A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification

Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variabilit...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 12; no. 1; pp. 1336 - 13
Main Authors Khalid, Muhammad Anwaar, Zulfiqar, Kanwal, Bashir, Ulfat, Shaheen, Areeba, Iqbal, Rida, Rizwan, Zarnab, Rizwan, Ghina, Fraz, Muhammad Moazam
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.
AbstractList Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.
Abstract Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.
Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.
ArticleNumber 1336
Author Shaheen, Areeba
Khalid, Muhammad Anwaar
Fraz, Muhammad Moazam
Iqbal, Rida
Rizwan, Ghina
Rizwan, Zarnab
Zulfiqar, Kanwal
Bashir, Ulfat
Author_xml – sequence: 1
  givenname: Muhammad Anwaar
  surname: Khalid
  fullname: Khalid, Muhammad Anwaar
  organization: Peter L. Reichertz Institute for Medical Informatics, National University of Sciences and Technology (NUST)
– sequence: 2
  givenname: Kanwal
  surname: Zulfiqar
  fullname: Zulfiqar, Kanwal
  organization: Riphah International University
– sequence: 3
  givenname: Ulfat
  surname: Bashir
  fullname: Bashir, Ulfat
  organization: Riphah International University
– sequence: 4
  givenname: Areeba
  surname: Shaheen
  fullname: Shaheen, Areeba
  organization: Riphah International University
– sequence: 5
  givenname: Rida
  surname: Iqbal
  fullname: Iqbal, Rida
  organization: Riphah International University
– sequence: 6
  givenname: Zarnab
  surname: Rizwan
  fullname: Rizwan, Zarnab
  organization: Riphah International University
– sequence: 7
  givenname: Ghina
  surname: Rizwan
  fullname: Rizwan, Ghina
  organization: Riphah International University
– sequence: 8
  givenname: Muhammad Moazam
  orcidid: 0000-0003-0495-463X
  surname: Fraz
  fullname: Fraz, Muhammad Moazam
  email: moazam.fraz@seecs.edu.pk
  organization: National University of Sciences and Technology (NUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40745164$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1UREvpH2CBIrFhEzp-5bG8hFeli7oosLUm9uQ2lyS-2MmCf497UwrqgpXt8XfOzOg8ZyeTn4ixlxzecpDVZVRc12UOQuegtRK5fMLOBGiRK1XIk3_up-wixj0AcKlAl_CMnSooleaFOmNmk72jyd6OGH5k73HGSHPW-ZBtltmPOPc2a-hwi4MfaQ7ptcXJrTDNZOfeT1mqZM33L9nNjDvKmgFj7Lve4t3nC_a0wyHSxf15zr59_PC1-Zxvrz9dNZttbqWWMm-5ECXJVpGzskBqoYBKV04RCRTYKqyLDgSVVV0LhS6t5QonUXUENbS1PGdXq6_zuDeH0KcZfxmPvTkWfNgZDGmbgUwBwraVhgqKUrVtVTkOTnCuy8Iqql3yerN6HYL_uVCczdhHS8OAE_klGinSzFWtNU_o60fo3i9hSpseKcFF4hL16p5a2pHcw3h_YkiAWAEbfIyBugeEg7mL26xxmxS3OcZtZBLJVRQTPO0o_O39H9VvPtKphA
Cites_doi 10.1145/2347736.2347755
10.1016/j.tria.2018.07.001
10.1016/j.eswa.2024.124840
10.3390/e21121222
10.1371/journal.pone.0269198
10.6084/m9.figshare.27986417.v1
10.1016/j.ajodo.2006.02.040
10.1186/s40510-018-0251-z
10.1016/j.ajodo.2020.08.014
10.1109/ACCESS.2020.3002939
10.1007/s00056-019-00203-8
10.4041/kjod.2022.52.2.112
10.1117/1.JMI.4.1.014501
10.1007/978-3-031-66958-3_1
10.1016/j.neucom.2021.08.042
10.1016/j.media.2020.101904
10.3390/jcm10163591
10.1016/j.media.2016.02.004
10.5624/isd.2015.45.4.213
10.1109/TMI.2015.2412951
10.1053/j.sodo.2005.04.005
10.1093/ejo/23.5.569
10.2319/051511-333.1
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOA
DOI 10.1038/s41597-025-05542-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 13
ExternalDocumentID oai_doaj_org_article_602cb85080674bb88d10d211576c4e9d
40745164
10_1038_s41597_025_05542_3
Genre Dataset
Journal Article
GrantInformation_xml – fundername: TEIN*Cooperation Center and Asi@Connect, Grant Reference No ACA 2016/376-562
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
ACSFO
ADBBV
ADRAZ
AFKRA
AGHDO
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M7P
M~E
NAO
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
M48
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c3533-b1227e3b4edc36aeb060858d4ee2a2ab4a96f02e789924ad463d6d3a4fe090b93
IEDL.DBID 7X7
ISSN 2052-4463
IngestDate Wed Aug 27 01:28:50 EDT 2025
Fri Aug 01 18:25:33 EDT 2025
Wed Aug 13 03:14:03 EDT 2025
Fri Aug 08 01:52:05 EDT 2025
Wed Aug 06 19:00:49 EDT 2025
Sun Aug 17 01:18:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3533-b1227e3b4edc36aeb060858d4ee2a2ab4a96f02e789924ad463d6d3a4fe090b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0495-463X
OpenAccessLink https://www.proquest.com/docview/3235212895?pq-origsite=%requestingapplication%
PMID 40745164
PQID 3235212895
PQPubID 2041912
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_602cb85080674bb88d10d211576c4e9d
proquest_miscellaneous_3235389551
proquest_journals_3235212895
pubmed_primary_40745164
crossref_primary_10_1038_s41597_025_05542_3
springer_journals_10_1038_s41597_025_05542_3
PublicationCentury 2000
PublicationDate 20250731
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 7
  year: 2025
  text: 20250731
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Y Almansob (5542_CR14) 2019; 18
A Kamoen (5542_CR4) 2001; 23
X-G Zhao (5542_CR20) 2012; 82
H Amasya (5542_CR23) 2020; 158
T Rakosi (5542_CR2) 1982
MA Khalid (5542_CR10) 2024; 255
SercanÖ Arik (5542_CR3) 2017; 4
5542_CR28
5542_CR29
J Qian (5542_CR12) 2020; 8
5542_CR27
APR Durão (5542_CR5) 2015; 45
C Flores-Mir (5542_CR18) 2004; 74
C-W Wang (5542_CR8) 2016; 31
SF Atici (5542_CR25) 2022; 17
H Mohammad-Rahimi (5542_CR26) 2022; 52
WK Darkwah (5542_CR15) 2018; 12
C-W Wang (5542_CR7) 2015; 34
H Seo (5542_CR24) 2021; 10
5542_CR19
T He (5542_CR30) 2021; 464
5542_CR13
5542_CR1
LS Fishman (5542_CR17) 1979; 49
M Makaremi (5542_CR22) 2019; 21
5542_CR6
H Kök (5542_CR21) 2019; 20
P Domingos (5542_CR9) 2012; 55
M Zeng (5542_CR11) 2021; 68
L Franchi (5542_CR16) 2008; 133
References_xml – volume: 55
  start-page: 78
  issue: 10
  year: 2012
  ident: 5542_CR9
  publication-title: Communications of the ACM
  doi: 10.1145/2347736.2347755
– volume: 12
  start-page: 20
  year: 2018
  ident: 5542_CR15
  publication-title: Translational Research in Anatomy
  doi: 10.1016/j.tria.2018.07.001
– volume: 255
  start-page: 124840
  year: 2024
  ident: 5542_CR10
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2024.124840
– volume: 21
  start-page: 1222
  issue: 12
  year: 2019
  ident: 5542_CR22
  publication-title: Entropy
  doi: 10.3390/e21121222
– volume: 17
  start-page: e0269198
  issue: 7
  year: 2022
  ident: 5542_CR25
  publication-title: Plos one
  doi: 10.1371/journal.pone.0269198
– ident: 5542_CR27
  doi: 10.6084/m9.figshare.27986417.v1
– volume: 133
  start-page: 395
  issue: 3
  year: 2008
  ident: 5542_CR16
  publication-title: American Journal of Orthodontics and Dentofacial Orthopedics
  doi: 10.1016/j.ajodo.2006.02.040
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 5542_CR21
  publication-title: Progress in Orthodontics
  doi: 10.1186/s40510-018-0251-z
– volume: 158
  start-page: e173
  issue: 6
  year: 2020
  ident: 5542_CR23
  publication-title: American Journal of Orthodontics and Dentofacial Orthopedics
  doi: 10.1016/j.ajodo.2020.08.014
– volume: 18
  start-page: 69
  year: 2019
  ident: 5542_CR14
  publication-title: IOSR J Dent Med Sci
– volume-title: An Atlas and Manual of Cephalometric Radiography
  year: 1982
  ident: 5542_CR2
– volume: 8
  start-page: 112633
  year: 2020
  ident: 5542_CR12
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002939
– ident: 5542_CR13
  doi: 10.1007/s00056-019-00203-8
– ident: 5542_CR1
– volume: 52
  start-page: 112
  issue: 2
  year: 2022
  ident: 5542_CR26
  publication-title: Korean Journal of Orthodontics
  doi: 10.4041/kjod.2022.52.2.112
– volume: 4
  start-page: 014501
  issue: 1
  year: 2017
  ident: 5542_CR3
  publication-title: Journal of Medical Imaging
  doi: 10.1117/1.JMI.4.1.014501
– ident: 5542_CR29
  doi: 10.1007/978-3-031-66958-3_1
– volume: 74
  start-page: 118
  issue: 1
  year: 2004
  ident: 5542_CR18
  publication-title: The Angle Orthodontist
– volume: 464
  start-page: 15
  year: 2021
  ident: 5542_CR30
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.042
– volume: 68
  start-page: 101904
  year: 2021
  ident: 5542_CR11
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101904
– volume: 10
  start-page: 3591
  issue: 16
  year: 2021
  ident: 5542_CR24
  publication-title: Journal of Clinical Medicine
  doi: 10.3390/jcm10163591
– volume: 31
  start-page: 63
  year: 2016
  ident: 5542_CR8
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2016.02.004
– volume: 45
  start-page: 213
  issue: 4
  year: 2015
  ident: 5542_CR5
  publication-title: Imaging Science in Dentistry
  doi: 10.5624/isd.2015.45.4.213
– volume: 34
  start-page: 1890
  issue: 9
  year: 2015
  ident: 5542_CR7
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2015.2412951
– ident: 5542_CR19
  doi: 10.1053/j.sodo.2005.04.005
– ident: 5542_CR28
– ident: 5542_CR6
– volume: 23
  start-page: 569
  issue: 5
  year: 2001
  ident: 5542_CR4
  publication-title: The European Journal of Orthodontics
  doi: 10.1093/ejo/23.5.569
– volume: 49
  start-page: 181
  issue: 3
  year: 1979
  ident: 5542_CR17
  publication-title: The Angle Orthodontist
– volume: 82
  start-page: 229
  issue: 2
  year: 2012
  ident: 5542_CR20
  publication-title: The Angle Orthodontist
  doi: 10.2319/051511-333.1
SSID ssj0001340570
Score 2.3408222
Snippet Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics....
Abstract Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in...
SourceID doaj
proquest
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1336
SubjectTerms 692/53/2421
692/698/3008
Anatomic Landmarks - diagnostic imaging
Annotations
Artificial intelligence
Automation
Benchmarking
Cephalometry
Cervical Vertebrae - diagnostic imaging
Cervical Vertebrae - growth & development
Classification
Data Descriptor
Datasets
Humanities and Social Sciences
Humans
Localization
Medical diagnosis
multidisciplinary
Orthodontics
Science
Science (multidisciplinary)
Vertebrae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnrggyjPQVkbiAIKoru11nON2oaoQ5URRb5YfEypBs1U3-_-ZcbJLESAuXJ1RZM94PN_48Q3Ay04plA2m2umcapObwC7l6phS17TIoIPfO599sqfn5sPF7OJWqS--EzbSA4-KO7RSpegIRtCyamJ0Lh_JrJgixiaDbebVl2LerWSq7K5oBiJyeiUjtTtcUaRi4lE1qyWFUFXrXyJRIez_E8r87YS0BJ6T-3BvQoxiPvZ0F-5g_wB2J59ciVcTcfTrh-Dn4pgaL6_CzTfxLgwUoAZBoFTM18OyULOKBV5fhu_LK66jlcTH0OdRGIdyJasX1CIWX84EgdCvKErJTL5MVOz3CM5P3n9enNZTAYU6aYJxdTxSqkEdDeakbcAoLSEslw2iCipEE1rbSYUNJV3KhGyszjbrYDqUrYytfgw7_bLHpyAaNJQYBZINgWtUU15IiU8nXdck67Ct4M1Gmf565Mnw5XxbOz-q3pPqfVG91xUcs763ksxxXRrI8n6yvP-X5SvY21jLT4638lppfo3s2lkFL7afyWX4HCT0uFyPMoTTCCtW8GS08rYnlN9y6WJTwduN2X_-_O8DevY_BvQc7qoyP3nneA92hps17hPkGeJBmd0_AEJX98I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcuGCKM_QgozEAQQRru11nOM2UFWIcqKoN8uPSStBk2o3-_87dpKtEOXA1ZlEyYyd-cae-QbgbSsE8gpDaWQMpYqVS0vKlD6EtqoxgY5U73z6XZ-cqa_ni_MdEHMtTE7az5SW-Tc9Z4d9WpOjSbyhYlFy8oCilPfgfqJuT7O60c3tvopMEIRP9TFcmjtu_cMHZar-u_DlX2ej2eUcP4KHE1Zky_Ht9mAHu8ewN63GNXs3UUa_fwJ2yY5o8PLKrX6xz24g1zQwgqNsuRn6TMrKGry-dL_7q9RBK7BvroujMA45GatjNMKan6eM4OcFstwsM6URZcs9hbPjLz-ak3JqnVAGSQCu9IdCVCi9whikdui5JmxlokIUTjivXK1bLrCicEsoF5WWUUfpVIu85r6Wz2C36zt8AaxCRSGRI1nnUndqiggp5Gm5aaugDdYFfJiVaa9HhgybT7alsaPqLaneZtVbWcBR0vdWMrFb54F-dWEna1vNRfCGoCO5UuW9MfGQR5FogXRQWMcCDmZr2WnJra0UMtUhm3pRwJvtZVos6QTEddhvRhlCaIQSC3g-Wnn7JhTZpqbFqoCPs9lvH_7vD3r5f-L78EDkmZh2hw9gd1ht8BXBmsG_zvP4BjyZ7hs
  priority: 102
  providerName: Springer Nature
Title A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification
URI https://link.springer.com/article/10.1038/s41597-025-05542-3
https://www.ncbi.nlm.nih.gov/pubmed/40745164
https://www.proquest.com/docview/3235212895
https://www.proquest.com/docview/3235389551
https://doaj.org/article/602cb85080674bb88d10d211576c4e9d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFMT4DozISDyCI5tmu4zyhtGyaKjYhYKhvlmM7mzSWlDb9_7lz3FaIj6dIFyty7ny-353Pd4S8bjgPrAgu18K7XPrCokrpvHauKcqAoAPvO59fqLNLOZuP5yngtkpplZs9MW7UvnMYIz8SXOA1U12OPyx-5tg1Ck9XUwuNu2QfS5dhSlcxL3YxFoFwhKW7MkzooxXYKyw_ysc5A0PKc_GbPYpl-_-GNf84J43m5_QBuZ9wI60GQR-QO6F9SA6SZq7om1Q--u0jYio6AeL1rV3e0I-2BzPVU4CmtFr3XSzQSqdhcW1_dLfYTcvRT7b1w-DQx8SslgKFTr-fU4CiV4HGxpmYUhSl-Jhcnp58m57lqY1C7gSAubw-5rwIopbBO6FsqJkCnKW9DIFbbmtpS9UwHgpwvbi0XirhlRdWNoGVrC7FE7LXdm14RmgRJLhHFsZai52qwTsE96dhuimc0qHMyLsNM81iqJZh4im30GZgvQHWm8h6IzIyQX5vR2Kl60jollcmKY5RjLtaA4wEsyrrWmt_zDzHEkHKyVD6jBxupGWS-q3MbrFk5NX2NSgOnobYNnTrYQygNUCMGXk6SHk7E_BysYGxzMj7jdh3H__3Dz3__1xekHs8rjyMDB-SvX65Di8B0vT1KK7bEdmvqtnXGTwnJxefvwB1qqajGCb4BT6p9Uc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9N3QO8IMZnYICRQAJBNM92E-cBobbbtLG2QmhDe_Mc29kkWFLaVIh_ir-Rs5O0Qny87dU5Rcl9_s723QG8KBhzNHUmltyaWNhUe5OScW5MkWbOgw5f7zyZJoen4sNZ_2wDfna1MP5aZecTg6O2lfF75DuccV9mKrP--9m32E-N8qer3QiNRi2O3Y_vmLIt3h3toXxfMnawfzI6jNupArHhiG3ifJex1PFcOGt4ol1OE4Qd0grnmGY6FzpLCspcipkIE9qKhNvEci0KRzOa--ZL6PI3BcdUpgebw_3px0_rXR3uARBtq3MolzsLjJC-4SnrxxRDN4v5bxEwDAr4G7r942Q2BLyD23CrRapk0KjWFmy48g5stb5gQV61Datf3wU1IENcvLzS8y9kT9cYGGuCYJgMlnUVWsKSkZtd6q_VlZ_fZchYl7YhdnW4ClYSXCGjzxOC4PfCkTCq019iCnpzD06vhcX3oVdWpXsIJHUCEzKNtFr72diYj2LCVVBZpCaRLovgTcdMNWv6c6hwrs6lalivkPUqsF7xCIae3ytK31s7LFTzC9WaqkooM7lE4IqBXOS5lHaXWuabEiVGuMxGsN1JS7UGv1Br9Yzg-eoxmqo_f9Glq5YNDeJDxKgRPGikvPoSzKv9yGQRwdtO7OuX__uHHv3_W57BjcOTyViNj6bHj-EmC1ro96W3oVfPl-4JAqo6f9pqMYHz6zacX-0oLo8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeENu4BAYzEkggiOrabuI8oKlrqTZ2EQ8M9c1z7JNNgiWlTYX4a_w6jp2kFeLytlfHipJz_Y59LoS8KDgHloKNlXA2li41XqVUnFtbpBl40OHrnU_PksNz-WE6mG6Qn10tjE-r7GxiMNSusv6MvCe48GWmKhv0ijYt4uN4sj_7FvsJUv6mtRun0YjIMfz4juHb4t3RGHn9kvPJ-0-jw7idMBBbgTgnzvucpyByCc6KxEDOEoQgykkAbrjJpcmSgnFIMSrh0jiZCJc4YWQBLGO5b8SE5v9WKgZ9r2PpNF2f7wgPhVhbp8OE6i3QV_rWp3wQM3TiPBa_-cIwMuBvOPePO9rg-ib3yN0Ws9JhI2RbZAPKbbLVWoUFfdW2rn69Q_SQHuDi1bWZf6FjU6OLrCnCYjpc1lVoDktHMLsyX6trP8nL0hNTumYz1CEprKS4QkefTynC4EugYWinT2cKEnSfnN8IgR-QzbIq4RGhKUgMzQzuNcZPycbIFEOvgqkitYmCLCJvOmLqWdOpQ4cbdqF0Q3qNpNeB9FpE5MDTe7XTd9kOC9X8UrdKqxPGba4QwqJLl3mulOszx317osRKyFxEdjtu6Vb1F3otqBF5vnqMSutvYkwJ1bLZg0gR0WpEHjZcXn0JRth-eLKMyNuO7euX__uHHv__W_bIbVQXfXJ0dvyE3OFBCP0B9S7ZrOdLeIrIqs6fBRGm5OKmdeYX7fExXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+Automatic+Cephalometric+Landmark+Detection+and+CVM+Stage+Classification&rft.jtitle=Scientific+data&rft.au=Khalid%2C+Muhammad+Anwaar&rft.au=Zulfiqar%2C+Kanwal&rft.au=Bashir%2C+Ulfat&rft.au=Shaheen%2C+Areeba&rft.date=2025-07-31&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft.spage=1336&rft_id=info:doi/10.1038%2Fs41597-025-05542-3&rft_id=info%3Apmid%2F40745164&rft.externalDocID=40745164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon