Macromolecular proton fraction mapping based on spin‐lock magnetic resonance imaging
Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explor...
Saved in:
Published in | Magnetic resonance in medicine Vol. 84; no. 6; pp. 3157 - 3171 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods.
Methods
In the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T.
Results
Both Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis.
Conclusion
A novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings. |
---|---|
AbstractList | In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods.
In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (R
) that is specific to the MT effect by removing the R
relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured R
. No prior knowledge of tissue relaxation parameters, including T
or T
, is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T.
Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis.
A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings. PurposeIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods.MethodsIn the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T.ResultsBoth Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis.ConclusionA novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings. In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods.PURPOSEIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods.In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T.METHODSIn the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T.Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis.RESULTSBoth Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis.A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.CONCLUSIONA novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings. Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods. Methods In the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T. Results Both Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis. Conclusion A novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings. |
Author | Wong, Vincent Wai‐Sun Jiang, Baiyan Chen, Weitian Hou, Jian Chan, Anthony Wing‐Hung Chu, Winnie Chiu‐Wing Wang, Yi‐Xiang Wong, Grace Lai‐Hung |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0003-1746-4138 surname: Hou fullname: Hou, Jian organization: the Chinese University of Hong Kong – sequence: 2 givenname: Vincent Wai‐Sun orcidid: 0000-0003-2215-9410 surname: Wong fullname: Wong, Vincent Wai‐Sun organization: the Chinese University of Hong Kong – sequence: 3 givenname: Baiyan orcidid: 0000-0002-2732-2152 surname: Jiang fullname: Jiang, Baiyan organization: the Chinese University of Hong Kong – sequence: 4 givenname: Yi‐Xiang orcidid: 0000-0001-5697-0717 surname: Wang fullname: Wang, Yi‐Xiang organization: the Chinese University of Hong Kong – sequence: 5 givenname: Grace Lai‐Hung orcidid: 0000-0002-2863-9389 surname: Wong fullname: Wong, Grace Lai‐Hung organization: the Chinese University of Hong Kong – sequence: 6 givenname: Anthony Wing‐Hung orcidid: 0000-0002-1771-163X surname: Chan fullname: Chan, Anthony Wing‐Hung organization: the Chinese University of Hong Kong – sequence: 7 givenname: Winnie Chiu‐Wing orcidid: 0000-0003-4962-4132 surname: Chu fullname: Chu, Winnie Chiu‐Wing organization: the Chinese University of Hong Kong – sequence: 8 givenname: Weitian orcidid: 0000-0001-7242-9285 surname: Chen fullname: Chen, Weitian email: wtchen@cuhk.edu.hk organization: the Chinese University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32627861$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctKAzEUhoMo2qoLX0AG3Ohiam6Ty1KKN2gRRN2GTJopozNJTWaQ7nwEn9EnMdp2I7pKcvKdn3P-fwi2nXcWgCMERwhCfN6GdoQFYXgLDFCBcY4LSbfBAHIKc4Ik3QPDGJ8hhFJyugv2CGaYC4YG4GmqTfCtb6zpGx2yRfCdd1kVtOnqdGn1YlG7eVbqaGdZKsT0_Hz_aLx5SZ9zZ7vaZMFG77QzNqtTLfEHYKfSTbSH63MfPF5dPoxv8snd9e34YpIbUhCcl4VkBlpMsZAccUZLY5jlsBC8MAxKwaWhtCpLhmZcaimExpUQhvCy5EVFyD44XemmuV97GzvV1tHYptHO-j6qpAwZQZiyhJ78Qp99H1yaLlEUScaLH-p4TfVla2dqEdJGYak2jiXgfAUk22IMtlKm7vS3V13QdaMQVN-ZqJSJ-skkdZz96tiI_sWu1d_qxi7_B9X0frrq-AJIApsA |
CitedBy_id | crossref_primary_10_1002_acn3_51621 crossref_primary_10_1002_nbm_5293 crossref_primary_10_1038_s41598_024_67445_4 crossref_primary_10_1097_CM9_0000000000002027 crossref_primary_10_1093_gastro_goae024 crossref_primary_10_1080_17474124_2022_2104711 crossref_primary_10_1002_mrm_29310 crossref_primary_10_1002_jmri_28308 |
Cites_doi | 10.1002/mrm.20008 10.1002/nbm.3490 10.1002/mrm.21244 10.1002/mrm.21705 10.1002/mrm.21387 10.1002/mrm.1910330404 10.1002/mrm.28155 10.1002/nbm.3928 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9 10.1002/mrm.21134 10.1002/nbm.683 10.1016/j.neuroimage.2010.10.065 10.1016/S0730-725X(02)00598-2 10.1002/mrm.10427 10.1186/s12876-020-1161-3 10.1148/radiol.11101638 10.1006/jmrb.1995.1111 10.1016/j.jmr.2016.11.002 10.1002/mrm.10120 10.1002/mrm.21143 10.1002/mrm.22440 10.1002/mrm.20605 10.1002/jmri.1880070521 10.1002/nbm.3518 10.1002/mrm.1278 10.1002/mrm.23224 10.1002/mrm.27868 10.1016/j.mri.2011.04.002 10.1002/hep.20701 10.1002/mrm.25811 10.1016/j.neuroimage.2019.116190 10.1002/mrm.27174 10.1002/mrm.1910100113 10.1006/jmre.2001.2466 10.1002/mrm.1910290607 10.1002/mrm.24449 10.1002/mrm.22846 10.1002/nbm.3437 10.1002/jmri.1880070520 10.1002/nbm.951 10.1002/nbm.3237 10.1016/j.neuroimage.2014.03.005 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28362 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Biochemistry Abstracts 1 MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 3171 |
ExternalDocumentID | 32627861 10_1002_mrm_28362 MRM28362 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong SAR: Hong Kong General Research Fund (GRF) funderid: 14201817 – fundername: Research Grants Council of the Hong Kong SAR funderid: SEG CUHK02 – fundername: Innovation and Technology Commission of the Hong Kong SAR funderid: MRP/001/18X |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3532-b596c0e2428971764bcc6e705875c609879c44fbb61d79a988a2f88c37bb75f33 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 15:14:03 EDT 2025 Fri Jul 25 12:07:59 EDT 2025 Wed Feb 19 02:29:49 EST 2025 Tue Jul 01 04:26:57 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Jan 22 16:33:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | magnetization transfer CEST macromolecular proton fraction spin-lock |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-b596c0e2428971764bcc6e705875c609879c44fbb61d79a988a2f88c37bb75f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2863-9389 0000-0003-2215-9410 0000-0001-7242-9285 0000-0003-1746-4138 0000-0001-5697-0717 0000-0002-2732-2152 0000-0003-4962-4132 0000-0002-1771-163X |
PMID | 32627861 |
PQID | 2441967546 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2420631246 proquest_journals_2441967546 pubmed_primary_32627861 crossref_citationtrail_10_1002_mrm_28362 crossref_primary_10_1002_mrm_28362 wiley_primary_10_1002_mrm_28362_MRM28362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 259 1993; 29 2015; 5 2020; 20 2002; 154 2020; 83 1995; 33 2019; 203 2018; 80 2016; 75 2005; 41 2011; 54 1999; 41 2017; 274 2001; 46 2007; 57 2007; 58 1997; 7 2002; 47 2010; 64 2015; 28 2019; 82 2004; 51 1989; 10 2002; 20 1995; 108 2011; 66 2003; 49 2005; 54 2016; 29 2012; 68 2014; 95 2001; 14 2008; 60 2005; 18 2011; 29 2018; 31 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Chen W (e_1_2_10_33_1) 2015; 5 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Henkelman RM (e_1_2_10_4_1) 2001; 14 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 46 start-page: 923 year: 2001 end-page: 931 article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI publication-title: Magn Reson Med – volume: 5 start-page: 9 year: 2015 article-title: Errors in quantitative T1rho imaging and the correction methods publication-title: Quantitative Imaging in Medicine and Surgery – volume: 66 start-page: 717 year: 2011 end-page: 724 article-title: Fast bound pool fraction mapping using stimulated echoes publication-title: Magn Reson Med – volume: 29 start-page: 1346 year: 2011 end-page: 1350 article-title: Magnetization transfer using inversion recovery during off‐resonance irradiation publication-title: Magn Reson Imaging – volume: 41 start-page: 1313 year: 2005 end-page: 1321 article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease publication-title: Hepatology – volume: 51 start-page: 473 year: 2004 end-page: 479 article-title: MR properties of excised neural tissue following experimentally induced inflammation publication-title: Magn Reson Med – volume: 28 start-page: 217 year: 2015 end-page: 230 article-title: A combined analytical solution for chemical exchange saturation transfer and semi‐solid magnetization transfer publication-title: NMR Biomed – volume: 49 start-page: 864 year: 2003 end-page: 871 article-title: Method for quantitative imaging of the macromolecular1H fraction in tissues publication-title: Magn Reson Med – volume: 64 start-page: 491 year: 2010 end-page: 500 article-title: Optimized inversion recovery sequences for quantitative T1 and magnetization transfer imaging publication-title: Magn Reson Med – volume: 14 start-page: 57 year: 2001 end-page: 64 article-title: Magnetization transfer in MRI: A review publication-title: NMR Biomed: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo – volume: 20 start-page: 721 year: 2002 end-page: 731 article-title: Precise estimate of fundamental in‐vivo MT parameters in human brain in clinically feasible times publication-title: Magn Reson Imaging – volume: 75 start-page: 2100 year: 2016 end-page: 2106 article-title: Time‐efficient, high‐resolution, whole brain three‐dimensional macromolecular proton fraction mapping publication-title: Magn Reson Med – volume: 28 start-page: 1716 year: 2015 end-page: 1725 article-title: Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis publication-title: NMR Biomed – volume: 58 start-page: 144 year: 2007 end-page: 155 article-title: Modeling pulsed magnetization transfer publication-title: Magn Reson Med – volume: 82 start-page: 1767 year: 2019 end-page: 1781 article-title: Probing chemical exchange using quantitative spin‐lock R1ρ asymmetry imaging with adiabatic RF pulses publication-title: Magn Reson Med – volume: 54 start-page: 507 year: 2005 end-page: 512 article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T publication-title: Magn Reson Med – volume: 18 start-page: 277 year: 2005 end-page: 284 article-title: MR properties of excised neural tissue following experimentally induced demyelination publication-title: NMR Biomed – volume: 57 start-page: 437 year: 2007 end-page: 441 article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times publication-title: Magn Reson Med – volume: 29 start-page: 841 year: 2016 end-page: 861 article-title: Quantitative rotating frame relaxometry methods in MRI publication-title: NMR Biomed – volume: 29 start-page: 759 year: 1993 end-page: 766 article-title: Quantitative interpretation of magnetization transfer publication-title: Magn Reson Med – volume: 259 start-page: 712 year: 2011 end-page: 719 article-title: T1ρ MR imaging is sensitive to evaluate liver fibrosis: An experimental study in a rat biliary duct ligation model publication-title: Radiology – volume: 154 start-page: 157 year: 2002 end-page: 160 article-title: R1ρ relaxation outside of the fast‐exchange limit publication-title: J Magn Reson – volume: 68 start-page: 1056 year: 2012 end-page: 1064 article-title: Quantitative chemical exchange sensitive MRI using irradiation with toggling inversion preparation publication-title: Magn Reson Med – volume: 58 start-page: 786 year: 2007 end-page: 793 article-title: Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain publication-title: Magn Reson Med – volume: 7 start-page: 913 year: 1997 end-page: 917 article-title: Low power method for estimating the magnetization transfer bound‐pool macromolecular fraction publication-title: J Magn Reson Imaging – volume: 80 start-page: 1824 year: 2018 end-page: 1835 article-title: Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain publication-title: Magn Reson Med – volume: 41 start-page: 1065 year: 1999 end-page: 1072 article-title: Quantitative imaging of magnetization transfer using multiple selective pulses publication-title: Magn Reson Med – volume: 31 year: 2018 article-title: On‐resonance and off‐resonance continuous wave constant amplitude spin‐lock and T1ρ quantification in the presence of B1 and B0 inhomogeneities publication-title: NMR Biomed – volume: 10 start-page: 135 year: 1989 end-page: 144 article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo publication-title: Magn Reson Med – volume: 20 start-page: 14 year: 2020 article-title: Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: An experimental study in rats with carbon tetrachloride intoxication publication-title: BMC Gastroenterol – volume: 83 start-page: 1587 year: 2020 end-page: 1595 article-title: Spin‐lock imaging of intrinsic susceptibility gradients in tumors publication-title: Magn Reson Med – volume: 60 start-page: 691 year: 2008 end-page: 700 article-title: Quantitative magnetization transfer imaging using balanced SSFP publication-title: Magn Reson Med – volume: 108 start-page: 103 year: 1995 end-page: 113 article-title: Modeling magnetization transfer for biological‐like systems using a semi‐solid pool with a super‐Lorentzian lineshape and dipolar reservoir publication-title: J Magn Reson, Ser B – volume: 274 start-page: 13 year: 2017 end-page: 23 article-title: Artifacts correction for T1rho imaging with constant amplitude spin‐lock publication-title: J Magn Reson – volume: 7 start-page: 903 year: 1997 end-page: 912 article-title: Understanding pulsed magnetization transfer publication-title: J Magn Reson Imaging – volume: 203 start-page: 116190 year: 2019 article-title: 7T quantitative magnetization transfer (qMT) of cortical gray matter in multiple sclerosis correlates with cognitive impairment publication-title: NeuroImage – volume: 68 start-page: 166 year: 2012 end-page: 178 article-title: Fast macromolecular proton fraction mapping from a single off‐resonance magnetization transfer measurement publication-title: Magn Reson Med – volume: 47 start-page: 929 year: 2002 end-page: 939 article-title: Pulsed Z‐spectroscopic imaging of cross‐relaxation parameters in tissues for human MRI: Theory and clinical applications publication-title: Magn Reson Med – volume: 54 start-page: 2052 year: 2011 end-page: 2065 article-title: Fast bound pool fraction imaging of the in vivo rat brain: Association with myelin content and validation in the C6 glioma model publication-title: NeuroImage – volume: 95 start-page: 106 year: 2014 end-page: 116 article-title: Rapid, high‐resolution quantitative magnetization transfer MRI of the human spinal cord publication-title: NeuroImage – volume: 29 start-page: 1258 year: 2016 end-page: 1273 article-title: New insights into rotating frame relaxation at high field publication-title: NMR Biomed – volume: 57 start-page: 2 year: 2007 end-page: 7 article-title: Compensation for spin‐lock artifacts using an off‐resonance rotary echo in T1ρoff‐weighted imaging publication-title: Magn Reson Med – volume: 33 start-page: 475 year: 1995 end-page: 482 article-title: A Model for magnetization transfer in tissues publication-title: Magn Reson Med – ident: e_1_2_10_25_1 doi: 10.1002/mrm.20008 – ident: e_1_2_10_40_1 doi: 10.1002/nbm.3490 – ident: e_1_2_10_13_1 doi: 10.1002/mrm.21244 – ident: e_1_2_10_12_1 doi: 10.1002/mrm.21705 – ident: e_1_2_10_14_1 doi: 10.1002/mrm.21387 – ident: e_1_2_10_36_1 doi: 10.1002/mrm.1910330404 – ident: e_1_2_10_41_1 doi: 10.1002/mrm.28155 – ident: e_1_2_10_43_1 doi: 10.1002/nbm.3928 – ident: e_1_2_10_8_1 doi: 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9 – ident: e_1_2_10_31_1 doi: 10.1002/mrm.21134 – volume: 14 start-page: 57 year: 2001 ident: e_1_2_10_4_1 article-title: Magnetization transfer in MRI: A review publication-title: NMR Biomed: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo doi: 10.1002/nbm.683 – ident: e_1_2_10_16_1 doi: 10.1016/j.neuroimage.2010.10.065 – ident: e_1_2_10_6_1 doi: 10.1016/S0730-725X(02)00598-2 – ident: e_1_2_10_18_1 doi: 10.1002/mrm.10427 – ident: e_1_2_10_39_1 doi: 10.1186/s12876-020-1161-3 – ident: e_1_2_10_38_1 doi: 10.1148/radiol.11101638 – ident: e_1_2_10_35_1 doi: 10.1006/jmrb.1995.1111 – ident: e_1_2_10_42_1 doi: 10.1016/j.jmr.2016.11.002 – volume: 5 start-page: 9 year: 2015 ident: e_1_2_10_33_1 article-title: Errors in quantitative T1rho imaging and the correction methods publication-title: Quantitative Imaging in Medicine and Surgery – ident: e_1_2_10_7_1 doi: 10.1002/mrm.10120 – ident: e_1_2_10_9_1 doi: 10.1002/mrm.21143 – ident: e_1_2_10_10_1 doi: 10.1002/mrm.22440 – ident: e_1_2_10_32_1 doi: 10.1002/mrm.20605 – ident: e_1_2_10_15_1 doi: 10.1002/jmri.1880070521 – ident: e_1_2_10_20_1 doi: 10.1002/nbm.3518 – ident: e_1_2_10_5_1 doi: 10.1002/mrm.1278 – ident: e_1_2_10_17_1 doi: 10.1002/mrm.23224 – ident: e_1_2_10_30_1 doi: 10.1002/mrm.27868 – ident: e_1_2_10_28_1 doi: 10.1016/j.mri.2011.04.002 – ident: e_1_2_10_34_1 doi: 10.1002/hep.20701 – ident: e_1_2_10_23_1 doi: 10.1002/mrm.25811 – ident: e_1_2_10_44_1 doi: 10.1016/j.neuroimage.2019.116190 – ident: e_1_2_10_11_1 doi: 10.1002/mrm.27174 – ident: e_1_2_10_2_1 doi: 10.1002/mrm.1910100113 – ident: e_1_2_10_22_1 doi: 10.1006/jmre.2001.2466 – ident: e_1_2_10_3_1 doi: 10.1002/mrm.1910290607 – ident: e_1_2_10_29_1 doi: 10.1002/mrm.24449 – ident: e_1_2_10_19_1 doi: 10.1002/mrm.22846 – ident: e_1_2_10_26_1 doi: 10.1002/nbm.3437 – ident: e_1_2_10_37_1 doi: 10.1002/jmri.1880070520 – ident: e_1_2_10_24_1 doi: 10.1002/nbm.951 – ident: e_1_2_10_21_1 doi: 10.1002/nbm.3237 – ident: e_1_2_10_27_1 doi: 10.1016/j.neuroimage.2014.03.005 |
SSID | ssj0009974 |
Score | 2.3964083 |
Snippet | Purpose
In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile... In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons... PurposeIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3157 |
SubjectTerms | CEST Collagen Diagnostic systems Exchanging Fibrosis Humans In vivo methods and tests Liver macromolecular proton fraction Macromolecular Substances Macromolecules Magnetic Resonance Imaging magnetization transfer Mapping Medical imaging Parameters Phantoms, Imaging Protons spin‐lock Water |
Title | Macromolecular proton fraction mapping based on spin‐lock magnetic resonance imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28362 https://www.ncbi.nlm.nih.gov/pubmed/32627861 https://www.proquest.com/docview/2441967546 https://www.proquest.com/docview/2420631246 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wEB0hJCo2FCjQy0su6oJNLiHxU6wQKkKV0gWCikWlyHZshOjNre5jw6qf0G_kSxg7D0RbpKq7JJ7ETuyZOROPjwE-uioVCqFxwrVgCbWSJzITPKlyRZWmDL1cmNEtvvCLa_r5ht0swEm3Fqbhh-h_uAXNiPY6KLg206Nn0tDRZDRE3xjtb8jVCoDo8pk6SqmGgVnQYGcU7ViF0uyov_OlL_oDYL7Eq9HhnL-Fb11TmzyT--F8Zob24TcWx_98l1VYaYEoOW1GzhosuHod3hTtVPs6LMXcUDt9B18LHZP22n10SaB2GNfET5o1EWSkA8fDLQkOsSJ4YYqnjz9_oZu8x8LbOqyTJBjWjwO5hyN3o7gz0gZcn3-6OrtI2u0YEpuzPEsMU9ymDn26VBgEcmqs5U6kDEMey1MlhbKUemP4cSWUVlLqzEtpc2GMYD7PN2GxHtfuPZDKeIFAwzvFPJVVpb0XqbAOH4N4i6UDOOw6prQtV3nYMuN72bAsZyV-sTJ-sQEc9KI_GoKOvwntdr1btjo6LRHYoPkRjPIBfOiLUbvClImu3XgeZDLEcIiBUGarGRV9LQh8MyH5MTY29u3r1ZfFZREPtv9ddAeWsxDax8yZXVicTeZuD_HPzOzHgf4EhaUALA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUB8X2lJot1DqVj1wyW5I_JR6qaqibUs4IEBcUBQ7NkJ0s2gfF078BH5jfwlj54EoRUK9JfEkdvyab-zxNwCfbRkLhdA44oVgETWSRzIRPCpTRVVBGWo5v6Ob7fHhIf15zI4X4Et7Fqbmh-gW3PzICPO1H-B-QXpwyxo6moz6qBz9BLzkI3oHg2r_ljxKqZqDWVA_0yja8grFyaB79a42ugcx7yLWoHJ2XsBJW9ja0-S8P5_pvrn8i8fxf__mJSw3WJR8rTvPK1iw1Qo8zZrd9hV4EtxDzfQ1HGVF8NtrQukSz-4wroib1MciyKjwNA-nxOvEkuCDKd7-ubpGTXmOiaeVPypJ0LIfe34PS85GITjSKhzufD_4NoyaiAyRSVmaRJopbmKLal0qtAM51cZwK2KGVo_hsZJCGUqd1ny7FKpQUhaJk9KkQmvBXJquwWI1ruxbIKV2ArGGs4o5KsuycE7Ewlj8DEIuFvdgq22Z3DR05T5qxu-8JlpOcqyxPNRYDz51ohc1R8e_hDba5s2bYTrNEdvgDCQY5T342CXjAPO7JkVlx3MvkyCMQxiEMm_qbtHlgtg3EZJvY2FD4z6cfZ7tZ-Hi3eNFP8Cz4UG2m-_-2Pu1Ds8Tb-kHR5oNWJxN5vY9wqGZ3gy9_gZ82wRH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUBGX0lKgS2kxVQ-9ZAmJn-qpKl1RIKhCBXGoFMWOjRBsFu3jwomf0N_YX9Kx80C0Rap6S-JJ7MQznm_i8WeAd7aMhUJoHPFCsIgaySOZCB6VqaKqoAy9nJ_RzY75_ik9OGfnc_ChXQtT80N0P9y8ZYTx2hv4Tel27klDh-NhH32jH38XKI-lV-m9k3vuKKVqCmZB_UCjaEsrFCc73a0PndEfCPMhYA0eZ7AM39u21okmV_3ZVPfN7W80jv_5Ms_gaYNEycdadZ7DnK1WYDFr5tpX4ElIDjWTF3CWFSFrr9lIl3huh1FF3LheFEGGhSd5uCDeI5YEL0zw9OfdD_STV1h4UfmFkgTj-pFn97Dkchi2RlqF08Hnb5_2o2Y_hsikLE0izRQ3sUWnLhVGgZxqY7gVMcOYx_BYSaEMpU5rvlsKVSgpi8RJaVKhtWAuTddgvhpV9iWQUjuBSMNZxRyVZVk4J2JhLD4GAReLe_C-7ZjcNGTlfs-M67ymWU5y_GJ5-GI9eNuJ3tQMHX8T2mx7N2-MdJIjssHxRzDKe7DdFaN5-TmTorKjmZdJEMQhCEKZ9VoruloQ-SZC8l1sbOjbx6vPs5MsHGz8u-gWLH7dG-RHX44PX8FS4sP8kEWzCfPT8cy-Riw01W-Czv8CjN4C_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macromolecular+proton+fraction+mapping+based+on+spin-lock+magnetic+resonance+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hou%2C+Jian&rft.au=Wong%2C+Vincent+Wai-Sun&rft.au=Jiang%2C+Baiyan&rft.au=Wang%2C+Yi-Xiang&rft.date=2020-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=84&rft.issue=6&rft.spage=3157&rft_id=info:doi/10.1002%2Fmrm.28362&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |