title: Research on the classification of benign and malignant parotid tumors based on transfer learning and a convolutional neural network
  publication-title: IEEE Access
– volume: 17
  start-page: 857
  issue: 8
  year: 1998
  end-page: 872
  article-title: Two‐sided confidence intervals for the single proportion: Comparison of seven methods
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 52
  issue: 1
  year: 2007
  end-page: 62
  article-title: Imaging of salivary gland tumours
  publication-title: Cancer Imaging
– volume: 249
  start-page: 909
  issue: 3
  year: 2008
  end-page: 916
  article-title: Parotid gland tumors: Can addition of diffusion‐weighted MR imaging to dynamic contrast‐enhanced MR imaging improve diagnostic accuracy in characterization?
  publication-title: Radiology
– volume: 15
  issue: 11
  year: 2018
  article-title: Deep learning for lung cancer prognostication: A retrospective multi‐cohort radiomics study
  publication-title: PLoS Medicine
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– volume: 24
  start-page: 1337
  issue: 9
  year: 2018
  end-page: 1341
  article-title: Automated deep‐neural‐network surveillance of cranial images for acute neurologic events
  publication-title: Nature Medicine
– start-page: 2261
  year: 2017
  end-page: 2269
– volume: 49
  start-page: 343
  issue: 2
  year: 2016
  end-page: 380
  article-title: Diagnosis and management of malignant salivary gland tumors of the parotid gland
  publication-title: Otolaryngologic Clinics of North America
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  end-page: 248
  article-title: Deep learning in medical image analysis
  publication-title: Annual Review of Biomedical Engineering
– volume: 26
  start-page: 892
  issue: 6
  year: 2020
  end-page: 899
  article-title: Predicting conversion to wet age‐related macular degeneration using deep learning
  publication-title: Nature Medicine
– volume: 22
  start-page: 402
  issue: 3
  year: 2020
  end-page: 411
  article-title: A novel fully automated MRI‐based deep‐learning method for classification of IDH mutation status in brain gliomas
  publication-title: Neuro‐Oncology
– ident: e_1_2_11_40_1
  doi: 10.1016/S0385‐8146(85)80044‐4
– ident: e_1_2_11_37_1
  doi: 10.1097/PAP.0b013e318202645a
– ident: e_1_2_11_11_1
  doi: 10.1038/nature21056
– ident: e_1_2_11_46_1
  doi: 10.1148/radiol.2493072045
– ident: e_1_2_11_25_1
  doi: 10.1145/3065386
– ident: e_1_2_11_38_1
  doi: 10.1007/s11263‐019‐01228‐7
– ident: e_1_2_11_4_1
  doi: 10.1111/j.2517‐6161.1995.tb02031.x
– ident: e_1_2_11_22_1
  doi: 10.3390/cancers13153910
– ident: e_1_2_11_32_1
  doi: 10.3322/canjclin.34.1.24
– ident: e_1_2_11_29_1
  doi: 10.1109/TPAMI.2021.3115825
– ident: e_1_2_11_23_1
  doi: 10.5858/2009‐0527‐RS.1
– ident: e_1_2_11_26_1
  doi: 10.1038/nature14539
– ident: e_1_2_11_28_1
  doi: 10.1016/j.otc.2015.11.001
– ident: e_1_2_11_6_1
  doi: 10.1109/ISBI.2017.7950485
– ident: e_1_2_11_42_1
  doi: 10.1102/1470‐7330.2007.0008
– ident: e_1_2_11_44_1
  doi: 10.1155/2022/8192999
– ident: e_1_2_11_20_1
  doi: 10.1371/journal.pmed.1002711
– ident: e_1_2_11_34_1
  doi: 10.1001/jamanetworkopen.2019.5600
– ident: e_1_2_11_18_1
  doi: 10.1111/his.14322
– ident: e_1_2_11_19_1
  doi: 10.1109/MSP.2012.2205597
– ident: e_1_2_11_5_1
  doi: 10.1055/s‐0042‐109171
– ident: e_1_2_11_39_1
  doi: 10.1146/annurev‐bioeng‐071516‐044442
– ident: e_1_2_11_12_1
  doi: 10.1038/s41591‐018‐0316‐z
– ident: e_1_2_11_9_1
  doi: 10.3174/ajnr.A2520
– ident: e_1_2_11_13_1
  doi: 10.1111/j.1600‐0757.2011.00385.x
– ident: e_1_2_11_45_1
  doi: 10.3389/fonc.2021.632104
– ident: e_1_2_11_48_1
  doi: 10.1109/ACCESS.2021.3064752
– ident: e_1_2_11_3_1
  doi: 10.1093/neuonc/noz199
– ident: e_1_2_11_33_1
  doi: 10.1002/(SICI)1097‐0258(19980430)17:8<857::AID‐SIM777>3.0.CO;2‐E
– ident: e_1_2_11_2_1
  doi: 10.1038/ncomms5006
– ident: e_1_2_11_16_1
  doi: 10.1007/s00405‐022‐07455‐y
– ident: e_1_2_11_36_1
  doi: 10.1371/journal.pone.0118432
– ident: e_1_2_11_35_1
  doi: 10.6004/jnccn.2020.0031
– ident: e_1_2_11_27_1
  doi: 10.1016/j.ejrad.2008.01.027
– ident: e_1_2_11_10_1
  doi: 10.1016/j.oraloncology.2015.04.005
– ident: e_1_2_11_17_1
  doi: 10.1017/S0022215100104402
– ident: e_1_2_11_21_1
  doi: 10.1109/CVPR.2017.243
– ident: e_1_2_11_24_1
  doi: 10.1109/TNNLS.2017.2732482
– ident: e_1_2_11_7_1
  doi: 10.1002/nbm.4408
– ident: e_1_2_11_8_1
  doi: 10.1148/radiology.214.1.r00ja05231
– ident: e_1_2_11_41_1
  doi: 10.1053/j.seminoncol.2008.03.009
– ident: e_1_2_11_47_1
  doi: 10.1038/s41591‐020‐0867‐7
– ident: e_1_2_11_43_1
  doi: 10.1038/s41591‐018‐0147‐y
– ident: e_1_2_11_30_1
  doi: 10.1055/s‐0031‐1299130
– ident: e_1_2_11_50_1
  doi: 10.1109/TETCI.2021.3100641
– ident: e_1_2_11_49_1
  doi: 10.1016/j.inffus.2021.06.008
– ident: e_1_2_11_31_1
  doi: 10.1038/s41598‐020‐76389‐4
– ident: e_1_2_11_14_1
  doi: 10.1200/JCO.21.00449
– ident: e_1_2_11_15_1
  doi: 10.1001/jama.2016.17216
SSID ssj0017932
Score 2.4326553
Snippet Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of...
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and...
ObjectivesImaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3325
SubjectTerms binary classification
Computed tomography
contrast‐enhanced computed tomography (CECT)
convolutional neural network
Deep learning
Exocrine glands
Malignancy
Oral cancer
Parotid gland
parotid gland tumor
Statistical analysis
Tumors
Title Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fodi.14474
https://www.ncbi.nlm.nih.gov/pubmed/36520552
https://www.proquest.com/docview/2898425962
https://www.proquest.com/docview/2754859843
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CDmkvzaOvTdKilh5ycbDl1y49lWxCWtgWSgJ7KJiRJW2WNPay9h7aU35CfmN-SWfkB90-oPRm8AjZ0oz0jebTDMAb5GimHCaesVp5kY1TbySDyEsxsYkZWTSSbyNPPibnl9GHaTzdgLfdXZgmP0R_4MaW4dZrNnBU1U9GXuo5RyZTzgXKXC0GRJ_71FGsdy7SGcYRO1vTNqsQs3j6lut70W8Acx2vug3nbBu-dJ_a8Eyuj1e1Os6__5LF8T__ZQcetUBUvGs0Zxc2TLEHD8ZMHuL6b3uwNWnD7o9BjY1ZiLbAxOz-9o4QN6uHFrph6s0rUVqxwGVZz7VwZUFEvbopl5VQ3wRz62fCkeKxqqm5Ka4c8UCcXIj5jauT9AQuz04vTs69tjiDl4dxGHlBqOxQh3lEDkqE6Ps6lbmfaKv0MJUSDRJwwdD4Pqa5VGgI6ego1xgEiMkoCJ_CZlEW5jkIY9DG0reS1IUcMMIcSa6kVprRFa0ZAzjqpinL28zlXEDja9Z5MDR-mRu_AbzuRRdNuo4_CR12c521Fltl5HhyRHKUyAG86l-TrXEABQtTrkgmJf8uJrlwAM8aHel7IQ2UfhxT6yM303_vPvs0fu8e9v9d9AAecp375hLkIWzWy5V5QWioVi-d2v8A-vcHzQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlEuBQqlCwUM4tBLqsR2kl2JC-pSbaFbJLSV9oIiO7bLijZZ7WYP5cQj8Ix9ks44P6L8SIhbpIzlxJ6xv_GM5wN4rSiayftJYJ3RgXRxGgx4JINUJS6xA6csp9vI45NkdCrfT-PpGrxp78LU9SG6AzeyDL9ek4HTgfRPVl6aGYUmU3kLbhOjN_EXDD91xaNI83ysU8SS3K1pU1eI8ni6pjd3o98g5k3E6recw3vwuf3YOtPk6_6q0vv5t1_qOP7v39yHzQaLsre18jyANVtswcaQ8oeIAm4L7oybyPtD0ENr56zhmDi7-v4DQTdpiGGmTtabLVnp2FwtympmmGcGYdXqolwsmb5klF5_xnxevFpW2NwWX3zuATuYsNmFp0p6BKeH7yYHo6DhZwhyEQsZREK7vhG5RB9FKhWGJuV5mBinTT_lXFmF2EUJG4YqzblWFsGOkblRUaRUMojENqwXZWF3gFmrXMxDx1Fj0AdD2JHkmhttCGDhstGDvXaesrwpXk4cGudZ68Tg-GV-_HrwqhOd1xU7_iS020521hjtMkPfk4KSg4T34GX3Gs2NYiiqsOUKZVJ08WKUEz14XCtJ14tI8BfiGFvv-an-e_fZx-GRf3jy76IvYGM0GR9nx0cnH57CXaK9r-9E7sJ6tVjZZwiOKv3c28A1XucL5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhUuPAqlCwUM4tBLqsR2nF1xQl1WLdCCUCvtASmyY7usaJPVbvYAJ34Cv5FfwozzEOUhIW6RMpZje8b-JjOeD-CZpmgmH6rIeWsi6dMsGvFERplWXrmR147TbeSjY3VwKl9N0-kaPO_uwjT1IfofbmQZYb8mA59b_5ORV3ZGkclMXoGrUqGxECJ639eOIsULoU6RSvK2pm1ZIUrj6ZtePox-Q5iXAWs4cSY34UP3rU2iyae9VW32ii-_lHH8z8HcghstEmUvGtW5DWuu3IRrY8oeIgK4Tdg4auPud8CMnZuzlmHi7PvXbwi5ST8ss02q3mzJKs_melHVM8sCLwirVxfVYsnMZ0bJ9WcsZMXrZY3NXfkxZB6w_RM2uwhESXfhdPLyZP8gatkZokKkQkaJMH5oRSHRQ5Fax7HNeBEr640dZpxrpxG5aOHiWGcFN9oh1LGysDpJtFajRGzBelmVbhuYc9qnPPYc9QU9MAQdqjDcGkvwCjeNAex2y5QXbelyYtA4zzsXBucvD_M3gKe96Lyp1_EnoZ1urfPWZJc5ep4UkhwpPoAn_Ws0Noqg6NJVK5TJ0MFLUU4M4F6jI30vQuEQ0hRb74aV_nv3-dvxYXi4_--ij2Hj3XiSvzk8fv0ArhPnfXMhcgfW68XKPURkVJtHwQJ-AFf5Cp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-assisted+diagnosis+of+parotid+gland+tumors+by+using+contrast-enhanced+CT+imaging&rft.jtitle=Oral+diseases&rft.au=Shen%2C+Xue-Meng&rft.au=Mao%2C+Liang&rft.au=Yang%2C+Zhi-Yi&rft.au=Chai%2C+Zi-Kang&rft.date=2023-11-01&rft.issn=1601-0825&rft.eissn=1601-0825&rft.volume=29&rft.issue=8&rft.spage=3325&rft_id=info:doi/10.1111%2Fodi.14474&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-523X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-523X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-523X&client=summon