Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution
We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in mot...
Saved in:
Published in | Journal of Geophysical Research: Earth Surface Vol. 114; no. F3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.09.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0148-0227 2156-2202 |
DOI | 10.1029/2009JF001265 |
Cover
Abstract | We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil‐borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic “diffusion” reflect effects of slope‐dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as “resource islands.” Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the “harvesting” of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement. |
---|---|
AbstractList | We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions activated by raindrop impacts, the formulation indicates that gradients in raindrop intensity, and thus grain activity (the volume of grains in motion per unit area) can be as important as gradients in grain concentration and surface slope in effecting transport. This idea is confirmed by rain splash experiments and manifest in topographic roughening via mound growth beneath desert shrubs. The formulation provides a framework for describing transport and dispersal of any soil material moveable by rain splash, including soil grains, soil‐borne pathogens and nutrients, seeds, or debitage. As such it shows how classic models of topographic “diffusion” reflect effects of slope‐dependent grain drift, not diffusion, and it highlights the role of rain splash in the ecological behavior of desert shrubs as “resource islands.” Specifically, the growth of mounds beneath shrub canopies, where differential rain splash initially causes more grains to be splashed inward beneath the protective canopy than outward, involves the “harvesting” of nearby soil material, including nutrients. Mounds thus represent temporary storage of soil derived from areas surrounding the shrubs. As the inward grain flux associated with differential rain splash is sustained over the shrub lifetime, mound material is effectively sequestered from erosional processes that might otherwise move this material downslope. With shrub death and loss of the protective canopy, differential rain splash vanishes and the mound material is dispersed to the surrounding area, again subject to downslope movement. |
Author | Furbish, David Jon Childs, Elise M. Schmeeckle, Mark W. Haff, Peter K. |
Author_xml | – sequence: 1 givenname: David Jon surname: Furbish fullname: Furbish, David Jon email: david.j.furbish@vanderbilt.edu organization: Department of Earth and Environmental Sciences and Department of Civil and Environmental Engineering, Vanderbilt University, Tennessee, Nashville, USA – sequence: 2 givenname: Elise M. surname: Childs fullname: Childs, Elise M. organization: Department of Earth and Environmental Sciences, Vanderbilt University, Tennessee, Nashville, USA – sequence: 3 givenname: Peter K. surname: Haff fullname: Haff, Peter K. organization: Nicholas School of the Environment, Duke University, North Carolina, Durham, USA – sequence: 4 givenname: Mark W. surname: Schmeeckle fullname: Schmeeckle, Mark W. organization: School of Geographical Sciences, Arizona State University, Arizona, Tempe, USA |
BookMark | eNp9kN9qFDEUxoNUcK298wHyAI2eJJPMzqUs7talKJYWL0Mmk7jR6WTISf-9iY9rtisiQhsOJJzz_b5wvtfkaEqTJ-Qth3ccRPdeAHTbNQAXWr0gC8GVZkKAOCIL4M2SgRDtK3KC-APqaZRugC_IrwsbJ4rzaHFHU6CY4ki_59pEamtRLMntLJboqB1uvSsxTWyIOPuM9UnnnJxHPKV3sexovJ7H6OxehDSkTAePPhda_afCHs3jVHy27iCx00DraGB4k4N1nvrbNN7sZ2_Iy2BH9Cd_7mNytf54uTpj5182n1YfzpmTSkrWeLccQq-XvWxC10HTa6247qS0XIMCJSFYpZXnLvR9Czb42u19L4NQrbfymJwefF1OiNkHM-d4bfOD4WD2wZp_g61y8Z_cxfK4b6mhjU9B_ADdxdE_PPuB2W4u1lrIyrADE7H4-7-MzT-NbmWrzLfPGwNn23XHV1-Nlr8Bus6dyg |
CitedBy_id | crossref_primary_10_1029_2012JF002352 crossref_primary_10_1002_2017JF004325 crossref_primary_10_1073_pnas_1922495117 crossref_primary_10_1002_esp_4385 crossref_primary_10_1029_2012JF002356 crossref_primary_10_3390_w12092318 crossref_primary_10_1029_2012JF002355 crossref_primary_10_1016_j_geoderma_2019_03_007 crossref_primary_10_1016_j_geomorph_2016_06_032 crossref_primary_10_1002_esp_5234 crossref_primary_10_1029_2012JF002353 crossref_primary_10_1029_2010JF001661 crossref_primary_10_1002_2015JF003479 crossref_primary_10_1016_j_geomorph_2016_04_003 crossref_primary_10_1002_2016JF003833 crossref_primary_10_1029_2018JF004612 crossref_primary_10_5194_esurf_9_701_2021 crossref_primary_10_1002_hyp_8086 crossref_primary_10_1016_j_earscirev_2017_06_009 crossref_primary_10_1029_2017JF004315 crossref_primary_10_1029_2009JF001576 crossref_primary_10_5194_esurf_9_629_2021 crossref_primary_10_1016_j_advwatres_2011_11_005 crossref_primary_10_1002_esp_2253 crossref_primary_10_1016_j_aeolia_2013_04_005 crossref_primary_10_1002_hyp_9939 crossref_primary_10_1002_jgrf_20071 crossref_primary_10_5194_esurf_6_1169_2018 crossref_primary_10_1016_j_catena_2013_04_003 crossref_primary_10_1002_esp_3264 crossref_primary_10_1002_esp_5147 crossref_primary_10_1016_j_earscirev_2018_07_008 crossref_primary_10_1002_esp_3761 crossref_primary_10_1029_2008JF001246 crossref_primary_10_1002_esp_1902 crossref_primary_10_1016_j_geomorph_2015_08_017 crossref_primary_10_1016_j_earscirev_2022_103945 crossref_primary_10_1016_j_palaeo_2017_10_002 crossref_primary_10_1002_esp_4084 crossref_primary_10_1029_2009JF001302 crossref_primary_10_1080_00221686_2019_1702594 crossref_primary_10_1016_j_catena_2018_05_019 crossref_primary_10_1029_2018JF004724 |
Cites_doi | 10.1016/0341-8162(94)00024-9 10.1093/oso/9780195077018.001.0001 10.1094/PD-89-0071 10.1130/0091-7613(2002)030<0482:>2.0.CO;2 10.1126/science.247.4946.1043 10.1002/1096-9837(200008)25:8<847::AID-ESP103>3.0.CO;2-Q 10.2136/sssaj2004.4100 10.2136/sssaj1991.03615995005500020001x 10.1006/jare.2002.0970 10.2136/sssaj2002.1466 10.1016/j.geomorph.2008.08.012 10.1103/RevModPhys.15.1 10.1038/nature04452 10.1029/2001WR000513 10.1006/jare.2001.0942 10.1007/978-3-642-96807-5 10.1029/2006JF000498 10.1080/00221680309499929 10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7 10.1029/2001WR000656 10.1097/00004032-198401000-00015 10.1007/978-3-662-08539-4 10.1023/A:1005939924434 10.1023/A:1006733002131 10.1029/135GM09 10.1016/0169-555X(95)00027-3 10.2307/3897893 10.2136/sssaj2005.0030 10.1130/0091-7613(1997)025<0695:MAAIOM>2.3.CO;2 10.1142/2012 10.1002/esp.3290200308 10.1016/S0341-8162(01)00182-5 10.5751/ES-02302-130105 10.2136/sssaj2004.0132 10.1016/S0140-1963(18)30585-8 10.1029/JB089iB07p05771 10.1006/jare.1999.0540 10.2307/3898801 10.1016/j.geoderma.2004.05.006 10.2136/sssaj1989.03615995005300040003x 10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2 10.1016/S0140-1963(02)00324-5 10.1029/2000WR900032 |
ContentType | Journal Article |
Copyright | Copyright 2009 by the American Geophysical Union. |
Copyright_xml | – notice: Copyright 2009 by the American Geophysical Union. |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1029/2009JF001265 |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2009JF001265 JGRF623 ark_67375_WNG_0HJF91CQ_6 |
Genre | article |
GroupedDBID | 12K 1OC 7XC 88I 8FE 8FH 8G5 8R4 8R5 AAHQN AAMNL AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AGYGG AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A 24P AAYXX CITATION |
ID | FETCH-LOGICAL-c3533-4ec8dfb68b34f9904b66516933a16050530fa565e1cfbb70afe050beb3f257ea3 |
ISSN | 0148-0227 |
IngestDate | Tue Jul 01 02:41:47 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Wed Jan 22 16:51:52 EST 2025 Tue Sep 09 05:23:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | F3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3533-4ec8dfb68b34f9904b66516933a16050530fa565e1cfbb70afe050beb3f257ea3 |
Notes | ArticleID:2009JF001265 istex:2E14BF23FD892B034F280C73F414D9F470C00688 ark:/67375/WNG-0HJF91CQ-6 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2009JF001265 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1029_2009JF001265 crossref_citationtrail_10_1029_2009JF001265 wiley_primary_10_1029_2009JF001265_JGRF623 istex_primary_ark_67375_WNG_0HJF91CQ_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2009 |
PublicationDateYYYYMMDD | 2009-09-01 |
PublicationDate_xml | – month: 09 year: 2009 text: September 2009 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Geophysical Research: Earth Surface |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Hanks, T. C., R. C. Bucknam, K. R. Lajoie, and R. E. Wallace (1984), Modification of wave-cut and faulting-controlled landforms, J. Geophys. Res., 89, 5771-5790. Cornelis, W. M., G. Oltenfreiter, D. Gabriels, and R. Hartmann (2004), Splash-saltation of sand due to wind-driven rain: Horizontal flux and sediment transport rate, Soil Sci. Soc. Am. J., 68, 41-46. Pedersen, H. S., and B. Hasholt (1995), Influence of wind speed on rain splash erosion, Catena, 24, 39-54. Bock, C. H., P. E. Parker, and T. R. Gottwald (2005), Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees, Plant Disease, 89, 71-80. Murray, J. D. (1989), Mathematical Biology, Springer, Berlin. Leguédois, S., O. Planchon, C. Legout, and Y. Le Bissonnais (2005), Splash projection distance for aggregated soils: Theory and experiment, Soil Sci. Soc. Am. J., 69, 30-37. Sharma, P. P., S. C. Gupta, and W. J. Rawls (1991), Soil detachment by single raindrops of varying kinetic energy, Soil Sci. Soc. Am. J., 55, 301-307. Furbish, D. J., K. K. Hamner, M. Schmeeckle, M. N. Borosund, and S. M. Mudd (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, J. Geophys. Res., 112, F01001, doi:10.1029/2006JF000498. Sharma, P. P., and S. C. Gupta (1989), Sand detachment by single raindrops of varying kinetic energy and momentum, Soil Sci. Soc. Am. J., 53, 1005-1010. Erpul, G., L. D. Norton, and D. Gabriels (2002), Raindrop-induced and wind-driven soil particle transport, Catena, 47, 227-243. Gebauer, R. L. E., S. Schwinning, and J. R. Ehleringer (2002), Interspecific competition and resource pulse utilization in a cold desert community, Ecology, 83, 2602-2616. Parsons, A. J., A. D. Abrahams, and R. Simanton Jr. (1992), Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona, J. Arid Environ., 22, 107-115. Chandrasekhar, S. (1943), Stochastic problems in physics and astronomy, Rev. Modern Phys., 15, 1-89. Risken, H. (1984), The Fokker-Planck Equation: Methods of Solution and Applications, Springer, Berlin. Abrahams, A. D., A. J. Parsons, and J. Wainwright (1995), Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona, Geomorphology, 13, 37-48. Jyotsna, R., and P. K. Haff (1997), Microtopography as an indicator of modern hillslope diffusivity in arid terrain, Geology, 25, 695-698. Wainwright, J., A. J. Parsons, and A. D. Abrahams (1995), A simulation study of the role of raindrop erosion in the formation of desert pavements, Earth Surf. Processes Landforms, 20, 277-291. Mouzai, L., and M. Bouhadef (2003), Water drop erosivity: Effects on soil splash, J. Hydraul. Res., 42, 61-68. Nadabo, S., R. D. Pieper, and R. F. Beck (1980), Growth patterns and biomass relations of Xanthocephalum sarothrae (Pursh) shinners on sandy soils in southern New Mexico, J. Range Manage., 33, 394-397. Furbish, D. J. (1997), Fluid Physics in Geology, Oxford, U. K. Ridolfi, L., L. Francesco, and P. D'Odorico (2008), Fertility island formation and evolution in dryland ecosystems, Ecol. Soc., 13, pap. 5. Legout, C., S. Leguédois, Y. Le Bissonnais, and O.M. Issa (2005), Splash distance and size distributions for various soils, Geoderma, 124, 279-292, doi:10.1016/j.geoderma.2004.05.006. Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423. Wainwright, J., A. J. Parsons, and A. D. Abrahams (2000), Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico, Hydrol. Processes, 14, 2921-2943. Schlesinger, W. H., and A. M. Pilmans (1998), Plant-soil interactions in deserts, Biogeochemistry, 42, 169-187. Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia, and W. G. Whitford (1990), Biological feedbacks in global desertification, Science, 247, 1043-1048. Bochet, E., J. Poesen, and J. L. Rubio (2000), Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes, Earth Surf. Processes Landforms, 25, 847-867. Dreicer, M., T. E. Hakonson, G. C. White, and F. W. Whicker (1984), Rain splash as a mechanism for soil contamination of plant surfaces, Health Phys., 46, 177-187. Ellison, W. D. (1944), Studies of raindrop erosion, Agric. Eng., 25, 131-136. Erpul, G., D. Gabriels, W. M. Cornelis, H. Samray, and T. Guzelordu (2008), Sand transport under increased lateral jetting of raindrops induced by wind, Geomorphology, 104, 191-202, doi:10.1016/j.geomorph.2008.08.012. McGonigle, T. P., M. L. Chambers, and G. J. White (2005), Enrichment over time of organic carbon and available phosphorus in semiarid soil, Soil Sci. Soc. Am. J., 69, 1617-1626, doi:10.2136/sssaj2004.0132. Wainwright, J., A. J. Parsons, and A. D. Abrahams (1999), Rainfall energy under creosotebush, J. Arid Environ., 43, 111-120. DePloey, J., and J. Savat (1968), Contribution a l'etude de l'erosion par le splash, Z. Geomorphol., 12, 174-193. Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich (2002), REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 30, 482. Dietrich, W. E., and J. T. Perron (2006), The search for a topographic signature of life, Nature, 439, 411-418, doi:10.1038/nature04452. Wainwright, J., A. J. Parsons, W. H. Schlesinger, and A. D. Abrahams (2002), Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, southern New Mexico, J. Arid Environ., 51, 319-338. Gabet, E. J., and T. Dunne (2003), Soil detachment by rain power, Water Resour. Res., 39(1), 1002, doi:10.1029/2001WR000656. Moeyersons, J., and L. DePloey (1976), Quantitative data on splash erosion, simulated on unvegetated slopes, Z. Geomorphol. Suppl., 25, 120-131. Osman, A., and R. D. Pieper (1988), Growth of Gutierrezia sarothrae seedlings in the field, J. Range Manage., 41, 92-93. Mosley, M. P. (1973), Rain splash and the convexity of badland divides, Z. Geomorphol. Suppl., 18, 10-25. Moeyersons, J. (1983), Measurements of splash-saltation fluxes under oblique rain, Catena Suppl., 4, 19-31. Wan, C., I. Yilmaz, and R. E. Sosebee (2002), Seasonal soil-water availability influences snakeweed root dynamics, J. Arid Environ., 51, 255-264. Carson, M. A., and M. J. Kirkby (1972), Hillslope Form and Process, Cambridge Univ. Press, Cambridge, U. K. Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res., 38(6), 1081, doi:10.1029/2001WR000513. Wilcox, C. S., J. W. Ferguson, G. C. J. Fernandez, and R. S. Nowak (2004), Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite, J. Arid Environ., 56, 129-148. van Dijk, A. I. J. M., A. G. C. A. Meesters, and L. A. Bruijnzeel (2002), Exponential distribution theory and the interpretation of splash detachment and transport experiments, Soil Sci. Soc. Am. J., 66, 1466-1474. Benson, D. A., R. Schumer, S. W. Wheatcraft, and M. M. Meerschaert (2001), Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240. 1976; 25 1991; 55 2002; 51 1983; 4 2004; 68 1973; 18 1999; 43 1972 2008; 104 1998; 42 2001; 42 2005; 69 1995; 20 1968; 12 2002; 47 2000; 14 2002; 83 1995; 24 1980; 33 1984 1988; 41 2003; 42 1989 2002; 38 2006; 439 1990; 247 2000; 25 2002; 30 1995; 13 1997; 25 1984; 89 1984; 46 2008 1997 1943; 15 2008; 13 2003; 39 2005 2003; 135 2005; 89 1944; 25 2007; 112 1989; 53 2000; 36 2005; 124 2005; 8 2004; 56 2002; 66 1992; 22 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 Moeyersons J. (e_1_2_12_30_1) 1976; 25 Ebeling W. (e_1_2_12_15_1) 2005 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 Ridolfi L. (e_1_2_12_39_1) 2008; 13 DePloey J. (e_1_2_12_11_1) 1968; 12 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 Mosley M. P. (e_1_2_12_31_1) 1973; 18 Ellison W. D. (e_1_2_12_16_1) 1944; 25 e_1_2_12_27_1 Carson M. A. (e_1_2_12_7_1) 1972 Moeyersons J. (e_1_2_12_29_1) 1983; 4 e_1_2_12_32_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_13_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – reference: Mosley, M. P. (1973), Rain splash and the convexity of badland divides, Z. Geomorphol. Suppl., 18, 10-25. – reference: Wan, C., I. Yilmaz, and R. E. Sosebee (2002), Seasonal soil-water availability influences snakeweed root dynamics, J. Arid Environ., 51, 255-264. – reference: Furbish, D. J., K. K. Hamner, M. Schmeeckle, M. N. Borosund, and S. M. Mudd (2007), Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets, J. Geophys. Res., 112, F01001, doi:10.1029/2006JF000498. – reference: Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000), The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423. – reference: Benson, D. A., R. Schumer, S. W. Wheatcraft, and M. M. Meerschaert (2001), Fractional dispersion, Lévy motion, and the MADE tracer tests, Transp. Porous Media, 42, 211-240. – reference: Pedersen, H. S., and B. Hasholt (1995), Influence of wind speed on rain splash erosion, Catena, 24, 39-54. – reference: Risken, H. (1984), The Fokker-Planck Equation: Methods of Solution and Applications, Springer, Berlin. – reference: Erpul, G., L. D. Norton, and D. Gabriels (2002), Raindrop-induced and wind-driven soil particle transport, Catena, 47, 227-243. – reference: Hanks, T. C., R. C. Bucknam, K. R. Lajoie, and R. E. Wallace (1984), Modification of wave-cut and faulting-controlled landforms, J. Geophys. Res., 89, 5771-5790. – reference: Osman, A., and R. D. Pieper (1988), Growth of Gutierrezia sarothrae seedlings in the field, J. Range Manage., 41, 92-93. – reference: Wainwright, J., A. J. Parsons, W. H. Schlesinger, and A. D. Abrahams (2002), Hydrology-vegetation interactions in areas of discontinuous flow on a semi-arid bajada, southern New Mexico, J. Arid Environ., 51, 319-338. – reference: Cornelis, W. M., G. Oltenfreiter, D. Gabriels, and R. Hartmann (2004), Splash-saltation of sand due to wind-driven rain: Horizontal flux and sediment transport rate, Soil Sci. Soc. Am. J., 68, 41-46. – reference: McGonigle, T. P., M. L. Chambers, and G. J. White (2005), Enrichment over time of organic carbon and available phosphorus in semiarid soil, Soil Sci. Soc. Am. J., 69, 1617-1626, doi:10.2136/sssaj2004.0132. – reference: Wilcox, C. S., J. W. Ferguson, G. C. J. Fernandez, and R. S. Nowak (2004), Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite, J. Arid Environ., 56, 129-148. – reference: Erpul, G., D. Gabriels, W. M. Cornelis, H. Samray, and T. Guzelordu (2008), Sand transport under increased lateral jetting of raindrops induced by wind, Geomorphology, 104, 191-202, doi:10.1016/j.geomorph.2008.08.012. – reference: Furbish, D. J. (1997), Fluid Physics in Geology, Oxford, U. K. – reference: Dreicer, M., T. E. Hakonson, G. C. White, and F. W. Whicker (1984), Rain splash as a mechanism for soil contamination of plant surfaces, Health Phys., 46, 177-187. – reference: Abrahams, A. D., A. J. Parsons, and J. Wainwright (1995), Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona, Geomorphology, 13, 37-48. – reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (2000), Plot-scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico, Hydrol. Processes, 14, 2921-2943. – reference: Chandrasekhar, S. (1943), Stochastic problems in physics and astronomy, Rev. Modern Phys., 15, 1-89. – reference: Ridolfi, L., L. Francesco, and P. D'Odorico (2008), Fertility island formation and evolution in dryland ecosystems, Ecol. Soc., 13, pap. 5. – reference: Bochet, E., J. Poesen, and J. L. Rubio (2000), Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes, Earth Surf. Processes Landforms, 25, 847-867. – reference: Mouzai, L., and M. Bouhadef (2003), Water drop erosivity: Effects on soil splash, J. Hydraul. Res., 42, 61-68. – reference: Sharma, P. P., and S. C. Gupta (1989), Sand detachment by single raindrops of varying kinetic energy and momentum, Soil Sci. Soc. Am. J., 53, 1005-1010. – reference: Jyotsna, R., and P. K. Haff (1997), Microtopography as an indicator of modern hillslope diffusivity in arid terrain, Geology, 25, 695-698. – reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (1995), A simulation study of the role of raindrop erosion in the formation of desert pavements, Earth Surf. Processes Landforms, 20, 277-291. – reference: Murray, J. D. (1989), Mathematical Biology, Springer, Berlin. – reference: Nikora, V., H. Habersack, T. Huber, and I. McEwan (2002), On bed particle diffusion in gravel bed flows under weak bed load transport, Water Resour. Res., 38(6), 1081, doi:10.1029/2001WR000513. – reference: Dietrich, W. E., and J. T. Perron (2006), The search for a topographic signature of life, Nature, 439, 411-418, doi:10.1038/nature04452. – reference: van Dijk, A. I. J. M., A. G. C. A. Meesters, and L. A. Bruijnzeel (2002), Exponential distribution theory and the interpretation of splash detachment and transport experiments, Soil Sci. Soc. Am. J., 66, 1466-1474. – reference: Gebauer, R. L. E., S. Schwinning, and J. R. Ehleringer (2002), Interspecific competition and resource pulse utilization in a cold desert community, Ecology, 83, 2602-2616. – reference: Roering, J. J., J. W. Kirchner, L. S. Sklar, and W. E. Dietrich (2002), REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study, Geology, 30, 482. – reference: Nadabo, S., R. D. Pieper, and R. F. Beck (1980), Growth patterns and biomass relations of Xanthocephalum sarothrae (Pursh) shinners on sandy soils in southern New Mexico, J. Range Manage., 33, 394-397. – reference: Carson, M. A., and M. J. Kirkby (1972), Hillslope Form and Process, Cambridge Univ. Press, Cambridge, U. K. – reference: Sharma, P. P., S. C. Gupta, and W. J. Rawls (1991), Soil detachment by single raindrops of varying kinetic energy, Soil Sci. Soc. Am. J., 55, 301-307. – reference: DePloey, J., and J. Savat (1968), Contribution a l'etude de l'erosion par le splash, Z. Geomorphol., 12, 174-193. – reference: Bock, C. H., P. E. Parker, and T. R. Gottwald (2005), Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees, Plant Disease, 89, 71-80. – reference: Legout, C., S. Leguédois, Y. Le Bissonnais, and O.M. Issa (2005), Splash distance and size distributions for various soils, Geoderma, 124, 279-292, doi:10.1016/j.geoderma.2004.05.006. – reference: Moeyersons, J. (1983), Measurements of splash-saltation fluxes under oblique rain, Catena Suppl., 4, 19-31. – reference: Schlesinger, W. H., and A. M. Pilmans (1998), Plant-soil interactions in deserts, Biogeochemistry, 42, 169-187. – reference: Schlesinger, W. H., J. F. Reynolds, G. L. Cunningham, L. F. Huenneke, W. M. Jarrell, R. A. Virginia, and W. G. Whitford (1990), Biological feedbacks in global desertification, Science, 247, 1043-1048. – reference: Gabet, E. J., and T. Dunne (2003), Soil detachment by rain power, Water Resour. Res., 39(1), 1002, doi:10.1029/2001WR000656. – reference: Parsons, A. J., A. D. Abrahams, and R. Simanton Jr. (1992), Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona, J. Arid Environ., 22, 107-115. – reference: Wainwright, J., A. J. Parsons, and A. D. Abrahams (1999), Rainfall energy under creosotebush, J. Arid Environ., 43, 111-120. – reference: Leguédois, S., O. Planchon, C. Legout, and Y. Le Bissonnais (2005), Splash projection distance for aggregated soils: Theory and experiment, Soil Sci. Soc. Am. J., 69, 30-37. – reference: Ellison, W. D. (1944), Studies of raindrop erosion, Agric. Eng., 25, 131-136. – reference: Moeyersons, J., and L. DePloey (1976), Quantitative data on splash erosion, simulated on unvegetated slopes, Z. Geomorphol. Suppl., 25, 120-131. – volume: 69 start-page: 30 year: 2005 end-page: 37 article-title: Splash projection distance for aggregated soils: Theory and experiment publication-title: Soil Sci. Soc. Am. J. – volume: 14 start-page: 2921 year: 2000 end-page: 2943 article-title: Plot‐scale studies of vegetation, overland flow and erosion interactions: case studies from Arizona and New Mexico publication-title: Hydrol. Processes – volume: 56 start-page: 129 year: 2004 end-page: 148 article-title: Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite publication-title: J. Arid Environ. – volume: 38 issue: 6 year: 2002 article-title: On bed particle diffusion in gravel bed flows under weak bed load transport publication-title: Water Resour. Res. – year: 2005 – volume: 51 start-page: 319 year: 2002 end-page: 338 article-title: Hydrology‐vegetation interactions in areas of discontinuous flow on a semi‐arid bajada, southern New Mexico publication-title: J. Arid Environ. – year: 1989 – volume: 24 start-page: 39 year: 1995 end-page: 54 article-title: Influence of wind speed on rain splash erosion publication-title: Catena – volume: 89 start-page: 71 year: 2005 end-page: 80 article-title: Effect of simulated wind‐driven rain on duration and distance of dispersal of pv. from canker‐infected citrus trees publication-title: Plant Disease – volume: 33 start-page: 394 year: 1980 end-page: 397 article-title: Growth patterns and biomass relations of (Pursh) shinners on sandy soils in southern New Mexico publication-title: J. Range Manage. – volume: 112 year: 2007 article-title: Rain splash of dry sand revealed by high‐speed imaging and sticky paper splash targets publication-title: J. Geophys. Res. – volume: 89 start-page: 5771 year: 1984 end-page: 5790 article-title: Modification of wave‐cut and faulting‐controlled landforms publication-title: J. Geophys. Res. – volume: 68 start-page: 41 year: 2004 end-page: 46 article-title: Splash‐saltation of sand due to wind‐driven rain: Horizontal flux and sediment transport rate publication-title: Soil Sci. Soc. Am. J. – volume: 13 year: 2008 article-title: Fertility island formation and evolution in dryland ecosystems publication-title: Ecol. Soc. – volume: 247 start-page: 1043 year: 1990 end-page: 1048 article-title: Biological feedbacks in global desertification publication-title: Science – volume: 25 start-page: 131 year: 1944 end-page: 136 article-title: Studies of raindrop erosion publication-title: Agric. Eng. – volume: 104 start-page: 191 year: 2008 end-page: 202 article-title: Sand transport under increased lateral jetting of raindrops induced by wind publication-title: Geomorphology – volume: 66 start-page: 1466 year: 2002 end-page: 1474 article-title: Exponential distribution theory and the interpretation of splash detachment and transport experiments publication-title: Soil Sci. Soc. Am. J. – volume: 25 start-page: 847 year: 2000 end-page: 867 article-title: Mound development as an interaction of individual plants with soil, water erosion and sedimentation process on slopes publication-title: Earth Surf. Processes Landforms – volume: 135 start-page: 103 year: 2003 end-page: 132 – volume: 25 start-page: 120 year: 1976 end-page: 131 article-title: Quantitative data on splash erosion, simulated on unvegetated slopes publication-title: Z. Geomorphol. Suppl. – year: 2008 – volume: 439 start-page: 411 year: 2006 end-page: 418 article-title: The search for a topographic signature of life publication-title: Nature – year: 1997 – year: 1972 – volume: 13 start-page: 37 year: 1995 end-page: 48 article-title: Effects of vegetation change on interrill runoff and erosion, Walnut Gulch, southern Arizona publication-title: Geomorphology – volume: 25 start-page: 695 year: 1997 end-page: 698 article-title: Microtopography as an indicator of modern hillslope diffusivity in arid terrain publication-title: Geology – volume: 12 start-page: 174 year: 1968 end-page: 193 article-title: Contribution a l'etude de l'erosion par le splash publication-title: Z. Geomorphol. – volume: 83 start-page: 2602 year: 2002 end-page: 2616 article-title: Interspecific competition and resource pulse utilization in a cold desert community publication-title: Ecology – volume: 22 start-page: 107 year: 1992 end-page: 115 article-title: Microtopography and soil‐surface materials on semi‐arid piedmont hillslopes, southern Arizona publication-title: J. Arid Environ. – volume: 42 start-page: 61 year: 2003 end-page: 68 article-title: Water drop erosivity: Effects on soil splash publication-title: J. Hydraul. Res. – volume: 53 start-page: 1005 year: 1989 end-page: 1010 article-title: Sand detachment by single raindrops of varying kinetic energy and momentum publication-title: Soil Sci. Soc. Am. J. – volume: 4 start-page: 19 year: 1983 end-page: 31 article-title: Measurements of splash‐saltation fluxes under oblique rain publication-title: Catena Suppl. – volume: 15 start-page: 1 year: 1943 end-page: 89 article-title: Stochastic problems in physics and astronomy publication-title: Rev. Modern Phys. – volume: 42 start-page: 169 year: 1998 end-page: 187 article-title: Plant‐soil interactions in deserts publication-title: Biogeochemistry – volume: 51 start-page: 255 year: 2002 end-page: 264 article-title: Seasonal soil‐water availability influences snakeweed root dynamics publication-title: J. Arid Environ. – volume: 36 start-page: 1413 year: 2000 end-page: 1423 article-title: The fractional‐order governing equation of Lévy motion publication-title: Water Resour. Res. – volume: 55 start-page: 301 year: 1991 end-page: 307 article-title: Soil detachment by single raindrops of varying kinetic energy publication-title: Soil Sci. Soc. Am. J. – volume: 42 start-page: 211 year: 2001 end-page: 240 article-title: Fractional dispersion, Lévy motion, and the MADE tracer tests publication-title: Transp. Porous Media – volume: 69 start-page: 1617 year: 2005 end-page: 1626 article-title: Enrichment over time of organic carbon and available phosphorus in semiarid soil publication-title: Soil Sci. Soc. Am. J. – volume: 8 year: 2005 – volume: 41 start-page: 92 year: 1988 end-page: 93 article-title: Growth of seedlings in the field publication-title: J. Range Manage. – volume: 46 start-page: 177 year: 1984 end-page: 187 article-title: Rain splash as a mechanism for soil contamination of plant surfaces publication-title: Health Phys. – year: 1984 – volume: 124 start-page: 279 year: 2005 end-page: 292 article-title: Splash distance and size distributions for various soils publication-title: Geoderma – volume: 47 start-page: 227 year: 2002 end-page: 243 article-title: Raindrop‐induced and wind‐driven soil particle transport publication-title: Catena – volume: 18 start-page: 10 year: 1973 end-page: 25 article-title: Rain splash and the convexity of badland divides publication-title: Z. Geomorphol. Suppl. – volume: 30 start-page: 482 year: 2002 article-title: REPLY: Hillslope evolution by nonlinear creep and landsliding: An experimental study publication-title: Geology – volume: 39 issue: 1 year: 2003 article-title: Soil detachment by rain power publication-title: Water Resour. Res. – volume: 20 start-page: 277 year: 1995 end-page: 291 article-title: A simulation study of the role of raindrop erosion in the formation of desert pavements publication-title: Earth Surf. Processes Landforms – volume: 43 start-page: 111 year: 1999 end-page: 120 article-title: Rainfall energy under creosotebush publication-title: J. Arid Environ. – ident: e_1_2_12_38_1 doi: 10.1016/0341-8162(94)00024-9 – ident: e_1_2_12_19_1 doi: 10.1093/oso/9780195077018.001.0001 – ident: e_1_2_12_6_1 doi: 10.1094/PD-89-0071 – ident: e_1_2_12_41_1 doi: 10.1130/0091-7613(2002)030<0482:>2.0.CO;2 – ident: e_1_2_12_43_1 doi: 10.1126/science.247.4946.1043 – ident: e_1_2_12_5_1 doi: 10.1002/1096-9837(200008)25:8<847::AID-ESP103>3.0.CO;2-Q – ident: e_1_2_12_10_1 doi: 10.2136/sssaj2004.4100 – ident: e_1_2_12_45_1 doi: 10.2136/sssaj1991.03615995005500020001x – ident: e_1_2_12_50_1 doi: 10.1006/jare.2002.0970 – volume: 25 start-page: 131 year: 1944 ident: e_1_2_12_16_1 article-title: Studies of raindrop erosion publication-title: Agric. Eng. – ident: e_1_2_12_46_1 doi: 10.2136/sssaj2002.1466 – ident: e_1_2_12_18_1 doi: 10.1016/j.geomorph.2008.08.012 – ident: e_1_2_12_8_1 doi: 10.1103/RevModPhys.15.1 – volume: 4 start-page: 19 year: 1983 ident: e_1_2_12_29_1 article-title: Measurements of splash‐saltation fluxes under oblique rain publication-title: Catena Suppl. – ident: e_1_2_12_23_1 – ident: e_1_2_12_12_1 doi: 10.1038/nature04452 – ident: e_1_2_12_35_1 doi: 10.1029/2001WR000513 – ident: e_1_2_12_51_1 doi: 10.1006/jare.2001.0942 – ident: e_1_2_12_40_1 doi: 10.1007/978-3-642-96807-5 – ident: e_1_2_12_20_1 doi: 10.1029/2006JF000498 – ident: e_1_2_12_32_1 doi: 10.1080/00221680309499929 – ident: e_1_2_12_49_1 doi: 10.1002/1099-1085(200011/12)14:16/17<2921::AID-HYP127>3.0.CO;2-7 – ident: e_1_2_12_21_1 doi: 10.1029/2001WR000656 – ident: e_1_2_12_14_1 doi: 10.1097/00004032-198401000-00015 – ident: e_1_2_12_33_1 doi: 10.1007/978-3-662-08539-4 – ident: e_1_2_12_42_1 doi: 10.1023/A:1005939924434 – volume-title: Hillslope Form and Process year: 1972 ident: e_1_2_12_7_1 – ident: e_1_2_12_4_1 doi: 10.1023/A:1006733002131 – volume: 12 start-page: 174 year: 1968 ident: e_1_2_12_11_1 article-title: Contribution a l'etude de l'erosion par le splash publication-title: Z. Geomorphol. – ident: e_1_2_12_13_1 doi: 10.1029/135GM09 – ident: e_1_2_12_2_1 doi: 10.1016/0169-555X(95)00027-3 – ident: e_1_2_12_34_1 doi: 10.2307/3897893 – ident: e_1_2_12_27_1 doi: 10.2136/sssaj2005.0030 – ident: e_1_2_12_25_1 doi: 10.1130/0091-7613(1997)025<0695:MAAIOM>2.3.CO;2 – year: 2005 ident: e_1_2_12_15_1 doi: 10.1142/2012 – ident: e_1_2_12_47_1 doi: 10.1002/esp.3290200308 – ident: e_1_2_12_17_1 doi: 10.1016/S0341-8162(01)00182-5 – volume: 13 year: 2008 ident: e_1_2_12_39_1 article-title: Fertility island formation and evolution in dryland ecosystems publication-title: Ecol. Soc. doi: 10.5751/ES-02302-130105 – ident: e_1_2_12_28_1 doi: 10.2136/sssaj2004.0132 – ident: e_1_2_12_37_1 doi: 10.1016/S0140-1963(18)30585-8 – ident: e_1_2_12_24_1 doi: 10.1029/JB089iB07p05771 – volume: 25 start-page: 120 year: 1976 ident: e_1_2_12_30_1 article-title: Quantitative data on splash erosion, simulated on unvegetated slopes publication-title: Z. Geomorphol. Suppl. – volume: 18 start-page: 10 year: 1973 ident: e_1_2_12_31_1 article-title: Rain splash and the convexity of badland divides publication-title: Z. Geomorphol. Suppl. – ident: e_1_2_12_48_1 doi: 10.1006/jare.1999.0540 – ident: e_1_2_12_9_1 – ident: e_1_2_12_36_1 doi: 10.2307/3898801 – ident: e_1_2_12_26_1 doi: 10.1016/j.geoderma.2004.05.006 – ident: e_1_2_12_44_1 doi: 10.2136/sssaj1989.03615995005300040003x – ident: e_1_2_12_22_1 doi: 10.1890/0012-9658(2002)083[2602:ICARPU]2.0.CO;2 – ident: e_1_2_12_52_1 doi: 10.1016/S0140-1963(02)00324-5 – ident: e_1_2_12_3_1 doi: 10.1029/2000WR900032 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.1946461 |
Snippet | We formulate soil grain transport by rain splash as a stochastic advection‐dispersion process. By taking into account the intermittency of grain motions... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Fokker-Planck equation plant-soil interactions rain splash |
Title | Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution |
URI | https://api.istex.fr/ark:/67375/WNG-0HJF91CQ-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JF001265 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKKiSEhGCAVm7yA-yB0C7NvY-j6kVFK2MXbW-RnTi0UtdWTTsxnvgJ_AJ-HD-DJ86xXScVbGJIVZTjOraScz772D4XQl47UcJSx07rie1zWKC4rXrLYSEmM2OpcKLMTtF3-GAY9E-9wbl_Xqn8KlktrZa8kXz9q1_J_3AVyoCv6CV7C86aRqEA7oG_cAUOw_WfeIyHM1Y-BwV4hEpfPhtPrM-Y8yHH9DHMAsUuGbFcxmRNL6XR1dRYN6RjDBKOm2XWXHkL4OeW-7Ljspk52iGmAg_tMeX0dGkakN1huImFco5Q0Z6lpaSpslpkDEYOcam_wzW6cE_M5muBWdsC4l5Fh-Gp0rFqxYjaasHH-chY5OMJQGGlMJ6kubZXy2HIahRDrIo_KQ2SrQ-m_DgZXQiBB9xr1yXrrLGxF1IYe5W3RzEooprdZBnoNEHdcezNMV95rmrh7rql-d_Mjn9MLraDsVmx30EX1USV5GIzhrep599UU-oPg95RF5TPO6TqhCGaGFTfd4aHR2aHUEb6KQyWmp50QVYEjNLRBuGUCbdMeGXCLxPBmvBgllGJO_Xn0x4i8CJ75ZfY0N2qOAx92VzTSaXs5CF5oCWI7itoPCIVMd0mO_s5nu_MLq7oLpX3SrbybXJXpV69grue0He1A5CI2UJS8EB7MoZFnP7v_sdEsKmO6g4PHaqGHpMfCD2qoEdnGUUsUAU9yuBHC-hRA72f374XoKMadO8oQo6WIUcBclRBjkrIwYOygzLYKOCMItjwTwUQamD2hJx2Oyftfl2nOqknLiy46p5IojTjQcRdLwMF0eNBgCfYrsuaASabdO2MwdpLNJOM89BmmYBSLribwZwrmPuUbE1nU7FDKGr0EfTJWMvzGLd5FKKeGjJbiMi3kxqx1kyME50HANPRTGJpj-K04jLLa-SNqT1X8W-uqbcr5cFUAriizWjox2fDXmz3B91Ws_0pDmrkrRSYG1uLNTae3abyc3KvGBNekK3lYiVewophyV9paP0GjhkIoA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rain+splash+of+soil+grains+as+a+stochastic+advection%E2%80%90dispersion+process%2C+with+implications+for+desert+plant%E2%80%90soil+interactions+and+land%E2%80%90surface+evolution&rft.jtitle=Journal+of+Geophysical+Research%3A+Earth+Surface&rft.au=Furbish%2C+David+Jon&rft.au=Childs%2C+Elise+M.&rft.au=Haff%2C+Peter+K.&rft.au=Schmeeckle%2C+Mark+W.&rft.date=2009-09-01&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=114&rft.issue=F3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2009JF001265&rft.externalDBID=10.1029%252F2009JF001265&rft.externalDocID=JGRF623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |