How Porosity Affects the Performance of Piezoelectric Energy Harvesters and Sensors

Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effec...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 2; no. 2
Main Authors Hassanpour Amiri, Morteza, Asadi, Kamal
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.02.2023
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer. The paper discusses how porosity can improve the energy harvesting performance or sensitivity of piezoelectrics to an external mechanical force. The findings can lead to the realization of better performing devices while using less active materials. The paper also discusses mitigating the adverse effects of porosity such as poling or emergence of local stress hot spots.
AbstractList Abstract Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer.
Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer.
Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer. The paper discusses how porosity can improve the energy harvesting performance or sensitivity of piezoelectrics to an external mechanical force. The findings can lead to the realization of better performing devices while using less active materials. The paper also discusses mitigating the adverse effects of porosity such as poling or emergence of local stress hot spots.
Author Hassanpour Amiri, Morteza
Asadi, Kamal
Author_xml – sequence: 1
  givenname: Morteza
  surname: Hassanpour Amiri
  fullname: Hassanpour Amiri, Morteza
  organization: Max Planck Institute for Polymer Research
– sequence: 2
  givenname: Kamal
  orcidid: 0000-0003-0447-4337
  surname: Asadi
  fullname: Asadi, Kamal
  email: ka787@bath.ac.uk
  organization: University of Bath
BookMark eNqFkdtLXDEQxoMo1KqvfQ70edfczu1xEdsVBJfaQt_CnElisxxPtpNj7favN7pWS6H0Jdfv9zEz31u2P6bRM_ZOirkUQp3C5ifNlVBKCGHUHjtUTSVnslz3_zi_YSc5r4tEtZ3URh6y62W656tEKcdpyxcheJwyn755vvIUEt3CiJ6nwFfR_0p-KN8UkZ-Pnm62fAn0w-fJU-YwOn7tx5woH7ODAEP2J8_7Efvy4fzz2XJ2efXx4mxxOUNdaTVD7FTv27qpdNMpoxuoKx1Er5QLvUYVmtIKaofYIkAnqqrqBdZBonNl7fQRu9j5ugRru6F4C7S1CaJ9ekh0Y4GmiIO32hinnehcD60p0-gNGFeDqbFpW6WgeL3feW0ofb8rPdl1uqOxlG-16GRdNbXSRWV2KiwDy-SDxTjBFNM4EcTBSmEf07CPadiXNAo2_wv7Xew_gW4H3MfBb_-jtovV10-v7AN2Pp62
CitedBy_id crossref_primary_10_1002_aelm_202400138
crossref_primary_10_1039_D3TA05911A
crossref_primary_10_1002_cctc_202401814
crossref_primary_10_1016_j_commatsci_2023_112633
crossref_primary_10_1021_acsami_4c19733
crossref_primary_10_1016_j_mtcomm_2024_108872
crossref_primary_10_1021_acs_biomac_4c00659
Cites_doi 10.1063/1.3578196
10.1021/nn100845b
10.1039/c2nr11841f
10.1016/j.cej.2021.130599
10.1016/j.nanoen.2020.105208
10.1111/j.1151-2916.1993.tb06637.x
10.1140/epjst/e2019-800143-7
10.1016/j.nanoen.2019.05.044
10.1109/JSEN.2019.2925638
10.1021/nl9040719
10.1016/j.compositesa.2019.105675
10.1002/app.51907
10.1016/j.jeurceramsoc.2010.10.019
10.1039/c1jm11445j
10.1016/j.nanoen.2019.104429
10.1039/C7TA00967D
10.1016/j.sna.2017.07.001
10.1063/1.2766960
10.1038/ncomms2639
10.1002/advs.202000517
10.1016/j.nanoen.2021.105781
10.1016/j.nanoen.2020.105567
10.1140/epjst/e2015-02600-y
10.1143/JJAP.22.1744
10.1002/adfm.201602624
ContentType Journal Article
Copyright 2022 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOA
DOI 10.1002/apxr.202200042
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database (Proquest)
Science Database (via ProQuest SciTech Premium Collection)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_344d3d09dba84751b4a4d6a46c78822a
10_1002_apxr_202200042
APXR202200042
Genre article
GrantInformation_xml – fundername: Alexander von Humboldt‐Stiftung
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c3532-cc92be86753792437a653f0b22dfb3c2f7004c3dcc8caa90555b0c6f1cdd6f193
IEDL.DBID BENPR
ISSN 2751-1200
IngestDate Wed Aug 27 01:30:54 EDT 2025
Wed Aug 13 04:11:25 EDT 2025
Tue Jul 01 02:32:59 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
Wed Jan 22 16:24:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-cc92be86753792437a653f0b22dfb3c2f7004c3dcc8caa90555b0c6f1cdd6f193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0447-4337
OpenAccessLink https://www.proquest.com/docview/3091657623?pq-origsite=%requestingapplication%
PQID 3091657623
PQPubID 6852862
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_344d3d09dba84751b4a4d6a46c78822a
proquest_journals_3091657623
crossref_citationtrail_10_1002_apxr_202200042
crossref_primary_10_1002_apxr_202200042
wiley_primary_10_1002_apxr_202200042_APXR202200042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2020; 7
2010; 10
2013; 4
2019; 62
2017 2019; 263 22b
2020 2020 2020 2021 2021; 57 69 78 425 83
2022
2021; 139
2019 1993; 19 76
2011; 31
2007; 91
1996
2020; 128
2011; 98
2011; 21
2005
2015 2017; 224 5
2012; 4
2016; 26
2010; 4
1983; 22
2021; 80
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_4_2
e_1_2_7_1_4
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Rigden J. S. (e_1_2_7_19_1) 1996
Yang J. (e_1_2_7_5_1) 2005
Moore S. K. (e_1_2_7_1_1) 2020; 57
Rigden J. S. (e_1_2_7_22_1) 1996
Asadi K. (e_1_2_7_20_1) 2022
e_1_2_7_23_1
e_1_2_7_21_1
References_xml – volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 57 69 78 425 83
  start-page: 24
  year: 2020 2020 2020 2021 2021
  publication-title: IEEE Spectr. Nano Energy Nano Energy Chem. Eng. J. Nano Energy
– volume: 139
  year: 2021
  publication-title: J. Appl. Polym. Sci.
– volume: 4
  start-page: 3647
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 752
  year: 2012
  publication-title: Nanoscale
– year: 2005
– volume: 22
  start-page: 1744
  year: 1983
  publication-title: Jpn. J. Appl. Phys.
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– year: 2022
– volume: 80
  year: 2021
  publication-title: Nano Energy
– volume: 10
  start-page: 726
  year: 2010
  publication-title: Nano Lett.
– year: 1996
– start-page: 353
  year: 1996
– volume: 62
  start-page: 594
  year: 2019
  publication-title: Nano Energy
– volume: 31
  start-page: 605
  year: 2011
  publication-title: J Eur Ceram Soc
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 263 22b
  start-page: 554 1537
  year: 2017 2019
  publication-title: Sens. Actuator. A Phys. EPJ – Special Topics
– volume: 26
  start-page: 6760
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 19 76
  start-page: 9047 1697
  year: 2019 1993
  publication-title: IEEE Sens. J. J. Am. Ceram. Soc.
– volume: 128
  year: 2020
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 4
  start-page: 1633
  year: 2013
  publication-title: Nat. Commun.
– volume: 224 5
  start-page: 2949 6569
  year: 2015 2017
  publication-title: Eur Phys J Spec Top J. Mater. Chem. A
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– ident: e_1_2_7_8_1
  doi: 10.1063/1.3578196
– volume-title: Macmillan Encyclopedia of Physics
  year: 1996
  ident: e_1_2_7_19_1
– ident: e_1_2_7_15_1
  doi: 10.1021/nn100845b
– ident: e_1_2_7_16_1
  doi: 10.1039/c2nr11841f
– ident: e_1_2_7_1_4
  doi: 10.1016/j.cej.2021.130599
– ident: e_1_2_7_1_3
  doi: 10.1016/j.nanoen.2020.105208
– ident: e_1_2_7_4_2
  doi: 10.1111/j.1151-2916.1993.tb06637.x
– ident: e_1_2_7_2_2
  doi: 10.1140/epjst/e2019-800143-7
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2019.05.044
– ident: e_1_2_7_4_1
  doi: 10.1109/JSEN.2019.2925638
– ident: e_1_2_7_13_1
  doi: 10.1021/nl9040719
– volume-title: Organic Ferroelectric Materials and Applications
  year: 2022
  ident: e_1_2_7_20_1
– ident: e_1_2_7_23_1
  doi: 10.1016/j.compositesa.2019.105675
– volume-title: An Introduction to the Theory of Piezoelectricity
  year: 2005
  ident: e_1_2_7_5_1
– ident: e_1_2_7_11_1
  doi: 10.1002/app.51907
– start-page: 353
  volume-title: Macmillan Encyclopedia of Physics
  year: 1996
  ident: e_1_2_7_22_1
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jeurceramsoc.2010.10.019
– ident: e_1_2_7_17_1
  doi: 10.1039/c1jm11445j
– ident: e_1_2_7_1_2
  doi: 10.1016/j.nanoen.2019.104429
– ident: e_1_2_7_9_2
  doi: 10.1039/C7TA00967D
– ident: e_1_2_7_2_1
  doi: 10.1016/j.sna.2017.07.001
– ident: e_1_2_7_6_1
  doi: 10.1063/1.2766960
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms2639
– ident: e_1_2_7_18_1
  doi: 10.1002/advs.202000517
– ident: e_1_2_7_1_5
  doi: 10.1016/j.nanoen.2021.105781
– ident: e_1_2_7_3_1
  doi: 10.1016/j.nanoen.2020.105567
– ident: e_1_2_7_9_1
  doi: 10.1140/epjst/e2015-02600-y
– ident: e_1_2_7_21_1
  doi: 10.1143/JJAP.22.1744
– ident: e_1_2_7_7_1
  doi: 10.1002/adfm.201602624
– volume: 57
  start-page: 24
  year: 2020
  ident: e_1_2_7_1_1
  publication-title: IEEE Spectr.
SSID ssj0002891341
Score 2.2812943
Snippet Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the...
Abstract Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Breakdown
Electric fields
Electrodes
Energy
Energy harvesting
ferroelectrics
Field emission
Finite element analysis
finite element method simulations
Gold
Performance enhancement
Piezoelectricity
piezoelectrics
Pore size
Pore size distribution
Pores
Porosity
Porous materials
sensors
Simulation
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7ORFFBWrU3IQPJW1SVrb45SNISjFOdgtpPkBE2nHNvHHX-9L0tXtILt4KbTkEN5Lmu-jr58vQtcgAQw1OoItnqeh9bgKc1gGITNGsSxXWjiU0uNTOpqwh2ky3bD6sj1hHg_sA9ejjCmqolyVAl6kSVwywVQqWCqheCPESSM48zaKqVf_-cySytaUxoj0xPzT4j-J_TWFka1TyMH6txTmpk51B83wEB00ChH3_cyO0J6ujtF4VH_gol7YFqsv3PdNGBjEGy5-O_9xbXAx09-197aZSTxwf_ZhawDkiAhLLCqFx1C61ovlCZoMBy_3o7DxQwglTSgJpcxJqTOQ-PQ2tyBBkSbURCUhypRUEmNR9ZIqKTMpRG5RXmUkUxNLpeCa01PUqepKnyGcCMiChnICti8rBcl0TIwgTMdaQ02oAxSu48NlAwu3nhVv3GOOCbfx5G08A3TTjp97TMafI-9suNtRFm_tHkDSeZN0vivpAequk8WbPbfkFJZBCuUToQEiLoE7psL7xfS5vTv_j4ldoH3rR-_buruos1q860tQLavyyi3QH4aR5sA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy-iqLi-yEHwVGwnad0eV1EWQSk-YG8hTxFkK7srPn69M2m3ugcRvBRapqXMZJJvkplvGDtCCBBE8Cm6eFkk1OMqKXEYJDIEJ_ul8zpSKV3fFMMHeTXKRz-q-Bt-iG7DjTwjztfk4NpMT75JQ_XLO_F5AtWaSJyEV6i-lpL6QFbdLgvQKVxsXwmneZZkKDxnbkzhZPETCytTJPBfQJ0_sWtcfC7X2VqLGvmgMfMGW_LjTXY3rN94VU8o7eqDD5rEDI6Ajlff1QC8Drx68p910-_myfKLWO3HqSlQZEmYcj12_A7D2Xoy3WIPlxf358Ok7ZGQWJELSKwtwfg-wn5xWhK5oC5yEVID4IIRFgLR11vhrO1brUui9zKpLUJmncNrKbbZ8rge-x3Gc42W8RhioEtLo6HvMwgapM-8xzjR91gy14-yLYE49bF4Vg31MSjSp-r02WPHnfxLQ53xq-QZqbuTIsrr-KCePKrWg5SQ0gmXls5oXFHzzEgtXaFlYTGKB9A9tj83lmr9cKoEwqECQyoQPQbRgH_8ihpUo9vubvc_L-2xVepJ36R277Pl2eTVHyBymZnDODi_APHG4_o
  priority: 102
  providerName: Wiley-Blackwell
Title How Porosity Affects the Performance of Piezoelectric Energy Harvesters and Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202200042
https://www.proquest.com/docview/3091657623
https://doaj.org/article/344d3d09dba84751b4a4d6a46c78822a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB6azaWX0tKWbpssOhR6ErFHsmOfyibsdgkkmKSBvQlZjxIo681uSh-H_vaOZK2THNpeBDbCmHloZqTR9wG8pxTAC-8ycvG65IHjitdkBlx6b2VVW6cjlNL5Rbm4lmfLYpk23LaprXK3JsaF2nYm7JEfCQpsJSXHKD6ub3lgjQqnq4lCYw_2aQmuqhHsn8wumsthlwXDKVykr8TjIuc52cQOuTHDI73-ESBBMVxXkfgoMkUA_0dZ58PcNQaf-XN4lrJGNu3V_AKeuNVLuFp031nTbULb1U827RszGCV0rLm_DcA6z5ob96vr-W5uDJvF234skAJFlIQt0yvLrqic7TbbV3A9n30-XfDEkcCNKARyY2psXUVpvziuA7igLgvhsxbR-lYY9AG-3ghrTGW0rgO8V5uZ0ufGWhpr8RpGq27l3gArNGnGUYlBLi1bjZXL0WuULneO6kQ3Br6TjzIJQDzwWHxVPfQxqiBPNchzDB-G-eseOuOvM0-CuIdZAfI6vug2X1TyICWktMJmtW01RdQib6WWttSyNFTFI-oxHOyUpZIfbtW91YwBowL_8ytq2iwvh6e3__7mO3ga2Of7Ju4DGN1tvrlDylHu2gnsoWxorOafJskoJ7Hep_H89-wPmkTlpw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoBLBSqILS34AOJkNRk72c2hQgvtsqUPrWgr7c11_Kgqoc2yW1TKj-I3MuM8Sg_QUy-REllRNJ5nPPN9jL3FFCDI4BM08SIXxHElClQDoUJwalA4byKU0tFxPj5TX6bZdIX9bmdhqK2y9YnRUbvK0j_ybYmBLcfkGOSH-XdBrFF0utpSaNRqceBvrrFkW-7s7-L-vgMY7Z1-GouGVUBYmUkQ1hZQ-gEmyrJfEByfyTMZkhLAhVJaCAT4bqWzdmCNKQgQq0xsHlLrHF4JfAld_iMlMZLTZProc_dPB-jML5JlQj9LRYoa2OJEJrBt5j8JgBRoOEbBnTgY6QLu5Lh_Z8ox1I2esrUmR-XDWqmesRU_W2cn4-qaT6oFNXnd8GHdBsIxfeST29kDXgU-ufS_qppd59LyvThbyImCKGIyLLmZOX6CxXO1WD5nZw8iuxdsdVbN_EvGM4N64LGgQQeiSgMDn0IwoHzqPValvsdEKx9tG7hyYs34pmugZdAkT93Js8fed-vnNVDHP1d-JHF3qwhgOz6oFhe6sVctlXLSJYUrDcbvLC2VUS43Krd9rEnA9Nhmu1m6sfqlvtXRHoO4gfd8ih5Opl-7u43_v_MNezw-PTrUh_vHB6_YE-K9r9vHN9nq1eKH38Ls6Kp8HVWSs_OHtoE_IZkdQw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgngRRcX63IPgKZjMbmJzrI9SnwS1Urwsm31IQZrSKj5-vbObNNqDCF4CCZMQZnZ2vtnd-YaQfYQAllkToounSeB6XAUpDoOAW6t5K9VGeiql65uk2-MX_bj_o4q_5IeoF9ycZ_j52jn4SNvDb9JQOXp3fJ7gak04TsLzMYamsEHm2w-9x169zgJuH843sISjOAoiFJ9yN4ZwOPuRmdjkKfxncOdP9OrDT2eZLFW4kbZLQ6-QOTNcJXfd4o1mxdgdvPqg7fJoBkVIR7PvegBaWJoNzGdRdrwZKHrm6_2oawvkeRImVA41vcOEthhP1kivc3Z_0g2qLgmBYjGDQKkUctNC4M-OUkcvKJOY2TAH0DZnCqwjsFdMK9VSUqaO4CsPVWIjpTVeU7ZOGsNiaDYIjSXaxmCSgU7NcwktE4GVwE1kDGaKpkmCqX6EqijEXSeLZ1GSH4Nw-hS1PpvkoJYfleQZv0oeO3XXUo702j8oxk-i8iHBONdMh6nOJcbUOMq55DqRPFGYxwPIJtmeGktUnjgRDAFRgkkVsCYBb8A_fkW0s_5tfbf5n5f2yEJ22hFX5zeXW2TRNagvz3lvk8bL-NXsIIx5yXerkfoFVFfoVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Porosity+Affects+the+Performance+of+Piezoelectric+Energy+Harvesters+and+Sensors&rft.jtitle=Advanced+Physics+Research&rft.au=Hassanpour+Amiri%2C+Morteza&rft.au=Asadi%2C+Kamal&rft.date=2023-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fapxr.202200042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon