Macromolecular proton fraction mapping based on spin‐lock magnetic resonance imaging

Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explor...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 84; no. 6; pp. 3157 - 3171
Main Authors Hou, Jian, Wong, Vincent Wai‐Sun, Jiang, Baiyan, Wang, Yi‐Xiang, Wong, Grace Lai‐Hung, Chan, Anthony Wing‐Hung, Chu, Winnie Chiu‐Wing, Chen, Weitian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods. Methods In the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T. Results Both Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis. Conclusion A novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings.
AbstractList In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods. In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (R ) that is specific to the MT effect by removing the R relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured R . No prior knowledge of tissue relaxation parameters, including T or T , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T. Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis. A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.
PurposeIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods.MethodsIn the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T.ResultsBoth Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis.ConclusionA novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings.
In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods.PURPOSEIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods.In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T.METHODSIn the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T.Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis.RESULTSBoth Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis.A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.CONCLUSIONA novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.
Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi‐solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin‐lock MRI and explore its advantages over the existing MPF‐mapping methods. Methods In the proposed method, termed MPF quantification based on spin‐lock (MPF‐SL), off‐resonance spin‐lock is used to sensitively measure the MT effect. MPF‐SL is designed to measure a relaxation rate (Rmpfsl) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl. No prior knowledge of tissue relaxation parameters, including T1 or T2, is needed to quantify MPF using MPF‐SL. The proposed approach is validated with Bloch‐McConnell simulations, phantom, and in vivo liver studies at 3.0T. Results Both Bloch‐McConnell simulations and phantom experiments show that MPF‐SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF‐SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF‐SL can be used to detect collagen deposition in patients with liver fibrosis. Conclusion A novel MPF imaging method based on spin‐lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF‐sensitive diagnostic imaging in clinical settings.
Author Wong, Vincent Wai‐Sun
Jiang, Baiyan
Chen, Weitian
Hou, Jian
Chan, Anthony Wing‐Hung
Chu, Winnie Chiu‐Wing
Wang, Yi‐Xiang
Wong, Grace Lai‐Hung
Author_xml – sequence: 1
  givenname: Jian
  orcidid: 0000-0003-1746-4138
  surname: Hou
  fullname: Hou, Jian
  organization: the Chinese University of Hong Kong
– sequence: 2
  givenname: Vincent Wai‐Sun
  orcidid: 0000-0003-2215-9410
  surname: Wong
  fullname: Wong, Vincent Wai‐Sun
  organization: the Chinese University of Hong Kong
– sequence: 3
  givenname: Baiyan
  orcidid: 0000-0002-2732-2152
  surname: Jiang
  fullname: Jiang, Baiyan
  organization: the Chinese University of Hong Kong
– sequence: 4
  givenname: Yi‐Xiang
  orcidid: 0000-0001-5697-0717
  surname: Wang
  fullname: Wang, Yi‐Xiang
  organization: the Chinese University of Hong Kong
– sequence: 5
  givenname: Grace Lai‐Hung
  orcidid: 0000-0002-2863-9389
  surname: Wong
  fullname: Wong, Grace Lai‐Hung
  organization: the Chinese University of Hong Kong
– sequence: 6
  givenname: Anthony Wing‐Hung
  orcidid: 0000-0002-1771-163X
  surname: Chan
  fullname: Chan, Anthony Wing‐Hung
  organization: the Chinese University of Hong Kong
– sequence: 7
  givenname: Winnie Chiu‐Wing
  orcidid: 0000-0003-4962-4132
  surname: Chu
  fullname: Chu, Winnie Chiu‐Wing
  organization: the Chinese University of Hong Kong
– sequence: 8
  givenname: Weitian
  orcidid: 0000-0001-7242-9285
  surname: Chen
  fullname: Chen, Weitian
  email: wtchen@cuhk.edu.hk
  organization: the Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32627861$$D View this record in MEDLINE/PubMed
BookMark eNp1kctKAzEUhoMo2qoLX0AG3Ohiam6Ty1KKN2gRRN2GTJopozNJTWaQ7nwEn9EnMdp2I7pKcvKdn3P-fwi2nXcWgCMERwhCfN6GdoQFYXgLDFCBcY4LSbfBAHIKc4Ik3QPDGJ8hhFJyugv2CGaYC4YG4GmqTfCtb6zpGx2yRfCdd1kVtOnqdGn1YlG7eVbqaGdZKsT0_Hz_aLx5SZ9zZ7vaZMFG77QzNqtTLfEHYKfSTbSH63MfPF5dPoxv8snd9e34YpIbUhCcl4VkBlpMsZAccUZLY5jlsBC8MAxKwaWhtCpLhmZcaimExpUQhvCy5EVFyD44XemmuV97GzvV1tHYptHO-j6qpAwZQZiyhJ78Qp99H1yaLlEUScaLH-p4TfVla2dqEdJGYak2jiXgfAUk22IMtlKm7vS3V13QdaMQVN-ZqJSJ-skkdZz96tiI_sWu1d_qxi7_B9X0frrq-AJIApsA
CitedBy_id crossref_primary_10_1002_acn3_51621
crossref_primary_10_1002_nbm_5293
crossref_primary_10_1038_s41598_024_67445_4
crossref_primary_10_1097_CM9_0000000000002027
crossref_primary_10_1093_gastro_goae024
crossref_primary_10_1080_17474124_2022_2104711
crossref_primary_10_1002_mrm_29310
crossref_primary_10_1002_jmri_28308
Cites_doi 10.1002/mrm.20008
10.1002/nbm.3490
10.1002/mrm.21244
10.1002/mrm.21705
10.1002/mrm.21387
10.1002/mrm.1910330404
10.1002/mrm.28155
10.1002/nbm.3928
10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9
10.1002/mrm.21134
10.1002/nbm.683
10.1016/j.neuroimage.2010.10.065
10.1016/S0730-725X(02)00598-2
10.1002/mrm.10427
10.1186/s12876-020-1161-3
10.1148/radiol.11101638
10.1006/jmrb.1995.1111
10.1016/j.jmr.2016.11.002
10.1002/mrm.10120
10.1002/mrm.21143
10.1002/mrm.22440
10.1002/mrm.20605
10.1002/jmri.1880070521
10.1002/nbm.3518
10.1002/mrm.1278
10.1002/mrm.23224
10.1002/mrm.27868
10.1016/j.mri.2011.04.002
10.1002/hep.20701
10.1002/mrm.25811
10.1016/j.neuroimage.2019.116190
10.1002/mrm.27174
10.1002/mrm.1910100113
10.1006/jmre.2001.2466
10.1002/mrm.1910290607
10.1002/mrm.24449
10.1002/mrm.22846
10.1002/nbm.3437
10.1002/jmri.1880070520
10.1002/nbm.951
10.1002/nbm.3237
10.1016/j.neuroimage.2014.03.005
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28362
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biochemistry Abstracts 1
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 3171
ExternalDocumentID 32627861
10_1002_mrm_28362
MRM28362
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong SAR: Hong Kong General Research Fund (GRF)
  funderid: 14201817
– fundername: Research Grants Council of the Hong Kong SAR
  funderid: SEG CUHK02
– fundername: Innovation and Technology Commission of the Hong Kong SAR
  funderid: MRP/001/18X
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3532-b596c0e2428971764bcc6e705875c609879c44fbb61d79a988a2f88c37bb75f33
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 15:14:03 EDT 2025
Fri Jul 25 12:07:59 EDT 2025
Wed Feb 19 02:29:49 EST 2025
Tue Jul 01 04:26:57 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Jan 22 16:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords magnetization transfer
CEST
macromolecular proton fraction
spin-lock
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-b596c0e2428971764bcc6e705875c609879c44fbb61d79a988a2f88c37bb75f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2863-9389
0000-0003-2215-9410
0000-0001-7242-9285
0000-0003-1746-4138
0000-0001-5697-0717
0000-0002-2732-2152
0000-0003-4962-4132
0000-0002-1771-163X
PMID 32627861
PQID 2441967546
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2420631246
proquest_journals_2441967546
pubmed_primary_32627861
crossref_citationtrail_10_1002_mrm_28362
crossref_primary_10_1002_mrm_28362
wiley_primary_10_1002_mrm_28362_MRM28362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 259
1993; 29
2015; 5
2020; 20
2002; 154
2020; 83
1995; 33
2019; 203
2018; 80
2016; 75
2005; 41
2011; 54
1999; 41
2017; 274
2001; 46
2007; 57
2007; 58
1997; 7
2002; 47
2010; 64
2015; 28
2019; 82
2004; 51
1989; 10
2002; 20
1995; 108
2011; 66
2003; 49
2005; 54
2016; 29
2012; 68
2014; 95
2001; 14
2008; 60
2005; 18
2011; 29
2018; 31
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Chen W (e_1_2_10_33_1) 2015; 5
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Henkelman RM (e_1_2_10_4_1) 2001; 14
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 46
  start-page: 923
  year: 2001
  end-page: 931
  article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI
  publication-title: Magn Reson Med
– volume: 5
  start-page: 9
  year: 2015
  article-title: Errors in quantitative T1rho imaging and the correction methods
  publication-title: Quantitative Imaging in Medicine and Surgery
– volume: 66
  start-page: 717
  year: 2011
  end-page: 724
  article-title: Fast bound pool fraction mapping using stimulated echoes
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1346
  year: 2011
  end-page: 1350
  article-title: Magnetization transfer using inversion recovery during off‐resonance irradiation
  publication-title: Magn Reson Imaging
– volume: 41
  start-page: 1313
  year: 2005
  end-page: 1321
  article-title: Design and validation of a histological scoring system for nonalcoholic fatty liver disease
  publication-title: Hepatology
– volume: 51
  start-page: 473
  year: 2004
  end-page: 479
  article-title: MR properties of excised neural tissue following experimentally induced inflammation
  publication-title: Magn Reson Med
– volume: 28
  start-page: 217
  year: 2015
  end-page: 230
  article-title: A combined analytical solution for chemical exchange saturation transfer and semi‐solid magnetization transfer
  publication-title: NMR Biomed
– volume: 49
  start-page: 864
  year: 2003
  end-page: 871
  article-title: Method for quantitative imaging of the macromolecular1H fraction in tissues
  publication-title: Magn Reson Med
– volume: 64
  start-page: 491
  year: 2010
  end-page: 500
  article-title: Optimized inversion recovery sequences for quantitative T1 and magnetization transfer imaging
  publication-title: Magn Reson Med
– volume: 14
  start-page: 57
  year: 2001
  end-page: 64
  article-title: Magnetization transfer in MRI: A review
  publication-title: NMR Biomed: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo
– volume: 20
  start-page: 721
  year: 2002
  end-page: 731
  article-title: Precise estimate of fundamental in‐vivo MT parameters in human brain in clinically feasible times
  publication-title: Magn Reson Imaging
– volume: 75
  start-page: 2100
  year: 2016
  end-page: 2106
  article-title: Time‐efficient, high‐resolution, whole brain three‐dimensional macromolecular proton fraction mapping
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1716
  year: 2015
  end-page: 1725
  article-title: Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis
  publication-title: NMR Biomed
– volume: 58
  start-page: 144
  year: 2007
  end-page: 155
  article-title: Modeling pulsed magnetization transfer
  publication-title: Magn Reson Med
– volume: 82
  start-page: 1767
  year: 2019
  end-page: 1781
  article-title: Probing chemical exchange using quantitative spin‐lock R1ρ asymmetry imaging with adiabatic RF pulses
  publication-title: Magn Reson Med
– volume: 54
  start-page: 507
  year: 2005
  end-page: 512
  article-title: T1, T2 relaxation and magnetization transfer in tissue at 3T
  publication-title: Magn Reson Med
– volume: 18
  start-page: 277
  year: 2005
  end-page: 284
  article-title: MR properties of excised neural tissue following experimentally induced demyelination
  publication-title: NMR Biomed
– volume: 57
  start-page: 437
  year: 2007
  end-page: 441
  article-title: Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times
  publication-title: Magn Reson Med
– volume: 29
  start-page: 841
  year: 2016
  end-page: 861
  article-title: Quantitative rotating frame relaxometry methods in MRI
  publication-title: NMR Biomed
– volume: 29
  start-page: 759
  year: 1993
  end-page: 766
  article-title: Quantitative interpretation of magnetization transfer
  publication-title: Magn Reson Med
– volume: 259
  start-page: 712
  year: 2011
  end-page: 719
  article-title: T1ρ MR imaging is sensitive to evaluate liver fibrosis: An experimental study in a rat biliary duct ligation model
  publication-title: Radiology
– volume: 154
  start-page: 157
  year: 2002
  end-page: 160
  article-title: R1ρ relaxation outside of the fast‐exchange limit
  publication-title: J Magn Reson
– volume: 68
  start-page: 1056
  year: 2012
  end-page: 1064
  article-title: Quantitative chemical exchange sensitive MRI using irradiation with toggling inversion preparation
  publication-title: Magn Reson Med
– volume: 58
  start-page: 786
  year: 2007
  end-page: 793
  article-title: Quantitative description of the asymmetry in magnetization transfer effects around the water resonance in the human brain
  publication-title: Magn Reson Med
– volume: 7
  start-page: 913
  year: 1997
  end-page: 917
  article-title: Low power method for estimating the magnetization transfer bound‐pool macromolecular fraction
  publication-title: J Magn Reson Imaging
– volume: 80
  start-page: 1824
  year: 2018
  end-page: 1835
  article-title: Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain
  publication-title: Magn Reson Med
– volume: 41
  start-page: 1065
  year: 1999
  end-page: 1072
  article-title: Quantitative imaging of magnetization transfer using multiple selective pulses
  publication-title: Magn Reson Med
– volume: 31
  year: 2018
  article-title: On‐resonance and off‐resonance continuous wave constant amplitude spin‐lock and T1ρ quantification in the presence of B1 and B0 inhomogeneities
  publication-title: NMR Biomed
– volume: 10
  start-page: 135
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med
– volume: 20
  start-page: 14
  year: 2020
  article-title: Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: An experimental study in rats with carbon tetrachloride intoxication
  publication-title: BMC Gastroenterol
– volume: 83
  start-page: 1587
  year: 2020
  end-page: 1595
  article-title: Spin‐lock imaging of intrinsic susceptibility gradients in tumors
  publication-title: Magn Reson Med
– volume: 60
  start-page: 691
  year: 2008
  end-page: 700
  article-title: Quantitative magnetization transfer imaging using balanced SSFP
  publication-title: Magn Reson Med
– volume: 108
  start-page: 103
  year: 1995
  end-page: 113
  article-title: Modeling magnetization transfer for biological‐like systems using a semi‐solid pool with a super‐Lorentzian lineshape and dipolar reservoir
  publication-title: J Magn Reson, Ser B
– volume: 274
  start-page: 13
  year: 2017
  end-page: 23
  article-title: Artifacts correction for T1rho imaging with constant amplitude spin‐lock
  publication-title: J Magn Reson
– volume: 7
  start-page: 903
  year: 1997
  end-page: 912
  article-title: Understanding pulsed magnetization transfer
  publication-title: J Magn Reson Imaging
– volume: 203
  start-page: 116190
  year: 2019
  article-title: 7T quantitative magnetization transfer (qMT) of cortical gray matter in multiple sclerosis correlates with cognitive impairment
  publication-title: NeuroImage
– volume: 68
  start-page: 166
  year: 2012
  end-page: 178
  article-title: Fast macromolecular proton fraction mapping from a single off‐resonance magnetization transfer measurement
  publication-title: Magn Reson Med
– volume: 47
  start-page: 929
  year: 2002
  end-page: 939
  article-title: Pulsed Z‐spectroscopic imaging of cross‐relaxation parameters in tissues for human MRI: Theory and clinical applications
  publication-title: Magn Reson Med
– volume: 54
  start-page: 2052
  year: 2011
  end-page: 2065
  article-title: Fast bound pool fraction imaging of the in vivo rat brain: Association with myelin content and validation in the C6 glioma model
  publication-title: NeuroImage
– volume: 95
  start-page: 106
  year: 2014
  end-page: 116
  article-title: Rapid, high‐resolution quantitative magnetization transfer MRI of the human spinal cord
  publication-title: NeuroImage
– volume: 29
  start-page: 1258
  year: 2016
  end-page: 1273
  article-title: New insights into rotating frame relaxation at high field
  publication-title: NMR Biomed
– volume: 57
  start-page: 2
  year: 2007
  end-page: 7
  article-title: Compensation for spin‐lock artifacts using an off‐resonance rotary echo in T1ρoff‐weighted imaging
  publication-title: Magn Reson Med
– volume: 33
  start-page: 475
  year: 1995
  end-page: 482
  article-title: A Model for magnetization transfer in tissues
  publication-title: Magn Reson Med
– ident: e_1_2_10_25_1
  doi: 10.1002/mrm.20008
– ident: e_1_2_10_40_1
  doi: 10.1002/nbm.3490
– ident: e_1_2_10_13_1
  doi: 10.1002/mrm.21244
– ident: e_1_2_10_12_1
  doi: 10.1002/mrm.21705
– ident: e_1_2_10_14_1
  doi: 10.1002/mrm.21387
– ident: e_1_2_10_36_1
  doi: 10.1002/mrm.1910330404
– ident: e_1_2_10_41_1
  doi: 10.1002/mrm.28155
– ident: e_1_2_10_43_1
  doi: 10.1002/nbm.3928
– ident: e_1_2_10_8_1
  doi: 10.1002/(SICI)1522-2594(199905)41:5<1065::AID-MRM27>3.0.CO;2-9
– ident: e_1_2_10_31_1
  doi: 10.1002/mrm.21134
– volume: 14
  start-page: 57
  year: 2001
  ident: e_1_2_10_4_1
  article-title: Magnetization transfer in MRI: A review
  publication-title: NMR Biomed: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo
  doi: 10.1002/nbm.683
– ident: e_1_2_10_16_1
  doi: 10.1016/j.neuroimage.2010.10.065
– ident: e_1_2_10_6_1
  doi: 10.1016/S0730-725X(02)00598-2
– ident: e_1_2_10_18_1
  doi: 10.1002/mrm.10427
– ident: e_1_2_10_39_1
  doi: 10.1186/s12876-020-1161-3
– ident: e_1_2_10_38_1
  doi: 10.1148/radiol.11101638
– ident: e_1_2_10_35_1
  doi: 10.1006/jmrb.1995.1111
– ident: e_1_2_10_42_1
  doi: 10.1016/j.jmr.2016.11.002
– volume: 5
  start-page: 9
  year: 2015
  ident: e_1_2_10_33_1
  article-title: Errors in quantitative T1rho imaging and the correction methods
  publication-title: Quantitative Imaging in Medicine and Surgery
– ident: e_1_2_10_7_1
  doi: 10.1002/mrm.10120
– ident: e_1_2_10_9_1
  doi: 10.1002/mrm.21143
– ident: e_1_2_10_10_1
  doi: 10.1002/mrm.22440
– ident: e_1_2_10_32_1
  doi: 10.1002/mrm.20605
– ident: e_1_2_10_15_1
  doi: 10.1002/jmri.1880070521
– ident: e_1_2_10_20_1
  doi: 10.1002/nbm.3518
– ident: e_1_2_10_5_1
  doi: 10.1002/mrm.1278
– ident: e_1_2_10_17_1
  doi: 10.1002/mrm.23224
– ident: e_1_2_10_30_1
  doi: 10.1002/mrm.27868
– ident: e_1_2_10_28_1
  doi: 10.1016/j.mri.2011.04.002
– ident: e_1_2_10_34_1
  doi: 10.1002/hep.20701
– ident: e_1_2_10_23_1
  doi: 10.1002/mrm.25811
– ident: e_1_2_10_44_1
  doi: 10.1016/j.neuroimage.2019.116190
– ident: e_1_2_10_11_1
  doi: 10.1002/mrm.27174
– ident: e_1_2_10_2_1
  doi: 10.1002/mrm.1910100113
– ident: e_1_2_10_22_1
  doi: 10.1006/jmre.2001.2466
– ident: e_1_2_10_3_1
  doi: 10.1002/mrm.1910290607
– ident: e_1_2_10_29_1
  doi: 10.1002/mrm.24449
– ident: e_1_2_10_19_1
  doi: 10.1002/mrm.22846
– ident: e_1_2_10_26_1
  doi: 10.1002/nbm.3437
– ident: e_1_2_10_37_1
  doi: 10.1002/jmri.1880070520
– ident: e_1_2_10_24_1
  doi: 10.1002/nbm.951
– ident: e_1_2_10_21_1
  doi: 10.1002/nbm.3237
– ident: e_1_2_10_27_1
  doi: 10.1016/j.neuroimage.2014.03.005
SSID ssj0009974
Score 2.3964083
Snippet Purpose In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile...
In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons...
PurposeIn MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3157
SubjectTerms CEST
Collagen
Diagnostic systems
Exchanging
Fibrosis
Humans
In vivo methods and tests
Liver
macromolecular proton fraction
Macromolecular Substances
Macromolecules
Magnetic Resonance Imaging
magnetization transfer
Mapping
Medical imaging
Parameters
Phantoms, Imaging
Protons
spin‐lock
Water
Title Macromolecular proton fraction mapping based on spin‐lock magnetic resonance imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28362
https://www.ncbi.nlm.nih.gov/pubmed/32627861
https://www.proquest.com/docview/2441967546
https://www.proquest.com/docview/2420631246
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wEB0hJCo2FCjQy0su6oJNLiHxU6wQKkKV0gWCikWlyHZshOjNre5jw6qf0G_kSxg7D0RbpKq7JJ7ETuyZOROPjwE-uioVCqFxwrVgCbWSJzITPKlyRZWmDL1cmNEtvvCLa_r5ht0swEm3Fqbhh-h_uAXNiPY6KLg206Nn0tDRZDRE3xjtb8jVCoDo8pk6SqmGgVnQYGcU7ViF0uyov_OlL_oDYL7Eq9HhnL-Fb11TmzyT--F8Zob24TcWx_98l1VYaYEoOW1GzhosuHod3hTtVPs6LMXcUDt9B18LHZP22n10SaB2GNfET5o1EWSkA8fDLQkOsSJ4YYqnjz9_oZu8x8LbOqyTJBjWjwO5hyN3o7gz0gZcn3-6OrtI2u0YEpuzPEsMU9ymDn26VBgEcmqs5U6kDEMey1MlhbKUemP4cSWUVlLqzEtpc2GMYD7PN2GxHtfuPZDKeIFAwzvFPJVVpb0XqbAOH4N4i6UDOOw6prQtV3nYMuN72bAsZyV-sTJ-sQEc9KI_GoKOvwntdr1btjo6LRHYoPkRjPIBfOiLUbvClImu3XgeZDLEcIiBUGarGRV9LQh8MyH5MTY29u3r1ZfFZREPtv9ddAeWsxDax8yZXVicTeZuD_HPzOzHgf4EhaUALA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUB8X2lJot1DqVj1wyW5I_JR6qaqibUs4IEBcUBQ7NkJ0s2gfF078BH5jfwlj54EoRUK9JfEkdvyab-zxNwCfbRkLhdA44oVgETWSRzIRPCpTRVVBGWo5v6Ob7fHhIf15zI4X4Et7Fqbmh-gW3PzICPO1H-B-QXpwyxo6moz6qBz9BLzkI3oHg2r_ljxKqZqDWVA_0yja8grFyaB79a42ugcx7yLWoHJ2XsBJW9ja0-S8P5_pvrn8i8fxf__mJSw3WJR8rTvPK1iw1Qo8zZrd9hV4EtxDzfQ1HGVF8NtrQukSz-4wroib1MciyKjwNA-nxOvEkuCDKd7-ubpGTXmOiaeVPypJ0LIfe34PS85GITjSKhzufD_4NoyaiAyRSVmaRJopbmKLal0qtAM51cZwK2KGVo_hsZJCGUqd1ny7FKpQUhaJk9KkQmvBXJquwWI1ruxbIKV2ArGGs4o5KsuycE7Ewlj8DEIuFvdgq22Z3DR05T5qxu-8JlpOcqyxPNRYDz51ohc1R8e_hDba5s2bYTrNEdvgDCQY5T342CXjAPO7JkVlx3MvkyCMQxiEMm_qbtHlgtg3EZJvY2FD4z6cfZ7tZ-Hi3eNFP8Cz4UG2m-_-2Pu1Ds8Tb-kHR5oNWJxN5vY9wqGZ3gy9_gZ82wRH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUBGX0lKgS2kxVQ-9ZAmJn-qpKl1RIKhCBXGoFMWOjRBsFu3jwomf0N_YX9Kx80C0Rap6S-JJ7MQznm_i8WeAd7aMhUJoHPFCsIgaySOZCB6VqaKqoAy9nJ_RzY75_ik9OGfnc_ChXQtT80N0P9y8ZYTx2hv4Tel27klDh-NhH32jH38XKI-lV-m9k3vuKKVqCmZB_UCjaEsrFCc73a0PndEfCPMhYA0eZ7AM39u21okmV_3ZVPfN7W80jv_5Ms_gaYNEycdadZ7DnK1WYDFr5tpX4ElIDjWTF3CWFSFrr9lIl3huh1FF3LheFEGGhSd5uCDeI5YEL0zw9OfdD_STV1h4UfmFkgTj-pFn97Dkchi2RlqF08Hnb5_2o2Y_hsikLE0izRQ3sUWnLhVGgZxqY7gVMcOYx_BYSaEMpU5rvlsKVSgpi8RJaVKhtWAuTddgvhpV9iWQUjuBSMNZxRyVZVk4J2JhLD4GAReLe_C-7ZjcNGTlfs-M67ymWU5y_GJ5-GI9eNuJ3tQMHX8T2mx7N2-MdJIjssHxRzDKe7DdFaN5-TmTorKjmZdJEMQhCEKZ9VoruloQ-SZC8l1sbOjbx6vPs5MsHGz8u-gWLH7dG-RHX44PX8FS4sP8kEWzCfPT8cy-Riw01W-Czv8CjN4C_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macromolecular+proton+fraction+mapping+based+on+spin-lock+magnetic+resonance+imaging&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Hou%2C+Jian&rft.au=Wong%2C+Vincent+Wai-Sun&rft.au=Jiang%2C+Baiyan&rft.au=Wang%2C+Yi-Xiang&rft.date=2020-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=84&rft.issue=6&rft.spage=3157&rft_id=info:doi/10.1002%2Fmrm.28362&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon