Stapled NRPS enhances the production of valinomycin in Escherichia coli

Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasibl...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 120; no. 3; pp. 793 - 802
Main Authors Huang, Shuhui, Ba, Fang, Liu, Wan‐Qiu, Li, Jian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products. Nonribosomal peptides (NRP) are important natural products synthesized by large NRP synthetases (NRPS). To enhance their catalytic efficiency, the authors report a new strategy to staple NRPS by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher). The results demonstrate that stapled NRPS enables high‐level biosynthesis of the NRP antibiotic valinomycin in a heterologous host such as Escherichia coli.
AbstractList Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products.
Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli . The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products.
Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.
Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well‐known reasons of metabolic burden (e.g., expression of large NRP synthetases—NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high‐level biosynthesis of NRP natural products. Nonribosomal peptides (NRP) are important natural products synthesized by large NRP synthetases (NRPS). To enhance their catalytic efficiency, the authors report a new strategy to staple NRPS by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher). The results demonstrate that stapled NRPS enables high‐level biosynthesis of the NRP antibiotic valinomycin in a heterologous host such as Escherichia coli.
Author Huang, Shuhui
Ba, Fang
Li, Jian
Liu, Wan‐Qiu
Author_xml – sequence: 1
  givenname: Shuhui
  surname: Huang
  fullname: Huang, Shuhui
  organization: ShanghaiTech University
– sequence: 2
  givenname: Fang
  surname: Ba
  fullname: Ba, Fang
  organization: ShanghaiTech University
– sequence: 3
  givenname: Wan‐Qiu
  surname: Liu
  fullname: Liu, Wan‐Qiu
  organization: ShanghaiTech University
– sequence: 4
  givenname: Jian
  orcidid: 0000-0003-2359-238X
  surname: Li
  fullname: Li, Jian
  email: lijian@shanghaitech.edu.cn
  organization: ShanghaiTech University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36510694$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9LAzEQxYMotlYPfgFZ8KKHrbNJ9k-OWrQKomLrOWSzCZuyTepmV-m3N9p6KToEhgm_9xjmHaF966xC6DSBcQKAr0rTjXFBgOyhYQIsjwEz2EdDAMhikjI8QEfeL8KYF1l2iAYkSxPIGB2i6awTq0ZV0dPryyxSthZWKh91tYpWrat62RlnI6ejD9EY65ZraWwU3q2XtWqNrI2IpGvMMTrQovHqZNtH6O3udj65jx-fpw-T68dYkpSQGAPJ00SHAqCiolhTyghWOSUloarEaZlkjDGVE6yJBlLRrEyrTONS5DT8jtDFxjds994r3_Gl8VI1jbDK9Z7jPKVAgwML6PkOunB9a8N2gcrTogBIikCdbam-XKqKr1qzFO2a_54oAFcbQLbO-1ZpLk0nvs_StcI0PAH-HQIPIfCfEILickfxa_oXu3X_NI1a_w_ym4f5RvEFv0WTXg
CitedBy_id crossref_primary_10_1016_j_nbt_2025_02_002
crossref_primary_10_1021_acssynbio_3c00295
crossref_primary_10_1021_acssynbio_4c00201
crossref_primary_10_1002_cctc_202401811
crossref_primary_10_1126_science_adg4320
Cites_doi 10.1016/j.chembiol.2020.11.004
10.1021/acsnano.9b03631
10.1016/j.biotechadv.2022.107966
10.1021/acs.jafc.9b03727
10.1186/s12934-022-01919-w
10.1016/j.ymben.2021.01.004
10.1021/ja2114486
10.1186/s12934-015-0272-y
10.1016/j.biotechadv.2005.04.004
10.1002/bit.26253
10.1186/1475-2859-9-11
10.1007/s00253-013-5309-8
10.1007/978-1-0716-2273-5_12
10.1021/cb4006529
10.1126/science.1058092
10.1016/j.jbiotec.2014.10.037
10.1186/s12934-021-01650-y
10.1073/pnas.1519214113
10.1007/s00253-021-11330-x
10.3390/microorganisms9040780
10.1002/bit.25638
10.1093/nar/gkac124
10.1016/j.nbt.2014.03.006
10.1021/acssynbio.8b00448
10.1021/sb400082j
10.1073/pnas.1115485109
10.1021/acscatal.2c00846
10.1002/anie.201609079
10.1021/acsnano.9b04554
10.1002/cbic.201700653
10.1002/cbic.200500425
10.1002/bit.27890
10.1038/s41467-019-12247-w
10.1093/nar/gkr888
10.1021/mp700137g
10.1021/cr0503097
10.1021/ja0640187
10.1073/pnas.120163297
10.1016/j.ymben.2020.03.009
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.28303
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 802
ExternalDocumentID 36510694
10_1002_bit_28303
BIT28303
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31971348; 32171427
– fundername: Double First‐Class Initiative Fund of ShanghaiTech University
– fundername: National Natural Science Foundation of China
  grantid: 32171427
– fundername: Double First-Class Initiative Fund of ShanghaiTech University
– fundername: National Natural Science Foundation of China
  grantid: 31971348
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3533-203751ffff004ad42f44932e743b34eb25b16999e732f3f03d46b5d6f2ba74e73
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 19:00:03 EDT 2025
Fri Jul 25 18:53:51 EDT 2025
Wed Feb 19 02:24:40 EST 2025
Thu Apr 24 23:11:51 EDT 2025
Tue Jul 01 01:09:09 EDT 2025
Wed Jan 22 16:23:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords enzyme engineering
synthetic biology
NRPS
valinomycin
strain and bioprocess optimization
nonribosomal peptide
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3533-203751ffff004ad42f44932e743b34eb25b16999e732f3f03d46b5d6f2ba74e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2359-238X
PMID 36510694
PQID 2775880018
PQPubID 48814
PageCount 10
ParticipantIDs proquest_miscellaneous_2754049999
proquest_journals_2775880018
pubmed_primary_36510694
crossref_citationtrail_10_1002_bit_28303
crossref_primary_10_1002_bit_28303
wiley_primary_10_1002_bit_28303_BIT28303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2021; 9
2015; 14
2021; 20
2021; 64
2022; 50
2019; 10
2019; 13
2020; 60
2021; 28
2021; 105
2006; 7
2008; 5
2022; 21
2017; 114
2005; 23
2012; 109
2018; 19
2022; 2489
2015; 193
2014; 3
2012; 134
2001; 291
2015; 112
2019; 67
2000; 97
2021; 118
2017; 56
2022; 12
2016; 113
2022; 59
2014; 9
2006; 106
2006; 128
2010; 9
2014; 98
2012; 40
2014; 31
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 21
  start-page: 193
  issue: 1
  year: 2022
  article-title: Implementation of a high cell density fed‐batch for heterologous production of active [NiFe]‐hydrogenase in bioreactor cultivations
  publication-title: Microbial Cell Factories
– volume: 9
  start-page: 11
  year: 2010
  article-title: A novel fed‐batch based cultivation method provides high cell‐density and improves yield of soluble recombinant proteins in shaken cultures
  publication-title: Microbial Cell Factories
– volume: 60
  start-page: 37
  year: 2020
  end-page: 44
  article-title: Total biosynthesis of the nonribosomal macrolactone peptide valinomycin
  publication-title: Metabolic Engineering
– volume: 98
  start-page: 591
  issue: 2
  year: 2014
  end-page: 601
  article-title: Enhanced production of the nonribosomal peptide antibiotic valinomycin in through small‐scale high cell density fed‐batch cultivation
  publication-title: Applied Microbiology and Biotechnology
– volume: 10
  start-page: 4248
  issue: 1
  year: 2019
  article-title: Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux
  publication-title: Nature Communications
– volume: 67
  start-page: 9851
  year: 2019
  end-page: 9857
  article-title: Improved production of arachidonic acid by combined pathway engineering and synthetic enzyme fusion in
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 9
  start-page: 780
  issue: 4
  year: 2021
  article-title: The nonribosomal peptide valinomycin: From discovery to bioactivity and biosynthesis
  publication-title: Microorganisms
– volume: 50
  start-page: 2973
  issue: 5
  year: 2022
  end-page: 2985
  article-title: SYMBIOSIS: Synthetic manipulable biobricks via orthogonal serine integrase systems
  publication-title: Nucleic Acids Research
– volume: 56
  start-page: 3770
  issue: 14
  year: 2017
  end-page: 3821
  article-title: Nonribosomal peptide synthesis‐principles and prospects
  publication-title: Angewandte Chemie International Edition
– volume: 12
  start-page: 4165
  issue: 7
  year: 2022
  end-page: 4174
  article-title: Plug‐and‐play functionalization of protein–polymer conjugates for tunable catalysis enabled by genetically encoded “click” chemistry
  publication-title: ACS Catalysis
– volume: 3
  start-page: 432
  issue: 7
  year: 2014
  end-page: 438
  article-title: Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic valinomycin in
  publication-title: ACS Synthetic Biology
– volume: 13
  start-page: 9895
  issue: 9
  year: 2019
  end-page: 9906
  article-title: Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis
  publication-title: ACS Nano
– volume: 20
  start-page: 161
  issue: 1
  year: 2021
  article-title: as host for the recombinant production of polyketides and nonribosomal peptides
  publication-title: Microbial Cell Factories
– volume: 7
  start-page: 471
  issue: 3
  year: 2006
  end-page: 477
  article-title: Deciphering the biosynthetic codes for the potent anti‐SARS‐CoV cyclodepsipeptide valinomycin in ATCC 15141
  publication-title: ChemBioChem
– volume: 114
  start-page: 1343
  issue: 6
  year: 2017
  end-page: 1353
  article-title: Establishing a high yielding ‐based cell‐free protein synthesis system
  publication-title: Biotechnology and Bioengineering
– volume: 23
  start-page: 345
  issue: 5
  year: 2005
  end-page: 357
  article-title: Growing to high cell density‐a historical perspective on method development
  publication-title: Biotechnology Advances
– volume: 64
  start-page: 41
  year: 2021
  end-page: 51
  article-title: Efficient production of oxidized terpenoids via engineering fusion proteins of terpene synthase and cytochrome P450
  publication-title: Metabolic Engineering
– volume: 291
  start-page: 1790
  year: 2001
  end-page: 1792
  article-title: Biosynthesis of complex polyketides in a metabolically engineered strain of
  publication-title: Science
– volume: 113
  start-page: 1202
  year: 2016
  end-page: 1207
  article-title: Programmable polyproteams built using twin peptide superglues
  publication-title: Proceedings of the National Academy of Sciences
– volume: 134
  start-page: 3234
  year: 2012
  end-page: 3241
  article-title: Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production
  publication-title: Journal of the American Chemical Society
– volume: 109
  start-page: E690
  issue: 12
  year: 2012
  end-page: E697
  article-title: Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin
  publication-title: Proceedings of the National Academy of Sciences
– volume: 40
  start-page: 1879
  issue: 4
  year: 2012
  end-page: 1889
  article-title: DNA‐guided assembly of biosynthetic pathways promotes improved catalytic efficiency
  publication-title: Nucleic Acids Research
– volume: 112
  start-page: 2016
  issue: 10
  year: 2015
  end-page: 2024
  article-title: Engineered catalytic biofilms: Site‐specific enzyme immobilization onto curli nanofibers
  publication-title: Biotechnology and Bioengineering
– volume: 106
  start-page: 3468
  issue: 8
  year: 2006
  end-page: 3496
  article-title: Assembly‐line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms
  publication-title: Chemical Reviews
– volume: 28
  start-page: 221
  year: 2021
  end-page: 227
  article-title: Engineering DNA‐templated nonribosomal peptide synthesis
  publication-title: Cell Chemical Biology
– volume: 8
  start-page: 181
  issue: 1
  year: 2019
  end-page: 190
  article-title: Engineering the s‐layer of caulobacter crescentus as a foundation for stable, high‐density, 2D living materials
  publication-title: ACS Synthetic Biology
– volume: 13
  start-page: 11343
  issue: 10
  year: 2019
  end-page: 11352
  article-title: Self‐assembled multienzyme nanostructures on synthetic protein scaffolds
  publication-title: ACS Nano
– volume: 128
  start-page: 10698
  issue: 33
  year: 2006
  end-page: 10699
  article-title: Characterization of the cereulide NRPS α‐hydroxy Acid specifying modules: Activation of α‐Keto acids and chiral reduction on the assembly line
  publication-title: Journal of the American Chemical Society
– volume: 5
  start-page: 191
  issue: 2
  year: 2008
  end-page: 211
  article-title: Nonribosomal peptide synthetases involved in the production of medically relevant natural products
  publication-title: Molecular Pharmaceutics
– volume: 97
  start-page: 6640
  issue: 12
  year: 2000
  end-page: 6645
  article-title: One‐step inactivation of chromosomal genes in K‐12 using PCR products
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 83
  year: 2015
  article-title: Scale‐up bioprocess development for production of the antibiotic valinomycin in based on consistent fed‐batch cultivations
  publication-title: Microbial Cell Factories
– volume: 19
  start-page: 679
  issue: 7
  year: 2018
  end-page: 686
  article-title: A chimeric styrene monooxygenase with increased efficiency in asymmetric biocatalytic epoxidation
  publication-title: ChemBioChem
– volume: 2489
  start-page: 223
  year: 2022
  end-page: 238
  article-title: Understanding and manipulating assembly line biosynthesis by heterologous expression in
  publication-title: Methods in Molecular Biology
– volume: 59
  year: 2022
  article-title: Microbial chassis engineering drives heterologous production of complex secondary metabolites
  publication-title: Biotechnology Advances
– volume: 31
  start-page: 579
  issue: 6
  year: 2014
  end-page: 585
  article-title: as a cell factory for heterologous production of nonribosomal peptides and polyketides
  publication-title: New Biotechnology
– volume: 9
  start-page: 359
  issue: 2
  year: 2014
  end-page: 365
  article-title: Encapsulation of an enzyme cascade within the bacteriophage P22 virus‐like particle
  publication-title: ACS Chemical Biology
– volume: 118
  start-page: 4138
  issue: 10
  year: 2021
  end-page: 4151
  article-title: Ultrahigh‐cell‐density heterotrophic cultivation of the unicellular green alga for biomass production
  publication-title: Biotechnology and Bioengineering
– volume: 193
  start-page: 16
  year: 2015
  end-page: 22
  article-title: Type II thioesterase improves heterologous biosynthesis of valinomycin in
  publication-title: Journal of Biotechnology
– volume: 105
  start-page: 4141
  issue: 10
  year: 2021
  end-page: 4151
  article-title: high cell density fermentation using a sporulation‐deficient strain for the production of surfactin
  publication-title: Applied Microbiology and Biotechnology
– ident: e_1_2_9_12_1
  doi: 10.1016/j.chembiol.2020.11.004
– ident: e_1_2_9_31_1
  doi: 10.1021/acsnano.9b03631
– ident: e_1_2_9_25_1
  doi: 10.1016/j.biotechadv.2022.107966
– ident: e_1_2_9_24_1
  doi: 10.1021/acs.jafc.9b03727
– ident: e_1_2_9_9_1
  doi: 10.1186/s12934-022-01919-w
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ymben.2021.01.004
– ident: e_1_2_9_39_1
  doi: 10.1021/ja2114486
– ident: e_1_2_9_20_1
  doi: 10.1186/s12934-015-0272-y
– ident: e_1_2_9_32_1
  doi: 10.1016/j.biotechadv.2005.04.004
– ident: e_1_2_9_23_1
  doi: 10.1002/bit.26253
– ident: e_1_2_9_18_1
  doi: 10.1186/1475-2859-9-11
– ident: e_1_2_9_19_1
  doi: 10.1007/s00253-013-5309-8
– ident: e_1_2_9_38_1
  doi: 10.1007/978-1-0716-2273-5_12
– ident: e_1_2_9_29_1
  doi: 10.1021/cb4006529
– ident: e_1_2_9_30_1
  doi: 10.1126/science.1058092
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jbiotec.2014.10.037
– ident: e_1_2_9_34_1
  doi: 10.1186/s12934-021-01650-y
– ident: e_1_2_9_35_1
  doi: 10.1073/pnas.1519214113
– ident: e_1_2_9_17_1
  doi: 10.1007/s00253-021-11330-x
– ident: e_1_2_9_13_1
  doi: 10.3390/microorganisms9040780
– ident: e_1_2_9_3_1
  doi: 10.1002/bit.25638
– ident: e_1_2_9_2_1
  doi: 10.1093/nar/gkac124
– ident: e_1_2_9_22_1
  doi: 10.1016/j.nbt.2014.03.006
– ident: e_1_2_9_4_1
  doi: 10.1021/acssynbio.8b00448
– ident: e_1_2_9_14_1
  doi: 10.1021/sb400082j
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.1115485109
– ident: e_1_2_9_26_1
  doi: 10.1021/acscatal.2c00846
– ident: e_1_2_9_33_1
  doi: 10.1002/anie.201609079
– ident: e_1_2_9_27_1
  doi: 10.1021/acsnano.9b04554
– ident: e_1_2_9_7_1
  doi: 10.1002/cbic.201700653
– ident: e_1_2_9_5_1
  doi: 10.1002/cbic.200500425
– ident: e_1_2_9_15_1
  doi: 10.1002/bit.27890
– ident: e_1_2_9_16_1
  doi: 10.1038/s41467-019-12247-w
– ident: e_1_2_9_6_1
  doi: 10.1093/nar/gkr888
– ident: e_1_2_9_10_1
  doi: 10.1021/mp700137g
– ident: e_1_2_9_11_1
  doi: 10.1021/cr0503097
– ident: e_1_2_9_28_1
  doi: 10.1021/ja0640187
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.120163297
– ident: e_1_2_9_40_1
  doi: 10.1016/j.ymben.2020.03.009
SSID ssj0007866
Score 2.447809
Snippet Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 793
SubjectTerms Anti-Bacterial Agents
Biocompatibility
Biosynthesis
Biosynthetic Pathways
E coli
enzyme engineering
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Metabolites
Natural products
Natural resources
nonribosomal peptide
NRPS
Optimization
Peptide Synthases - genetics
Peptide Synthases - metabolism
Peptides
Peptides - metabolism
Secondary metabolites
strain and bioprocess optimization
synthetic biology
Toxicity
Valinomycin
Valinomycin - metabolism
Title Stapled NRPS enhances the production of valinomycin in Escherichia coli
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28303
https://www.ncbi.nlm.nih.gov/pubmed/36510694
https://www.proquest.com/docview/2775880018
https://www.proquest.com/docview/2754049999
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD6MgagPXuZt3ogi4kvVpnd80jGdgiJeYA9CSXrBonbDbQ_66z0nWTvnBcTSh9CmNE2-pN9JTr4DsCMdX6SW8AwemMLAUdI1BI9oDV76yFCRUvi0wfnyym3d2xdtp12Bo2IvjNaHKCfcqGeo8Zo6uJC9g5FoqMxIeNVSSp_kq0WE6GYkHeX5ep2SLGbLCXihKnTID8onx_9F3wjmOF9VP5zTWXgoiqr9TJ72B325H71_UXH857fMwcyQiLJjjZx5qCR5DRaOczTCX97YLlOuoWrOvQYTJ0VqslEEiKvB9CctwwU4Q9rafU5idnVzfcuS_JHg1GPIL1lXq8oiAlgnZQjtjDZSRFnO8Gz2CDYZuVwzBGW2CPenzbtGyxhGaTAiy6FAcBRF10zxwP4mYpunto2kMEFqIi0bDXdHmi7S0MSzeGqlh1Zsu9KJ3ZRL4dl4dQmqeSdPVoCRdRMhYYicQNjI7IQ0oxgHEJ8HaNeIoA57RXuF0VDCnCJpPIdafJmHWJGhqsg6bJdZu1q346dM60Wjh8Ou2wu5hyaUT8EK67BV3saqpZUUkSedAeVBoku2IhZpWYOlfAtC0aTdxFhY1eS_vz48Ob9TidW_Z12DKQp4r73g1qHafx0kG0iL-nJT4f8DEiwEVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EEfXBY71WV40i4kvVTXqCL-u5XovoCr5ISXpgUbuLu_ugv96ZZltvEEsfQpuSNJlJvkky3wCsK8uVsZCOwb2qNHCUtA3JA9qDVy4iVIQULjk4XzTs-o15emvdDsBu7guj-SGKBTfSjGy8JgWnBentd9ZQlRDzqiCqzyGK6E3M-QdX7-RRjqt3KslmFpbHc16hHb5dfPp5NvoGMT8j1mzKOZqAu7yy-qTJw1avq7aC1y88jv_9m0kY72NRVtPCMwUDUVqC6VqKdvjTC9tg2enQbNm9BMN7eWpkP48RV4KxD3SG03CMyLX9GIWscXV5zaL0niSqwxBisrYmlkUhYK2YoXQn5EsRJCnD-7BDkpPQqWuGcpnMwM3RYXO_bvQDNRiBsCgWHAXSrcZ4ocrJ0OSxaSIujBCdKGGi7W6pqo1INHIEj0W8I0LTVlZox1xJx8SnszCYttJoHhgZOAFihsDypIngTqpqEOIY4nIPTRvplWEz7zA_6LOYUzCNR1_zL3MfG9LPGrIMa0XWtqbu-ClTJe91v6-9HZ87aEW5FK-wDKvFa2xa2kyRadTqUR7EumQuYpXmtLQUpQiURnIoxspmff578f7eSTNLLPw96wqM1JsX5_75SeNsEUY5oi59KK4Cg93nXrSEKKmrljNleANawwhz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hEOxyALbso7zWILTiEmht5yVOtNClwFYIisQBKbLz0EbLphVtD_DrmYmblMcioY1ysBJHduwZ-xt7_A3AtrY9lQjlWtyvKwtHScdSPKQ9eO0hQkVI4dEB518d5_hKnlzb11OwX5yFMfwQ5YIbaUY-XpOC96Nkb0IaqlMiXhXE9DkjnZpPcRsOLybcUa5nNirJZBa2zwtaoRrfKz99Phm9QpjPAWs-47QW4aaoq3E0-bM7Gurd8OEFjeN__swSLIyRKDswovMJpuKsAssHGVrhf-_ZD5b7huaL7hWYbRSpD80iQlwF5p-QGS7DT8St_ds4Yp2L80sWZ79JngYMASbrG1pZFAHWSxjKdkonKcI0Y3gfDUhuUvK5ZiiV6We4ah11m8fWOEyDFQqbIsFRGN16ghcqnIokT6REVBgjNtFCouVu67qDODR2BU9EUhORdLQdOQnXypX49AtMZ70s_gaMzJsQEUNo-0oitFO6HkY4gnjcR8NG-VXYKforCMcc5hRK4zYw7Ms8wIYM8oaswlaZtW-IO_6Vaa3o9GCsu4OAu2hDeRStsAqb5WtsWtpKUVncG1EeRLpkLGKVvhphKUsRDo5zji-xsnmXv1180Gh388TK-7N-h7nzw1Zw1u6crsJHjpDLeMStwfTwbhSvI0Qa6o1cFR4BNRoHIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stapled+NRPS+enhances+the+production+of+valinomycin+in+Escherichia+coli&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Huang%2C+Shuhui&rft.au=Ba%2C+Fang&rft.au=Wan%E2%80%90Qiu+Liu&rft.au=Li%2C+Jian&rft.date=2023-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=120&rft.issue=3&rft.spage=793&rft.epage=802&rft_id=info:doi/10.1002%2Fbit.28303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon