Stapled NRPS enhances the production of valinomycin in Escherichia coli
Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasibl...
Saved in:
Published in | Biotechnology and bioengineering Vol. 120; no. 3; pp. 793 - 802 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products.
Nonribosomal peptides (NRP) are important natural products synthesized by large NRP synthetases (NRPS). To enhance their catalytic efficiency, the authors report a new strategy to staple NRPS by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher). The results demonstrate that stapled NRPS enables high‐level biosynthesis of the NRP antibiotic valinomycin in a heterologous host such as Escherichia coli. |
---|---|
AbstractList | Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products. Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli . The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products. Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products. Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products. Nonribosomal peptides (NRP) are important natural products synthesized by large NRP synthetases (NRPS). To enhance their catalytic efficiency, the authors report a new strategy to staple NRPS by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher). The results demonstrate that stapled NRPS enables high‐level biosynthesis of the NRP antibiotic valinomycin in a heterologous host such as Escherichia coli. |
Author | Huang, Shuhui Ba, Fang Li, Jian Liu, Wan‐Qiu |
Author_xml | – sequence: 1 givenname: Shuhui surname: Huang fullname: Huang, Shuhui organization: ShanghaiTech University – sequence: 2 givenname: Fang surname: Ba fullname: Ba, Fang organization: ShanghaiTech University – sequence: 3 givenname: Wan‐Qiu surname: Liu fullname: Liu, Wan‐Qiu organization: ShanghaiTech University – sequence: 4 givenname: Jian orcidid: 0000-0003-2359-238X surname: Li fullname: Li, Jian email: lijian@shanghaitech.edu.cn organization: ShanghaiTech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36510694$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9LAzEQxYMotlYPfgFZ8KKHrbNJ9k-OWrQKomLrOWSzCZuyTepmV-m3N9p6KToEhgm_9xjmHaF966xC6DSBcQKAr0rTjXFBgOyhYQIsjwEz2EdDAMhikjI8QEfeL8KYF1l2iAYkSxPIGB2i6awTq0ZV0dPryyxSthZWKh91tYpWrat62RlnI6ejD9EY65ZraWwU3q2XtWqNrI2IpGvMMTrQovHqZNtH6O3udj65jx-fpw-T68dYkpSQGAPJ00SHAqCiolhTyghWOSUloarEaZlkjDGVE6yJBlLRrEyrTONS5DT8jtDFxjds994r3_Gl8VI1jbDK9Z7jPKVAgwML6PkOunB9a8N2gcrTogBIikCdbam-XKqKr1qzFO2a_54oAFcbQLbO-1ZpLk0nvs_StcI0PAH-HQIPIfCfEILickfxa_oXu3X_NI1a_w_ym4f5RvEFv0WTXg |
CitedBy_id | crossref_primary_10_1016_j_nbt_2025_02_002 crossref_primary_10_1021_acssynbio_3c00295 crossref_primary_10_1021_acssynbio_4c00201 crossref_primary_10_1002_cctc_202401811 crossref_primary_10_1126_science_adg4320 |
Cites_doi | 10.1016/j.chembiol.2020.11.004 10.1021/acsnano.9b03631 10.1016/j.biotechadv.2022.107966 10.1021/acs.jafc.9b03727 10.1186/s12934-022-01919-w 10.1016/j.ymben.2021.01.004 10.1021/ja2114486 10.1186/s12934-015-0272-y 10.1016/j.biotechadv.2005.04.004 10.1002/bit.26253 10.1186/1475-2859-9-11 10.1007/s00253-013-5309-8 10.1007/978-1-0716-2273-5_12 10.1021/cb4006529 10.1126/science.1058092 10.1016/j.jbiotec.2014.10.037 10.1186/s12934-021-01650-y 10.1073/pnas.1519214113 10.1007/s00253-021-11330-x 10.3390/microorganisms9040780 10.1002/bit.25638 10.1093/nar/gkac124 10.1016/j.nbt.2014.03.006 10.1021/acssynbio.8b00448 10.1021/sb400082j 10.1073/pnas.1115485109 10.1021/acscatal.2c00846 10.1002/anie.201609079 10.1021/acsnano.9b04554 10.1002/cbic.201700653 10.1002/cbic.200500425 10.1002/bit.27890 10.1038/s41467-019-12247-w 10.1093/nar/gkr888 10.1021/mp700137g 10.1021/cr0503097 10.1021/ja0640187 10.1073/pnas.120163297 10.1016/j.ymben.2020.03.009 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC. 2023 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC. – notice: 2023 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.28303 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 802 |
ExternalDocumentID | 36510694 10_1002_bit_28303 BIT28303 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31971348; 32171427 – fundername: Double First‐Class Initiative Fund of ShanghaiTech University – fundername: National Natural Science Foundation of China grantid: 32171427 – fundername: Double First-Class Initiative Fund of ShanghaiTech University – fundername: National Natural Science Foundation of China grantid: 31971348 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3533-203751ffff004ad42f44932e743b34eb25b16999e732f3f03d46b5d6f2ba74e73 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 19:00:03 EDT 2025 Fri Jul 25 18:53:51 EDT 2025 Wed Feb 19 02:24:40 EST 2025 Thu Apr 24 23:11:51 EDT 2025 Tue Jul 01 01:09:09 EDT 2025 Wed Jan 22 16:23:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | enzyme engineering synthetic biology NRPS valinomycin strain and bioprocess optimization nonribosomal peptide |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3533-203751ffff004ad42f44932e743b34eb25b16999e732f3f03d46b5d6f2ba74e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2359-238X |
PMID | 36510694 |
PQID | 2775880018 |
PQPubID | 48814 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2754049999 proquest_journals_2775880018 pubmed_primary_36510694 crossref_citationtrail_10_1002_bit_28303 crossref_primary_10_1002_bit_28303 wiley_primary_10_1002_bit_28303_BIT28303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2021; 9 2015; 14 2021; 20 2021; 64 2022; 50 2019; 10 2019; 13 2020; 60 2021; 28 2021; 105 2006; 7 2008; 5 2022; 21 2017; 114 2005; 23 2012; 109 2018; 19 2022; 2489 2015; 193 2014; 3 2012; 134 2001; 291 2015; 112 2019; 67 2000; 97 2021; 118 2017; 56 2022; 12 2016; 113 2022; 59 2014; 9 2006; 106 2006; 128 2010; 9 2014; 98 2012; 40 2014; 31 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 21 start-page: 193 issue: 1 year: 2022 article-title: Implementation of a high cell density fed‐batch for heterologous production of active [NiFe]‐hydrogenase in bioreactor cultivations publication-title: Microbial Cell Factories – volume: 9 start-page: 11 year: 2010 article-title: A novel fed‐batch based cultivation method provides high cell‐density and improves yield of soluble recombinant proteins in shaken cultures publication-title: Microbial Cell Factories – volume: 60 start-page: 37 year: 2020 end-page: 44 article-title: Total biosynthesis of the nonribosomal macrolactone peptide valinomycin publication-title: Metabolic Engineering – volume: 98 start-page: 591 issue: 2 year: 2014 end-page: 601 article-title: Enhanced production of the nonribosomal peptide antibiotic valinomycin in through small‐scale high cell density fed‐batch cultivation publication-title: Applied Microbiology and Biotechnology – volume: 10 start-page: 4248 issue: 1 year: 2019 article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux publication-title: Nature Communications – volume: 67 start-page: 9851 year: 2019 end-page: 9857 article-title: Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in publication-title: Journal of Agricultural and Food Chemistry – volume: 9 start-page: 780 issue: 4 year: 2021 article-title: The nonribosomal peptide valinomycin: From discovery to bioactivity and biosynthesis publication-title: Microorganisms – volume: 50 start-page: 2973 issue: 5 year: 2022 end-page: 2985 article-title: SYMBIOSIS: Synthetic manipulable biobricks via orthogonal serine integrase systems publication-title: Nucleic Acids Research – volume: 56 start-page: 3770 issue: 14 year: 2017 end-page: 3821 article-title: Nonribosomal peptide synthesis‐principles and prospects publication-title: Angewandte Chemie International Edition – volume: 12 start-page: 4165 issue: 7 year: 2022 end-page: 4174 article-title: Plug‐and‐play functionalization of protein–polymer conjugates for tunable catalysis enabled by genetically encoded “click” chemistry publication-title: ACS Catalysis – volume: 3 start-page: 432 issue: 7 year: 2014 end-page: 438 article-title: Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in publication-title: ACS Synthetic Biology – volume: 13 start-page: 9895 issue: 9 year: 2019 end-page: 9906 article-title: Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis publication-title: ACS Nano – volume: 20 start-page: 161 issue: 1 year: 2021 article-title: as host for the recombinant production of polyketides and nonribosomal peptides publication-title: Microbial Cell Factories – volume: 7 start-page: 471 issue: 3 year: 2006 end-page: 477 article-title: Deciphering the biosynthetic codes for the potent anti‐SARS‐CoV cyclodepsipeptide valinomycin in ATCC 15141 publication-title: ChemBioChem – volume: 114 start-page: 1343 issue: 6 year: 2017 end-page: 1353 article-title: Establishing a high yielding ‐based cell‐free protein synthesis system publication-title: Biotechnology and Bioengineering – volume: 23 start-page: 345 issue: 5 year: 2005 end-page: 357 article-title: Growing to high cell density‐a historical perspective on method development publication-title: Biotechnology Advances – volume: 64 start-page: 41 year: 2021 end-page: 51 article-title: Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450 publication-title: Metabolic Engineering – volume: 291 start-page: 1790 year: 2001 end-page: 1792 article-title: Biosynthesis of complex polyketides in a metabolically engineered strain of publication-title: Science – volume: 113 start-page: 1202 year: 2016 end-page: 1207 article-title: Programmable polyproteams built using twin peptide superglues publication-title: Proceedings of the National Academy of Sciences – volume: 134 start-page: 3234 year: 2012 end-page: 3241 article-title: Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production publication-title: Journal of the American Chemical Society – volume: 109 start-page: E690 issue: 12 year: 2012 end-page: E697 article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin publication-title: Proceedings of the National Academy of Sciences – volume: 40 start-page: 1879 issue: 4 year: 2012 end-page: 1889 article-title: DNA‐guided assembly of biosynthetic pathways promotes improved catalytic efficiency publication-title: Nucleic Acids Research – volume: 112 start-page: 2016 issue: 10 year: 2015 end-page: 2024 article-title: Engineered catalytic biofilms: Site‐specific enzyme immobilization onto curli nanofibers publication-title: Biotechnology and Bioengineering – volume: 106 start-page: 3468 issue: 8 year: 2006 end-page: 3496 article-title: Assembly‐line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms publication-title: Chemical Reviews – volume: 28 start-page: 221 year: 2021 end-page: 227 article-title: Engineering DNA‐templated nonribosomal peptide synthesis publication-title: Cell Chemical Biology – volume: 8 start-page: 181 issue: 1 year: 2019 end-page: 190 article-title: Engineering the s‐layer of caulobacter crescentus as a foundation for stable, high‐density, 2D living materials publication-title: ACS Synthetic Biology – volume: 13 start-page: 11343 issue: 10 year: 2019 end-page: 11352 article-title: Self‐assembled multienzyme nanostructures on synthetic protein scaffolds publication-title: ACS Nano – volume: 128 start-page: 10698 issue: 33 year: 2006 end-page: 10699 article-title: Characterization of the cereulide NRPS α‐hydroxy Acid specifying modules: Activation of α‐Keto acids and chiral reduction on the assembly line publication-title: Journal of the American Chemical Society – volume: 5 start-page: 191 issue: 2 year: 2008 end-page: 211 article-title: Nonribosomal peptide synthetases involved in the production of medically relevant natural products publication-title: Molecular Pharmaceutics – volume: 97 start-page: 6640 issue: 12 year: 2000 end-page: 6645 article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products publication-title: Proceedings of the National Academy of Sciences – volume: 14 start-page: 83 year: 2015 article-title: Scale‐up bioprocess development for production of the antibiotic valinomycin in based on consistent fed‐batch cultivations publication-title: Microbial Cell Factories – volume: 19 start-page: 679 issue: 7 year: 2018 end-page: 686 article-title: A chimeric styrene monooxygenase with increased efficiency in asymmetric biocatalytic epoxidation publication-title: ChemBioChem – volume: 2489 start-page: 223 year: 2022 end-page: 238 article-title: Understanding and manipulating assembly line biosynthesis by heterologous expression in publication-title: Methods in Molecular Biology – volume: 59 year: 2022 article-title: Microbial chassis engineering drives heterologous production of complex secondary metabolites publication-title: Biotechnology Advances – volume: 31 start-page: 579 issue: 6 year: 2014 end-page: 585 article-title: as a cell factory for heterologous production of nonribosomal peptides and polyketides publication-title: New Biotechnology – volume: 9 start-page: 359 issue: 2 year: 2014 end-page: 365 article-title: Encapsulation of an enzyme cascade within the bacteriophage P22 virus‐like particle publication-title: ACS Chemical Biology – volume: 118 start-page: 4138 issue: 10 year: 2021 end-page: 4151 article-title: Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green alga for biomass production publication-title: Biotechnology and Bioengineering – volume: 193 start-page: 16 year: 2015 end-page: 22 article-title: Type II thioesterase improves heterologous biosynthesis of valinomycin in publication-title: Journal of Biotechnology – volume: 105 start-page: 4141 issue: 10 year: 2021 end-page: 4151 article-title: high cell density fermentation using a sporulation‐deficient strain for the production of surfactin publication-title: Applied Microbiology and Biotechnology – ident: e_1_2_9_12_1 doi: 10.1016/j.chembiol.2020.11.004 – ident: e_1_2_9_31_1 doi: 10.1021/acsnano.9b03631 – ident: e_1_2_9_25_1 doi: 10.1016/j.biotechadv.2022.107966 – ident: e_1_2_9_24_1 doi: 10.1021/acs.jafc.9b03727 – ident: e_1_2_9_9_1 doi: 10.1186/s12934-022-01919-w – ident: e_1_2_9_36_1 doi: 10.1016/j.ymben.2021.01.004 – ident: e_1_2_9_39_1 doi: 10.1021/ja2114486 – ident: e_1_2_9_20_1 doi: 10.1186/s12934-015-0272-y – ident: e_1_2_9_32_1 doi: 10.1016/j.biotechadv.2005.04.004 – ident: e_1_2_9_23_1 doi: 10.1002/bit.26253 – ident: e_1_2_9_18_1 doi: 10.1186/1475-2859-9-11 – ident: e_1_2_9_19_1 doi: 10.1007/s00253-013-5309-8 – ident: e_1_2_9_38_1 doi: 10.1007/978-1-0716-2273-5_12 – ident: e_1_2_9_29_1 doi: 10.1021/cb4006529 – ident: e_1_2_9_30_1 doi: 10.1126/science.1058092 – ident: e_1_2_9_21_1 doi: 10.1016/j.jbiotec.2014.10.037 – ident: e_1_2_9_34_1 doi: 10.1186/s12934-021-01650-y – ident: e_1_2_9_35_1 doi: 10.1073/pnas.1519214113 – ident: e_1_2_9_17_1 doi: 10.1007/s00253-021-11330-x – ident: e_1_2_9_13_1 doi: 10.3390/microorganisms9040780 – ident: e_1_2_9_3_1 doi: 10.1002/bit.25638 – ident: e_1_2_9_2_1 doi: 10.1093/nar/gkac124 – ident: e_1_2_9_22_1 doi: 10.1016/j.nbt.2014.03.006 – ident: e_1_2_9_4_1 doi: 10.1021/acssynbio.8b00448 – ident: e_1_2_9_14_1 doi: 10.1021/sb400082j – ident: e_1_2_9_37_1 doi: 10.1073/pnas.1115485109 – ident: e_1_2_9_26_1 doi: 10.1021/acscatal.2c00846 – ident: e_1_2_9_33_1 doi: 10.1002/anie.201609079 – ident: e_1_2_9_27_1 doi: 10.1021/acsnano.9b04554 – ident: e_1_2_9_7_1 doi: 10.1002/cbic.201700653 – ident: e_1_2_9_5_1 doi: 10.1002/cbic.200500425 – ident: e_1_2_9_15_1 doi: 10.1002/bit.27890 – ident: e_1_2_9_16_1 doi: 10.1038/s41467-019-12247-w – ident: e_1_2_9_6_1 doi: 10.1093/nar/gkr888 – ident: e_1_2_9_10_1 doi: 10.1021/mp700137g – ident: e_1_2_9_11_1 doi: 10.1021/cr0503097 – ident: e_1_2_9_28_1 doi: 10.1021/ja0640187 – ident: e_1_2_9_8_1 doi: 10.1073/pnas.120163297 – ident: e_1_2_9_40_1 doi: 10.1016/j.ymben.2020.03.009 |
SSID | ssj0007866 |
Score | 2.447809 |
Snippet | Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 793 |
SubjectTerms | Anti-Bacterial Agents Biocompatibility Biosynthesis Biosynthetic Pathways E coli enzyme engineering Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Metabolites Natural products Natural resources nonribosomal peptide NRPS Optimization Peptide Synthases - genetics Peptide Synthases - metabolism Peptides Peptides - metabolism Secondary metabolites strain and bioprocess optimization synthetic biology Toxicity Valinomycin Valinomycin - metabolism |
Title | Stapled NRPS enhances the production of valinomycin in Escherichia coli |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28303 https://www.ncbi.nlm.nih.gov/pubmed/36510694 https://www.proquest.com/docview/2775880018 https://www.proquest.com/docview/2754049999 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6MgagPXuZt3ogi4kvVpnd80jGdgiJeYA9CSXrBonbDbQ_66z0nWTvnBcTSh9CmNE2-pN9JTr4DsCMdX6SW8AwemMLAUdI1BI9oDV76yFCRUvi0wfnyym3d2xdtp12Bo2IvjNaHKCfcqGeo8Zo6uJC9g5FoqMxIeNVSSp_kq0WE6GYkHeX5ep2SLGbLCXihKnTID8onx_9F3wjmOF9VP5zTWXgoiqr9TJ72B325H71_UXH857fMwcyQiLJjjZx5qCR5DRaOczTCX97YLlOuoWrOvQYTJ0VqslEEiKvB9CctwwU4Q9rafU5idnVzfcuS_JHg1GPIL1lXq8oiAlgnZQjtjDZSRFnO8Gz2CDYZuVwzBGW2CPenzbtGyxhGaTAiy6FAcBRF10zxwP4mYpunto2kMEFqIi0bDXdHmi7S0MSzeGqlh1Zsu9KJ3ZRL4dl4dQmqeSdPVoCRdRMhYYicQNjI7IQ0oxgHEJ8HaNeIoA57RXuF0VDCnCJpPIdafJmHWJGhqsg6bJdZu1q346dM60Wjh8Ou2wu5hyaUT8EK67BV3saqpZUUkSedAeVBoku2IhZpWYOlfAtC0aTdxFhY1eS_vz48Ob9TidW_Z12DKQp4r73g1qHafx0kG0iL-nJT4f8DEiwEVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EEfXBY71WV40i4kvVTXqCL-u5XovoCr5ISXpgUbuLu_ugv96ZZltvEEsfQpuSNJlJvkky3wCsK8uVsZCOwb2qNHCUtA3JA9qDVy4iVIQULjk4XzTs-o15emvdDsBu7guj-SGKBTfSjGy8JgWnBentd9ZQlRDzqiCqzyGK6E3M-QdX7-RRjqt3KslmFpbHc16hHb5dfPp5NvoGMT8j1mzKOZqAu7yy-qTJw1avq7aC1y88jv_9m0kY72NRVtPCMwUDUVqC6VqKdvjTC9tg2enQbNm9BMN7eWpkP48RV4KxD3SG03CMyLX9GIWscXV5zaL0niSqwxBisrYmlkUhYK2YoXQn5EsRJCnD-7BDkpPQqWuGcpnMwM3RYXO_bvQDNRiBsCgWHAXSrcZ4ocrJ0OSxaSIujBCdKGGi7W6pqo1INHIEj0W8I0LTVlZox1xJx8SnszCYttJoHhgZOAFihsDypIngTqpqEOIY4nIPTRvplWEz7zA_6LOYUzCNR1_zL3MfG9LPGrIMa0XWtqbu-ClTJe91v6-9HZ87aEW5FK-wDKvFa2xa2kyRadTqUR7EumQuYpXmtLQUpQiURnIoxspmff578f7eSTNLLPw96wqM1JsX5_75SeNsEUY5oi59KK4Cg93nXrSEKKmrljNleANawwhz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hEOxyALbso7zWILTiEmht5yVOtNClwFYIisQBKbLz0EbLphVtD_DrmYmblMcioY1ysBJHduwZ-xt7_A3AtrY9lQjlWtyvKwtHScdSPKQ9eO0hQkVI4dEB518d5_hKnlzb11OwX5yFMfwQ5YIbaUY-XpOC96Nkb0IaqlMiXhXE9DkjnZpPcRsOLybcUa5nNirJZBa2zwtaoRrfKz99Phm9QpjPAWs-47QW4aaoq3E0-bM7Gurd8OEFjeN__swSLIyRKDswovMJpuKsAssHGVrhf-_ZD5b7huaL7hWYbRSpD80iQlwF5p-QGS7DT8St_ds4Yp2L80sWZ79JngYMASbrG1pZFAHWSxjKdkonKcI0Y3gfDUhuUvK5ZiiV6We4ah11m8fWOEyDFQqbIsFRGN16ghcqnIokT6REVBgjNtFCouVu67qDODR2BU9EUhORdLQdOQnXypX49AtMZ70s_gaMzJsQEUNo-0oitFO6HkY4gnjcR8NG-VXYKforCMcc5hRK4zYw7Ms8wIYM8oaswlaZtW-IO_6Vaa3o9GCsu4OAu2hDeRStsAqb5WtsWtpKUVncG1EeRLpkLGKVvhphKUsRDo5zji-xsnmXv1180Gh388TK-7N-h7nzw1Zw1u6crsJHjpDLeMStwfTwbhSvI0Qa6o1cFR4BNRoHIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stapled+NRPS+enhances+the+production+of+valinomycin+in+Escherichia+coli&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Huang%2C+Shuhui&rft.au=Ba%2C+Fang&rft.au=Wan%E2%80%90Qiu+Liu&rft.au=Li%2C+Jian&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=120&rft.issue=3&rft.spage=793&rft.epage=802&rft_id=info:doi/10.1002%2Fbit.28303&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |