A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification
Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variabilit...
Saved in:
Published in | Scientific data Vol. 12; no. 1; pp. 1336 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics. |
---|---|
AbstractList | Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics. Abstract Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics. Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics.Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics. Traditional manual annotation of these landmarks on lateral cephalograms (LCRs) is time-consuming and subject to inter- and intra-expert variability. Attempts to develop automated landmark detection systems have persistently been made; however, they are inadequate for orthodontic applications due to the unavailability of a diverse dataset. In this work, we introduce a state-of-the-art cephalometric dataset designed to advance AI-driven quantitative morphometric analysis. Our dataset comprises 1,000 LCRs acquired from seven different imaging devices with varying resolutions, making it the most diverse and comprehensive collection to date. Each radiograph is meticulously annotated by clinical experts with 29 cephalometric landmarks, including the most extensive set of dental and soft tissue markers ever included in a public dataset. Additionally, we provide cervical vertebral maturation (CVM) stage annotations, marking the first standard resource for CVM classification. We anticipate that this dataset will serve as a benchmark for developing robust, automated landmark detection frameworks, with applications extending beyond orthodontics. |
ArticleNumber | 1336 |
Author | Shaheen, Areeba Khalid, Muhammad Anwaar Fraz, Muhammad Moazam Iqbal, Rida Rizwan, Ghina Rizwan, Zarnab Zulfiqar, Kanwal Bashir, Ulfat |
Author_xml | – sequence: 1 givenname: Muhammad Anwaar surname: Khalid fullname: Khalid, Muhammad Anwaar organization: Peter L. Reichertz Institute for Medical Informatics, National University of Sciences and Technology (NUST) – sequence: 2 givenname: Kanwal surname: Zulfiqar fullname: Zulfiqar, Kanwal organization: Riphah International University – sequence: 3 givenname: Ulfat surname: Bashir fullname: Bashir, Ulfat organization: Riphah International University – sequence: 4 givenname: Areeba surname: Shaheen fullname: Shaheen, Areeba organization: Riphah International University – sequence: 5 givenname: Rida surname: Iqbal fullname: Iqbal, Rida organization: Riphah International University – sequence: 6 givenname: Zarnab surname: Rizwan fullname: Rizwan, Zarnab organization: Riphah International University – sequence: 7 givenname: Ghina surname: Rizwan fullname: Rizwan, Ghina organization: Riphah International University – sequence: 8 givenname: Muhammad Moazam orcidid: 0000-0003-0495-463X surname: Fraz fullname: Fraz, Muhammad Moazam email: moazam.fraz@seecs.edu.pk organization: National University of Sciences and Technology (NUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40745164$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1UREvpH2CBIrFhEzp-5bG8hFeli7oosLUm9uQ2lyS-2MmCf497UwrqgpXt8XfOzOg8ZyeTn4ixlxzecpDVZVRc12UOQuegtRK5fMLOBGiRK1XIk3_up-wixj0AcKlAl_CMnSooleaFOmNmk72jyd6OGH5k73HGSHPW-ZBtltmPOPc2a-hwi4MfaQ7ptcXJrTDNZOfeT1mqZM33L9nNjDvKmgFj7Lve4t3nC_a0wyHSxf15zr59_PC1-Zxvrz9dNZttbqWWMm-5ECXJVpGzskBqoYBKV04RCRTYKqyLDgSVVV0LhS6t5QonUXUENbS1PGdXq6_zuDeH0KcZfxmPvTkWfNgZDGmbgUwBwraVhgqKUrVtVTkOTnCuy8Iqql3yerN6HYL_uVCczdhHS8OAE_klGinSzFWtNU_o60fo3i9hSpseKcFF4hL16p5a2pHcw3h_YkiAWAEbfIyBugeEg7mL26xxmxS3OcZtZBLJVRQTPO0o_O39H9VvPtKphA |
Cites_doi | 10.1145/2347736.2347755 10.1016/j.tria.2018.07.001 10.1016/j.eswa.2024.124840 10.3390/e21121222 10.1371/journal.pone.0269198 10.6084/m9.figshare.27986417.v1 10.1016/j.ajodo.2006.02.040 10.1186/s40510-018-0251-z 10.1016/j.ajodo.2020.08.014 10.1109/ACCESS.2020.3002939 10.1007/s00056-019-00203-8 10.4041/kjod.2022.52.2.112 10.1117/1.JMI.4.1.014501 10.1007/978-3-031-66958-3_1 10.1016/j.neucom.2021.08.042 10.1016/j.media.2020.101904 10.3390/jcm10163591 10.1016/j.media.2016.02.004 10.5624/isd.2015.45.4.213 10.1109/TMI.2015.2412951 10.1053/j.sodo.2005.04.005 10.1093/ejo/23.5.569 10.2319/051511-333.1 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 DOA |
DOI | 10.1038/s41597-025-05542-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_602cb85080674bb88d10d211576c4e9d 40745164 10_1038_s41597_025_05542_3 |
Genre | Dataset Journal Article |
GrantInformation_xml | – fundername: TEIN*Cooperation Center and Asi@Connect, Grant Reference No ACA 2016/376-562 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ AASML ABUWG ACGFS ACSFO ADBBV ADRAZ AFKRA AGHDO ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M7P M~E NAO OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AARCD AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. M48 PKEHL PQEST PQUKI 7X8 PUEGO |
ID | FETCH-LOGICAL-c3533-b1227e3b4edc36aeb060858d4ee2a2ab4a96f02e789924ad463d6d3a4fe090b93 |
IEDL.DBID | 7X7 |
ISSN | 2052-4463 |
IngestDate | Wed Aug 27 01:28:50 EDT 2025 Fri Aug 01 18:25:33 EDT 2025 Wed Aug 13 03:14:03 EDT 2025 Fri Aug 08 01:52:05 EDT 2025 Wed Aug 06 19:00:49 EDT 2025 Sun Aug 17 01:18:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3533-b1227e3b4edc36aeb060858d4ee2a2ab4a96f02e789924ad463d6d3a4fe090b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-0495-463X |
OpenAccessLink | https://www.proquest.com/docview/3235212895?pq-origsite=%requestingapplication% |
PMID | 40745164 |
PQID | 3235212895 |
PQPubID | 2041912 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_602cb85080674bb88d10d211576c4e9d proquest_miscellaneous_3235389551 proquest_journals_3235212895 pubmed_primary_40745164 crossref_primary_10_1038_s41597_025_05542_3 springer_journals_10_1038_s41597_025_05542_3 |
PublicationCentury | 2000 |
PublicationDate | 20250731 |
PublicationDateYYYYMMDD | 2025-07-31 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250731 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Y Almansob (5542_CR14) 2019; 18 A Kamoen (5542_CR4) 2001; 23 X-G Zhao (5542_CR20) 2012; 82 H Amasya (5542_CR23) 2020; 158 T Rakosi (5542_CR2) 1982 MA Khalid (5542_CR10) 2024; 255 SercanÖ Arik (5542_CR3) 2017; 4 5542_CR28 5542_CR29 J Qian (5542_CR12) 2020; 8 5542_CR27 APR Durão (5542_CR5) 2015; 45 C Flores-Mir (5542_CR18) 2004; 74 C-W Wang (5542_CR8) 2016; 31 SF Atici (5542_CR25) 2022; 17 H Mohammad-Rahimi (5542_CR26) 2022; 52 WK Darkwah (5542_CR15) 2018; 12 C-W Wang (5542_CR7) 2015; 34 H Seo (5542_CR24) 2021; 10 5542_CR19 T He (5542_CR30) 2021; 464 5542_CR13 5542_CR1 LS Fishman (5542_CR17) 1979; 49 M Makaremi (5542_CR22) 2019; 21 5542_CR6 H Kök (5542_CR21) 2019; 20 P Domingos (5542_CR9) 2012; 55 M Zeng (5542_CR11) 2021; 68 L Franchi (5542_CR16) 2008; 133 |
References_xml | – volume: 55 start-page: 78 issue: 10 year: 2012 ident: 5542_CR9 publication-title: Communications of the ACM doi: 10.1145/2347736.2347755 – volume: 12 start-page: 20 year: 2018 ident: 5542_CR15 publication-title: Translational Research in Anatomy doi: 10.1016/j.tria.2018.07.001 – volume: 255 start-page: 124840 year: 2024 ident: 5542_CR10 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.124840 – volume: 21 start-page: 1222 issue: 12 year: 2019 ident: 5542_CR22 publication-title: Entropy doi: 10.3390/e21121222 – volume: 17 start-page: e0269198 issue: 7 year: 2022 ident: 5542_CR25 publication-title: Plos one doi: 10.1371/journal.pone.0269198 – ident: 5542_CR27 doi: 10.6084/m9.figshare.27986417.v1 – volume: 133 start-page: 395 issue: 3 year: 2008 ident: 5542_CR16 publication-title: American Journal of Orthodontics and Dentofacial Orthopedics doi: 10.1016/j.ajodo.2006.02.040 – volume: 20 start-page: 1 issue: 1 year: 2019 ident: 5542_CR21 publication-title: Progress in Orthodontics doi: 10.1186/s40510-018-0251-z – volume: 158 start-page: e173 issue: 6 year: 2020 ident: 5542_CR23 publication-title: American Journal of Orthodontics and Dentofacial Orthopedics doi: 10.1016/j.ajodo.2020.08.014 – volume: 18 start-page: 69 year: 2019 ident: 5542_CR14 publication-title: IOSR J Dent Med Sci – volume-title: An Atlas and Manual of Cephalometric Radiography year: 1982 ident: 5542_CR2 – volume: 8 start-page: 112633 year: 2020 ident: 5542_CR12 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002939 – ident: 5542_CR13 doi: 10.1007/s00056-019-00203-8 – ident: 5542_CR1 – volume: 52 start-page: 112 issue: 2 year: 2022 ident: 5542_CR26 publication-title: Korean Journal of Orthodontics doi: 10.4041/kjod.2022.52.2.112 – volume: 4 start-page: 014501 issue: 1 year: 2017 ident: 5542_CR3 publication-title: Journal of Medical Imaging doi: 10.1117/1.JMI.4.1.014501 – ident: 5542_CR29 doi: 10.1007/978-3-031-66958-3_1 – volume: 74 start-page: 118 issue: 1 year: 2004 ident: 5542_CR18 publication-title: The Angle Orthodontist – volume: 464 start-page: 15 year: 2021 ident: 5542_CR30 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.08.042 – volume: 68 start-page: 101904 year: 2021 ident: 5542_CR11 publication-title: Medical Image Analysis doi: 10.1016/j.media.2020.101904 – volume: 10 start-page: 3591 issue: 16 year: 2021 ident: 5542_CR24 publication-title: Journal of Clinical Medicine doi: 10.3390/jcm10163591 – volume: 31 start-page: 63 year: 2016 ident: 5542_CR8 publication-title: Medical Image Analysis doi: 10.1016/j.media.2016.02.004 – volume: 45 start-page: 213 issue: 4 year: 2015 ident: 5542_CR5 publication-title: Imaging Science in Dentistry doi: 10.5624/isd.2015.45.4.213 – volume: 34 start-page: 1890 issue: 9 year: 2015 ident: 5542_CR7 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2015.2412951 – ident: 5542_CR19 doi: 10.1053/j.sodo.2005.04.005 – ident: 5542_CR28 – ident: 5542_CR6 – volume: 23 start-page: 569 issue: 5 year: 2001 ident: 5542_CR4 publication-title: The European Journal of Orthodontics doi: 10.1093/ejo/23.5.569 – volume: 49 start-page: 181 issue: 3 year: 1979 ident: 5542_CR17 publication-title: The Angle Orthodontist – volume: 82 start-page: 229 issue: 2 year: 2012 ident: 5542_CR20 publication-title: The Angle Orthodontist doi: 10.2319/051511-333.1 |
SSID | ssj0001340570 |
Score | 2.3408222 |
Snippet | Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in orthodontics.... Abstract Accurate identification and localization of cephalometric landmarks are crucial for diagnosing and quantifying anatomical abnormalities in... |
SourceID | doaj proquest pubmed crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1336 |
SubjectTerms | 692/53/2421 692/698/3008 Anatomic Landmarks - diagnostic imaging Annotations Artificial intelligence Automation Benchmarking Cephalometry Cervical Vertebrae - diagnostic imaging Cervical Vertebrae - growth & development Classification Data Descriptor Datasets Humanities and Social Sciences Humans Localization Medical diagnosis multidisciplinary Orthodontics Science Science (multidisciplinary) Vertebrae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnrggyjPQVkbiAIKoru11nON2oaoQ5URRb5YfEypBs1U3-_-ZcbJLESAuXJ1RZM94PN_48Q3Ay04plA2m2umcapObwC7l6phS17TIoIPfO599sqfn5sPF7OJWqS--EzbSA4-KO7RSpegIRtCyamJ0Lh_JrJgixiaDbebVl2LerWSq7K5oBiJyeiUjtTtcUaRi4lE1qyWFUFXrXyJRIez_E8r87YS0BJ6T-3BvQoxiPvZ0F-5g_wB2J59ciVcTcfTrh-Dn4pgaL6_CzTfxLgwUoAZBoFTM18OyULOKBV5fhu_LK66jlcTH0OdRGIdyJasX1CIWX84EgdCvKErJTL5MVOz3CM5P3n9enNZTAYU6aYJxdTxSqkEdDeakbcAoLSEslw2iCipEE1rbSYUNJV3KhGyszjbrYDqUrYytfgw7_bLHpyAaNJQYBZINgWtUU15IiU8nXdck67Ct4M1Gmf565Mnw5XxbOz-q3pPqfVG91xUcs763ksxxXRrI8n6yvP-X5SvY21jLT4638lppfo3s2lkFL7afyWX4HCT0uFyPMoTTCCtW8GS08rYnlN9y6WJTwduN2X_-_O8DevY_BvQc7qoyP3nneA92hps17hPkGeJBmd0_AEJX98I priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcuGCKM_QgozEAQQRru11nOM2UFWIcqKoN8uPSStBk2o3-_87dpKtEOXA1ZlEyYyd-cae-QbgbSsE8gpDaWQMpYqVS0vKlD6EtqoxgY5U73z6XZ-cqa_ni_MdEHMtTE7az5SW-Tc9Z4d9WpOjSbyhYlFy8oCilPfgfqJuT7O60c3tvopMEIRP9TFcmjtu_cMHZar-u_DlX2ej2eUcP4KHE1Zky_Ht9mAHu8ewN63GNXs3UUa_fwJ2yY5o8PLKrX6xz24g1zQwgqNsuRn6TMrKGry-dL_7q9RBK7BvroujMA45GatjNMKan6eM4OcFstwsM6URZcs9hbPjLz-ak3JqnVAGSQCu9IdCVCi9whikdui5JmxlokIUTjivXK1bLrCicEsoF5WWUUfpVIu85r6Wz2C36zt8AaxCRSGRI1nnUndqiggp5Gm5aaugDdYFfJiVaa9HhgybT7alsaPqLaneZtVbWcBR0vdWMrFb54F-dWEna1vNRfCGoCO5UuW9MfGQR5FogXRQWMcCDmZr2WnJra0UMtUhm3pRwJvtZVos6QTEddhvRhlCaIQSC3g-Wnn7JhTZpqbFqoCPs9lvH_7vD3r5f-L78EDkmZh2hw9gd1ht8BXBmsG_zvP4BjyZ7hs priority: 102 providerName: Springer Nature |
Title | A Benchmark Dataset for Automatic Cephalometric Landmark Detection and CVM Stage Classification |
URI | https://link.springer.com/article/10.1038/s41597-025-05542-3 https://www.ncbi.nlm.nih.gov/pubmed/40745164 https://www.proquest.com/docview/3235212895 https://www.proquest.com/docview/3235389551 https://doaj.org/article/602cb85080674bb88d10d211576c4e9d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFMT4DozISDyCI5tmu4zyhtGyaKjYhYKhvlmM7mzSWlDb9_7lz3FaIj6dIFyty7ny-353Pd4S8bjgPrAgu18K7XPrCokrpvHauKcqAoAPvO59fqLNLOZuP5yngtkpplZs9MW7UvnMYIz8SXOA1U12OPyx-5tg1Ck9XUwuNu2QfS5dhSlcxL3YxFoFwhKW7MkzooxXYKyw_ysc5A0PKc_GbPYpl-_-GNf84J43m5_QBuZ9wI60GQR-QO6F9SA6SZq7om1Q--u0jYio6AeL1rV3e0I-2BzPVU4CmtFr3XSzQSqdhcW1_dLfYTcvRT7b1w-DQx8SslgKFTr-fU4CiV4HGxpmYUhSl-Jhcnp58m57lqY1C7gSAubw-5rwIopbBO6FsqJkCnKW9DIFbbmtpS9UwHgpwvbi0XirhlRdWNoGVrC7FE7LXdm14RmgRJLhHFsZai52qwTsE96dhuimc0qHMyLsNM81iqJZh4im30GZgvQHWm8h6IzIyQX5vR2Kl60jollcmKY5RjLtaA4wEsyrrWmt_zDzHEkHKyVD6jBxupGWS-q3MbrFk5NX2NSgOnobYNnTrYQygNUCMGXk6SHk7E_BysYGxzMj7jdh3H__3Dz3__1xekHs8rjyMDB-SvX65Di8B0vT1KK7bEdmvqtnXGTwnJxefvwB1qqajGCb4BT6p9Uc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9N3QO8IMZnYICRQAJBNM92E-cBobbbtLG2QmhDe_Mc29kkWFLaVIh_ir-Rs5O0Qny87dU5Rcl9_s723QG8KBhzNHUmltyaWNhUe5OScW5MkWbOgw5f7zyZJoen4sNZ_2wDfna1MP5aZecTg6O2lfF75DuccV9mKrP--9m32E-N8qer3QiNRi2O3Y_vmLIt3h3toXxfMnawfzI6jNupArHhiG3ifJex1PFcOGt4ol1OE4Qd0grnmGY6FzpLCspcipkIE9qKhNvEci0KRzOa--ZL6PI3BcdUpgebw_3px0_rXR3uARBtq3MolzsLjJC-4SnrxxRDN4v5bxEwDAr4G7r942Q2BLyD23CrRapk0KjWFmy48g5stb5gQV61Datf3wU1IENcvLzS8y9kT9cYGGuCYJgMlnUVWsKSkZtd6q_VlZ_fZchYl7YhdnW4ClYSXCGjzxOC4PfCkTCq019iCnpzD06vhcX3oVdWpXsIJHUCEzKNtFr72diYj2LCVVBZpCaRLovgTcdMNWv6c6hwrs6lalivkPUqsF7xCIae3ytK31s7LFTzC9WaqkooM7lE4IqBXOS5lHaXWuabEiVGuMxGsN1JS7UGv1Br9Yzg-eoxmqo_f9Glq5YNDeJDxKgRPGikvPoSzKv9yGQRwdtO7OuX__uHHv3_W57BjcOTyViNj6bHj-EmC1ro96W3oVfPl-4JAqo6f9pqMYHz6zacX-0oLo8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeENu4BAYzEkggiOrabuI8oKlrqTZ2EQ8M9c1z7JNNgiWlTYX4a_w6jp2kFeLytlfHipJz_Y59LoS8KDgHloKNlXA2li41XqVUnFtbpBl40OHrnU_PksNz-WE6mG6Qn10tjE-r7GxiMNSusv6MvCe48GWmKhv0ijYt4uN4sj_7FvsJUv6mtRun0YjIMfz4juHb4t3RGHn9kvPJ-0-jw7idMBBbgTgnzvucpyByCc6KxEDOEoQgykkAbrjJpcmSgnFIMSrh0jiZCJc4YWQBLGO5b8SE5v9WKgZ9r2PpNF2f7wgPhVhbp8OE6i3QV_rWp3wQM3TiPBa_-cIwMuBvOPePO9rg-ib3yN0Ws9JhI2RbZAPKbbLVWoUFfdW2rn69Q_SQHuDi1bWZf6FjU6OLrCnCYjpc1lVoDktHMLsyX6trP8nL0hNTumYz1CEprKS4QkefTynC4EugYWinT2cKEnSfnN8IgR-QzbIq4RGhKUgMzQzuNcZPycbIFEOvgqkitYmCLCJvOmLqWdOpQ4cbdqF0Q3qNpNeB9FpE5MDTe7XTd9kOC9X8UrdKqxPGba4QwqJLl3mulOszx317osRKyFxEdjtu6Vb1F3otqBF5vnqMSutvYkwJ1bLZg0gR0WpEHjZcXn0JRth-eLKMyNuO7euX__uHHv__W_bIbVQXfXJ0dvyE3OFBCP0B9S7ZrOdLeIrIqs6fBRGm5OKmdeYX7fExXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+Automatic+Cephalometric+Landmark+Detection+and+CVM+Stage+Classification&rft.jtitle=Scientific+data&rft.au=Khalid%2C+Muhammad+Anwaar&rft.au=Zulfiqar%2C+Kanwal&rft.au=Bashir%2C+Ulfat&rft.au=Shaheen%2C+Areeba&rft.date=2025-07-31&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft.spage=1336&rft_id=info:doi/10.1038%2Fs41597-025-05542-3&rft_id=info%3Apmid%2F40745164&rft.externalDocID=40745164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |