Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution

We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in mot...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Earth Surface Vol. 114; no. F3
Main Authors Furbish, David Jon, Childs, Elise M., Haff, Peter K., Schmeeckle, Mark W.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.09.2009
Subjects
Online AccessGet full text
ISSN0148-0227
2156-2202
DOI10.1029/2009JF001265

Cover

Abstract We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil‐borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic “diffusion” reflect effects of slope‐dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as “resource islands.” Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the “harvesting” of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement.
AbstractList We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil‐borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic “diffusion” reflect effects of slope‐dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as “resource islands.” Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the “harvesting” of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement.
Author Furbish, David Jon
Childs, Elise M.
Schmeeckle, Mark W.
Haff, Peter K.
Author_xml – sequence: 1
  givenname: David Jon
  surname: Furbish
  fullname: Furbish, David Jon
  email: david.j.furbish@vanderbilt.edu
  organization: Department of Earth and Environmental Sciences and Department of Civil and Environmental Engineering, Vanderbilt University, Tennessee, Nashville, USA
– sequence: 2
  givenname: Elise M.
  surname: Childs
  fullname: Childs, Elise M.
  organization: Department of Earth and Environmental Sciences, Vanderbilt University, Tennessee, Nashville, USA
– sequence: 3
  givenname: Peter K.
  surname: Haff
  fullname: Haff, Peter K.
  organization: Nicholas School of the Environment, Duke University, North Carolina, Durham, USA
– sequence: 4
  givenname: Mark W.
  surname: Schmeeckle
  fullname: Schmeeckle, Mark W.
  organization: School of Geographical Sciences, Arizona State University, Arizona, Tempe, USA
BookMark eNp9kN9qFDEUxoNUcK298wHyAI2eJJPMzqUs7talKJYWL0Mmk7jR6WTISf-9iY9rtisiQhsOJJzz_b5wvtfkaEqTJ-Qth3ccRPdeAHTbNQAXWr0gC8GVZkKAOCIL4M2SgRDtK3KC-APqaZRugC_IrwsbJ4rzaHFHU6CY4ki_59pEamtRLMntLJboqB1uvSsxTWyIOPuM9UnnnJxHPKV3sexovJ7H6OxehDSkTAePPhda_afCHs3jVHy27iCx00DraGB4k4N1nvrbNN7sZ2_Iy2BH9Cd_7mNytf54uTpj5182n1YfzpmTSkrWeLccQq-XvWxC10HTa6247qS0XIMCJSFYpZXnLvR9Czb42u19L4NQrbfymJwefF1OiNkHM-d4bfOD4WD2wZp_g61y8Z_cxfK4b6mhjU9B_ADdxdE_PPuB2W4u1lrIyrADE7H4-7-MzT-NbmWrzLfPGwNn23XHV1-Nlr8Bus6dyg
CitedBy_id crossref_primary_10_1029_2012JF002352
crossref_primary_10_1002_2017JF004325
crossref_primary_10_1073_pnas_1922495117
crossref_primary_10_1002_esp_4385
crossref_primary_10_1029_2012JF002356
crossref_primary_10_3390_w12092318
crossref_primary_10_1029_2012JF002355
crossref_primary_10_1016_j_geoderma_2019_03_007
crossref_primary_10_1016_j_geomorph_2016_06_032
crossref_primary_10_1002_esp_5234
crossref_primary_10_1029_2012JF002353
crossref_primary_10_1029_2010JF001661
crossref_primary_10_1002_2015JF003479
crossref_primary_10_1016_j_geomorph_2016_04_003
crossref_primary_10_1002_2016JF003833
crossref_primary_10_1029_2018JF004612
crossref_primary_10_5194_esurf_9_701_2021
crossref_primary_10_1002_hyp_8086
crossref_primary_10_1016_j_earscirev_2017_06_009
crossref_primary_10_1029_2017JF004315
crossref_primary_10_1029_2009JF001576
crossref_primary_10_5194_esurf_9_629_2021
crossref_primary_10_1016_j_advwatres_2011_11_005
crossref_primary_10_1002_esp_2253
crossref_primary_10_1016_j_aeolia_2013_04_005
crossref_primary_10_1002_hyp_9939
crossref_primary_10_1002_jgrf_20071
crossref_primary_10_5194_esurf_6_1169_2018
crossref_primary_10_1016_j_catena_2013_04_003
crossref_primary_10_1002_esp_3264
crossref_primary_10_1002_esp_5147
crossref_primary_10_1016_j_earscirev_2018_07_008
crossref_primary_10_1002_esp_3761
crossref_primary_10_1029_2008JF001246
crossref_primary_10_1002_esp_1902
crossref_primary_10_1016_j_geomorph_2015_08_017
crossref_primary_10_1016_j_earscirev_2022_103945
crossref_primary_10_1016_j_palaeo_2017_10_002
crossref_primary_10_1002_esp_4084
crossref_primary_10_1029_2009JF001302
crossref_primary_10_1080_00221686_2019_1702594
crossref_primary_10_1016_j_catena_2018_05_019
crossref_primary_10_1029_2018JF004724
Cites_doi 10.1016/0341-8162(94)00024-9
10.1093/oso/9780195077018.001.0001
10.1094/PD-89-0071
10.1130/0091-7613(2002)030<0482:>2.0.CO;2
10.1126/science.247.4946.1043
10.1002/1096-9837(200008)25:8<847::AID-ESP103>3.0.CO;2-Q
10.2136/sssaj2004.4100
10.2136/sssaj1991.03615995005500020001x
10.1006/jare.2002.0970
10.2136/sssaj2002.1466
10.1016/j.geomorph.2008.08.012
10.1103/RevModPhys.15.1
10.1038/nature04452
10.1029/2001WR000513
10.1006/jare.2001.0942
10.1007/978-3-642-96807-5
10.1029/2006JF000498
10.1080/00221680309499929
10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7
10.1029/2001WR000656
10.1097/00004032-198401000-00015
10.1007/978-3-662-08539-4
10.1023/A:1005939924434
10.1023/A:1006733002131
10.1029/135GM09
10.1016/0169-555X(95)00027-3
10.2307/3897893
10.2136/sssaj2005.0030
10.1130/0091-7613(1997)025<0695:MAAIOM>2.3.CO;2
10.1142/2012
10.1002/esp.3290200308
10.1016/S0341-8162(01)00182-5
10.5751/ES-02302-130105
10.2136/sssaj2004.0132
10.1016/S0140-1963(18)30585-8
10.1029/JB089iB07p05771
10.1006/jare.1999.0540
10.2307/3898801
10.1016/j.geoderma.2004.05.006
10.2136/sssaj1989.03615995005300040003x
10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2
10.1016/S0140-1963(02)00324-5
10.1029/2000WR900032
ContentType Journal Article
Copyright Copyright 2009 by the American Geophysical Union.
Copyright_xml – notice: Copyright 2009 by the American Geophysical Union.
DBID BSCLL
AAYXX
CITATION
DOI 10.1029/2009JF001265
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 10_1029_2009JF001265
JGRF623
ark_67375_WNG_0HJF91CQ_6
Genre article
GroupedDBID 12K
1OC
7XC
88I
8FE
8FH
8G5
8R4
8R5
AAHQN
AAMNL
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AGYGG
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
24P
AAYXX
CITATION
ID FETCH-LOGICAL-c3533-4ec8dfb68b34f9904b66516933a16050530fa565e1cfbb70afe050beb3f257ea3
ISSN 0148-0227
IngestDate Tue Jul 01 02:41:47 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Wed Jan 22 16:51:52 EST 2025
Tue Sep 09 05:23:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue F3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3533-4ec8dfb68b34f9904b66516933a16050530fa565e1cfbb70afe050beb3f257ea3
Notes ArticleID:2009JF001265
istex:2E14BF23FD892B034F280C73F414D9F470C00688
ark:/67375/WNG-0HJF91CQ-6
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009JF001265
PageCount 18
ParticipantIDs crossref_primary_10_1029_2009JF001265
crossref_citationtrail_10_1029_2009JF001265
wiley_primary_10_1029_2009JF001265_JGRF623
istex_primary_ark_67375_WNG_0HJF91CQ_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2009
PublicationDateYYYYMMDD 2009-09-01
PublicationDate_xml – month: 09
  year: 2009
  text: September 2009
PublicationDecade 2000
PublicationTitle Journal of Geophysical Research: Earth Surface
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hanks, T. C., R. C. Bucknam, K. R. Lajoie, and R. E. Wallace (1984), Modification of wave-cut and faulting-controlled landforms, J. Geophys. Res., 89, 5771-5790.
Cornelis, W. M., G. Oltenfreiter, D. Gabriels, and R. Hartmann (2004), Splash-saltation of sand due to wind-driven rain: Horizontal flux and sediment transport rate, Soil Sci. Soc. Am. J., 68, 41-46.
Pedersen, H. S., and B. Hasholt (1995), Influence of wind speed on rain splash erosion, Catena, 24, 39-54.
Bock, C. H., P. E. Parker, and T. R. Gottwald (2005), Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees, Plant Disease, 89, 71-80.
Murray, J. D. (1989), Mathematical Biology, Springer, Berlin.
Leguédois, S., O. Planchon, C. Legout, and Y. Le Bissonnais (2005), Splash projection distance for aggregated soils: Theory and experiment, Soil Sci. Soc. Am. J., 69, 30-37.
Sharma, P. P., S. C. Gupta, and W. J. Rawls (1991), Soil detachment by single raindrops of varying kinetic energy, Soil Sci. Soc. Am. J., 55, 301-307.
Furbish, D. J., K. K. Hamner, M. Schmeeckle, M. N. Borosund, and S. M. Mudd (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, J. Geophys. Res., 112, F01001, doi:10.1029/2006JF000498.
Sharma, P. P., and S. C. Gupta (1989), Sand detachment by single raindrops of varying kinetic energy and momentum, Soil Sci. Soc. Am. J., 53, 1005-1010.
Erpul, G., L. D. Norton, and D. Gabriels (2002), Raindrop-induced and wind-driven soil particle transport, Catena, 47, 227-243.
Gebauer, R. L. E., S. Schwinning, and J. R. Ehleringer (2002), Interspecific competition and resource pulse utilization in a cold desert community, Ecology, 83, 2602-2616.
Parsons, A. J., A. D. Abrahams, and R. Simanton Jr. (1992), Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona, J. Arid Environ., 22, 107-115.
Chandrasekhar, S. (1943), Stochastic problems in physics and astronomy, Rev. Modern Phys., 15, 1-89.
Risken, H. (1984), The Fokker-Planck Equation: Methods of Solution and Applications, Springer, Berlin.
Abrahams, A. D., A. J. Parsons, and J. Wainwright (1995), Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona, Geomorphology, 13, 37-48.
Jyotsna, R., and P. K. Haff (1997), Microtopography as an indicator of modern hillslope diffusivity in arid terrain, Geology, 25, 695-698.
Wainwright, J., A. J. Parsons, and A. D. Abrahams (1995), A simulation study of the role of raindrop erosion in the formation of desert pavements, Earth Surf. Processes Landforms, 20, 277-291.
Mouzai, L., and M. Bouhadef (2003), Water drop erosivity: Effects on soil splash, J. Hydraul. Res., 42, 61-68.
Nadabo, S., R. D. Pieper, and R. F. Beck (1980), Growth patterns and biomass relations of Xanthocephalum sarothrae (Pursh) shinners on sandy soils in southern New Mexico, J. Range Manage., 33, 394-397.
Furbish, D. J. (1997), Fluid Physics in Geology, Oxford, U. K.
Ridolfi, L., L. Francesco, and P. D'Odorico (2008), Fertility island formation and evolution in dryland ecosystems, Ecol. Soc., 13, pap. 5.
Legout, C., S. Leguédois, Y. Le Bissonnais, and O.M. Issa (2005), Splash distance and size distributions for various soils, Geoderma, 124, 279-292, doi:10.1016/j.geoderma.2004.05.006.
Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423.
Wainwright, J., A. J. Parsons, and A. D. Abrahams (2000), Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico, Hydrol. Processes, 14, 2921-2943.
Schlesinger, W. H., and A. M. Pilmans (1998), Plant-soil interactions in deserts, Biogeochemistry, 42, 169-187.
Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia, and W. G. Whitford (1990), Biological feedbacks in global desertification, Science, 247, 1043-1048.
Bochet, E., J. Poesen, and J. L. Rubio (2000), Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes, Earth Surf. Processes Landforms, 25, 847-867.
Dreicer, M., T. E. Hakonson, G. C. White, and F. W. Whicker (1984), Rain splash as a mechanism for soil contamination of plant surfaces, Health Phys., 46, 177-187.
Ellison, W. D. (1944), Studies of raindrop erosion, Agric. Eng., 25, 131-136.
Erpul, G., D. Gabriels, W. M. Cornelis, H. Samray, and T. Guzelordu (2008), Sand transport under increased lateral jetting of raindrops induced by wind, Geomorphology, 104, 191-202, doi:10.1016/j.geomorph.2008.08.012.
McGonigle, T. P., M. L. Chambers, and G. J. White (2005), Enrichment over time of organic carbon and available phosphorus in semiarid soil, Soil Sci. Soc. Am. J., 69, 1617-1626, doi:10.2136/sssaj2004.0132.
Wainwright, J., A. J. Parsons, and A. D. Abrahams (1999), Rainfall energy under creosotebush, J. Arid Environ., 43, 111-120.
DePloey, J., and J. Savat (1968), Contribution a l'etude de l'erosion par le splash, Z. Geomorphol., 12, 174-193.
Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich (2002), REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 30, 482.
Dietrich, W. E., and J. T. Perron (2006), The search for a topographic signature of life, Nature, 439, 411-418, doi:10.1038/nature04452.
Wainwright, J., A. J. Parsons, W. H. Schlesinger, and A. D. Abrahams (2002), Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, southern New Mexico, J. Arid Environ., 51, 319-338.
Gabet, E. J., and T. Dunne (2003), Soil detachment by rain power, Water Resour. Res., 39(1), 1002, doi:10.1029/2001WR000656.
Moeyersons, J., and L. DePloey (1976), Quantitative data on splash erosion, simulated on unvegetated slopes, Z. Geomorphol. Suppl., 25, 120-131.
Osman, A., and R. D. Pieper (1988), Growth of Gutierrezia sarothrae seedlings in the field, J. Range Manage., 41, 92-93.
Mosley, M. P. (1973), Rain splash and the convexity of badland divides, Z. Geomorphol. Suppl., 18, 10-25.
Moeyersons, J. (1983), Measurements of splash-saltation fluxes under oblique rain, Catena Suppl., 4, 19-31.
Wan, C., I. Yilmaz, and R. E. Sosebee (2002), Seasonal soil-water availability influences snakeweed root dynamics, J. Arid Environ., 51, 255-264.
Carson, M. A., and M. J. Kirkby (1972), Hillslope Form and Process, Cambridge Univ. Press, Cambridge, U. K.
Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res., 38(6), 1081, doi:10.1029/2001WR000513.
Wilcox, C. S., J. W. Ferguson, G. C. J. Fernandez, and R. S. Nowak (2004), Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite, J. Arid Environ., 56, 129-148.
van Dijk, A. I. J. M., A. G. C. A. Meesters, and L. A. Bruijnzeel (2002), Exponential distribution theory and the interpretation of splash detachment and transport experiments, Soil Sci. Soc. Am. J., 66, 1466-1474.
Benson, D. A., R. Schumer, S. W. Wheatcraft, and M. M. Meerschaert (2001), Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240.
1976; 25
1991; 55
2002; 51
1983; 4
2004; 68
1973; 18
1999; 43
1972
2008; 104
1998; 42
2001; 42
2005; 69
1995; 20
1968; 12
2002; 47
2000; 14
2002; 83
1995; 24
1980; 33
1984
1988; 41
2003; 42
1989
2002; 38
2006; 439
1990; 247
2000; 25
2002; 30
1995; 13
1997; 25
1984; 89
1984; 46
2008
1997
1943; 15
2008; 13
2003; 39
2005
2003; 135
2005; 89
1944; 25
2007; 112
1989; 53
2000; 36
2005; 124
2005; 8
2004; 56
2002; 66
1992; 22
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Moeyersons J. (e_1_2_12_30_1) 1976; 25
Ebeling W. (e_1_2_12_15_1) 2005
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Ridolfi L. (e_1_2_12_39_1) 2008; 13
DePloey J. (e_1_2_12_11_1) 1968; 12
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
Mosley M. P. (e_1_2_12_31_1) 1973; 18
Ellison W. D. (e_1_2_12_16_1) 1944; 25
e_1_2_12_27_1
Carson M. A. (e_1_2_12_7_1) 1972
Moeyersons J. (e_1_2_12_29_1) 1983; 4
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_13_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – reference: Mosley, M. P. (1973), Rain splash and the convexity of badland divides, Z. Geomorphol. Suppl., 18, 10-25.
– reference: Wan, C., I. Yilmaz, and R. E. Sosebee (2002), Seasonal soil-water availability influences snakeweed root dynamics, J. Arid Environ., 51, 255-264.
– reference: Furbish, D. J., K. K. Hamner, M. Schmeeckle, M. N. Borosund, and S. M. Mudd (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, J. Geophys. Res., 112, F01001, doi:10.1029/2006JF000498.
– reference: Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423.
– reference: Benson, D. A., R. Schumer, S. W. Wheatcraft, and M. M. Meerschaert (2001), Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240.
– reference: Pedersen, H. S., and B. Hasholt (1995), Influence of wind speed on rain splash erosion, Catena, 24, 39-54.
– reference: Risken, H. (1984), The Fokker-Planck Equation: Methods of Solution and Applications, Springer, Berlin.
– reference: Erpul, G., L. D. Norton, and D. Gabriels (2002), Raindrop-induced and wind-driven soil particle transport, Catena, 47, 227-243.
– reference: Hanks, T. C., R. C. Bucknam, K. R. Lajoie, and R. E. Wallace (1984), Modification of wave-cut and faulting-controlled landforms, J. Geophys. Res., 89, 5771-5790.
– reference: Osman, A., and R. D. Pieper (1988), Growth of Gutierrezia sarothrae seedlings in the field, J. Range Manage., 41, 92-93.
– reference: Wainwright, J., A. J. Parsons, W. H. Schlesinger, and A. D. Abrahams (2002), Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, southern New Mexico, J. Arid Environ., 51, 319-338.
– reference: Cornelis, W. M., G. Oltenfreiter, D. Gabriels, and R. Hartmann (2004), Splash-saltation of sand due to wind-driven rain: Horizontal flux and sediment transport rate, Soil Sci. Soc. Am. J., 68, 41-46.
– reference: McGonigle, T. P., M. L. Chambers, and G. J. White (2005), Enrichment over time of organic carbon and available phosphorus in semiarid soil, Soil Sci. Soc. Am. J., 69, 1617-1626, doi:10.2136/sssaj2004.0132.
– reference: Wilcox, C. S., J. W. Ferguson, G. C. J. Fernandez, and R. S. Nowak (2004), Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite, J. Arid Environ., 56, 129-148.
– reference: Erpul, G., D. Gabriels, W. M. Cornelis, H. Samray, and T. Guzelordu (2008), Sand transport under increased lateral jetting of raindrops induced by wind, Geomorphology, 104, 191-202, doi:10.1016/j.geomorph.2008.08.012.
– reference: Furbish, D. J. (1997), Fluid Physics in Geology, Oxford, U. K.
– reference: Dreicer, M., T. E. Hakonson, G. C. White, and F. W. Whicker (1984), Rain splash as a mechanism for soil contamination of plant surfaces, Health Phys., 46, 177-187.
– reference: Abrahams, A. D., A. J. Parsons, and J. Wainwright (1995), Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona, Geomorphology, 13, 37-48.
– reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (2000), Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico, Hydrol. Processes, 14, 2921-2943.
– reference: Chandrasekhar, S. (1943), Stochastic problems in physics and astronomy, Rev. Modern Phys., 15, 1-89.
– reference: Ridolfi, L., L. Francesco, and P. D'Odorico (2008), Fertility island formation and evolution in dryland ecosystems, Ecol. Soc., 13, pap. 5.
– reference: Bochet, E., J. Poesen, and J. L. Rubio (2000), Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes, Earth Surf. Processes Landforms, 25, 847-867.
– reference: Mouzai, L., and M. Bouhadef (2003), Water drop erosivity: Effects on soil splash, J. Hydraul. Res., 42, 61-68.
– reference: Sharma, P. P., and S. C. Gupta (1989), Sand detachment by single raindrops of varying kinetic energy and momentum, Soil Sci. Soc. Am. J., 53, 1005-1010.
– reference: Jyotsna, R., and P. K. Haff (1997), Microtopography as an indicator of modern hillslope diffusivity in arid terrain, Geology, 25, 695-698.
– reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (1995), A simulation study of the role of raindrop erosion in the formation of desert pavements, Earth Surf. Processes Landforms, 20, 277-291.
– reference: Murray, J. D. (1989), Mathematical Biology, Springer, Berlin.
– reference: Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res., 38(6), 1081, doi:10.1029/2001WR000513.
– reference: Dietrich, W. E., and J. T. Perron (2006), The search for a topographic signature of life, Nature, 439, 411-418, doi:10.1038/nature04452.
– reference: van Dijk, A. I. J. M., A. G. C. A. Meesters, and L. A. Bruijnzeel (2002), Exponential distribution theory and the interpretation of splash detachment and transport experiments, Soil Sci. Soc. Am. J., 66, 1466-1474.
– reference: Gebauer, R. L. E., S. Schwinning, and J. R. Ehleringer (2002), Interspecific competition and resource pulse utilization in a cold desert community, Ecology, 83, 2602-2616.
– reference: Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich (2002), REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 30, 482.
– reference: Nadabo, S., R. D. Pieper, and R. F. Beck (1980), Growth patterns and biomass relations of Xanthocephalum sarothrae (Pursh) shinners on sandy soils in southern New Mexico, J. Range Manage., 33, 394-397.
– reference: Carson, M. A., and M. J. Kirkby (1972), Hillslope Form and Process, Cambridge Univ. Press, Cambridge, U. K.
– reference: Sharma, P. P., S. C. Gupta, and W. J. Rawls (1991), Soil detachment by single raindrops of varying kinetic energy, Soil Sci. Soc. Am. J., 55, 301-307.
– reference: DePloey, J., and J. Savat (1968), Contribution a l'etude de l'erosion par le splash, Z. Geomorphol., 12, 174-193.
– reference: Bock, C. H., P. E. Parker, and T. R. Gottwald (2005), Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees, Plant Disease, 89, 71-80.
– reference: Legout, C., S. Leguédois, Y. Le Bissonnais, and O.M. Issa (2005), Splash distance and size distributions for various soils, Geoderma, 124, 279-292, doi:10.1016/j.geoderma.2004.05.006.
– reference: Moeyersons, J. (1983), Measurements of splash-saltation fluxes under oblique rain, Catena Suppl., 4, 19-31.
– reference: Schlesinger, W. H., and A. M. Pilmans (1998), Plant-soil interactions in deserts, Biogeochemistry, 42, 169-187.
– reference: Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia, and W. G. Whitford (1990), Biological feedbacks in global desertification, Science, 247, 1043-1048.
– reference: Gabet, E. J., and T. Dunne (2003), Soil detachment by rain power, Water Resour. Res., 39(1), 1002, doi:10.1029/2001WR000656.
– reference: Parsons, A. J., A. D. Abrahams, and R. Simanton Jr. (1992), Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona, J. Arid Environ., 22, 107-115.
– reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (1999), Rainfall energy under creosotebush, J. Arid Environ., 43, 111-120.
– reference: Leguédois, S., O. Planchon, C. Legout, and Y. Le Bissonnais (2005), Splash projection distance for aggregated soils: Theory and experiment, Soil Sci. Soc. Am. J., 69, 30-37.
– reference: Ellison, W. D. (1944), Studies of raindrop erosion, Agric. Eng., 25, 131-136.
– reference: Moeyersons, J., and L. DePloey (1976), Quantitative data on splash erosion, simulated on unvegetated slopes, Z. Geomorphol. Suppl., 25, 120-131.
– volume: 69
  start-page: 30
  year: 2005
  end-page: 37
  article-title: Splash projection distance for aggregated soils: Theory and experiment
  publication-title: Soil Sci. Soc. Am. J.
– volume: 14
  start-page: 2921
  year: 2000
  end-page: 2943
  article-title: Plot‐scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico
  publication-title: Hydrol. Processes
– volume: 56
  start-page: 129
  year: 2004
  end-page: 148
  article-title: Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite
  publication-title: J. Arid Environ.
– volume: 38
  issue: 6
  year: 2002
  article-title: On bed particle diffusion in gravel bed flows under weak bed load transport
  publication-title: Water Resour. Res.
– year: 2005
– volume: 51
  start-page: 319
  year: 2002
  end-page: 338
  article-title: Hydrology‐vegetation interactions in areas of discontinuous flow on a semi‐arid bajada, southern New Mexico
  publication-title: J. Arid Environ.
– year: 1989
– volume: 24
  start-page: 39
  year: 1995
  end-page: 54
  article-title: Influence of wind speed on rain splash erosion
  publication-title: Catena
– volume: 89
  start-page: 71
  year: 2005
  end-page: 80
  article-title: Effect of simulated wind‐driven rain on duration and distance of dispersal of pv. from canker‐infected citrus trees
  publication-title: Plant Disease
– volume: 33
  start-page: 394
  year: 1980
  end-page: 397
  article-title: Growth patterns and biomass relations of (Pursh) shinners on sandy soils in southern New Mexico
  publication-title: J. Range Manage.
– volume: 112
  year: 2007
  article-title: Rain splash of dry sand revealed by high‐speed imaging and sticky paper splash targets
  publication-title: J. Geophys. Res.
– volume: 89
  start-page: 5771
  year: 1984
  end-page: 5790
  article-title: Modification of wave‐cut and faulting‐controlled landforms
  publication-title: J. Geophys. Res.
– volume: 68
  start-page: 41
  year: 2004
  end-page: 46
  article-title: Splash‐saltation of sand due to wind‐driven rain: Horizontal flux and sediment transport rate
  publication-title: Soil Sci. Soc. Am. J.
– volume: 13
  year: 2008
  article-title: Fertility island formation and evolution in dryland ecosystems
  publication-title: Ecol. Soc.
– volume: 247
  start-page: 1043
  year: 1990
  end-page: 1048
  article-title: Biological feedbacks in global desertification
  publication-title: Science
– volume: 25
  start-page: 131
  year: 1944
  end-page: 136
  article-title: Studies of raindrop erosion
  publication-title: Agric. Eng.
– volume: 104
  start-page: 191
  year: 2008
  end-page: 202
  article-title: Sand transport under increased lateral jetting of raindrops induced by wind
  publication-title: Geomorphology
– volume: 66
  start-page: 1466
  year: 2002
  end-page: 1474
  article-title: Exponential distribution theory and the interpretation of splash detachment and transport experiments
  publication-title: Soil Sci. Soc. Am. J.
– volume: 25
  start-page: 847
  year: 2000
  end-page: 867
  article-title: Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes
  publication-title: Earth Surf. Processes Landforms
– volume: 135
  start-page: 103
  year: 2003
  end-page: 132
– volume: 25
  start-page: 120
  year: 1976
  end-page: 131
  article-title: Quantitative data on splash erosion, simulated on unvegetated slopes
  publication-title: Z. Geomorphol. Suppl.
– year: 2008
– volume: 439
  start-page: 411
  year: 2006
  end-page: 418
  article-title: The search for a topographic signature of life
  publication-title: Nature
– year: 1997
– year: 1972
– volume: 13
  start-page: 37
  year: 1995
  end-page: 48
  article-title: Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona
  publication-title: Geomorphology
– volume: 25
  start-page: 695
  year: 1997
  end-page: 698
  article-title: Microtopography as an indicator of modern hillslope diffusivity in arid terrain
  publication-title: Geology
– volume: 12
  start-page: 174
  year: 1968
  end-page: 193
  article-title: Contribution a l'etude de l'erosion par le splash
  publication-title: Z. Geomorphol.
– volume: 83
  start-page: 2602
  year: 2002
  end-page: 2616
  article-title: Interspecific competition and resource pulse utilization in a cold desert community
  publication-title: Ecology
– volume: 22
  start-page: 107
  year: 1992
  end-page: 115
  article-title: Microtopography and soil‐surface materials on semi‐arid piedmont hillslopes, southern Arizona
  publication-title: J. Arid Environ.
– volume: 42
  start-page: 61
  year: 2003
  end-page: 68
  article-title: Water drop erosivity: Effects on soil splash
  publication-title: J. Hydraul. Res.
– volume: 53
  start-page: 1005
  year: 1989
  end-page: 1010
  article-title: Sand detachment by single raindrops of varying kinetic energy and momentum
  publication-title: Soil Sci. Soc. Am. J.
– volume: 4
  start-page: 19
  year: 1983
  end-page: 31
  article-title: Measurements of splash‐saltation fluxes under oblique rain
  publication-title: Catena Suppl.
– volume: 15
  start-page: 1
  year: 1943
  end-page: 89
  article-title: Stochastic problems in physics and astronomy
  publication-title: Rev. Modern Phys.
– volume: 42
  start-page: 169
  year: 1998
  end-page: 187
  article-title: Plant‐soil interactions in deserts
  publication-title: Biogeochemistry
– volume: 51
  start-page: 255
  year: 2002
  end-page: 264
  article-title: Seasonal soil‐water availability influences snakeweed root dynamics
  publication-title: J. Arid Environ.
– volume: 36
  start-page: 1413
  year: 2000
  end-page: 1423
  article-title: The fractional‐order governing equation of Lévy motion
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 301
  year: 1991
  end-page: 307
  article-title: Soil detachment by single raindrops of varying kinetic energy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 42
  start-page: 211
  year: 2001
  end-page: 240
  article-title: Fractional dispersion, Lévy motion, and the MADE tracer tests
  publication-title: Transp. Porous Media
– volume: 69
  start-page: 1617
  year: 2005
  end-page: 1626
  article-title: Enrichment over time of organic carbon and available phosphorus in semiarid soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 8
  year: 2005
– volume: 41
  start-page: 92
  year: 1988
  end-page: 93
  article-title: Growth of seedlings in the field
  publication-title: J. Range Manage.
– volume: 46
  start-page: 177
  year: 1984
  end-page: 187
  article-title: Rain splash as a mechanism for soil contamination of plant surfaces
  publication-title: Health Phys.
– year: 1984
– volume: 124
  start-page: 279
  year: 2005
  end-page: 292
  article-title: Splash distance and size distributions for various soils
  publication-title: Geoderma
– volume: 47
  start-page: 227
  year: 2002
  end-page: 243
  article-title: Raindrop‐induced and wind‐driven soil particle transport
  publication-title: Catena
– volume: 18
  start-page: 10
  year: 1973
  end-page: 25
  article-title: Rain splash and the convexity of badland divides
  publication-title: Z. Geomorphol. Suppl.
– volume: 30
  start-page: 482
  year: 2002
  article-title: REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study
  publication-title: Geology
– volume: 39
  issue: 1
  year: 2003
  article-title: Soil detachment by rain power
  publication-title: Water Resour. Res.
– volume: 20
  start-page: 277
  year: 1995
  end-page: 291
  article-title: A simulation study of the role of raindrop erosion in the formation of desert pavements
  publication-title: Earth Surf. Processes Landforms
– volume: 43
  start-page: 111
  year: 1999
  end-page: 120
  article-title: Rainfall energy under creosotebush
  publication-title: J. Arid Environ.
– ident: e_1_2_12_38_1
  doi: 10.1016/0341-8162(94)00024-9
– ident: e_1_2_12_19_1
  doi: 10.1093/oso/9780195077018.001.0001
– ident: e_1_2_12_6_1
  doi: 10.1094/PD-89-0071
– ident: e_1_2_12_41_1
  doi: 10.1130/0091-7613(2002)030<0482:>2.0.CO;2
– ident: e_1_2_12_43_1
  doi: 10.1126/science.247.4946.1043
– ident: e_1_2_12_5_1
  doi: 10.1002/1096-9837(200008)25:8<847::AID-ESP103>3.0.CO;2-Q
– ident: e_1_2_12_10_1
  doi: 10.2136/sssaj2004.4100
– ident: e_1_2_12_45_1
  doi: 10.2136/sssaj1991.03615995005500020001x
– ident: e_1_2_12_50_1
  doi: 10.1006/jare.2002.0970
– volume: 25
  start-page: 131
  year: 1944
  ident: e_1_2_12_16_1
  article-title: Studies of raindrop erosion
  publication-title: Agric. Eng.
– ident: e_1_2_12_46_1
  doi: 10.2136/sssaj2002.1466
– ident: e_1_2_12_18_1
  doi: 10.1016/j.geomorph.2008.08.012
– ident: e_1_2_12_8_1
  doi: 10.1103/RevModPhys.15.1
– volume: 4
  start-page: 19
  year: 1983
  ident: e_1_2_12_29_1
  article-title: Measurements of splash‐saltation fluxes under oblique rain
  publication-title: Catena Suppl.
– ident: e_1_2_12_23_1
– ident: e_1_2_12_12_1
  doi: 10.1038/nature04452
– ident: e_1_2_12_35_1
  doi: 10.1029/2001WR000513
– ident: e_1_2_12_51_1
  doi: 10.1006/jare.2001.0942
– ident: e_1_2_12_40_1
  doi: 10.1007/978-3-642-96807-5
– ident: e_1_2_12_20_1
  doi: 10.1029/2006JF000498
– ident: e_1_2_12_32_1
  doi: 10.1080/00221680309499929
– ident: e_1_2_12_49_1
  doi: 10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7
– ident: e_1_2_12_21_1
  doi: 10.1029/2001WR000656
– ident: e_1_2_12_14_1
  doi: 10.1097/00004032-198401000-00015
– ident: e_1_2_12_33_1
  doi: 10.1007/978-3-662-08539-4
– ident: e_1_2_12_42_1
  doi: 10.1023/A:1005939924434
– volume-title: Hillslope Form and Process
  year: 1972
  ident: e_1_2_12_7_1
– ident: e_1_2_12_4_1
  doi: 10.1023/A:1006733002131
– volume: 12
  start-page: 174
  year: 1968
  ident: e_1_2_12_11_1
  article-title: Contribution a l'etude de l'erosion par le splash
  publication-title: Z. Geomorphol.
– ident: e_1_2_12_13_1
  doi: 10.1029/135GM09
– ident: e_1_2_12_2_1
  doi: 10.1016/0169-555X(95)00027-3
– ident: e_1_2_12_34_1
  doi: 10.2307/3897893
– ident: e_1_2_12_27_1
  doi: 10.2136/sssaj2005.0030
– ident: e_1_2_12_25_1
  doi: 10.1130/0091-7613(1997)025<0695:MAAIOM>2.3.CO;2
– year: 2005
  ident: e_1_2_12_15_1
  doi: 10.1142/2012
– ident: e_1_2_12_47_1
  doi: 10.1002/esp.3290200308
– ident: e_1_2_12_17_1
  doi: 10.1016/S0341-8162(01)00182-5
– volume: 13
  year: 2008
  ident: e_1_2_12_39_1
  article-title: Fertility island formation and evolution in dryland ecosystems
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-02302-130105
– ident: e_1_2_12_28_1
  doi: 10.2136/sssaj2004.0132
– ident: e_1_2_12_37_1
  doi: 10.1016/S0140-1963(18)30585-8
– ident: e_1_2_12_24_1
  doi: 10.1029/JB089iB07p05771
– volume: 25
  start-page: 120
  year: 1976
  ident: e_1_2_12_30_1
  article-title: Quantitative data on splash erosion, simulated on unvegetated slopes
  publication-title: Z. Geomorphol. Suppl.
– volume: 18
  start-page: 10
  year: 1973
  ident: e_1_2_12_31_1
  article-title: Rain splash and the convexity of badland divides
  publication-title: Z. Geomorphol. Suppl.
– ident: e_1_2_12_48_1
  doi: 10.1006/jare.1999.0540
– ident: e_1_2_12_9_1
– ident: e_1_2_12_36_1
  doi: 10.2307/3898801
– ident: e_1_2_12_26_1
  doi: 10.1016/j.geoderma.2004.05.006
– ident: e_1_2_12_44_1
  doi: 10.2136/sssaj1989.03615995005300040003x
– ident: e_1_2_12_22_1
  doi: 10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2
– ident: e_1_2_12_52_1
  doi: 10.1016/S0140-1963(02)00324-5
– ident: e_1_2_12_3_1
  doi: 10.1029/2000WR900032
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.1946461
Snippet We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Fokker-Planck equation
plant-soil interactions
rain splash
Title Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution
URI https://api.istex.fr/ark:/67375/WNG-0HJF91CQ-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001265
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKKiSEhGCAVm7yA-yB0C7NvY-j6kVFK2MXbW-RnTi0UtdWTTsxnvgJ_AJ-HD-DJ86xXScVbGJIVZTjOraScz772D4XQl47UcJSx07rie1zWKC4rXrLYSEmM2OpcKLMTtF3-GAY9E-9wbl_Xqn8KlktrZa8kXz9q1_J_3AVyoCv6CV7C86aRqEA7oG_cAUOw_WfeIyHM1Y-BwV4hEpfPhtPrM-Y8yHH9DHMAsUuGbFcxmRNL6XR1dRYN6RjDBKOm2XWXHkL4OeW-7Ljspk52iGmAg_tMeX0dGkakN1huImFco5Q0Z6lpaSpslpkDEYOcam_wzW6cE_M5muBWdsC4l5Fh-Gp0rFqxYjaasHH-chY5OMJQGGlMJ6kubZXy2HIahRDrIo_KQ2SrQ-m_DgZXQiBB9xr1yXrrLGxF1IYe5W3RzEooprdZBnoNEHdcezNMV95rmrh7rql-d_Mjn9MLraDsVmx30EX1USV5GIzhrep599UU-oPg95RF5TPO6TqhCGaGFTfd4aHR2aHUEb6KQyWmp50QVYEjNLRBuGUCbdMeGXCLxPBmvBgllGJO_Xn0x4i8CJ75ZfY0N2qOAx92VzTSaXs5CF5oCWI7itoPCIVMd0mO_s5nu_MLq7oLpX3SrbybXJXpV69grue0He1A5CI2UJS8EB7MoZFnP7v_sdEsKmO6g4PHaqGHpMfCD2qoEdnGUUsUAU9yuBHC-hRA72f374XoKMadO8oQo6WIUcBclRBjkrIwYOygzLYKOCMItjwTwUQamD2hJx2Oyftfl2nOqknLiy46p5IojTjQcRdLwMF0eNBgCfYrsuaASabdO2MwdpLNJOM89BmmYBSLribwZwrmPuUbE1nU7FDKGr0EfTJWMvzGLd5FKKeGjJbiMi3kxqx1kyME50HANPRTGJpj-K04jLLa-SNqT1X8W-uqbcr5cFUAriizWjox2fDXmz3B91Ws_0pDmrkrRSYG1uLNTae3abyc3KvGBNekK3lYiVewophyV9paP0GjhkIoA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rain+splash+of+soil+grains+as+a+stochastic+advection%E2%80%90dispersion+process%2C+with+implications+for+desert+plant%E2%80%90soil+interactions+and+land%E2%80%90surface+evolution&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Furbish%2C+David+Jon&rft.au=Childs%2C+Elise+M.&rft.au=Haff%2C+Peter+K.&rft.au=Schmeeckle%2C+Mark+W.&rft.date=2009-09-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=F3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001265&rft.externalDBID=10.1029%252F2009JF001265&rft.externalDocID=JGRF623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon