VPT‐like genes modulate Rhizobium–legume symbiosis and phosphorus adaptation

SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium–legume symbiosis and...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 116; no. 1; pp. 112 - 127
Main Authors Liu, Jinlong, Yang, Rongchen, Yan, Jun, Li, Chun, Lin, Xizhen, Lin, Lin, Cao, Yanyan, Xu, Tiandong, Li, Jianxuan, Yuan, Yangyang, Wen, Jiangqi, Mysore, Kirankumar S., Luan, Sheng
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium–legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root‐to‐shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long‐distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia–legume symbiosis, possibly by regulating long‐distance Pi transport. Significance Statement These data highlight that MtVPT2 and MtVPT3 play a crucial role in phosphorus adaption and nodule symbiosis in Medicago truncatula. Furthermore, genetic manipulation of MtVPT2 and MtVPT3 can improve plant traits.
AbstractList SUMMARYAlthough vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium–legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root‐to‐shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long‐distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia–legume symbiosis, possibly by regulating long‐distance Pi transport.
Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.
SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium –legume symbiosis is unclear. In this study, homologous genes of VPT1 ( MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium –legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root‐to‐shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2 , accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long‐distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and  MtVPT3 modulate phosphorus adaptation and rhizobia–legume symbiosis, possibly by regulating long‐distance Pi transport. Significance Statement These data highlight that MtVPT2 and MtVPT3 play a crucial role in phosphorus adaption and nodule symbiosis in Medicago truncatula. Furthermore, genetic manipulation of MtVPT2 and MtVPT3 can improve plant traits.
SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium–legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root‐to‐shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long‐distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia–legume symbiosis, possibly by regulating long‐distance Pi transport. Significance Statement These data highlight that MtVPT2 and MtVPT3 play a crucial role in phosphorus adaption and nodule symbiosis in Medicago truncatula. Furthermore, genetic manipulation of MtVPT2 and MtVPT3 can improve plant traits.
Author Liu, Jinlong
Yuan, Yangyang
Wen, Jiangqi
Luan, Sheng
Li, Jianxuan
Xu, Tiandong
Li, Chun
Yang, Rongchen
Lin, Lin
Mysore, Kirankumar S.
Cao, Yanyan
Yan, Jun
Lin, Xizhen
Author_xml – sequence: 1
  givenname: Jinlong
  orcidid: 0000-0002-8251-9601
  surname: Liu
  fullname: Liu, Jinlong
  email: liujinlong@nwafu.edu.cn
  organization: Northwest A&F University
– sequence: 2
  givenname: Rongchen
  surname: Yang
  fullname: Yang, Rongchen
  organization: Northwest A&F University
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-3986-2383
  surname: Yan
  fullname: Yan, Jun
  organization: Northwest A&F University
– sequence: 4
  givenname: Chun
  surname: Li
  fullname: Li, Chun
  organization: Northwest A&F University
– sequence: 5
  givenname: Xizhen
  surname: Lin
  fullname: Lin, Xizhen
  organization: Northwest A&F University
– sequence: 6
  givenname: Lin
  surname: Lin
  fullname: Lin, Lin
  organization: Northwest A&F University
– sequence: 7
  givenname: Yanyan
  surname: Cao
  fullname: Cao, Yanyan
  organization: Northwest A&F University
– sequence: 8
  givenname: Tiandong
  surname: Xu
  fullname: Xu, Tiandong
  organization: Northwest A&F University
– sequence: 9
  givenname: Jianxuan
  surname: Li
  fullname: Li, Jianxuan
  organization: Northwest A&F University
– sequence: 10
  givenname: Yangyang
  surname: Yuan
  fullname: Yuan, Yangyang
  organization: Northwest A&F University
– sequence: 11
  givenname: Jiangqi
  orcidid: 0000-0001-5113-7750
  surname: Wen
  fullname: Wen, Jiangqi
  organization: Oklahoma State University
– sequence: 12
  givenname: Kirankumar S.
  orcidid: 0000-0002-9805-5741
  surname: Mysore
  fullname: Mysore, Kirankumar S.
  organization: Oklahoma State University
– sequence: 13
  givenname: Sheng
  surname: Luan
  fullname: Luan, Sheng
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37344994$$D View this record in MEDLINE/PubMed
BookMark eNp10MtKxDAUBuAgio6XhS8gBTe6qDY9adIuRbwiOMgo7krSno4Z26Y2LTKu5hEE33CexOiMLgQDh3Dg4-fwb5LV2tRIyC4Njqh7x10zOaIcOKyQAQUe-UDhcZUMgoQHvmA03CCb1k6CgArgbJ1sgADGkoQNyPBhOJrP3kv9jN4Ya7ReZfK-lB16d0_6zSjdV_PZR4njvkLPTiuljdXWk3XuNU_Guml7t-ay6WSnTb1N1gpZWtxZ_lvk_vxsdHrp39xeXJ2e3PgZRAB-yCCPAghFJGhMVUGlTAAYj5JcUFkEPFO5wjDiUiWREjTEmBYKMiyYyJAjbJGDRW7TmpcebZdW2mZYlrJG09s0jMNYCAgpc3T_D52Yvq3ddU5xESdc0Mipw4XKWmNti0XatLqS7TSlQfpVc-pqTr9rdnZvmdirCvNf-dOrA8cL8KpLnP6flI6G14vIT8sHipk
CitedBy_id crossref_primary_10_1111_jipb_13735
crossref_primary_10_3390_agriculture14030358
crossref_primary_10_1002_advs_202306389
Cites_doi 10.1104/pp.111.174805
10.1104/pp.114.254003
10.3390/genes9100498
10.1093/plphys/kiac250
10.1111/nph.16931
10.1111/j.1365-313X.2011.04532.x
10.1083/jcb.200503033
10.1104/pp.19.01209
10.1016/j.pbi.2018.05.012
10.1111/j.1365-313X.2007.03108.x
10.1104/pp.18.01424
10.1007/s11032-004-5679-9
10.3389/fpls.2022.1039094
10.1038/s41477-018-0334-3
10.1080/15592324.2016.1213474
10.1111/j.1469-8137.2012.04167.x
10.1111/pbi.13414
10.1093/plphys/kiac030
10.1016/j.pbi.2014.06.009
10.1104/pp.112.199786
10.1094/MPMI.2001.14.6.695
10.1111/tpj.14789
10.3389/fpls.2014.00019
10.1111/j.1365-313X.2004.02161.x
10.1093/jxb/eru341
10.1105/tpc.104.023960
10.1073/pnas.1514598112
10.1111/pce.14423
10.1038/s41467-021-26820-9
10.1016/j.plantsci.2015.06.018
10.1111/nph.15541
10.1016/j.jhazmat.2021.125611
10.1111/j.1365-313X.2012.05004.x
10.1093/plphys/kiaa115
ContentType Journal Article
Copyright 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd
Copyright_xml – notice: 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: Copyright © 2023 Society for Experimental Biology and John Wiley & Sons Ltd
DBID NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/tpj.16363
DatabaseName PubMed
CrossRef
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 127
ExternalDocumentID 10_1111_tpj_16363
37344994
TPJ16363
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Experimental Technology Research and Laboratory Management Innovation Project of Northwest A&F University
  funderid: SY20220203
– fundername: National Natural Science Foundation of China
  funderid: 31702167; 32071871
– fundername: China Postdoctoral Science Foundation Grant
  funderid: 2018M641030
– fundername: Experimental Technology Research and Laboratory Management Innovation Project of Northwest A&F University
  grantid: SY20220203
– fundername: China Postdoctoral Science Foundation Grant
  grantid: 2018M641030
– fundername: National Natural Science Foundation of China
  grantid: 32071871
– fundername: National Natural Science Foundation of China
  grantid: 31702167
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3533-243d5032757181bf1aa9334659d71af06cbdbe256ab95b712e81fb3cef47ce6e3
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Sat Oct 05 05:25:05 EDT 2024
Thu Oct 10 20:03:41 EDT 2024
Fri Aug 23 02:58:11 EDT 2024
Sat Sep 28 08:10:46 EDT 2024
Sat Aug 24 00:43:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cytosolic Pi concentration
long-distance Pi transport
phosphorus adaptation
nodule
legume
vacuolar phosphate transporters
Language English
License 2023 Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3533-243d5032757181bf1aa9334659d71af06cbdbe256ab95b712e81fb3cef47ce6e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5113-7750
0000-0002-9805-5741
0000-0002-3986-2383
0000-0002-8251-9601
PMID 37344994
PQID 2867896715
PQPubID 31702
PageCount 127
ParticipantIDs proquest_miscellaneous_2828773214
proquest_journals_2867896715
crossref_primary_10_1111_tpj_16363
pubmed_primary_37344994
wiley_primary_10_1111_tpj_16363_TPJ16363
PublicationCentury 2000
PublicationDate October 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 5
2020; 184
2022; 190
2015; 169
2015; 167
2021; 229
2022; 45
2021; 185
2007; 50
2020; 103
2018; 45
2019; 221
2011; 156
2014; 65
2014; 21
2016; 11
2020; 18
2022; 188
2012; 71
2012; 195
2018; 9
2016; 7
2014; 5
2021; 12
2004; 16
2004; 39
2005; 169
2015; 112
2021; 415
2016; 113
2022; 13
2019; 179
2011; 66
2015; 239
2005; 15
2012; 159
2001; 14
e_1_2_9_30_1
e_1_2_9_31_1
Wang C. (e_1_2_9_34_1) 2015; 169
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Esfahani M.N. (e_1_2_9_9_1) 2016; 113
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
Nguyen N.N.T. (e_1_2_9_25_1) 2021; 185
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
Liu T.Y. (e_1_2_9_19_1) 2016; 7
e_1_2_9_29_1
References_xml – volume: 184
  start-page: 236
  year: 2020
  end-page: 250
  article-title: Spatial divergence of PHR‐PHT1 modules maintains phosphorus homeostasis in soybean nodules
  publication-title: Plant Physiology
– volume: 169
  start-page: 613
  year: 2005
  end-page: 622
  article-title: SEC18/NSF‐independent, protein‐sorting pathway from the yeast cortical ER to the plasma membrane
  publication-title: The Journal of Cell Biology
– volume: 169
  start-page: 2822
  year: 2015
  end-page: 2831
  article-title: Rice SPX‐major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in Rice
  publication-title: Plant Physiology
– volume: 45
  start-page: 248
  year: 2018
  end-page: 254
  article-title: Phosphorus acquisition and utilisation in crop legumes under global change
  publication-title: Current Opinion in Plant Biology
– volume: 103
  start-page: 1125
  year: 2020
  end-page: 1139
  article-title: Inhibition of legume nodulation by pi deficiency is dependent on the autoregulation of nodulation (AON) pathway
  publication-title: The Plant Journal
– volume: 50
  start-page: 982
  year: 2007
  end-page: 994
  article-title: Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways
  publication-title: The Plant Journal
– volume: 195
  start-page: 356
  year: 2012
  end-page: 371
  article-title: The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the root during phosphorus starvation
  publication-title: The New Phytologist
– volume: 190
  start-page: 682
  year: 2022
  end-page: 697
  article-title: Phosphate transporter PHT1;1 is a key determinant of phosphorus acquisition in natural accessions
  publication-title: Plant Physiology
– volume: 45
  start-page: 3338
  year: 2022
  end-page: 3353
  article-title: Identification of vacuolar phosphate influx transporters in
  publication-title: Plant, Cell & Environment
– volume: 16
  start-page: 2693
  year: 2004
  end-page: 2704
  article-title: Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in
  publication-title: Plant Cell
– volume: 9
  start-page: 26
  year: 2018
  article-title: Phosphate deficiency negatively affects early steps of the Symbiosis between common bean and rhizobia
  publication-title: Genes
– volume: 239
  start-page: 36
  year: 2015
  end-page: 43
  article-title: Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency
  publication-title: Plant Science
– volume: 159
  start-page: 1634
  year: 2012
  end-page: 1643
  article-title: The high‐affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean
  publication-title: Plant Physiology
– volume: 65
  start-page: 6035
  year: 2014
  end-page: 6048
  article-title: RNA‐seq transcriptome profiling reveals that nodules acclimate N‐2 fixation before emerging P deficiency reaches the nodules
  publication-title: Journal of Experimental Botany
– volume: 156
  start-page: 1149
  year: 2011
  end-page: 1163
  article-title: Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling
  publication-title: Plant Physiology
– volume: 188
  start-page: 2272
  year: 2022
  end-page: 2288
  article-title: The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development
  publication-title: Plant Physiology
– volume: 71
  start-page: 479
  year: 2012
  end-page: 491
  article-title: Functional expression of PHO1 to the Golgi and trans‐Golgi network and its role in export of inorganic phosphate
  publication-title: The Plant Journal
– volume: 11
  start-page: 5
  year: 2016
  article-title: Vacuolar SPX‐MFS transporters are essential for phosphate adaptation in plants
  publication-title: Plant Signaling & Behavior
– volume: 13
  start-page: 12
  year: 2022
  article-title: Highly efficient hairy root genetic transformation and applications in citrus
  publication-title: Frontiers in Plant Science
– volume: 12
  start-page: 12
  year: 2021
  article-title: Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in
  publication-title: Nature Communications
– volume: 167
  start-page: 628
  year: 2015
  end-page: 638
  article-title: Live imaging of inorganic phosphate in plants with cellular and subcellular resolution
  publication-title: Plant Physiology
– volume: 185
  start-page: 196
  year: 2021
  end-page: 209
  article-title: PHO1 family members transport phosphate from infected nodule cells to bacteroids in
  publication-title: Plant Physiology
– volume: 66
  start-page: 689
  year: 2011
  end-page: 699
  article-title: Over‐expression of PHO1 in leaves reveals its role in mediating phosphate efflux
  publication-title: The Plant Journal
– volume: 221
  start-page: 2013
  year: 2019
  end-page: 2025
  article-title: A nodule‐localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N‐2 fixation and yield in soybean
  publication-title: The New Phytologist
– volume: 5
  start-page: 84
  year: 2019
  end-page: 94
  article-title: Identification of vacuolar phosphate efflux transporters in land plants
  publication-title: Nature Plants
– volume: 229
  start-page: 1598
  year: 2021
  end-page: 1614
  article-title: OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression ofOsPHT1;1under phosphate‐replete conditions
  publication-title: The New Phytologist
– volume: 113
  start-page: E4610
  year: 2016
  end-page: E4619
  article-title: Adaptation of the symbiotic Mesorhizobium‐chickpea relationship to phosphate deficiency relies on reprogramming of whole‐plant metabolism
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 112
  start-page: E6571
  year: 2015
  end-page: E6578
  article-title: A vacuolar phosphate transporter essential for phosphate homeostasis in
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 185
  start-page: 1847
  year: 2021
  end-page: 1859
  article-title: Phosphorus deprivation affects composition and spatial distribution of membrane lipids in legume nodules
  publication-title: Plant Physiology
– volume: 7
  start-page: 11
  year: 2016
  article-title: Identification of plant vacuolar transporters mediating phosphate storage
  publication-title: Nature Communications
– volume: 179
  start-page: 640
  year: 2019
  end-page: 655
  article-title: Vacuolar phosphate transporters contribute to systemic phosphate homeostasis vital for reproductive development in
  publication-title: Plant Physiology
– volume: 14
  start-page: 695
  year: 2001
  end-page: 700
  article-title: ‐transformed roots of for the study of nitrogen‐fixing and endomycorrhizal symbiotic associations
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 21
  start-page: 59
  year: 2014
  end-page: 66
  article-title: Control of phosphate homeostasis through gene regulation in crops
  publication-title: Current Opinion in Plant Biology
– volume: 18
  start-page: 2406
  year: 2020
  end-page: 2419
  article-title: Maize ZmPT7 regulates pi uptake and redistribution which is modulated by phosphorylation
  publication-title: Plant Biotechnology Journal
– volume: 5
  start-page: 5
  year: 2014
  article-title: Vacuolar sequestration capacity and long‐distance metal transport in plants
  publication-title: Frontiers in Plant Science
– volume: 39
  start-page: 629
  year: 2004
  end-page: 642
  article-title: Phosphate transport in : Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low‐ and high‐phosphate environments
  publication-title: The Plant Journal
– volume: 415
  start-page: 13
  year: 2021
  article-title: Rhizobium symbiosis modulates the accumulation of arsenic in via nitrogen and NRT3.1‐like genes regulated by ABA and linalool
  publication-title: Journal of Hazardous Materials
– volume: 15
  start-page: 221
  year: 2005
  end-page: 231
  article-title: Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants
  publication-title: Molecular Breeding
– ident: e_1_2_9_24_1
  doi: 10.1104/pp.111.174805
– ident: e_1_2_9_23_1
  doi: 10.1104/pp.114.254003
– ident: e_1_2_9_12_1
  doi: 10.3390/genes9100498
– ident: e_1_2_9_6_1
  doi: 10.1093/plphys/kiac250
– ident: e_1_2_9_39_1
  doi: 10.1111/nph.16931
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-313X.2011.04532.x
– ident: e_1_2_9_13_1
  doi: 10.1083/jcb.200503033
– volume: 7
  start-page: 11
  year: 2016
  ident: e_1_2_9_19_1
  article-title: Identification of plant vacuolar transporters mediating phosphate storage
  publication-title: Nature Communications
  contributor:
    fullname: Liu T.Y.
– ident: e_1_2_9_20_1
  doi: 10.1104/pp.19.01209
– ident: e_1_2_9_26_1
  doi: 10.1016/j.pbi.2018.05.012
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-313X.2007.03108.x
– ident: e_1_2_9_21_1
  doi: 10.1104/pp.18.01424
– ident: e_1_2_9_36_1
  doi: 10.1007/s11032-004-5679-9
– ident: e_1_2_9_22_1
  doi: 10.3389/fpls.2022.1039094
– volume: 185
  start-page: 196
  year: 2021
  ident: e_1_2_9_25_1
  article-title: PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula
  publication-title: Plant Physiology
  contributor:
    fullname: Nguyen N.N.T.
– ident: e_1_2_9_37_1
  doi: 10.1038/s41477-018-0334-3
– volume: 113
  start-page: E4610
  year: 2016
  ident: e_1_2_9_9_1
  article-title: Adaptation of the symbiotic Mesorhizobium‐chickpea relationship to phosphate deficiency relies on reprogramming of whole‐plant metabolism
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  contributor:
    fullname: Esfahani M.N.
– ident: e_1_2_9_17_1
  doi: 10.1080/15592324.2016.1213474
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1469-8137.2012.04167.x
– ident: e_1_2_9_35_1
  doi: 10.1111/pbi.13414
– volume: 169
  start-page: 2822
  year: 2015
  ident: e_1_2_9_34_1
  article-title: Rice SPX‐major facility Superfamily3, a vacuolar phosphate efflux transporter, is involved in maintaining phosphate homeostasis in Rice
  publication-title: Plant Physiology
  contributor:
    fullname: Wang C.
– ident: e_1_2_9_7_1
  doi: 10.1093/plphys/kiac030
– ident: e_1_2_9_15_1
  doi: 10.1016/j.pbi.2014.06.009
– ident: e_1_2_9_28_1
  doi: 10.1104/pp.112.199786
– ident: e_1_2_9_3_1
  doi: 10.1094/MPMI.2001.14.6.695
– ident: e_1_2_9_11_1
  doi: 10.1111/tpj.14789
– ident: e_1_2_9_27_1
  doi: 10.3389/fpls.2014.00019
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1365-313X.2004.02161.x
– ident: e_1_2_9_4_1
  doi: 10.1093/jxb/eru341
– ident: e_1_2_9_14_1
  doi: 10.1105/tpc.104.023960
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1514598112
– ident: e_1_2_9_10_1
  doi: 10.1111/pce.14423
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-021-26820-9
– ident: e_1_2_9_33_1
  doi: 10.1016/j.plantsci.2015.06.018
– ident: e_1_2_9_5_1
  doi: 10.1111/nph.15541
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jhazmat.2021.125611
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1365-313X.2012.05004.x
– ident: e_1_2_9_8_1
  doi: 10.1093/plphys/kiaa115
SSID ssj0017364
Score 2.494004
Snippet SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In...
Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this...
SUMMARY Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium –legume symbiosis is unclear. In...
SUMMARYAlthough vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium–legume symbiosis is unclear. In...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 112
SubjectTerms Adaptation
Alfalfa
cytosolic Pi concentration
Genes
legume
Legumes
long‐distance Pi transport
Nitrogenase
nodule
Nodules
Phenotypes
Phosphate
Phosphates
Phosphorus
phosphorus adaptation
Rhizobium
Symbiosis
vacuolar phosphate transporters
Title VPT‐like genes modulate Rhizobium–legume symbiosis and phosphorus adaptation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16363
https://www.ncbi.nlm.nih.gov/pubmed/37344994
https://www.proquest.com/docview/2867896715
https://search.proquest.com/docview/2828773214
Volume 116
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6M6aGXPtKXmwdq6aEXma5Wq5XoKU1iTA7FGLv4UBD7dExsyVjWITnlJxTyD_NLOitZom4plB4EErtipZ2dmW-0n2YAPljFiZFh4CeKSz-MDdpBxh3LSilcH0xhq2NbfI2G0_ByxmYd-Nz8C1Pnh2g_uDnNqOy1U3Ahi1-UfLtGNY9o5DJ9Esodnet83KaOIpzWqaMQofvoNYNdViHH4mnv3PdFfwDMfbxaOZzBU_jePGrNM7nul1vZV7e_ZXH8z3d5Bk92QNQ7rVfOc-iY7AAefckRLN68gNG30eTh7sdycW28uTOH3irXrtKX8caOpScX5erh7n5p5mjbvOJmJRd5sSg8kWlvfZUXeGxKvNRiXe_1v4Tp4GJyNvR3xRd8RZmr7xZSzT7RgDP0XkRaIkRCaRixRHMiLMpSamkQMAmZMMlJYGJiJVXGhlyZyNBX0M3yzLwBz-o41oSahGP0pmkirEYUYiNjMVakivfgfSOGdF3n2Eib2ARnJq1mpgdHjYDSnZoVaRCjr00iTlgP3rXNqCBu10NkJi9dHwwKuavH1IPXtWDbUSinIYZ82PKxEs_fh08no8vq5O2_dz2Ex644fU39O4LudlOaY4QwW3lSrdWfKbHubg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQCoXXi2wPEpAHHoJwnEcJxIXntpSQCu0VFyqKH7BCjZZkc0BTvwEJP4hv4RxsolKq0pVD5ES2VESj7-Zb-zJDMCWkZxo4XtuJLlw_VCjHmTcRllJifODSWy10RbnQfvSP7liV2OwW_8LU-WHaBbcLDJKfW0Bbhekf0H5cIA4D2hAP8AEwp3awg2HF03yKMJplTwKObqLdtMb5RWycTzNre-t0R8U8z1jLU3O8Qz8rF-2ijS53S6GYls-_pbH8X-_ZhamR1zU2asmzxyM6XQeJvcz5IsPn6Dzo9N9fXq-691q59pqRKefKVvsSzsXNlBP9Ir-69PLnb5G9ebkD33Ry_Je7iSpcgY3WY7HfYGXKhlU2_2f4fL4qHvQdkf1F1xJmS3x5lPFdqjHGRowIgxJkohSP2CR4iQxKE6hhEbOlIiICU48HRIjqNTG51IHmi7AeJqlegkco8JQEaojjg6colFiFBIRE2iD7iKVvAWbtRziQZVmI67dExyZuByZFqzWEopHSMtjL0RzGwWcsBZsNM2IEbvxkaQ6K2wf9Au5LcnUgsVKss1TKKc-en3Y8rWUz98fH3c7J-XJ8r93XYeP7e7ZaXz67fz7Ckx5ZS0NG_azCuPD-0KvIaMZii_lxH0D_wzyiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xAFH9YleKlalvtVq2pePAScTKZTIInvxa1RRZZi4dCyHzpopsEsznYk3-C4H_oX-KbZBO0IpQeAglvwiTzvn4v8_IewLqRnGjhe24kuXD9UKMdZNxmWUmJ8sEkUm22xUlweOYfn7PzCdhu_oWp60O0H9ysZlT22ip4rswzJR_lqOYBDeg7mPIDRL4WEZ22taMIp3XtKIToLrpNb1xWyKbxtLe-dEavEOZLwFp5nO4s_G6etU40udosR2JT_vmrjON_vswcfBgjUWenFp15mNDpR5jezRAt3n6C3q9e__Hu_npwpZ0Law-dYaZsqy_tnNo0PTEoh493D9f6Ao2bU9wOxSArBoWTpMrJL7MCj5sSL1WS15v9n-Gse9DfO3TH3RdcSZlt8OZTxbaoxxm6LyIMSZKIUj9gkeIkMchMoYRGxJSIiAlOPB0SI6jUxudSB5ouwGSapfoLOEaFoSJURxzDN0WjxCiEISbQBoNFKnkH1ho2xHldZCNughNcmbhamQ4sNwyKx3pWxF6IzjYKOGEd-N6SUUPstkeS6qy0YzAq5LYhUwcWa8a2s1BOfYz5kLJRseft6eN-77g6-frvQ1fhfW-_G_88OvmxBDO2UX2dBrgMk6ObUq8gnBmJb5XYPgE-BvE1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VPT-like+genes+modulate+Rhizobium-legume+symbiosis+and+phosphorus+adaptation&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Liu%2C+Jinlong&rft.au=Yang%2C+Rongchen&rft.au=Yan%2C+Jun&rft.au=Li%2C+Chun&rft.date=2023-10-01&rft.eissn=1365-313X&rft.volume=116&rft.issue=1&rft.spage=112&rft.epage=127&rft_id=info:doi/10.1111%2Ftpj.16363&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon