Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients’ survival and quality of life. Adjuvant therapy using various types of ant...
Saved in:
Published in | Journal of cellular physiology Vol. 234; no. 8; pp. 12537 - 12550 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients’ survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor‐α and transforming growth factor‐β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF‐κB and COX‐2, which are involved in the overexpression of antiapoptosis genes such as Bcl‐2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin‐induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy. |
---|---|
AbstractList | Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy. Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy. |
Author | Najafi, Masoud Salehi, Ensieh Motevaseli, Elahe Mortezaee, Keywan Rosengren, Rhonda J. Mirtavoos‐mahyari, Hanifeh Sahebkar, Amirhossein Farhood, Bagher |
Author_xml | – sequence: 1 givenname: Keywan surname: Mortezaee fullname: Mortezaee, Keywan organization: School of Medicine, Kurdistan University of Medical Sciences – sequence: 2 givenname: Ensieh surname: Salehi fullname: Salehi, Ensieh organization: School of Medicine, Tehran University of Medical Sciences – sequence: 3 givenname: Hanifeh surname: Mirtavoos‐mahyari fullname: Mirtavoos‐mahyari, Hanifeh organization: Faculty of Medicine, Tehran University of Medical Sciences – sequence: 4 givenname: Elahe surname: Motevaseli fullname: Motevaseli, Elahe organization: School of Advanced Technologies in Medicine, Tehran University of Medical Sciences – sequence: 5 givenname: Masoud surname: Najafi fullname: Najafi, Masoud email: najafi_ma@yahoo.com organization: School of Paramedical Sciences, Kermanshah University of Medical Science – sequence: 6 givenname: Bagher surname: Farhood fullname: Farhood, Bagher email: bffarhood@gmail.com organization: Faculty of Paramedical Sciences, Kashan University of Medical Sciences – sequence: 7 givenname: Rhonda J. surname: Rosengren fullname: Rosengren, Rhonda J. organization: University of Otago – sequence: 8 givenname: Amirhossein orcidid: 0000-0002-8656-1444 surname: Sahebkar fullname: Sahebkar, Amirhossein email: sahebkara@mums.ac.ir, amir_saheb2000@yahoo.com organization: School of Pharmacy, Mashhad University of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30623450$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kT9v2zAUxInAReO4HfIFAgJZ2kEx-SjKYrbAaJoULtyhnQnymUJoSKJCSij87av4z2Kk0xvud4eHuysyaUPrCLnm7I4zBvMtdndQcoALMuVMLbK8kDAh01HjmZI5vyRXKW0ZY0oJ8ZFcClaAyCWbkvVPhy-m9alJNFTUdKHrQ_KJNmEz1Kb3oaV2R3GIODS-vafPTVd73AuJViFSNC26SPsXF023-0Q-VKZO7vPxzsifx2-_l0_Zav39efmwylBIARmWCyxYteGYw0ZxYRVKyBkKa6SyYKVDY52UixIRWGmZ45UEZ5VQJYCsxIx8OeR2MbwOLvW68QldXZvWhSFp4IUsikKwckRvz9BtGGI7fqcBOM9VuRAwUjdHarCN2-gu-sbEnT5VNQLzA4AxpBRdpdH3-x76aHytOdNvY-hxDL0fY3R8PXOcQt9jj-l_fe12_wf1j-Wvg-MfdFCXwA |
CitedBy_id | crossref_primary_10_1155_2022_7277562 crossref_primary_10_1007_s11240_024_02802_9 crossref_primary_10_3390_nano11020489 crossref_primary_10_1186_s13045_021_01096_0 crossref_primary_10_1016_j_carbpol_2024_122328 crossref_primary_10_1016_j_procbio_2022_09_001 crossref_primary_10_1177_1934578X241239825 crossref_primary_10_3724_SP_J_1329_2024_04014 crossref_primary_10_1007_s00210_024_03502_z crossref_primary_10_1007_s10068_022_01042_x crossref_primary_10_3389_fnut_2023_1163950 crossref_primary_10_3390_molecules30010043 crossref_primary_10_1007_s00204_019_02550_2 crossref_primary_10_3390_molecules26175219 crossref_primary_10_1002_jbm_a_37288 crossref_primary_10_1042_BSR20200257 crossref_primary_10_1155_2021_1969863 crossref_primary_10_15407_dopovidi2023_03_073 crossref_primary_10_2174_1874471015666220623104316 crossref_primary_10_1007_s40204_021_00178_z crossref_primary_10_1002_tox_23977 crossref_primary_10_1038_s41598_024_81375_1 crossref_primary_10_2147_IJN_S369761 crossref_primary_10_17650_2313_805X_2020_7_1_8_16 crossref_primary_10_34172_jsums_2022_24 crossref_primary_10_3390_ijms20040905 crossref_primary_10_3389_fcell_2022_1036809 crossref_primary_10_2174_0929867329666221007115809 crossref_primary_10_1007_s11357_023_00740_6 crossref_primary_10_3390_ijms232314957 crossref_primary_10_4103_pm_pm_53_20 crossref_primary_10_3389_fphar_2024_1343193 crossref_primary_10_1155_2022_1620802 crossref_primary_10_3390_coatings14101267 crossref_primary_10_1002_mnfr_202300479 crossref_primary_10_2147_OTT_S242344 crossref_primary_10_1016_j_intimp_2024_112066 crossref_primary_10_3892_ol_2023_14200 crossref_primary_10_3389_fimmu_2022_1041138 crossref_primary_10_3389_fphar_2022_1078303 crossref_primary_10_3390_pharmaceutics13122102 crossref_primary_10_1049_2023_1745877 crossref_primary_10_1021_acsomega_3c03405 crossref_primary_10_1016_j_pestbp_2022_105258 crossref_primary_10_1080_15287394_2024_2368619 crossref_primary_10_1186_s12935_021_02099_0 crossref_primary_10_1002_jbt_22633 crossref_primary_10_1016_j_ntm_2025_100076 crossref_primary_10_2174_0929867329666220210145033 crossref_primary_10_3390_molecules28135082 crossref_primary_10_1021_acsptsci_4c00518 crossref_primary_10_1016_j_ijpharm_2022_121622 crossref_primary_10_2478_sjecr_2019_0016 crossref_primary_10_32749_nucleodoconhecimento_com_br_health_phenolic_compounds crossref_primary_10_3390_nano12142404 crossref_primary_10_1002_jsde_12756 crossref_primary_10_1177_15593258231203585 crossref_primary_10_2147_IJN_S476686 crossref_primary_10_2174_1874471015666220901142858 crossref_primary_10_3389_fgene_2022_953997 crossref_primary_10_1002_ptr_6577 crossref_primary_10_1038_s41598_019_54284_x crossref_primary_10_1016_j_procbio_2023_11_006 crossref_primary_10_3389_fphar_2020_585413 crossref_primary_10_3389_fphar_2022_889816 crossref_primary_10_1177_09731296241298344 crossref_primary_10_1155_2024_9347381 crossref_primary_10_4103_jrptps_JRPTPS_98_19 crossref_primary_10_1016_j_carbpol_2023_121434 crossref_primary_10_1007_s12010_024_05094_z crossref_primary_10_1016_j_jtherbio_2024_103968 crossref_primary_10_1016_j_mtbio_2024_101276 crossref_primary_10_1016_j_bbrc_2023_149274 crossref_primary_10_1016_j_jaim_2024_101013 crossref_primary_10_1016_j_ejmech_2019_111687 crossref_primary_10_1002_ptr_7417 crossref_primary_10_1021_acsanm_4c02800 crossref_primary_10_1155_2021_8972074 crossref_primary_10_3389_fphar_2020_00792 crossref_primary_10_1093_burnst_tkae061 crossref_primary_10_3390_biomedicines10020312 crossref_primary_10_1016_j_radonc_2023_109689 crossref_primary_10_2174_0115680096277126240102060617 crossref_primary_10_1007_s11596_021_2469_0 crossref_primary_10_3390_pharmaceutics11080373 crossref_primary_10_1002_biof_1823 crossref_primary_10_1016_j_jconrel_2022_05_035 crossref_primary_10_3389_fonc_2021_672490 crossref_primary_10_2174_1871520620666200203143803 crossref_primary_10_1038_s41420_023_01752_z crossref_primary_10_3390_antiox11112202 crossref_primary_10_1016_j_biopha_2022_114084 crossref_primary_10_7717_peerj_12303 crossref_primary_10_3389_fphar_2022_920514 crossref_primary_10_1016_j_heliyon_2024_e38021 crossref_primary_10_1039_D4RA01246A crossref_primary_10_1111_jcmm_14966 crossref_primary_10_3390_ph17050574 crossref_primary_10_3390_ijms20051239 crossref_primary_10_1007_s40204_022_00197_4 crossref_primary_10_31083_j_fbl2810244 crossref_primary_10_1007_s13233_025_00367_w crossref_primary_10_1111_cbdd_14468 crossref_primary_10_1016_j_envpol_2021_116495 crossref_primary_10_1186_s12951_023_01779_5 crossref_primary_10_1002_mco2_249 crossref_primary_10_3390_biom12111600 crossref_primary_10_3390_ph15070843 crossref_primary_10_3390_nu15061363 crossref_primary_10_1142_S0192415X24500241 crossref_primary_10_34172_apb_2023_035 crossref_primary_10_1007_s12291_025_01304_5 crossref_primary_10_1080_01635581_2022_2139398 crossref_primary_10_1155_2023_5537610 crossref_primary_10_1080_08982104_2022_2153138 crossref_primary_10_1016_j_bbrc_2023_08_016 crossref_primary_10_2174_1568009619666191019143539 crossref_primary_10_2174_1385272824999200802025233 crossref_primary_10_1186_s12935_021_01773_7 crossref_primary_10_1007_s10517_021_05161_z crossref_primary_10_2174_1871527321666220119105836 crossref_primary_10_5812_ijpr_150978 crossref_primary_10_3389_fphar_2021_784335 crossref_primary_10_1021_acs_molpharmaceut_0c00718 crossref_primary_10_3390_molecules24224179 crossref_primary_10_1016_j_phrs_2021_106005 crossref_primary_10_1038_s41416_019_0651_y crossref_primary_10_3389_fonc_2022_939646 crossref_primary_10_1016_j_bbrc_2021_08_089 crossref_primary_10_1002_smll_202405752 crossref_primary_10_3390_nano12203619 crossref_primary_10_1002_ptr_6642 crossref_primary_10_1371_journal_pcbi_1008066 crossref_primary_10_3389_fbioe_2020_00050 crossref_primary_10_3934_agrfood_2021045 crossref_primary_10_1016_j_biopha_2022_113609 crossref_primary_10_1016_j_mad_2019_111191 crossref_primary_10_1080_1061186X_2022_2141755 crossref_primary_10_1016_j_jff_2022_105202 crossref_primary_10_1080_15384047_2022_2058862 crossref_primary_10_3389_fphar_2024_1389922 crossref_primary_10_2174_0109298673248404231006052436 crossref_primary_10_1016_j_bioorg_2025_108264 crossref_primary_10_1007_s11357_024_01092_5 crossref_primary_10_1016_j_colsurfb_2022_112826 crossref_primary_10_1093_jrr_rrac016 crossref_primary_10_1093_pcmedi_pbaa038 crossref_primary_10_1111_bcpt_13648 crossref_primary_10_1002_ddr_21994 crossref_primary_10_1016_j_tranon_2022_101348 crossref_primary_10_3390_ijms23179569 crossref_primary_10_1016_j_anireprosci_2022_107158 crossref_primary_10_1016_j_jtemb_2024_127553 crossref_primary_10_1142_S0192415X23500969 crossref_primary_10_1016_j_biopha_2022_112770 crossref_primary_10_1016_j_intimp_2021_107741 crossref_primary_10_1515_znc_2024_0220 crossref_primary_10_1016_j_lfs_2019_116607 crossref_primary_10_3389_fphar_2024_1531288 crossref_primary_10_3390_nu13113834 crossref_primary_10_1016_j_snb_2021_130287 crossref_primary_10_1155_2024_2994194 crossref_primary_10_1155_2022_1932692 crossref_primary_10_1016_j_cbi_2021_109729 crossref_primary_10_3389_fchem_2020_00829 crossref_primary_10_1016_j_phymed_2023_154986 crossref_primary_10_3389_fchem_2022_941367 crossref_primary_10_3390_biom13040686 crossref_primary_10_2147_IJN_S375950 crossref_primary_10_1016_j_phrs_2020_105327 crossref_primary_10_1002_med4_51 crossref_primary_10_1093_femsyr_foac052 crossref_primary_10_1002_advs_202411642 crossref_primary_10_1021_acsnano_3c09316 crossref_primary_10_1038_s41392_020_0123_0 crossref_primary_10_3390_biomedicines9101476 crossref_primary_10_1371_journal_pone_0261370 crossref_primary_10_1016_j_intimp_2019_105847 crossref_primary_10_1016_j_clnu_2022_11_009 crossref_primary_10_1080_14786419_2024_2355590 crossref_primary_10_1080_14728222_2023_2225767 crossref_primary_10_3389_fphar_2021_685002 crossref_primary_10_1016_j_snb_2020_129104 crossref_primary_10_1111_jcmm_17242 crossref_primary_10_1016_j_colsurfb_2022_112481 crossref_primary_10_3390_molecules24142527 crossref_primary_10_3390_antiox10101591 crossref_primary_10_2174_0929867329666220322110348 crossref_primary_10_1002_smll_202307210 crossref_primary_10_1016_j_biopha_2023_114224 crossref_primary_10_1016_j_procbio_2024_01_008 crossref_primary_10_1186_s12935_021_01973_1 crossref_primary_10_3390_nu11092169 crossref_primary_10_2174_1871523021666220328121721 crossref_primary_10_1016_j_jddst_2022_103946 crossref_primary_10_3390_cancers15041192 crossref_primary_10_2174_1389557523666230502143131 crossref_primary_10_1177_09603271211021475 crossref_primary_10_3390_ijms23073757 crossref_primary_10_1134_S000635092006010X crossref_primary_10_1002_cbf_3911 crossref_primary_10_1016_j_phyplu_2021_100044 crossref_primary_10_1007_s12672_024_01590_0 crossref_primary_10_1080_10286020_2023_2193695 crossref_primary_10_1007_s13105_022_00895_4 crossref_primary_10_1002_ptr_7360 crossref_primary_10_1186_s43088_021_00135_6 crossref_primary_10_1021_acsnano_4c05309 crossref_primary_10_31083_j_fbl2907240 crossref_primary_10_3389_fmed_2022_1032256 crossref_primary_10_3390_nu14020256 crossref_primary_10_3389_fphar_2022_933332 crossref_primary_10_1016_j_jneuroim_2021_577758 crossref_primary_10_3389_fchem_2023_1153729 crossref_primary_10_3390_ijms222111772 crossref_primary_10_1016_j_ijpharm_2020_119899 crossref_primary_10_1002_adhm_202400475 crossref_primary_10_52711_0974_360X_2022_00902 crossref_primary_10_2174_1871520623666230412102532 crossref_primary_10_1002_ptr_7350 crossref_primary_10_3389_fphar_2022_863082 crossref_primary_10_2147_IJN_S410688 crossref_primary_10_1039_D1FO01611C crossref_primary_10_1155_2023_7214037 crossref_primary_10_2174_1871520620666200228110704 crossref_primary_10_1038_s41419_024_06588_8 crossref_primary_10_1016_j_ejmech_2021_113528 crossref_primary_10_3389_fphar_2024_1348076 crossref_primary_10_1021_acsapm_2c01316 crossref_primary_10_3390_nu14071331 crossref_primary_10_1016_j_prp_2020_153082 crossref_primary_10_1002_jbt_23645 crossref_primary_10_1007_s11095_020_2775_4 crossref_primary_10_1590_1809_6891v23e_72215e crossref_primary_10_3389_fimmu_2023_1120034 crossref_primary_10_1039_D1BM00283J crossref_primary_10_1016_j_cartre_2025_100464 crossref_primary_10_3390_antiox11081481 crossref_primary_10_1016_j_procbio_2023_04_011 crossref_primary_10_1016_j_procbio_2022_02_006 crossref_primary_10_1016_j_ijbiomac_2021_05_074 crossref_primary_10_1016_j_biopha_2024_116909 crossref_primary_10_32604_or_2023_042228 crossref_primary_10_1016_j_nantod_2021_101134 crossref_primary_10_3390_chemistry5010017 crossref_primary_10_1590_1809_6891v23e_72715p |
Cites_doi | 10.1093/carcin/bgs029 10.1080/01926230701320337 10.3892/ol.2015.2946 10.1016/S0360-3016(99)00544-1 10.1016/j.drudis.2010.09.005 10.2174/1381612822666161006151605 10.1095/biolreprod.116.141630 10.1038/cdd.2014.128 10.1002/jcp.25778 10.1002/ptr.5167 10.1006/excr.2001.5381 10.1016/j.toxlet.2012.10.008 10.1080/09553002.2018.1440092 10.1002/ijc.24593 10.1186/1476-4598-7-16 10.1111/jcmm.13701 10.1038/sj.cdd.4401874 10.1007/s11010-013-1752-1 10.1038/cddis.2016.136 10.1002/ptr.5174 10.1007/s00262-011-1008-4 10.1016/S0304-3835(01)00655-3 10.1128/MCB.21.16.5299-5305.2001 10.1002/ijc.30224 10.1007/s10787-016-0301-4 10.1101/gad.1228704 10.1016/j.ccr.2014.07.027 10.2174/1874467211666180619125653 10.3390/ijms140815931 10.1371/journal.pone.0057218 10.1016/j.ijrobp.2010.07.1986 10.1158/1078-0432.CCR-07-4722 10.1093/carcin/bgh163 10.4103/jrcr.jrcr_32_17 10.1002/cam4.54 10.1093/carcin/20.3.445 10.1111/j.1464-410X.2007.06593.x 10.1016/S0014-5793(02)02292-5 10.1016/j.fct.2017.04.007 10.1016/S0928-4680(00)00053-5 10.1073/pnas.96.11.6199 10.1186/s12885-015-1291-0 10.1093/carcin/bgl026 10.1093/carcin/bgi167 10.1016/S0002-9440(10)64681-0 10.1007/s13277-010-0042-8 10.1016/S0006-2952(96)00834-9 10.1016/S0006-2952(00)00391-9 10.1093/oxfordjournals.bmb.a011629 10.1093/carcin/bgi371 10.1158/1535-7163.MCT-09-0290 10.3322/caac.21387 10.1093/abbs/gms074 10.1007/s10555-007-9056-0 10.1038/sj.onc.1207116 10.1186/1757-2215-3-11 10.2174/1381612822666161010115235 10.1016/j.bbrc.2013.10.008 10.1677/erc.1.01171 10.1016/S1383-5718(99)00220-X 10.1038/sj.onc.1209608 10.1002/jcp.26055 10.1016/S0300-9084(02)01376-7 10.4161/cbt.7.4.5534 10.5114/aoms.2017.69326 10.1002/ptr.5659 10.1016/S0753-3322(05)80045-9 10.1016/j.mrgentox.2018.01.007 10.1038/srep08566 10.3390/ijms16022942 10.1016/j.phrs.2016.11.017 10.1016/j.bbalip.2014.09.006 10.1016/S0304-419X(99)00032-3 10.18632/oncotarget.4319 10.1083/jcb.144.2.281 10.1007/s12094-018-1934-0 10.1038/cdd.2015.3 10.1016/j.ccr.2008.02.001 10.1016/j.tranon.2017.05.001 10.1038/nrc1588 10.1007/s00441-001-0479-6 10.1124/mol.107.043554 10.1128/MCB.20.5.1626-1638.2000 10.2174/1874467211666180802164449 10.1038/bjc.2013.53 10.1007/112_2016_3 10.1055/s-0043-100019 10.1038/sj.onc.1207232 10.1002/jcb.27703 10.1097/00001622-200311000-00001 10.1038/s41598-017-16436-9 10.2174/138161210791959818 10.1126/sciadv.1501292 10.2174/1874467211666180219102520 10.1002/jcb.27646 10.1074/jbc.M211010200 10.1093/rheumatology/kei132 10.1016/S0960-7404(97)00015-7 10.1093/carcin/bgh233 10.18632/aging.101121 10.1016/S1470-2045(03)01277-4 10.1038/nrc2587 10.1254/jphs.12149FP 10.1016/j.autrev.2017.11.016 10.3892/or.2015.4258 10.1007/s12272-017-0979-x 10.1016/S1359-6101(03)00029-7 10.1016/j.phrs.2018.09.012 10.1016/j.phrs.2016.03.026 10.1038/364806a0 10.1155/2011/565316 10.1016/j.clnu.2014.12.019 10.1016/j.cellsig.2015.07.022 10.1242/jcs.02554 10.1371/journal.pone.0051309 10.1055/s-0044-101752 10.1007/s12094-013-1135-9 10.3892/ol.2017.6739 10.1016/j.ygyno.2006.10.050 10.1016/j.intimp.2011.12.009 10.1016/j.lfs.2013.01.013 10.1093/carcin/bgh165 10.1038/cdd.2017.169 10.2174/1874467211666181010154709 10.1038/nrd2781 10.1080/10717544.2017.1384863 10.1038/nature04870 10.2147/OTT.S96899 10.3892/ol.2017.6053 10.1016/S1097-2765(03)00050-9 10.1002/jcp.27391 10.1128/MCB.24.3.1007-1021.2004 10.2174/1574362410666150109223303 10.20892/j.issn.2095-3941.2017.0049 10.1074/jbc.M111.256180 10.1038/bjc.2012.498 10.1158/1535-7163.803.3.7 10.1186/s13046-015-0168-z 10.3389/fonc.2013.00120 10.1038/onc.2009.451 10.1186/1472-6882-12-22 10.1158/1078-0432.CCR-05-0885 10.1016/j.cytogfr.2016.10.001 10.5012/bkcs.2014.35.11.3339 10.31661/jbpe.v0i0.713 10.1242/jcs.02579 10.1155/2017/5787218 10.1111/j.1749-6632.2009.04699.x 10.1016/j.phrs.2017.02.008 10.1016/j.jff.2015.01.005 10.1080/095530097143716 10.1186/1750-2187-2-10 10.3322/canjclin.51.5.290 10.1002/ijc.24064 10.1080/01635580903441238 10.1016/S0002-9440(10)64656-1 10.1016/j.cllc.2011.03.007 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.28122 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 12550 |
ExternalDocumentID | 30623450 10_1002_jcp_28122 JCP28122 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3532-c87c60fd1c42d913b9c5240c3ba59b2b5ecabe5578cc208b0e1f52eb9398225f3 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 06:04:54 EDT 2025 Fri Jul 18 04:11:43 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 Thu Jul 24 02:00:24 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Wed Jan 22 16:24:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | NF-κB apoptosis cancer JNK curcumin p53 |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-c87c60fd1c42d913b9c5240c3ba59b2b5ecabe5578cc208b0e1f52eb9398225f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8656-1444 |
PMID | 30623450 |
PQID | 2211498732 |
PQPubID | 1006363 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2165666308 proquest_journals_2211498732 pubmed_primary_30623450 crossref_citationtrail_10_1002_jcp_28122 crossref_primary_10_1002_jcp_28122 wiley_primary_10_1002_jcp_28122_JCP28122 |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_1_36_1 e_1_2_8_1_55_1 e_1_2_8_1_51_1 e_1_2_8_1_70_1 Baatout S. (e_1_2_8_1_14_1) 2004; 24 Somasundaram S. (e_1_2_8_1_155_1) 2002; 62 Chen J. (e_1_2_8_1_32_1) 2015; 3 e_1_2_8_1_124_1 e_1_2_8_1_101_1 e_1_2_8_1_143_1 e_1_2_8_1_105_1 e_1_2_8_1_128_1 e_1_2_8_1_81_1 e_1_2_8_1_166_1 e_1_2_8_1_147_1 e_1_2_8_1_85_1 e_1_2_8_1_162_1 e_1_2_8_1_185_1 e_1_2_8_1_89_1 e_1_2_8_1_120_1 Calaf G. M. (e_1_2_8_1_28_1) 2012; 40 e_1_2_8_1_29_1 e_1_2_8_1_48_1 e_1_2_8_1_181_1 e_1_2_8_1_47_1 e_1_2_8_1_24_1 e_1_2_8_1_66_1 e_1_2_8_1_43_1 e_1_2_8_1_20_1 e_1_2_8_1_62_1 Huang S. (e_1_2_8_1_72_1) 2011; 25 e_1_2_8_1_109_1 Farhood B. (e_1_2_8_1_49_1) 2018 e_1_2_8_1_112_1 e_1_2_8_1_135_1 e_1_2_8_1_158_1 e_1_2_8_1_3_1 Tian F. (e_1_2_8_1_159_1) 2012; 28 Hallman K. (e_1_2_8_1_64_1) 2017; 9 e_1_2_8_1_116_1 e_1_2_8_1_139_1 e_1_2_8_1_154_1 e_1_2_8_1_177_1 e_1_2_8_1_7_1 e_1_2_8_1_93_1 e_1_2_8_1_150_1 e_1_2_8_1_173_1 e_1_2_8_1_74_1 e_1_2_8_1_131_1 e_1_2_8_1_78_1 e_1_2_8_1_17_1 e_1_2_8_1_59_1 e_1_2_8_1_56_1 e_1_2_8_1_10_1 e_1_2_8_1_52_1 e_1_2_8_1_71_1 e_1_2_8_1_8_1 e_1_2_8_1_118_1 e_1_2_8_1_102_1 e_1_2_8_1_121_1 e_1_2_8_1_144_1 e_1_2_8_1_106_1 e_1_2_8_1_82_1 e_1_2_8_1_125_1 e_1_2_8_1_148_1 e_1_2_8_1_167_1 e_1_2_8_1_86_1 e_1_2_8_1_163_1 e_1_2_8_1_186_1 Lee S. H. (e_1_2_8_1_91_1) 2012; 17 e_1_2_8_1_26_1 Girdhani S. (e_1_2_8_1_58_1) 2009; 1 e_1_2_8_1_182_1 e_1_2_8_1_25_1 e_1_2_8_1_44_1 e_1_2_8_1_67_1 e_1_2_8_1_21_1 e_1_2_8_1_63_1 Brown J. M. (e_1_2_8_1_23_1) 1999; 59 Bagheri H. (e_1_2_8_1_15_1) 2018; 43 e_1_2_8_1_129_1 e_1_2_8_1_113_1 e_1_2_8_1_90_1 e_1_2_8_1_132_1 e_1_2_8_1_117_1 e_1_2_8_1_4_1 e_1_2_8_1_136_1 e_1_2_8_1_178_1 Chen X. (e_1_2_8_1_33_1) 2003; 63 e_1_2_8_1_151_1 e_1_2_8_1_75_1 e_1_2_8_1_98_1 e_1_2_8_1_18_1 e_1_2_8_1_37_1 e_1_2_8_1_79_1 e_1_2_8_1_170_1 e_1_2_8_1_11_1 e_1_2_8_1_57_1 Yao Q. (e_1_2_8_1_179_1) 2013; 6 e_1_2_8_1_34_1 Afrin L. B. (e_1_2_8_1_5_1) 2000; 96 e_1_2_8_1_53_1 e_1_2_8_1_30_1 e_1_2_8_1_9_1 e_1_2_8_1_119_1 e_1_2_8_1_145_1 e_1_2_8_1_122_1 e_1_2_8_1_187_1 e_1_2_8_1_103_1 e_1_2_8_1_83_1 e_1_2_8_1_126_1 e_1_2_8_1_168_1 e_1_2_8_1_183_1 e_1_2_8_1_87_1 e_1_2_8_1_164_1 e_1_2_8_1_27_1 Sahebkar A. (e_1_2_8_1_141_1) 2016; 17 Gore E. (e_1_2_8_1_61_1) 2004; 18 e_1_2_8_1_160_1 e_1_2_8_1_22_1 Fogoros S. (e_1_2_8_1_50_1) 2005; 65 e_1_2_8_1_68_1 e_1_2_8_1_45_1 e_1_2_8_1_41_1 e_1_2_8_1_60_1 e_1_2_8_1_107_1 Koohpar Z. K. (e_1_2_8_1_84_1) 2015; 8 e_1_2_8_1_110_1 e_1_2_8_1_133_1 Lev‐Ari S. (e_1_2_8_1_94_1) 2005; 11 Li F. (e_1_2_8_1_97_1) 2010; 1805 e_1_2_8_1_114_1 e_1_2_8_1_137_1 e_1_2_8_1_156_1 e_1_2_8_1_95_1 e_1_2_8_1_19_1 e_1_2_8_1_152_1 e_1_2_8_1_175_1 e_1_2_8_1_76_1 e_1_2_8_1_99_1 Baatout S. (e_1_2_8_1_13_1) 2005; 15 e_1_2_8_1_38_1 e_1_2_8_1_12_1 e_1_2_8_1_35_1 e_1_2_8_1_31_1 e_1_2_8_1_54_1 Balcer‐Kubiczek E. K. (e_1_2_8_1_16_1) 2012; 34 e_1_2_8_1_100_1 e_1_2_8_1_123_1 e_1_2_8_1_146_1 e_1_2_8_1_169_1 Wu S.‐H. (e_1_2_8_1_171_1) 2010; 30 e_1_2_8_1_80_1 e_1_2_8_1_127_1 e_1_2_8_1_165_1 e_1_2_8_1_104_1 e_1_2_8_1_161_1 e_1_2_8_1_184_1 Shankar S. (e_1_2_8_1_149_1) 2007; 30 Deeb D. (e_1_2_8_1_40_1) 2003; 2 e_1_2_8_1_88_1 e_1_2_8_1_142_1 e_1_2_8_1_180_1 e_1_2_8_1_46_1 e_1_2_8_1_69_1 e_1_2_8_1_42_1 e_1_2_8_1_65_1 e_1_2_8_1_108_1 Saha S. (e_1_2_8_1_140_1) 2012; 32 Yahyapour R. (e_1_2_8_1_174_1) 2018; 7 e_1_2_8_1_2_1 e_1_2_8_1_134_1 e_1_2_8_1_111_1 e_1_2_8_1_6_1 e_1_2_8_1_92_1 e_1_2_8_1_138_1 e_1_2_8_1_176_1 e_1_2_8_1_115_1 e_1_2_8_1_73_1 e_1_2_8_1_96_1 e_1_2_8_1_172_1 e_1_2_8_1_153_1 e_1_2_8_1_39_1 e_1_2_8_1_77_1 e_1_2_8_1_130_1 Thompson H. J. (e_1_2_8_1_157_1) 1992; 1 |
References_xml | – volume: 18 start-page: 10 issue: 14 year: 2004 ident: e_1_2_8_1_61_1 article-title: Celecoxib and radiation therapy in non‐small‐cell lung cancer publication-title: Oncology (Williston Park, NY) – ident: e_1_2_8_1_65_1 doi: 10.1093/carcin/bgs029 – ident: e_1_2_8_1_43_1 doi: 10.1080/01926230701320337 – ident: e_1_2_8_1_100_1 doi: 10.3892/ol.2015.2946 – ident: e_1_2_8_1_138_1 doi: 10.1016/S0360-3016(99)00544-1 – volume: 40 start-page: 436 issue: 2 year: 2012 ident: e_1_2_8_1_28_1 article-title: Effect of curcumin on irradiated and estrogen‐transformed human breast cell lines publication-title: International Journal of Oncology – volume: 9 start-page: 153 year: 2017 ident: e_1_2_8_1_64_1 article-title: The effects of turmeric (curcumin) on tumor suppressor protein (p53) and estrogen receptor (ERalpha) in breast cancer cells publication-title: Breast Cancer (Dove Medical Press) – ident: e_1_2_8_1_70_1 doi: 10.1016/j.drudis.2010.09.005 – ident: e_1_2_8_1_57_1 doi: 10.2174/1381612822666161006151605 – volume: 8 start-page: e2331 issue: 3 year: 2015 ident: e_1_2_8_1_84_1 article-title: Anticancer activity of curcumin on human breast adenocarcinoma: Role of Mcl‐1 gene publication-title: Iranian Journal of Cancer Prevention – ident: e_1_2_8_1_102_1 doi: 10.1095/biolreprod.116.141630 – ident: e_1_2_8_1_172_1 doi: 10.1038/cdd.2014.128 – volume: 63 start-page: 1059 issue: 5 year: 2003 ident: e_1_2_8_1_33_1 article-title: Differential roles of RelA (p65) and c‐Rel subunits of nuclear factor kappa B in tumor necrosis factor‐related apoptosis‐inducing ligand signaling publication-title: Cancer Research – ident: e_1_2_8_1_4_1 doi: 10.1002/jcp.25778 – ident: e_1_2_8_1_101_1 doi: 10.1002/ptr.5167 – ident: e_1_2_8_1_26_1 doi: 10.1006/excr.2001.5381 – ident: e_1_2_8_1_44_1 doi: 10.1016/j.toxlet.2012.10.008 – ident: e_1_2_8_1_120_1 doi: 10.1080/09553002.2018.1440092 – ident: e_1_2_8_1_87_1 doi: 10.1002/ijc.24593 – ident: e_1_2_8_1_150_1 doi: 10.1186/1476-4598-7-16 – ident: e_1_2_8_1_162_1 doi: 10.1111/jcmm.13701 – ident: e_1_2_8_1_22_1 doi: 10.1038/sj.cdd.4401874 – volume: 11 start-page: 6738 issue: 18 year: 2005 ident: e_1_2_8_1_94_1 article-title: Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clinical cancer research: An official journal of the American Association for publication-title: Cancer Research – ident: e_1_2_8_1_131_1 doi: 10.1007/s11010-013-1752-1 – volume: 3 start-page: 330 issue: 21 year: 2015 ident: e_1_2_8_1_32_1 article-title: The critical roles of miR‐21 in anti‐cancer effects of curcumin publication-title: Annals of Translational Medicine – ident: e_1_2_8_1_182_1 doi: 10.1038/cddis.2016.136 – ident: e_1_2_8_1_125_1 doi: 10.1002/ptr.5174 – volume: 43 start-page: 645 year: 2018 ident: e_1_2_8_1_15_1 article-title: Protection against radiation‐induced micronuclei in rat bone marrow erythrocytes by Curcumin and selenium L‐methionine publication-title: Iranian Journal of Medical Sciences – ident: e_1_2_8_1_145_1 doi: 10.1007/s00262-011-1008-4 – ident: e_1_2_8_1_60_1 doi: 10.1016/S0304-3835(01)00655-3 – ident: e_1_2_8_1_104_1 doi: 10.1128/MCB.21.16.5299-5305.2001 – ident: e_1_2_8_1_106_1 doi: 10.1002/ijc.30224 – ident: e_1_2_8_1_128_1 doi: 10.1007/s10787-016-0301-4 – ident: e_1_2_8_1_66_1 doi: 10.1101/gad.1228704 – ident: e_1_2_8_1_160_1 doi: 10.1016/j.ccr.2014.07.027 – ident: e_1_2_8_1_175_1 doi: 10.2174/1874467211666180619125653 – ident: e_1_2_8_1_130_1 doi: 10.3390/ijms140815931 – ident: e_1_2_8_1_147_1 doi: 10.1371/journal.pone.0057218 – ident: e_1_2_8_1_35_1 doi: 10.1016/j.ijrobp.2010.07.1986 – ident: e_1_2_8_1_86_1 doi: 10.1158/1078-0432.CCR-07-4722 – volume: 96 start-page: 77 issue: 2 year: 2000 ident: e_1_2_8_1_5_1 article-title: Medical therapy of prostate cancer: 1999 publication-title: Journal of the South Carolina Medical Association (1975) – ident: e_1_2_8_1_112_1 doi: 10.1093/carcin/bgh163 – ident: e_1_2_8_1_39_1 doi: 10.4103/jrcr.jrcr_32_17 – ident: e_1_2_8_1_153_1 doi: 10.1002/cam4.54 – ident: e_1_2_8_1_183_1 doi: 10.1093/carcin/20.3.445 – ident: e_1_2_8_1_6_1 doi: 10.1111/j.1464-410X.2007.06593.x – ident: e_1_2_8_1_36_1 doi: 10.1016/S0014-5793(02)02292-5 – ident: e_1_2_8_1_144_1 doi: 10.1016/j.fct.2017.04.007 – volume: 59 start-page: 1391 issue: 7 year: 1999 ident: e_1_2_8_1_23_1 article-title: Apoptosis, p53, and tumor cell sensitivity to anticancer agents publication-title: Cancer Research – ident: e_1_2_8_1_78_1 doi: 10.1016/S0928-4680(00)00053-5 – ident: e_1_2_8_1_156_1 doi: 10.1073/pnas.96.11.6199 – ident: e_1_2_8_1_148_1 doi: 10.1186/s12885-015-1291-0 – ident: e_1_2_8_1_77_1 doi: 10.1093/carcin/bgl026 – ident: e_1_2_8_1_76_1 doi: 10.1093/carcin/bgi167 – ident: e_1_2_8_1_88_1 doi: 10.1016/S0002-9440(10)64681-0 – volume: 30 start-page: 905 issue: 4 year: 2007 ident: e_1_2_8_1_149_1 article-title: Involvement of Bcl‐2 family members, phosphatidylinositol 3'‐kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)‐induced apoptosis in prostate cancer publication-title: International Journal of Oncology – ident: e_1_2_8_1_45_1 doi: 10.1007/s13277-010-0042-8 – volume: 7 start-page: 0 issue: 3 year: 2018 ident: e_1_2_8_1_174_1 article-title: Metformin protects against radiation‐induced heart injury and attenuates the up‐regulation of dual oxidase genes following rat's chest irradiation publication-title: International Journal of Molecular and Cellular Medicine – ident: e_1_2_8_1_133_1 doi: 10.1016/S0006-2952(96)00834-9 – ident: e_1_2_8_1_21_1 doi: 10.1016/S0006-2952(00)00391-9 – ident: e_1_2_8_1_63_1 doi: 10.1093/oxfordjournals.bmb.a011629 – ident: e_1_2_8_1_114_1 doi: 10.1093/carcin/bgi371 – volume: 1 start-page: 208 issue: 4 year: 2009 ident: e_1_2_8_1_58_1 article-title: Enhancement of gamma radiation‐induced cytotoxicity of breast cancer cells by curcumin publication-title: Molecular and Cellular Pharmacology – ident: e_1_2_8_1_82_1 doi: 10.1158/1535-7163.MCT-09-0290 – ident: e_1_2_8_1_152_1 doi: 10.3322/caac.21387 – ident: e_1_2_8_1_158_1 doi: 10.1093/abbs/gms074 – ident: e_1_2_8_1_108_1 doi: 10.1007/s10555-007-9056-0 – ident: e_1_2_8_1_51_1 doi: 10.1038/sj.onc.1207116 – ident: e_1_2_8_1_176_1 doi: 10.1186/1757-2215-3-11 – ident: e_1_2_8_1_181_1 doi: 10.2174/1381612822666161010115235 – ident: e_1_2_8_1_180_1 doi: 10.1016/j.bbrc.2013.10.008 – ident: e_1_2_8_1_111_1 doi: 10.1677/erc.1.01171 – ident: e_1_2_8_1_10_1 doi: 10.1016/S1383-5718(99)00220-X – volume: 34 start-page: 277 issue: 3 year: 2012 ident: e_1_2_8_1_16_1 article-title: Apoptosis in radiation therapy: A double‐edged sword publication-title: Experimental Oncology – ident: e_1_2_8_1_54_1 doi: 10.1038/sj.onc.1209608 – ident: e_1_2_8_1_107_1 doi: 10.1002/jcp.26055 – ident: e_1_2_8_1_27_1 doi: 10.1016/S0300-9084(02)01376-7 – volume: 17 start-page: 1192 issue: 6 year: 2016 ident: e_1_2_8_1_141_1 article-title: Analgesic efficacy and safety of curcuminoids in clinical practice: A systematic review and meta‐analysis of randomized controlled trials publication-title: Pain Medicine (United States) – volume: 30 start-page: 2125 issue: 6 year: 2010 ident: e_1_2_8_1_171_1 article-title: Curcumin induces apoptosis in human non‐small cell lung cancer NCI‐H460 cells through ER stress and caspase cascade‐ and mitochondria‐dependent pathways publication-title: Anticancer Research – ident: e_1_2_8_1_11_1 doi: 10.4161/cbt.7.4.5534 – ident: e_1_2_8_1_37_1 doi: 10.5114/aoms.2017.69326 – ident: e_1_2_8_1_137_1 doi: 10.1002/ptr.5659 – ident: e_1_2_8_1_95_1 doi: 10.1016/S0753-3322(05)80045-9 – volume: 32 start-page: 2567 issue: 7 year: 2012 ident: e_1_2_8_1_140_1 article-title: Death by design: Where curcumin sensitizes drug‐resistant tumours publication-title: Anticancer Research – volume: 28 start-page: 232 issue: 1 year: 2012 ident: e_1_2_8_1_159_1 article-title: Comparison of the effect of p65 siRNA and curcumin in promoting apoptosis in esophageal squamous cell carcinoma cells and in nude mice publication-title: Oncology Reports – ident: e_1_2_8_1_119_1 doi: 10.1016/j.mrgentox.2018.01.007 – ident: e_1_2_8_1_169_1 doi: 10.1038/srep08566 – ident: e_1_2_8_1_83_1 doi: 10.3390/ijms16022942 – ident: e_1_2_8_1_93_1 doi: 10.1016/j.phrs.2016.11.017 – ident: e_1_2_8_1_3_1 doi: 10.1016/j.bbalip.2014.09.006 – ident: e_1_2_8_1_164_1 doi: 10.1016/S0304-419X(99)00032-3 – ident: e_1_2_8_1_99_1 doi: 10.18632/oncotarget.4319 – ident: e_1_2_8_1_154_1 doi: 10.1083/jcb.144.2.281 – ident: e_1_2_8_1_48_1 doi: 10.1007/s12094-018-1934-0 – ident: e_1_2_8_1_134_1 doi: 10.1038/cdd.2015.3 – ident: e_1_2_8_1_42_1 doi: 10.1016/j.ccr.2008.02.001 – ident: e_1_2_8_1_19_1 doi: 10.1016/j.tranon.2017.05.001 – ident: e_1_2_8_1_121_1 doi: 10.1038/nrc1588 – ident: e_1_2_8_1_146_1 doi: 10.1007/s00441-001-0479-6 – ident: e_1_2_8_1_74_1 doi: 10.1124/mol.107.043554 – ident: e_1_2_8_1_103_1 doi: 10.1128/MCB.20.5.1626-1638.2000 – ident: e_1_2_8_1_9_1 doi: 10.2174/1874467211666180802164449 – ident: e_1_2_8_1_29_1 doi: 10.1038/bjc.2013.53 – ident: e_1_2_8_1_109_1 doi: 10.1007/112_2016_3 – ident: e_1_2_8_1_127_1 doi: 10.1055/s-0043-100019 – ident: e_1_2_8_1_166_1 doi: 10.1038/sj.onc.1207232 – ident: e_1_2_8_1_46_1 doi: 10.1002/jcb.27703 – ident: e_1_2_8_1_56_1 doi: 10.1097/00001622-200311000-00001 – volume: 17 start-page: 19 issue: 1 year: 2012 ident: e_1_2_8_1_91_1 article-title: Apoptotic effects of curcumin via the regulation of COX‐2/VASP signaling molecules in MCF‐7 breast cancer cells publication-title: Cancer Prevention Research – ident: e_1_2_8_1_34_1 doi: 10.1038/s41598-017-16436-9 – ident: e_1_2_8_1_8_1 doi: 10.2174/138161210791959818 – ident: e_1_2_8_1_52_1 doi: 10.1126/sciadv.1501292 – ident: e_1_2_8_1_31_1 doi: 10.2174/1874467211666180219102520 – ident: e_1_2_8_1_118_1 doi: 10.1002/jcb.27646 – ident: e_1_2_8_1_139_1 doi: 10.1074/jbc.M211010200 – volume: 6 start-page: 2342 issue: 11 year: 2013 ident: e_1_2_8_1_179_1 article-title: Protective effect of curcumin on chemotherapy‐induced intestinal dysfunction publication-title: International Journal of Clinical and Experimental Pathology – ident: e_1_2_8_1_96_1 doi: 10.1093/rheumatology/kei132 – volume: 15 start-page: 337 issue: 2 year: 2005 ident: e_1_2_8_1_13_1 article-title: Increased radiation sensitivity of an eosinophilic cell line following treatment with epigallocatechin‐gallate, resveratrol and curcuma publication-title: International Journal of Molecular Medicine – ident: e_1_2_8_1_20_1 doi: 10.1016/S0960-7404(97)00015-7 – ident: e_1_2_8_1_38_1 doi: 10.1093/carcin/bgh233 – ident: e_1_2_8_1_185_1 doi: 10.18632/aging.101121 – ident: e_1_2_8_1_71_1 doi: 10.1016/S1470-2045(03)01277-4 – ident: e_1_2_8_1_17_1 doi: 10.1038/nrc2587 – ident: e_1_2_8_1_135_1 doi: 10.1254/jphs.12149FP – ident: e_1_2_8_1_110_1 doi: 10.1016/j.autrev.2017.11.016 – volume: 1 start-page: 597 issue: 7 year: 1992 ident: e_1_2_8_1_157_1 article-title: Apoptosis in the genesis and prevention of cancer. Cancer epidemiology, biomarkers & prevention: A publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive publication-title: Oncology – ident: e_1_2_8_1_75_1 doi: 10.3892/or.2015.4258 – year: 2018 ident: e_1_2_8_1_49_1 article-title: Disruption of the redox balance with either oxidative or anti‐oxidative overloading as a promising target for cancer therapy publication-title: Journal of Cellular Biochemistry – ident: e_1_2_8_1_170_1 doi: 10.1007/s12272-017-0979-x – ident: e_1_2_8_1_7_1 doi: 10.1016/S1359-6101(03)00029-7 – ident: e_1_2_8_1_132_1 doi: 10.1016/j.phrs.2018.09.012 – ident: e_1_2_8_1_143_1 doi: 10.1016/j.phrs.2016.03.026 – ident: e_1_2_8_1_122_1 doi: 10.1038/364806a0 – volume: 65 start-page: 1164 issue: 9 year: 2005 ident: e_1_2_8_1_50_1 article-title: Inhibition of NF‐kB enhances chemotherapy induced apoptosis in ovarian cancer cells publication-title: Cancer Research – ident: e_1_2_8_1_73_1 doi: 10.1155/2011/565316 – volume: 25 issue: 1 year: 2011 ident: e_1_2_8_1_72_1 article-title: Curcumin induces apoptosis by suppressing protein phosphatase 5 leading to activation of JNK cascade publication-title: Federation of American Societies for Experimental Biology – ident: e_1_2_8_1_126_1 doi: 10.1016/j.clnu.2014.12.019 – ident: e_1_2_8_1_2_1 doi: 10.1016/j.cellsig.2015.07.022 – ident: e_1_2_8_1_115_1 doi: 10.1242/jcs.02554 – volume: 1805 start-page: 167 issue: 2 year: 2010 ident: e_1_2_8_1_97_1 article-title: Targeting transcription factor NF‐kappaB to overcome chemoresistance and radioresistance in cancer therapy publication-title: Biochimica et Biophysica Acta – ident: e_1_2_8_1_124_1 doi: 10.1371/journal.pone.0051309 – ident: e_1_2_8_1_129_1 doi: 10.1055/s-0044-101752 – ident: e_1_2_8_1_186_1 doi: 10.1007/s12094-013-1135-9 – ident: e_1_2_8_1_113_1 doi: 10.3892/ol.2017.6739 – ident: e_1_2_8_1_165_1 doi: 10.1016/j.ygyno.2006.10.050 – ident: e_1_2_8_1_123_1 doi: 10.1016/j.intimp.2011.12.009 – ident: e_1_2_8_1_167_1 doi: 10.1016/j.lfs.2013.01.013 – ident: e_1_2_8_1_69_1 doi: 10.1093/carcin/bgh165 – ident: e_1_2_8_1_12_1 doi: 10.1038/cdd.2017.169 – ident: e_1_2_8_1_81_1 doi: 10.2174/1874467211666181010154709 – ident: e_1_2_8_1_18_1 doi: 10.1038/nrd2781 – ident: e_1_2_8_1_178_1 doi: 10.1080/10717544.2017.1384863 – volume: 24 start-page: 321 issue: 2 year: 2004 ident: e_1_2_8_1_14_1 article-title: Effect of curcuma on radiation‐induced apoptosis in human cancer cells publication-title: International Journal of Oncology – ident: e_1_2_8_1_80_1 doi: 10.1038/nature04870 – ident: e_1_2_8_1_90_1 doi: 10.2147/OTT.S96899 – ident: e_1_2_8_1_168_1 doi: 10.3892/ol.2017.6053 – ident: e_1_2_8_1_105_1 doi: 10.1016/S1097-2765(03)00050-9 – ident: e_1_2_8_1_47_1 doi: 10.1002/jcp.27391 – ident: e_1_2_8_1_163_1 doi: 10.1128/MCB.24.3.1007-1021.2004 – ident: e_1_2_8_1_184_1 doi: 10.2174/1574362410666150109223303 – ident: e_1_2_8_1_161_1 doi: 10.20892/j.issn.2095-3941.2017.0049 – ident: e_1_2_8_1_25_1 doi: 10.1074/jbc.M111.256180 – ident: e_1_2_8_1_30_1 doi: 10.1038/bjc.2012.498 – ident: e_1_2_8_1_41_1 doi: 10.1158/1535-7163.803.3.7 – ident: e_1_2_8_1_98_1 doi: 10.1186/s13046-015-0168-z – ident: e_1_2_8_1_59_1 doi: 10.3389/fonc.2013.00120 – ident: e_1_2_8_1_136_1 doi: 10.1038/onc.2009.451 – volume: 2 start-page: 95 issue: 1 year: 2003 ident: e_1_2_8_1_40_1 article-title: Curcumin (diferuloyl‐methane) enhances tumor necrosis factor‐related apoptosis‐inducing ligand‐induced apoptosis in lncap prostate cancer cells1 publication-title: Molecular Cancer Therapeutics – ident: e_1_2_8_1_177_1 doi: 10.1186/1472-6882-12-22 – ident: e_1_2_8_1_24_1 doi: 10.1158/1078-0432.CCR-05-0885 – ident: e_1_2_8_1_79_1 doi: 10.1016/j.cytogfr.2016.10.001 – ident: e_1_2_8_1_89_1 doi: 10.5012/bkcs.2014.35.11.3339 – ident: e_1_2_8_1_173_1 doi: 10.31661/jbpe.v0i0.713 – ident: e_1_2_8_1_116_1 doi: 10.1242/jcs.02579 – ident: e_1_2_8_1_187_1 doi: 10.1155/2017/5787218 – ident: e_1_2_8_1_92_1 doi: 10.1111/j.1749-6632.2009.04699.x – ident: e_1_2_8_1_55_1 doi: 10.1016/j.phrs.2017.02.008 – ident: e_1_2_8_1_142_1 doi: 10.1016/j.jff.2015.01.005 – volume: 62 start-page: 3868 issue: 13 year: 2002 ident: e_1_2_8_1_155_1 article-title: Dietary curcumin inhibits chemotherapy‐induced apoptosis in models of human breast cancer publication-title: Cancer Research – ident: e_1_2_8_1_67_1 doi: 10.1080/095530097143716 – ident: e_1_2_8_1_151_1 doi: 10.1186/1750-2187-2-10 – ident: e_1_2_8_1_85_1 doi: 10.3322/canjclin.51.5.290 – ident: e_1_2_8_1_53_1 doi: 10.1002/ijc.24064 – ident: e_1_2_8_1_68_1 doi: 10.1080/01635580903441238 – ident: e_1_2_8_1_117_1 doi: 10.1016/S0002-9440(10)64656-1 – ident: e_1_2_8_1_62_1 doi: 10.1016/j.cllc.2011.03.007 |
SSID | ssj0009933 |
Score | 2.6670265 |
SecondaryResourceType | review_article |
Snippet | Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12537 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase Animals Antibodies Apoptosis Apoptosis - drug effects Cancer Cancer therapies Cell membranes Cell proliferation Chemoresistance Chemotherapy Curcumin Curcumin - pharmacology Gene expression Gene Expression Regulation, Neoplastic - drug effects Growth factors Humans Immunomodulation JNK Mitochondria Modulation Molecular modelling Neoplasms - drug therapy NF‐κB p53 p53 Protein Quality of life Radiation therapy Radioresistance Reactive oxygen species Receptors Redox reactions Signal transduction Signaling Transforming growth factor Transforming growth factor-b Tumor cell lines Tumors |
Title | Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.28122 https://www.ncbi.nlm.nih.gov/pubmed/30623450 https://www.proquest.com/docview/2211498732 https://www.proquest.com/docview/2165666308 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KoeCL2taP0yqriPiSa7Ifuaw-lWKphaqIhT4IYXduD656yXG5PJx_vbO7SWr9APEtsBN2szuz-5vNzG8AXuSafAwhdYKmIAeFjrBE54VMrDbohJKEeH2C8_n7_PRCnl2qyy140-fCRH6I4cLNW0bYr72BG9scXpOGXuFyzOl48vuvj9XygOjTNXWU7srIhxAEJbOeVSjlh8ObN8-i3wDmTbwaDpyTO_ClH2qMM_k6btd2jN9_YXH8z2-5C7c7IMqOoubswpar9mD_qCInfLFhL1kIDQ137nuwEytWbvbhw7nzqcLzZtGwesbMsl6u62besEU97QqBMbth2K6wXcyr1-zdTxHrjAAyQ69mKxbzvjb34OLk7efj06SryZCgUIInWEwwT2fTDCWf6kxYjYpAAQprlLbcKofGOkX7ACJPC5u6bKa4s1p4okA1E_dhu6or9xCYtlbriVXIpZPaknDuhDaZD2QxaTEZwat-dUrsCMt93YxvZaRa5iVNWxmmbQTPB9FlZOn4k9BBv8RlZ6hNyckBlrqYCGp-NjSTifn_JqZydUsynqGIkFlajOBBVI2hF_K4uJAqpcGGBf579-XZ8cfw8OjfRR_DLQJoOgYcHsD2etW6JwSC1vZp0PYfxJgBKQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQguFFoeWwoYhBCXbBM_sjHiUlVU29ItCLVSLyiKZ73S0m6y2mwO21_fsfMo5SEhbpE8kR17xv7GmfkG4G2syccQUgeYJeSg0BEW6DiRgdEZWqEkIV6X4Dw6iYdn8uhcna_BxzYXpuaH6C7cnGX4_doZuLuQ3r1hDf2B8z6n84k24Duuord3qL7dkEfpppC8D0JQMmp5hUK-2716-zT6DWLeRqz-yDnYgO_tYOtIk4t-tTR9vPqFx_F_v-YhPGiwKNurlecRrNl8E7b2cvLDZyv2jvnoUH_tvgl366KVqy34MrIuW3hazkpWTFg2L-bLopyWbFaMm1pgzKwYVgusZtP8Azv8KWidEUZm6DRtwerUr9VjODv4dLo_DJqyDAEKJXiAyQDjcDKOUPKxjoTRqAgXoDCZ0oYbZTEzVtFWgMjDxIQ2mihujRaOK1BNxBNYz4vcPgOmjdF6YBRyaaU2JBxbobPIxbJkYTLowft2eVJsOMtd6YzLtGZb5ilNW-qnrQdvOtF5TdTxJ6Gddo3TxlbLlJMPLHUyENT8umsmK3O_TrLcFhXJOJIiAmdh0oOntW50vZDTxYVUIQ3Wr_Dfu0-P9r_6h-1_F30F94ano-P0-PDk83O4T3hN1_GHO7C-XFT2BWGipXnpVf8azRMFRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSAuFFoeWwoYhBCXbBM_sjGcqpZVW2ipEJV6qBTFXkda2k2izeaw_fUd20lKeUiIWyRPZMeesb9xZr4BeBtL9DEYl4HOEnRQ8AgLZJzwQMlMGyY4Il6b4Hx0HO-f8sMzcbYCH7tcGM8P0V-4Wctw-7U18GqSb9-Qhv7Q1ZDi8YT77x0eh4lV6b1vN9xRsq0j72IQBI86WqGQbvev3j6MfkOYtwGrO3HGa3DejdUHmlwMm4Ua6qtfaBz_82MewoMWiZIdrzqPYMUU67CxU6AXPluSd8TFhrpL93W460tWLjfg65GxucLTelaTMidZVVaLsp7WZFZO2kpgRC2Jbua6mU2LD-Tgp5B1ggiZaKtnc-ITv5aP4XT86fvuftAWZQg0E4wGOhnpOMwnkeZ0IiOmpBaICjRTmZCKKmF0pozAjUBrGiYqNFEuqFGSWaZAkbMnsFqUhXkGRCol5UgJTbnhUqFwbJjMIhvJkoXJaADvu9VJdctYbgtnXKaea5mmOG2pm7YBvOlFK0_T8SehrW6J09ZS65SiB8xlMmLY_LpvRhuzP06ywpQNyliKIoRmYTKAp141-l7Q5aKMixAH6xb4792nh7sn7mHz30Vfwb2TvXH65eD483O4j2BN-uDDLVhdzBvzAgHRQr10in8N14MD_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+apoptosis+modulation+by+curcumin%3A+Implications+for+cancer+therapy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Mortezaee%2C+Keywan&rft.au=Salehi%2C+Ensieh&rft.au=Mirtavoos%E2%80%90mahyari%2C+Hanifeh&rft.au=Motevaseli%2C+Elahe&rft.date=2019-08-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=8&rft.spage=12537&rft.epage=12550&rft_id=info:doi/10.1002%2Fjcp.28122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_28122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |