How Porosity Affects the Performance of Piezoelectric Energy Harvesters and Sensors
Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effec...
Saved in:
Published in | Advanced Physics Research Vol. 2; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.02.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer.
The paper discusses how porosity can improve the energy harvesting performance or sensitivity of piezoelectrics to an external mechanical force. The findings can lead to the realization of better performing devices while using less active materials. The paper also discusses mitigating the adverse effects of porosity such as poling or emergence of local stress hot spots. |
---|---|
AbstractList | Abstract Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer. Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer. Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the piezoelectric layer and hampers the pre‐poling of the piezoelectric, which is needed to achieve enhanced performance. Furthermore, the effect of fractional porosity and pore size on the poling conditions and the enhanced power output of the comprising piezoelectric harvesters is not yet known. Here, through finite‐element method simulations, it is shown that the enhanced performance of the porous piezoelectric harvesters is independent of the size and distribution of the pores and only depends on the fractional porosity. Moreover, it is shown that the presence of pores yields the emergence of local stress hot spots that are mainly responsible for improved performance. Moreover, it is suggested that the breakdown issue of the porous piezoelectric layers can be mitigated by poling the structures in a vacuum using electric fields below the threshold field for electron field emission from the piezoelectric layer. The paper discusses how porosity can improve the energy harvesting performance or sensitivity of piezoelectrics to an external mechanical force. The findings can lead to the realization of better performing devices while using less active materials. The paper also discusses mitigating the adverse effects of porosity such as poling or emergence of local stress hot spots. |
Author | Hassanpour Amiri, Morteza Asadi, Kamal |
Author_xml | – sequence: 1 givenname: Morteza surname: Hassanpour Amiri fullname: Hassanpour Amiri, Morteza organization: Max Planck Institute for Polymer Research – sequence: 2 givenname: Kamal orcidid: 0000-0003-0447-4337 surname: Asadi fullname: Asadi, Kamal email: ka787@bath.ac.uk organization: University of Bath |
BookMark | eNqFkdtLXDEQxoMo1KqvfQ70edfczu1xEdsVBJfaQt_CnElisxxPtpNj7favN7pWS6H0Jdfv9zEz31u2P6bRM_ZOirkUQp3C5ifNlVBKCGHUHjtUTSVnslz3_zi_YSc5r4tEtZ3URh6y62W656tEKcdpyxcheJwyn755vvIUEt3CiJ6nwFfR_0p-KN8UkZ-Pnm62fAn0w-fJU-YwOn7tx5woH7ODAEP2J8_7Efvy4fzz2XJ2efXx4mxxOUNdaTVD7FTv27qpdNMpoxuoKx1Er5QLvUYVmtIKaofYIkAnqqrqBdZBonNl7fQRu9j5ugRru6F4C7S1CaJ9ekh0Y4GmiIO32hinnehcD60p0-gNGFeDqbFpW6WgeL3feW0ofb8rPdl1uqOxlG-16GRdNbXSRWV2KiwDy-SDxTjBFNM4EcTBSmEf07CPadiXNAo2_wv7Xew_gW4H3MfBb_-jtovV10-v7AN2Pp62 |
CitedBy_id | crossref_primary_10_1002_aelm_202400138 crossref_primary_10_1039_D3TA05911A crossref_primary_10_1002_cctc_202401814 crossref_primary_10_1016_j_commatsci_2023_112633 crossref_primary_10_1021_acsami_4c19733 crossref_primary_10_1016_j_mtcomm_2024_108872 crossref_primary_10_1021_acs_biomac_4c00659 |
Cites_doi | 10.1063/1.3578196 10.1021/nn100845b 10.1039/c2nr11841f 10.1016/j.cej.2021.130599 10.1016/j.nanoen.2020.105208 10.1111/j.1151-2916.1993.tb06637.x 10.1140/epjst/e2019-800143-7 10.1016/j.nanoen.2019.05.044 10.1109/JSEN.2019.2925638 10.1021/nl9040719 10.1016/j.compositesa.2019.105675 10.1002/app.51907 10.1016/j.jeurceramsoc.2010.10.019 10.1039/c1jm11445j 10.1016/j.nanoen.2019.104429 10.1039/C7TA00967D 10.1016/j.sna.2017.07.001 10.1063/1.2766960 10.1038/ncomms2639 10.1002/advs.202000517 10.1016/j.nanoen.2021.105781 10.1016/j.nanoen.2020.105567 10.1140/epjst/e2015-02600-y 10.1143/JJAP.22.1744 10.1002/adfm.201602624 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U DOA |
DOI | 10.1002/apxr.202200042 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database (Proquest) Science Database (via ProQuest SciTech Premium Collection) Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_344d3d09dba84751b4a4d6a46c78822a 10_1002_apxr_202200042 APXR202200042 |
Genre | article |
GrantInformation_xml | – fundername: Alexander von Humboldt‐Stiftung |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c3532-cc92be86753792437a653f0b22dfb3c2f7004c3dcc8caa90555b0c6f1cdd6f193 |
IEDL.DBID | BENPR |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Wed Aug 13 04:11:25 EDT 2025 Tue Jul 01 02:32:59 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 Wed Jan 22 16:24:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-cc92be86753792437a653f0b22dfb3c2f7004c3dcc8caa90555b0c6f1cdd6f193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0447-4337 |
OpenAccessLink | https://www.proquest.com/docview/3091657623?pq-origsite=%requestingapplication% |
PQID | 3091657623 |
PQPubID | 6852862 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_344d3d09dba84751b4a4d6a46c78822a proquest_journals_3091657623 crossref_citationtrail_10_1002_apxr_202200042 crossref_primary_10_1002_apxr_202200042 wiley_primary_10_1002_apxr_202200042_APXR202200042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2020; 7 2010; 10 2013; 4 2019; 62 2017 2019; 263 22b 2020 2020 2020 2021 2021; 57 69 78 425 83 2022 2021; 139 2019 1993; 19 76 2011; 31 2007; 91 1996 2020; 128 2011; 98 2011; 21 2005 2015 2017; 224 5 2012; 4 2016; 26 2010; 4 1983; 22 2021; 80 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_4_2 e_1_2_7_1_4 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Rigden J. S. (e_1_2_7_19_1) 1996 Yang J. (e_1_2_7_5_1) 2005 Moore S. K. (e_1_2_7_1_1) 2020; 57 Rigden J. S. (e_1_2_7_22_1) 1996 Asadi K. (e_1_2_7_20_1) 2022 e_1_2_7_23_1 e_1_2_7_21_1 |
References_xml | – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 57 69 78 425 83 start-page: 24 year: 2020 2020 2020 2021 2021 publication-title: IEEE Spectr. Nano Energy Nano Energy Chem. Eng. J. Nano Energy – volume: 139 year: 2021 publication-title: J. Appl. Polym. Sci. – volume: 4 start-page: 3647 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 752 year: 2012 publication-title: Nanoscale – year: 2005 – volume: 22 start-page: 1744 year: 1983 publication-title: Jpn. J. Appl. Phys. – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – year: 2022 – volume: 80 year: 2021 publication-title: Nano Energy – volume: 10 start-page: 726 year: 2010 publication-title: Nano Lett. – year: 1996 – start-page: 353 year: 1996 – volume: 62 start-page: 594 year: 2019 publication-title: Nano Energy – volume: 31 start-page: 605 year: 2011 publication-title: J Eur Ceram Soc – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 263 22b start-page: 554 1537 year: 2017 2019 publication-title: Sens. Actuator. A Phys. EPJ – Special Topics – volume: 26 start-page: 6760 year: 2016 publication-title: Adv. Funct. Mater. – volume: 19 76 start-page: 9047 1697 year: 2019 1993 publication-title: IEEE Sens. J. J. Am. Ceram. Soc. – volume: 128 year: 2020 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 4 start-page: 1633 year: 2013 publication-title: Nat. Commun. – volume: 224 5 start-page: 2949 6569 year: 2015 2017 publication-title: Eur Phys J Spec Top J. Mater. Chem. A – volume: 7 year: 2020 publication-title: Adv. Sci. – ident: e_1_2_7_8_1 doi: 10.1063/1.3578196 – volume-title: Macmillan Encyclopedia of Physics year: 1996 ident: e_1_2_7_19_1 – ident: e_1_2_7_15_1 doi: 10.1021/nn100845b – ident: e_1_2_7_16_1 doi: 10.1039/c2nr11841f – ident: e_1_2_7_1_4 doi: 10.1016/j.cej.2021.130599 – ident: e_1_2_7_1_3 doi: 10.1016/j.nanoen.2020.105208 – ident: e_1_2_7_4_2 doi: 10.1111/j.1151-2916.1993.tb06637.x – ident: e_1_2_7_2_2 doi: 10.1140/epjst/e2019-800143-7 – ident: e_1_2_7_10_1 doi: 10.1016/j.nanoen.2019.05.044 – ident: e_1_2_7_4_1 doi: 10.1109/JSEN.2019.2925638 – ident: e_1_2_7_13_1 doi: 10.1021/nl9040719 – volume-title: Organic Ferroelectric Materials and Applications year: 2022 ident: e_1_2_7_20_1 – ident: e_1_2_7_23_1 doi: 10.1016/j.compositesa.2019.105675 – volume-title: An Introduction to the Theory of Piezoelectricity year: 2005 ident: e_1_2_7_5_1 – ident: e_1_2_7_11_1 doi: 10.1002/app.51907 – start-page: 353 volume-title: Macmillan Encyclopedia of Physics year: 1996 ident: e_1_2_7_22_1 – ident: e_1_2_7_12_1 doi: 10.1016/j.jeurceramsoc.2010.10.019 – ident: e_1_2_7_17_1 doi: 10.1039/c1jm11445j – ident: e_1_2_7_1_2 doi: 10.1016/j.nanoen.2019.104429 – ident: e_1_2_7_9_2 doi: 10.1039/C7TA00967D – ident: e_1_2_7_2_1 doi: 10.1016/j.sna.2017.07.001 – ident: e_1_2_7_6_1 doi: 10.1063/1.2766960 – ident: e_1_2_7_14_1 doi: 10.1038/ncomms2639 – ident: e_1_2_7_18_1 doi: 10.1002/advs.202000517 – ident: e_1_2_7_1_5 doi: 10.1016/j.nanoen.2021.105781 – ident: e_1_2_7_3_1 doi: 10.1016/j.nanoen.2020.105567 – ident: e_1_2_7_9_1 doi: 10.1140/epjst/e2015-02600-y – ident: e_1_2_7_21_1 doi: 10.1143/JJAP.22.1744 – ident: e_1_2_7_7_1 doi: 10.1002/adfm.201602624 – volume: 57 start-page: 24 year: 2020 ident: e_1_2_7_1_1 publication-title: IEEE Spectr. |
SSID | ssj0002891341 |
Score | 2.2812943 |
Snippet | Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown voltage of the... Abstract Porosity has been experimentally employed to enhance the power output of piezoelectric energy harvesters. However, porosity lowers the breakdown... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Breakdown Electric fields Electrodes Energy Energy harvesting ferroelectrics Field emission Finite element analysis finite element method simulations Gold Performance enhancement Piezoelectricity piezoelectrics Pore size Pore size distribution Pores Porosity Porous materials sensors Simulation |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7ORFFBWrU3IQPJW1SVrb45SNISjFOdgtpPkBE2nHNvHHX-9L0tXtILt4KbTkEN5Lmu-jr58vQtcgAQw1OoItnqeh9bgKc1gGITNGsSxXWjiU0uNTOpqwh2ky3bD6sj1hHg_sA9ejjCmqolyVAl6kSVwywVQqWCqheCPESSM48zaKqVf_-cySytaUxoj0xPzT4j-J_TWFka1TyMH6txTmpk51B83wEB00ChH3_cyO0J6ujtF4VH_gol7YFqsv3PdNGBjEGy5-O_9xbXAx09-197aZSTxwf_ZhawDkiAhLLCqFx1C61ovlCZoMBy_3o7DxQwglTSgJpcxJqTOQ-PQ2tyBBkSbURCUhypRUEmNR9ZIqKTMpRG5RXmUkUxNLpeCa01PUqepKnyGcCMiChnICti8rBcl0TIwgTMdaQ02oAxSu48NlAwu3nhVv3GOOCbfx5G08A3TTjp97TMafI-9suNtRFm_tHkDSeZN0vivpAequk8WbPbfkFJZBCuUToQEiLoE7psL7xfS5vTv_j4ldoH3rR-_buruos1q860tQLavyyi3QH4aR5sA priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy-iqLi-yEHwVGwnad0eV1EWQSk-YG8hTxFkK7srPn69M2m3ugcRvBRapqXMZJJvkplvGDtCCBBE8Cm6eFkk1OMqKXEYJDIEJ_ul8zpSKV3fFMMHeTXKRz-q-Bt-iG7DjTwjztfk4NpMT75JQ_XLO_F5AtWaSJyEV6i-lpL6QFbdLgvQKVxsXwmneZZkKDxnbkzhZPETCytTJPBfQJ0_sWtcfC7X2VqLGvmgMfMGW_LjTXY3rN94VU8o7eqDD5rEDI6Ajlff1QC8Drx68p910-_myfKLWO3HqSlQZEmYcj12_A7D2Xoy3WIPlxf358Ok7ZGQWJELSKwtwfg-wn5xWhK5oC5yEVID4IIRFgLR11vhrO1brUui9zKpLUJmncNrKbbZ8rge-x3Gc42W8RhioEtLo6HvMwgapM-8xzjR91gy14-yLYE49bF4Vg31MSjSp-r02WPHnfxLQ53xq-QZqbuTIsrr-KCePKrWg5SQ0gmXls5oXFHzzEgtXaFlYTGKB9A9tj83lmr9cKoEwqECQyoQPQbRgH_8ihpUo9vubvc_L-2xVepJ36R277Pl2eTVHyBymZnDODi_APHG4_o priority: 102 providerName: Wiley-Blackwell |
Title | How Porosity Affects the Performance of Piezoelectric Energy Harvesters and Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202200042 https://www.proquest.com/docview/3091657623 https://doaj.org/article/344d3d09dba84751b4a4d6a46c78822a |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB6azaWX0tKWbpssOhR6ErFHsmOfyibsdgkkmKSBvQlZjxIo681uSh-H_vaOZK2THNpeBDbCmHloZqTR9wG8pxTAC-8ycvG65IHjitdkBlx6b2VVW6cjlNL5Rbm4lmfLYpk23LaprXK3JsaF2nYm7JEfCQpsJSXHKD6ub3lgjQqnq4lCYw_2aQmuqhHsn8wumsthlwXDKVykr8TjIuc52cQOuTHDI73-ESBBMVxXkfgoMkUA_0dZ58PcNQaf-XN4lrJGNu3V_AKeuNVLuFp031nTbULb1U827RszGCV0rLm_DcA6z5ob96vr-W5uDJvF234skAJFlIQt0yvLrqic7TbbV3A9n30-XfDEkcCNKARyY2psXUVpvziuA7igLgvhsxbR-lYY9AG-3ghrTGW0rgO8V5uZ0ufGWhpr8RpGq27l3gArNGnGUYlBLi1bjZXL0WuULneO6kQ3Br6TjzIJQDzwWHxVPfQxqiBPNchzDB-G-eseOuOvM0-CuIdZAfI6vug2X1TyICWktMJmtW01RdQib6WWttSyNFTFI-oxHOyUpZIfbtW91YwBowL_8ytq2iwvh6e3__7mO3ga2Of7Ju4DGN1tvrlDylHu2gnsoWxorOafJskoJ7Hep_H89-wPmkTlpw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoBLBSqILS34AOJkNRk72c2hQgvtsqUPrWgr7c11_Kgqoc2yW1TKj-I3MuM8Sg_QUy-REllRNJ5nPPN9jL3FFCDI4BM08SIXxHElClQDoUJwalA4byKU0tFxPj5TX6bZdIX9bmdhqK2y9YnRUbvK0j_ybYmBLcfkGOSH-XdBrFF0utpSaNRqceBvrrFkW-7s7-L-vgMY7Z1-GouGVUBYmUkQ1hZQ-gEmyrJfEByfyTMZkhLAhVJaCAT4bqWzdmCNKQgQq0xsHlLrHF4JfAld_iMlMZLTZProc_dPB-jML5JlQj9LRYoa2OJEJrBt5j8JgBRoOEbBnTgY6QLu5Lh_Z8ox1I2esrUmR-XDWqmesRU_W2cn4-qaT6oFNXnd8GHdBsIxfeST29kDXgU-ufS_qppd59LyvThbyImCKGIyLLmZOX6CxXO1WD5nZw8iuxdsdVbN_EvGM4N64LGgQQeiSgMDn0IwoHzqPValvsdEKx9tG7hyYs34pmugZdAkT93Js8fed-vnNVDHP1d-JHF3qwhgOz6oFhe6sVctlXLSJYUrDcbvLC2VUS43Krd9rEnA9Nhmu1m6sfqlvtXRHoO4gfd8ih5Opl-7u43_v_MNezw-PTrUh_vHB6_YE-K9r9vHN9nq1eKH38Ls6Kp8HVWSs_OHtoE_IZkdQw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgngRRcX63IPgKZjMbmJzrI9SnwS1Urwsm31IQZrSKj5-vbObNNqDCF4CCZMQZnZ2vtnd-YaQfYQAllkToounSeB6XAUpDoOAW6t5K9VGeiql65uk2-MX_bj_o4q_5IeoF9ycZ_j52jn4SNvDb9JQOXp3fJ7gak04TsLzMYamsEHm2w-9x169zgJuH843sISjOAoiFJ9yN4ZwOPuRmdjkKfxncOdP9OrDT2eZLFW4kbZLQ6-QOTNcJXfd4o1mxdgdvPqg7fJoBkVIR7PvegBaWJoNzGdRdrwZKHrm6_2oawvkeRImVA41vcOEthhP1kivc3Z_0g2qLgmBYjGDQKkUctNC4M-OUkcvKJOY2TAH0DZnCqwjsFdMK9VSUqaO4CsPVWIjpTVeU7ZOGsNiaDYIjSXaxmCSgU7NcwktE4GVwE1kDGaKpkmCqX6EqijEXSeLZ1GSH4Nw-hS1PpvkoJYfleQZv0oeO3XXUo702j8oxk-i8iHBONdMh6nOJcbUOMq55DqRPFGYxwPIJtmeGktUnjgRDAFRgkkVsCYBb8A_fkW0s_5tfbf5n5f2yEJ22hFX5zeXW2TRNagvz3lvk8bL-NXsIIx5yXerkfoFVFfoVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Porosity+Affects+the+Performance+of+Piezoelectric+Energy+Harvesters+and+Sensors&rft.jtitle=Advanced+Physics+Research&rft.au=Hassanpour+Amiri%2C+Morteza&rft.au=Asadi%2C+Kamal&rft.date=2023-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=2&rft.issue=2&rft_id=info:doi/10.1002%2Fapxr.202200042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |