Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis
Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation ha...
Saved in:
Published in | Journal of neurochemistry Vol. 141; no. 5; pp. 721 - 737 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35–55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control‐treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non‐phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Experimental autoimmune encephalomyelitis (EAE) results in loss of lipid and demyelination by immune‐mediated mechanisms. In this study, we demonstrate that acetate supplementation attenuated the onset of clinical signs in EAE mice. Treatment prevented the loss of many spinal cord lipids, returned cytosolic phospholipase PLA2 to control levels, and maintained some myelin structural characteristics. Thus, treatment may reduce injury by altering lipid metabolism. |
---|---|
AbstractList | Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin(TM) histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35–55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control‐treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non‐phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. Experimental autoimmune encephalomyelitis (EAE) results in loss of lipid and demyelination by immune‐mediated mechanisms. In this study, we demonstrate that acetate supplementation attenuated the onset of clinical signs in EAE mice. Treatment prevented the loss of many spinal cord lipids, returned cytosolic phospholipase PLA2 to control levels, and maintained some myelin structural characteristics. Thus, treatment may reduce injury by altering lipid metabolism. Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A (cPLA ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. |
Author | Rosenberger, Thad A. Chevalier, Amber C. |
Author_xml | – sequence: 1 givenname: Amber C. surname: Chevalier fullname: Chevalier, Amber C. organization: University of North Dakota School of Medicine and Health Sciences – sequence: 2 givenname: Thad A. surname: Rosenberger fullname: Rosenberger, Thad A. email: thad.rosenberger@med.und.edu organization: University of North Dakota School of Medicine and Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28369944$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1u1DAQB3ALFdFt4cALIEtc6CGtv-JsjtWKj6IKLnCOJs4sOHLsYDuC3HgEjjwfT1KXLRwqgS-25N-M9J85IUc-eCTkKWfnvJyL0ZtzrpgUD8iGq4ZXitftEdkwJkQlmRLH5CSlkTGuleaPyLHYSt22Sm3IzytvIkKy_hMFg3l1v77_2IVLOmGGPjibJgo5o18gY6LWj0tcKfiBgssYE02z9eCoCXGgzs52KE9ffC6WTtYgTUs_osk40Bwofpsx2qn8lyJYcrDTtHik6A3On8GFaUVns02PycM9uIRP7u5T8vHVyw-7N9X1-9dXu8vryshaiqrV-1qxGsBoZKIu6RsAhRwBm7YvOXvZ91L32ApjhkbCMBjVD3upRA261vKUvDj0nWP4smDK3WSTQefAY1hSx7dbxbXmclvo83t0DEss6W9V22gphOJFPbtTSz_h0M0lLsS1-zPzAs4OwMSQUsT9X8JZd7vPruyz-73PYi_uWWMzZFtGHMG6_1V8tQ7Xf7fu3r7bHSpuACDAtUc |
CitedBy_id | crossref_primary_10_1371_journal_pone_0268479 crossref_primary_10_1016_j_jaut_2022_102957 crossref_primary_10_1016_j_chemphyslip_2024_105422 crossref_primary_10_1016_j_lfs_2023_122022 crossref_primary_10_1038_s41423_024_01233_y crossref_primary_10_3389_fimmu_2020_604179 crossref_primary_10_3389_fnagi_2022_975176 crossref_primary_10_3389_fnut_2023_1146748 crossref_primary_10_1080_19490976_2023_2274126 crossref_primary_10_1186_s40168_022_01408_7 crossref_primary_10_1080_10408398_2021_1895064 crossref_primary_10_1080_19490976_2024_2418415 crossref_primary_10_1016_j_bj_2022_01_004 crossref_primary_10_1016_j_pharmthera_2021_107988 crossref_primary_10_1016_j_mce_2022_111572 crossref_primary_10_12998_wjcc_v10_i6_1754 crossref_primary_10_1155_2020_2058272 crossref_primary_10_3390_ijms231710073 crossref_primary_10_1016_j_phrs_2024_107456 crossref_primary_10_3389_fendo_2020_00025 crossref_primary_10_3390_ijms231710128 crossref_primary_10_1016_j_chembiol_2019_01_009 crossref_primary_10_1111_bpa_12908 crossref_primary_10_1016_j_micinf_2021_104814 crossref_primary_10_1007_s12272_020_01278_3 crossref_primary_10_1186_s12974_022_02502_1 crossref_primary_10_1016_j_ebiom_2022_103908 crossref_primary_10_3390_antiox10040572 crossref_primary_10_1016_j_nutres_2022_07_007 crossref_primary_10_1007_s12035_023_03546_x crossref_primary_10_1111_imr_13343 crossref_primary_10_1186_s12974_023_02942_3 crossref_primary_10_1007_s12016_020_08821_6 |
Cites_doi | 10.1016/S0300-9084(01)01308-6 10.1074/jbc.M209572200 10.1111/j.1471-4159.2007.05178.x 10.1093/jb/mvs105 10.1186/1742-2094-11-99 10.1007/s00018-013-1365-6 10.1186/1742-2094-9-249 10.1172/JCI116309 10.1212/WNL.31.10.1241 10.1007/s10517-011-1494-6 10.1023/A:1021635826032 10.1385/JMN:16:2-3:309 10.1002/jcp.24927 10.1016/0896-6273(94)90042-6 10.1038/srep16524 10.1016/j.bbamcr.2006.09.010 10.1111/j.1471-4159.2012.07934.x 10.1007/s11010-011-0751-3 10.1016/S0076-6879(81)72003-2 10.1523/JNEUROSCI.4537-10.2011 10.1016/j.tcb.2011.06.004 10.1007/s11481-012-9426-4 10.1002/ana.410210305 10.1016/0165-3806(85)90252-4 10.1096/fj.05-3861com 10.1203/PDR.0b013e31819ea4eb 10.1007/s10545-010-9100-z 10.1007/s11011-007-9079-9 10.1146/annurev.genom.4.070802.110424 10.1093/brain/84.2.310 10.4049/jimmunol.1103109 10.1016/j.bpa.2010.11.001 10.1016/S0022-2275(20)40700-X 10.1016/j.bbadis.2012.03.011 10.1007/BF01101703 10.1016/j.neuint.2013.01.004 10.1016/S0896-6273(04)00003-0 10.1093/brain/76.4.551 10.1093/clinchem/8.3.302 10.1007/s11745-014-3911-x 10.1124/jpet.105.087536 10.1016/j.plefa.2013.08.008 10.1038/ng1196-348 10.1016/j.bbadis.2012.05.008 10.1002/jcb.25305 10.1016/j.bbamcr.2006.08.010 10.1046/j.1471-4159.2003.02246.x 10.1016/j.bbalip.2010.01.001 10.1006/bbrc.1996.1478 10.1016/j.expneurol.2005.04.017 10.1016/S0022-2275(20)43109-8 10.1053/ejpn.2001.0467 10.1073/pnas.93.2.814 10.1186/1742-2094-9-51 10.1007/978-1-4757-1830-0 10.1194/jlr.M044586 10.1007/s10545-009-1155-3 10.1016/j.mce.2006.03.016 10.1016/0003-2697(76)90527-3 10.1212/WNL.51.1.26 10.1006/exnr.2000.7504 10.1007/s11745-013-3799-x 10.1016/0896-6273(94)90247-X 10.1093/ajcn/71.1.376s 10.1111/j.1600-0404.1996.tb00182.x 10.1007/BF02637067 10.1093/brain/123.1.105 10.1073/pnas.072211699 10.1002/ana.410440621 10.1155/2013/249101 10.1016/j.bbalip.2014.12.016 10.1016/j.pathophys.2010.04.004 10.1177/135245859900500i603 10.1016/S0022-2275(20)30187-5 10.1111/j.1471-4159.1970.tb00547.x 10.1194/jlr.R009761 10.1111/j.1742-1241.2009.02261.x 10.1136/jnnp-2016-313300 10.1023/A:1022549618333 10.1002/ana.410210304 10.1097/BOR.0b013e328362004d 10.1046/j.1471-4159.2001.00456.x 10.1007/s10545-007-0537-7 10.1016/j.febslet.2011.08.004 10.1111/j.1471-4159.1964.tb06720.x 10.1111/j.1471-4159.1966.tb10292.x 10.1086/662453 10.1002/(SICI)1098-1136(20000115)29:2<154::AID-GLIA9>3.0.CO;2-3 10.1016/j.febslet.2009.10.011 10.1016/S0022-2275(20)31527-3 10.1016/0024-3205(82)90600-2 10.1007/s00401-012-0978-4 10.1212/WNL.43.7.1389 10.1242/dmm.011338 10.1523/JNEUROSCI.4077-15.2016 10.1152/physrev.00033.2013 10.1007/BF02430599 10.1007/BF02668129 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q 10.1111/j.1471-4159.2012.07955.x 10.1007/s12031-007-0041-4 10.1016/j.ymgme.2004.08.008 10.1089/neu.2009.0994 10.1016/j.ymgme.2011.03.012 10.1002/eji.201344429 10.1016/0006-3002(57)90254-8 10.1002/mrdd.20108 10.1046/j.1471-4159.1997.69030889.x 10.1111/j.1471-4159.2011.07198.x 10.1002/ijc.28465 10.1007/S11745-000-0598-7 |
ContentType | Journal Article |
Copyright | 2017 International Society for Neurochemistry 2017 International Society for Neurochemistry. Copyright © 2017 International Society for Neurochemistry |
Copyright_xml | – notice: 2017 International Society for Neurochemistry – notice: 2017 International Society for Neurochemistry. – notice: Copyright © 2017 International Society for Neurochemistry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1111/jnc.14032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 737 |
ExternalDocumentID | 28369944 10_1111_jnc_14032 JNC14032 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: UND SMHS Seed Grant |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QR 7TK 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c3532-96f5405aac6e0251477aa4e1eae79b283b3bb36be92ccd73addc4bdf3425a6563 |
IEDL.DBID | DR2 |
ISSN | 0022-3042 1471-4159 |
IngestDate | Fri Jul 11 02:13:12 EDT 2025 Fri Jul 25 19:41:35 EDT 2025 Wed Feb 19 02:33:27 EST 2025 Tue Jul 01 04:39:09 EDT 2025 Thu Apr 24 23:02:37 EDT 2025 Wed Jan 22 16:22:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | acetate phospholipase fatty acid myelination acetyl-CoA lipid |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-96f5405aac6e0251477aa4e1eae79b283b3bb36be92ccd73addc4bdf3425a6563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28369944 |
PQID | 1897632241 |
PQPubID | 31528 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1884166138 proquest_journals_1897632241 pubmed_primary_28369944 crossref_primary_10_1111_jnc_14032 crossref_citationtrail_10_1111_jnc_14032 wiley_primary_10_1111_jnc_14032_JNC14032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1968; 9 2012; 123 2011; 117 2013; 62 2002; 99 2011; 52 2010; 584 2013; 70 2008; 105 2010b; 33 2003; 278 2013; 6 2016; 36 1953; 76 2001; 42 2011; 352 2014; 134 2013b; 48 2010; 24 1976; 72 2008; 23 1984 1961; 84 2000; 123 1981; 72 2014; 94 1985; 10 2014; 11 2004; 41 2005; 195 2012; 188 2009; 65 1962; 8 2013; 89 1982; 30 1993; 43 2014; 49 1999; 24 1996; 93 2015; 1851 2000; 71 1996; 14 1970; 17 2005; 19 2001; 152 2010a; 27 2015; 230 2011; 86 1964; 11 1994; 13 2003; 28 2013; 25 2000; 47 1990; 15 2000; 5 2006; 1763 2006; 252 2007; 30 1966; 13 2007; 33 2011; 18 1996; 31 1998; 44 1996; 227 2015; 45 2010; 64 1969; 1 1969; 7 2002; 43 2003; 4 2011; 21 2010; 1801 2016; 117 2001; 16 2000; 166 1998; 51 2012a; 123 1981; 31 2014; 55 2016; 88 2004; 88 2000; 29 2004; 83 2015; 5 2006; 12 1991; 35 2013a; 8 2012; 1822 1997; 69 2005; 315 2011; 31 1978; 19 1993; 91 1999; 5 2012b; 9 2012; 152 2011; 103 2001; 83 1987; 21 2009; 32 2000; 35 2013 2001; 78 2011; 585 1985; 350 1957; 24 2012; 9 e_1_2_7_108_1 e_1_2_7_3_1 Ueno K. (e_1_2_7_106_1) 1978; 19 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 Kracun I. (e_1_2_7_40_1) 1991; 35 Cumings J. N. (e_1_2_7_22_1) 1969; 7 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 Ferdinandusse S. (e_1_2_7_28_1) 2001; 42 e_1_2_7_91_1 Breackenridge W. C. (e_1_2_7_13_1) 1968; 9 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 44 start-page: 980 year: 1998 end-page: 983 article-title: Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis publication-title: Ann. Neurol. – volume: 23 start-page: 43 year: 2008 end-page: 49 article-title: Hexacosanoic and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X‐linked adrenoleukodystrophy: Lorenzo's oil effect publication-title: Metab. Brain Dis. – volume: 70 start-page: 4355 year: 2013 end-page: 4368 article-title: Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology publication-title: Cell. Mol. Life Sci. – volume: 13 start-page: 805 year: 1994 end-page: 811 article-title: Identification of myelin‐associated glycoprotein as a major myelin‐derived inhibitor of neurite growth publication-title: Neuron – volume: 33 start-page: 105 year: 2007 end-page: 113 article-title: “Lorenzo's oil” therapy for x‐linked adrenoleukodystrophy: rationale and current assessment of efficacy publication-title: J. Mol. Neurosci. – volume: 71 start-page: 376S year: 2000 end-page: 385S article-title: Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders publication-title: Am. J. Clin. Nur. – volume: 123 start-page: 873 year: 2012 end-page: 886 article-title: Gap junction pathology in multiple sclerosis lesions and normal‐appearing white matter publication-title: Acta Neuropathol. – volume: 21 start-page: 232 year: 1987 end-page: 239 article-title: Adrenoleukodystrophy: dietary oleic acid lowers hexacosanoate levels publication-title: Ann. Neurol. – volume: 35 start-page: 891 year: 2000 end-page: 898 article-title: Intravenously injected [1‐14C]arachidonic acid targets phospholipids, and [1‐14C]palmitic acid targets neutral lipids in hearts of awake rats publication-title: Lipids – volume: 31 start-page: S145 issue: Suppl year: 1996 end-page: S152 article-title: Docosahexaenoic acid therapy in docosahexaenoic acid‐deficient patients with disorders of peroxisomal biogenesis publication-title: Lipids – volume: 62 start-page: 296 year: 2013 end-page: 305 article-title: Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis publication-title: Neurochem. Int. – volume: 117 start-page: 574 year: 2016 end-page: 588 article-title: Acetate as a metabolic and epigenetic modifier of cancer therapy publication-title: J. Cell. Biochem. – volume: 31 start-page: 2009 year: 2011 end-page: 2015 article-title: Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration publication-title: J. Neurosci. – volume: 19 start-page: 1407 year: 2005 end-page: 1421 article-title: HMG‐CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis publication-title: FASEB J. – volume: 278 start-page: 2758 year: 2003 end-page: 2766 article-title: Post‐activation turn‐off of NF‐kappa B‐dependent transcription is regulated by acetylation of p65 publication-title: J. Biol. Chem. – volume: 65 start-page: 681 year: 2009 end-page: 685 article-title: Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith‐Lemli‐Opitz syndrome publication-title: Pediatr. Res. – volume: 18 start-page: 21 year: 2011 end-page: 29 article-title: The relevance of animal models in multiple sclerosis research publication-title: Pathophysiology – volume: 21 start-page: 240 year: 1987 end-page: 249 article-title: A new dietary therapy for adrenoleukodystrophy: biochemical and preliminary clinical results in 36 patients publication-title: Ann. Neurol. – volume: 134 start-page: 1300 year: 2014 end-page: 1310 article-title: Triacetin‐based acetate supplementation as chemotherapeutic adjuvant therapy in glioma publication-title: Int. J. Cancer – volume: 21 start-page: 585 year: 2011 end-page: 593 article-title: Central nervous ystem myelin: structure, synthesis, and assembly publication-title: Trends Cell Biol. – volume: 11 start-page: 1 year: 2014 end-page: 10 article-title: Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation publication-title: J. Neuroinflammation – volume: 84 start-page: 310 year: 1961 end-page: 319 article-title: Brain lipids in multiple sclerosis and other diseases publication-title: Brain – volume: 25 start-page: 496 year: 2013 end-page: 501 article-title: Multiple sclerosis: autoimmunity and viruses publication-title: Curr. Opin. Rheumatol. – volume: 33 start-page: 195 year: 2010b end-page: 210 article-title: Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease publication-title: J. Inherit. Metab. Dis. – volume: 94 start-page: 461 year: 2014 end-page: 518 article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration publication-title: Physiol. Rev. – volume: 10 start-page: 1483 year: 1985 end-page: 1497 article-title: Disturbance of lipid composition in spinal cord of rabbits with experimental allergic encephalomyelitis publication-title: Neurochem. Res. – volume: 15 start-page: 1051 year: 1990 end-page: 1053 article-title: Lipid changes in central nervous system membranes in experimental allergic encephalomyelitis (EAE) publication-title: Neurochem. Res. – volume: 5 start-page: 379 year: 1999 end-page: 388 article-title: Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GD1a publication-title: Mult. Scler. – volume: 1763 start-page: 1733 year: 2006 end-page: 1748 article-title: Peroxisome biogenesis disorders publication-title: Biochim. Biophys. Acta – volume: 117 start-page: 264 year: 2011 end-page: 274 article-title: Acetate supplementation attenuates lipopolysaccharide‐induced neuroinflammation publication-title: J. Neurochem. – start-page: 1 year: 2013 end-page: 11 article-title: Current and future therapies for multiple sclerosis publication-title: Scientifica – volume: 13 start-page: 757 year: 1994 end-page: 767 article-title: A novel role for myelin‐associated glycoprotein as an inhibitor of axonal regeneration publication-title: Neuron – volume: 43 start-page: 1389 year: 1993 end-page: 1397 article-title: Docosahexaenoic acid–a new therapeutic approach to peroxisomal‐disorder patients: experience with two cases publication-title: Neurology – volume: 103 start-page: 203 year: 2011 end-page: 206 article-title: A safety trial of high dose glyceryl triacetate for canavan disease publication-title: Mol. Genet. Metab. – volume: 1822 start-page: 1421 year: 2012 end-page: 1429 article-title: Clinical diagnosis, biochemical findings and MRI spectrum of perxisomal disorders publication-title: Biochem. Biophys. Acta. – volume: 83 start-page: 252 year: 2004 end-page: 263 article-title: The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum publication-title: Mol. Genet. Metab. – volume: 47 start-page: 707 year: 2000 end-page: 717 article-title: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination publication-title: Ann. Neurol. – volume: 1 start-page: 85 year: 1969 end-page: 86 article-title: Quantitative analysis of phospholipids by thin‐layer chromatography and phosphorus analysis of spots publication-title: Lipids – volume: 152 start-page: 387 year: 2012 end-page: 395 article-title: Very long‐chain fatty acids: elongation, physiology and related disorders publication-title: J. Biochem. – volume: 43 start-page: 59 year: 2002 end-page: 68 article-title: Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat publication-title: J. Lipid Res. – volume: 230 start-page: 1929 year: 2015 end-page: 1943 article-title: Acetate supplementation as a means of inducing glioblastoma stem‐like cell growth arrest publication-title: J. Cell. Physiol. – volume: 152 start-page: 224 year: 2001 end-page: 227 article-title: Changes in phospholipid composiiton of the spinal cord in rabbits with allergic encephalomyelitis as an experimental model of multiple sclerosis publication-title: Exp. Biol. Med. – year: 1984 – volume: 166 start-page: 227 year: 2000 end-page: 234 article-title: A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice publication-title: Exp. Neurol. – volume: 27 start-page: 293 year: 2010a end-page: 298 article-title: Metabolic acetate therapy for the treatment of traumatic brain injury publication-title: J. Neurotrauma – volume: 42 start-page: 1987 year: 2001 end-page: 1995 article-title: Identification of the peroxisomal β‐oxidation enzymes involved in the biosynthesis of docosahexaeonic acid publication-title: J. Lipid Res. – volume: 19 start-page: 863 year: 1978 end-page: 871 article-title: Gangliosides of human, cat, and rabbit spinal cords and cord myelin publication-title: J. Lipid Res. – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal. Biochem. – volume: 252 start-page: 216 year: 2006 end-page: 223 article-title: Canavan disease and the role of ‐acetylaspartate in myelin synthesis publication-title: Mol. Cell. Endocrinol. – volume: 51 start-page: 26 year: 1998 end-page: 32 article-title: MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders publication-title: Neurology – volume: 584 start-page: 1741 year: 2010 end-page: 1747 article-title: Brain gangliosides in axon‐myelin stability and axon regeneration publication-title: FEBS Lett. – volume: 99 start-page: 8412 year: 2002 end-page: 8417 article-title: Gangliosides are functional nerve cell ligands for myelin‐associated glycoprotein (MAG), an inhibitor of nerve regeneration publication-title: Proc. Natl Acad. Sci. USA – volume: 585 start-page: 3715 year: 2011 end-page: 3723 article-title: The molecular basis of neurodegeneration in multiple sclerosis publication-title: FEBS Lett. – volume: 24 start-page: 604 year: 1957 end-page: 611 article-title: Quantitative estimation of sialic acids. II. A colorimetric resorcinol‐hydrochloric acid method publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 287 year: 2013a end-page: 300 article-title: Modulation of inflammatory cytokines and mitogen‐activated protein kinases by acetate in primary astrocytes publication-title: J. Neuroimmune Pharmacol. – volume: 35 start-page: 289 year: 1991 end-page: 295 article-title: Human brain gangliosides in development, aging and disease publication-title: Int. J. Dev. Biol. – volume: 105 start-page: 763 year: 2008 end-page: 772 article-title: Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis publication-title: J. Neurochem. – volume: 89 start-page: 273 year: 2013 end-page: 278 article-title: Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelinatin: role of cyclooxygenase‐2 publication-title: Prostaglandins Leukot. Essent. Fatty Acids – volume: 188 start-page: 5723 year: 2012 end-page: 5733 article-title: Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis publication-title: J. Immunol. – volume: 8 start-page: 302 year: 1962 end-page: 309 article-title: A rapid and specific ultramicro method for total serum cholesterol publication-title: Clin. Chem. – volume: 7 start-page: 255 year: 1969 end-page: 260 article-title: The lipid composition of pure myelin in some demyelinating disorders publication-title: Neuropatol. Pol. – volume: 52 start-page: 419 year: 2011 end-page: 434 article-title: Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models publication-title: J. Lipid Res. – volume: 1851 start-page: 999 year: 2015 end-page: 1005 article-title: Metabolism and functions of lipids in myelin publication-title: Biochem. Biophys. Acta. – volume: 350 start-page: 85 year: 1985 end-page: 95 article-title: Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies publication-title: Brain Res. – volume: 69 start-page: 889 year: 1997 end-page: 901 article-title: Phospholipase A and its role in brain tissue publication-title: J. Neurochem. – volume: 315 start-page: 297 year: 2005 end-page: 303 article-title: Progress toward acetate supplementation therapy for canavan disease: glyceryl triacetate administration increases acetate but not ‐acetylaspartate, levels in brain publication-title: J. Pharmacol. Exp. Ther. – volume: 78 start-page: 736 year: 2001 end-page: 745 article-title: Intraneuronal ‐acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin‐associated aspartoacylase publication-title: J. Neurochem. – volume: 28 start-page: 5 year: 2003 end-page: 13 article-title: Turnover of myelin lipids in aging brain publication-title: Neurochem. Res. – volume: 49 start-page: 621 year: 2014 end-page: 631 article-title: Acetate treatment increases fatty acid content in LPS‐stimulated BV2 microglia publication-title: Lipids – volume: 55 start-page: 524 year: 2014 end-page: 530 article-title: Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long‐chain fatty acid publication-title: J. Lipid Res. – volume: 48 start-page: 651 year: 2013b end-page: 662 article-title: Acetate reduces PGE2 release and modulates phospholipase and cyclooxygenase levels in neuroglia stimulated with lipopolysaccharide publication-title: Lipids – volume: 1763 start-page: 1707 year: 2006 end-page: 1720 article-title: Peroxisomal disorders: the single peroxisomal enzyme deficiencies publication-title: Biochim. Biophys. Acta – volume: 76 start-page: 551 year: 1953 end-page: 562 article-title: The cerebral lipids in disseminated sclerosis and in amaurotic family idiocy publication-title: Brain – volume: 14 start-page: 348 year: 1996 end-page: 352 article-title: Mice lacking both subunits of lysosomal beta‐hexosaminidase display ganliosidosis and mucopolysaccharidosis publication-title: Nat. Genet. – volume: 41 start-page: 323 year: 2004 end-page: 335 article-title: Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis‐like disease publication-title: Neuron – volume: 91 start-page: 881 year: 1993 end-page: 888 article-title: Impaired degradation of leukotrienes in patients with peroxisome deficiency disorders publication-title: J. Clin. Invest. – volume: 30 start-page: 375 year: 2007 end-page: 387 article-title: Effects of cholesterol and simvastatin treatment in patients with Smith‐Lemli‐Opitz syndrome (SLOS) publication-title: J. Inherit. Metab. Dis. – volume: 32 start-page: 640 year: 2009 end-page: 650 article-title: Glyceryl triacetate for canavan disease: a low‐dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model publication-title: J. Inherit. Metab. Dis. – volume: 4 start-page: 165 year: 2003 end-page: 211 article-title: Peroxisome biogenesis disorders publication-title: Annu. Rev. Genomics Hum. Genet. – volume: 36 start-page: 4698 year: 2016 end-page: 4707 article-title: Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival publication-title: J. Neurosci. – volume: 123 start-page: 105 year: 2000 end-page: 115 article-title: Oligodendrocyte survival, loss and brith in lesions of chronic‐stage mutliple sclerosis publication-title: Brain – volume: 31 start-page: 1241 year: 1981 end-page: 1249 article-title: Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids publication-title: Neurology – volume: 1801 start-page: 272 year: 2010 end-page: 280 article-title: Peroxisomes, lipid metabolism and lipotoxicity publication-title: Biochim. Biophys. Acta – volume: 83 start-page: 677 year: 2001 end-page: 682 article-title: Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration publication-title: Biochimie – volume: 72 start-page: 5 year: 1981 end-page: 7 article-title: Extraction of tissue lipids with a solvent of low toxicity publication-title: Methods Enzymol. – volume: 5 start-page: 65 year: 2000 end-page: 69 article-title: Canavan disease: a review of recent developments publication-title: Eur. J. Paediatr. Neurol. – volume: 24 start-page: 551 year: 2010 end-page: 562 article-title: Neuronal injury in chronic CNS inflammation publication-title: Best Pract. Res. Clin. Anaesthesiol. – volume: 195 start-page: 208 year: 2005 end-page: 217 article-title: Myelin‐associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single‐ and double‐null mice publication-title: Exp. Neurol. – volume: 13 start-page: 961 year: 1966 end-page: 965 article-title: Acetate metabolism in the nervous system. N‐acetyl‐L‐aspartic acid and the biosynthesis of brain lipids publication-title: J. Neurochem. – volume: 227 start-page: 131 year: 1996 end-page: 134 article-title: Defective degradation of leukotrienes in peroxisomal‐deficient human hepatocytes publication-title: Biochem. Biophys. Res. Commun. – volume: 29 start-page: 154 year: 2000 end-page: 165 article-title: Multiple functions of the myelin‐associated glycoprotein MAG (siglec‐4a) in formation and maintenance of myelin publication-title: Glia – volume: 30 start-page: 859 year: 1982 end-page: 866 article-title: Central nervous system lipid alterations in rats with experimental allergic encephalomyelitis and its suppression by immunosuppressive drugs publication-title: Life Sci. – volume: 11 start-page: 29 year: 1964 end-page: 37 article-title: Lipid biosynthesis in the central nervous system in experimental allergic encephalomyelitis publication-title: J. Neurochem. – volume: 88 start-page: 1168 year: 2004 end-page: 1178 article-title: Rat brain arachidonic acid metabolism is increased by a 6‐day intracerebral ventricular infusion of bacterial lipopolysaccharide publication-title: J. Neurochem. – volume: 17 start-page: 677 year: 1970 end-page: 689 article-title: Lipids and proteins in multiple sclerosis white matter publication-title: J. Neurochem. – volume: 45 start-page: 142 year: 2015 end-page: 152 article-title: Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages publication-title: Eur. J. Immunol. – volume: 16 start-page: 317 year: 2001 end-page: 321 article-title: Restoring the DHA levels in the brains of zellweger patients publication-title: J. Mol. Neurosci. – volume: 9 start-page: 249 year: 2012 article-title: Acetate supplemenation reduces microglia activation and brain interleukin‐1beta levels in a rat model of Lyme neuroborreliosis publication-title: J. Neuroinflammation – volume: 88 start-page: 137 year: 2016 end-page: 145 article-title: Neurodegeneration in multiple sclerosis and neuromyelitis optica publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 86 start-page: 287 year: 2011 end-page: 321 article-title: Multiple sclerosis is not a disease of the immune system publication-title: Q. Rev. Biol. – volume: 93 start-page: 99 year: 1996 end-page: 103 article-title: Different antiganglioside antibody pattern between relapsing‐remitting and progressive multiple sclerosis publication-title: Acta Neurol. Scand. – volume: 64 start-page: 637 year: 2010 end-page: 650 article-title: Current and future disease‐modifying therapies in multiple sclerosis publication-title: Int. J. Clin. Pract. – volume: 9 start-page: 51 year: 2012b article-title: Acetate supplementation modulates brain histone acetylation and decreases interleukin‐1beta expression in a rat model of neuroinflammation publication-title: J. Neuroinflammation – volume: 93 start-page: 814 year: 1996 end-page: 818 article-title: Gangliosides are neuronal ligands for myelin‐associated glycoprotein publication-title: Proc. Natl Acad. Sci. USA – volume: 6 start-page: 1353 year: 2013 end-page: 1363 article-title: Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development publication-title: Dis. Model Mech. – volume: 123 start-page: 622 year: 2012 end-page: 634 article-title: Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism publication-title: J. Neurochem. – volume: 123 start-page: 555 year: 2012a end-page: 567 article-title: Acetate reduces microglia inflammatory signaling in vitro publication-title: J. Neurochem. – volume: 1822 start-page: 1442 year: 2012 end-page: 1452 article-title: Functions of plasmalogen lipids in health and disease publication-title: Biochem. Biophys. Acta. – volume: 9 start-page: 388 year: 1968 end-page: 393 article-title: Specific distribution of short‐chain fatty acids in molecular distillates of bovine milk fat publication-title: J. Lipid Res. – volume: 5 start-page: 16524 year: 2015 article-title: Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha‐synuclein publication-title: Sci. Rep. – volume: 24 start-page: 187 year: 1999 end-page: 197 article-title: Plasma and red blood cell fatty acids in peroxisomal disorders publication-title: Neurochem. Res. – volume: 12 start-page: 157 year: 2006 end-page: 165 article-title: Canavan disease: a white matter disorder publication-title: Ment. Retard. Dev. Disabil. Res. Rev. – volume: 352 start-page: 173 year: 2011 end-page: 180 article-title: Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression publication-title: Mol. Cell. Biochem. – ident: e_1_2_7_107_1 doi: 10.1016/S0300-9084(01)01308-6 – ident: e_1_2_7_38_1 doi: 10.1074/jbc.M209572200 – ident: e_1_2_7_92_1 doi: 10.1111/j.1471-4159.2007.05178.x – ident: e_1_2_7_39_1 doi: 10.1093/jb/mvs105 – ident: e_1_2_7_94_1 doi: 10.1186/1742-2094-11-99 – ident: e_1_2_7_15_1 doi: 10.1007/s00018-013-1365-6 – ident: e_1_2_7_14_1 doi: 10.1186/1742-2094-9-249 – ident: e_1_2_7_57_1 doi: 10.1172/JCI116309 – ident: e_1_2_7_61_1 doi: 10.1212/WNL.31.10.1241 – ident: e_1_2_7_74_1 doi: 10.1007/s10517-011-1494-6 – ident: e_1_2_7_4_1 doi: 10.1023/A:1021635826032 – ident: e_1_2_7_50_1 doi: 10.1385/JMN:16:2-3:309 – ident: e_1_2_7_45_1 doi: 10.1002/jcp.24927 – ident: e_1_2_7_65_1 doi: 10.1016/0896-6273(94)90042-6 – volume: 35 start-page: 289 year: 1991 ident: e_1_2_7_40_1 article-title: Human brain gangliosides in development, aging and disease publication-title: Int. J. Dev. Biol. – ident: e_1_2_7_104_1 doi: 10.1038/srep16524 – ident: e_1_2_7_101_1 doi: 10.1016/j.bbamcr.2006.09.010 – ident: e_1_2_7_31_1 doi: 10.1111/j.1471-4159.2012.07934.x – ident: e_1_2_7_95_1 doi: 10.1007/s11010-011-0751-3 – ident: e_1_2_7_72_1 doi: 10.1016/S0076-6879(81)72003-2 – ident: e_1_2_7_35_1 doi: 10.1523/JNEUROSCI.4537-10.2011 – ident: e_1_2_7_3_1 doi: 10.1016/j.tcb.2011.06.004 – ident: e_1_2_7_98_1 doi: 10.1007/s11481-012-9426-4 – ident: e_1_2_7_62_1 doi: 10.1002/ana.410210305 – ident: e_1_2_7_79_1 doi: 10.1016/0165-3806(85)90252-4 – ident: e_1_2_7_68_1 doi: 10.1096/fj.05-3861com – ident: e_1_2_7_17_1 doi: 10.1203/PDR.0b013e31819ea4eb – ident: e_1_2_7_6_1 doi: 10.1007/s10545-010-9100-z – ident: e_1_2_7_26_1 doi: 10.1007/s11011-007-9079-9 – ident: e_1_2_7_111_1 doi: 10.1146/annurev.genom.4.070802.110424 – ident: e_1_2_7_29_1 doi: 10.1093/brain/84.2.310 – ident: e_1_2_7_87_1 doi: 10.4049/jimmunol.1103109 – ident: e_1_2_7_114_1 doi: 10.1016/j.bpa.2010.11.001 – volume: 19 start-page: 863 year: 1978 ident: e_1_2_7_106_1 article-title: Gangliosides of human, cat, and rabbit spinal cords and cord myelin publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40700-X – ident: e_1_2_7_71_1 doi: 10.1016/j.bbadis.2012.03.011 – ident: e_1_2_7_83_1 doi: 10.1007/BF01101703 – ident: e_1_2_7_9_1 doi: 10.1016/j.neuint.2013.01.004 – ident: e_1_2_7_36_1 doi: 10.1016/S0896-6273(04)00003-0 – ident: e_1_2_7_21_1 doi: 10.1093/brain/76.4.551 – ident: e_1_2_7_10_1 doi: 10.1093/clinchem/8.3.302 – ident: e_1_2_7_8_1 doi: 10.1007/s11745-014-3911-x – ident: e_1_2_7_55_1 doi: 10.1124/jpet.105.087536 – ident: e_1_2_7_69_1 doi: 10.1016/j.plefa.2013.08.008 – ident: e_1_2_7_84_1 doi: 10.1038/ng1196-348 – ident: e_1_2_7_12_1 doi: 10.1016/j.bbadis.2012.05.008 – ident: e_1_2_7_34_1 doi: 10.1002/jcb.25305 – ident: e_1_2_7_109_1 doi: 10.1016/j.bbamcr.2006.08.010 – ident: e_1_2_7_78_1 doi: 10.1046/j.1471-4159.2003.02246.x – ident: e_1_2_7_110_1 doi: 10.1016/j.bbalip.2010.01.001 – ident: e_1_2_7_56_1 doi: 10.1006/bbrc.1996.1478 – ident: e_1_2_7_70_1 doi: 10.1016/j.expneurol.2005.04.017 – volume: 9 start-page: 388 year: 1968 ident: e_1_2_7_13_1 article-title: Specific distribution of short‐chain fatty acids in molecular distillates of bovine milk fat publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)43109-8 – ident: e_1_2_7_32_1 doi: 10.1053/ejpn.2001.0467 – ident: e_1_2_7_113_1 doi: 10.1073/pnas.93.2.814 – ident: e_1_2_7_97_1 doi: 10.1186/1742-2094-9-51 – ident: e_1_2_7_60_1 doi: 10.1007/978-1-4757-1830-0 – ident: e_1_2_7_85_1 doi: 10.1194/jlr.M044586 – ident: e_1_2_7_47_1 doi: 10.1007/s10545-009-1155-3 – ident: e_1_2_7_67_1 doi: 10.1016/j.mce.2006.03.016 – ident: e_1_2_7_11_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_7_51_1 doi: 10.1212/WNL.51.1.26 – ident: e_1_2_7_18_1 doi: 10.1006/exnr.2000.7504 – ident: e_1_2_7_99_1 doi: 10.1007/s11745-013-3799-x – ident: e_1_2_7_58_1 doi: 10.1016/0896-6273(94)90247-X – ident: e_1_2_7_53_1 doi: 10.1093/ajcn/71.1.376s – ident: e_1_2_7_2_1 doi: 10.1111/j.1600-0404.1996.tb00182.x – ident: e_1_2_7_49_1 doi: 10.1007/BF02637067 – ident: e_1_2_7_112_1 doi: 10.1093/brain/123.1.105 – ident: e_1_2_7_108_1 doi: 10.1073/pnas.072211699 – ident: e_1_2_7_82_1 doi: 10.1002/ana.410440621 – ident: e_1_2_7_59_1 doi: 10.1155/2013/249101 – ident: e_1_2_7_88_1 doi: 10.1016/j.bbalip.2014.12.016 – ident: e_1_2_7_25_1 doi: 10.1016/j.pathophys.2010.04.004 – ident: e_1_2_7_54_1 doi: 10.1177/135245859900500i603 – ident: e_1_2_7_77_1 doi: 10.1016/S0022-2275(20)30187-5 – ident: e_1_2_7_30_1 doi: 10.1111/j.1471-4159.1970.tb00547.x – ident: e_1_2_7_19_1 doi: 10.1194/jlr.R009761 – ident: e_1_2_7_43_1 doi: 10.1111/j.1742-1241.2009.02261.x – ident: e_1_2_7_37_1 doi: 10.1136/jnnp-2016-313300 – ident: e_1_2_7_63_1 doi: 10.1023/A:1022549618333 – ident: e_1_2_7_75_1 doi: 10.1002/ana.410210304 – ident: e_1_2_7_23_1 doi: 10.1097/BOR.0b013e328362004d – ident: e_1_2_7_16_1 doi: 10.1046/j.1471-4159.2001.00456.x – ident: e_1_2_7_33_1 doi: 10.1007/s10545-007-0537-7 – ident: e_1_2_7_42_1 doi: 10.1016/j.febslet.2011.08.004 – ident: e_1_2_7_93_1 doi: 10.1111/j.1471-4159.1964.tb06720.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1471-4159.1966.tb10292.x – ident: e_1_2_7_20_1 doi: 10.1086/662453 – ident: e_1_2_7_86_1 doi: 10.1002/(SICI)1098-1136(20000115)29:2<154::AID-GLIA9>3.0.CO;2-3 – ident: e_1_2_7_89_1 doi: 10.1016/j.febslet.2009.10.011 – volume: 42 start-page: 1987 year: 2001 ident: e_1_2_7_28_1 article-title: Identification of the peroxisomal β‐oxidation enzymes involved in the biosynthesis of docosahexaeonic acid publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)31527-3 – ident: e_1_2_7_80_1 doi: 10.1016/0024-3205(82)90600-2 – ident: e_1_2_7_48_1 doi: 10.1007/s00401-012-0978-4 – ident: e_1_2_7_52_1 doi: 10.1212/WNL.43.7.1389 – ident: e_1_2_7_7_1 doi: 10.1242/dmm.011338 – ident: e_1_2_7_76_1 doi: 10.1523/JNEUROSCI.4077-15.2016 – ident: e_1_2_7_90_1 doi: 10.1152/physrev.00033.2013 – ident: e_1_2_7_103_1 doi: 10.1007/BF02430599 – ident: e_1_2_7_81_1 doi: 10.1007/BF02668129 – volume: 7 start-page: 255 year: 1969 ident: e_1_2_7_22_1 article-title: The lipid composition of pure myelin in some demyelinating disorders publication-title: Neuropatol. Pol. – ident: e_1_2_7_46_1 doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q – ident: e_1_2_7_96_1 doi: 10.1111/j.1471-4159.2012.07955.x – ident: e_1_2_7_64_1 doi: 10.1007/s12031-007-0041-4 – ident: e_1_2_7_100_1 doi: 10.1016/j.ymgme.2004.08.008 – ident: e_1_2_7_5_1 doi: 10.1089/neu.2009.0994 – ident: e_1_2_7_91_1 doi: 10.1016/j.ymgme.2011.03.012 – ident: e_1_2_7_44_1 doi: 10.1002/eji.201344429 – ident: e_1_2_7_102_1 doi: 10.1016/0006-3002(57)90254-8 – ident: e_1_2_7_41_1 doi: 10.1002/mrdd.20108 – ident: e_1_2_7_27_1 doi: 10.1046/j.1471-4159.1997.69030889.x – ident: e_1_2_7_73_1 doi: 10.1111/j.1471-4159.2011.07198.x – ident: e_1_2_7_105_1 doi: 10.1002/ijc.28465 – ident: e_1_2_7_66_1 doi: 10.1007/S11745-000-0598-7 |
SSID | ssj0016461 |
Score | 2.397055 |
Snippet | Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is... Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 721 |
SubjectTerms | acetate Acetates - therapeutic use Acetic acid Acetyl Coenzyme A - metabolism Acetylation acetyl‐CoA Animal models Animals Behavior, Animal - drug effects Borreliosis Brain Cholesterol Choline Chromatography, Thin Layer Dietary supplements Disease Models, Animal Encephalomyelitis, Autoimmune, Experimental - chemically induced Encephalomyelitis, Autoimmune, Experimental - immunology Encephalomyelitis, Autoimmune, Experimental - pathology Encephalomyelitis, Autoimmune, Experimental - prevention & control Energy reserves Esters Ethanolamine Experimental allergic encephalomyelitis fatty acid Fatty acids Fatty Acids - metabolism Female Glycoproteins Histochemistry Histones Inflammation lipid Lipid metabolism Lipid Metabolism - drug effects Lipid Metabolism - physiology Lipids Metabolism Mice Mice, Inbred C57BL Multiple sclerosis Myelin Myelin Sheath - metabolism Myelin-Oligodendrocyte Glycoprotein - toxicity myelination Neurochemistry Neuroprotection Oligodendrocyte-myelin glycoprotein Peptide Fragments - toxicity Phosphatidylserine Phospholipase Phospholipase A2 Phospholipases A2 - metabolism Protein turnover Rodents Spinal cord Spinal Cord - drug effects Spinal Cord - enzymology Spinal cord injuries Statistics, Nonparametric Triglycerides - pharmacology |
Title | Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14032 https://www.ncbi.nlm.nih.gov/pubmed/28369944 https://www.proquest.com/docview/1897632241 https://www.proquest.com/docview/1884166138 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CLu2lj6SPbdIyLaX04tC1tH6Q07J0SRaaQ2kgh4KRZJk69dpLbR-SU39Cj_19_SWZkR8kbQOlF2PwGEloZvSNNPoG4HUwVWTOofAIq2Z8JUd62lDUytxhMvSDNHLJ4x9OgqNTuTqbnW3B4XAXpuOHGDfc2DKcv2YDV7q-buRkP0w2x_6Xc7UYEH0cqaOYNms6MoWTZvasQi6LZ_jz5lr0B8C8iVfdgrO8D5-HrnZ5Jl8P2kYfmMvfWBz_cywP4F4PRHHeac5D2LLlDuzOSwrC1xf4Bl1qqNtz34E7i6Es3C78JI_Ciey05KEytrkofn3_sajmuLYNKVSR12tkzs6yZRSLeXlOs4aqTNEdzNdYb7gQF3LUi0W-yVPkdHla-0gW1-S3sG417w7ZFJsKr5cgQNU2Vc43WiyyR9p8UQX11nIKX_0ITpfvPy2OvL68g2fETPheHGQMF5UygeVIR4ahUtJOrbJhrAn2aKG1CLSNfWPSUJAnNlKnmSA3owiGisewXValfQqYvbMiMDbyQ0URmJRaqVjKzI9mOvS1mU3g7TDRiem5z7kER5GMMVBpEjcDE3g1im46wo-_Ce0P2pL0Nl8n04ignWBINIGX42eaHT6CUaWtWpbhY16CUNEEnnRaNrZCIw5i6jZ11unK7c0nq5OFe3n276J7cNdnROI2kPZhu_nW2ueEpxr9whkOPZfHqyv1uiAH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VAuFFoeCwUGhBCXrbqxNw-Jy2pFtZR2D6iVekGR7TgikE1WTXIoJ34CR34fv4QZ56GWh4S4RcpEduSZ8Tfj8TcAL_yJInMOxJiwaspXcuRYG4pamTtMBp6fhK54_GTpL87k0fn0fANe93dhWn6IIeHGluH8NRs4J6SvWjkZELPNkQO-wR29XUD1fiCPYuKsycAVTrrZ8Qq5Op7-0-u70W8Q8zpidVvO4TZ86CfbVpp83m9qvW--_MLj-L9_cxtudVgUZ63y3IENW-zA7qygOHx1iS_RVYe6tPsObM37znC78J2cCtey066Hytj6Mv_x9du8nOHK1qRTeVatkGk7i4aBLGbFJ1o4VEWC7my-wmrNvbiQA1_Ms3WWIFfM0_ZHsrgi14VVozlBZBOsS7zahQBVU5cZX2qxyE5p_VHlNFvLVXzVXTg7fHM6X4y7Dg9jI6bCG0d-yohRKeNbDnZkECgl7cQqG0SakI8WWgtf28gzJgkEOWMjdZIK8jSKkKi4B5tFWdgHgOmBFb6xoRcoCsKk1EpFUqZeONWBp810BK_6lY5NR3_OXTjyeAiDChO7FRjB80F03XJ-_Elor1eXuDP7Kp6EhO4Eo6IRPBte0-rwKYwqbNmwDJ_0EooKR3C_VbNhFPpjP6Jp02Sdsvx9-PhoOXcPD_9d9ClsLU5PjuPjt8t3j-CmxwDF5ZP2YLO-aOxjgle1fuKs6CcB8yMo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgGXAi2PhQIDQohLqm7szUOcVltWpcAKISr1gBTZjiNCs05EkkM58RM48vv4Jcw4D7U8JMQtUiayo3n4G3v8DWNPgqlEdw65h1g1oys5wlMas1biDhOhH6SRKx5_swoOj8XRyexkgz0f7sJ0_BDjhht5hovX5OBVmp13cvQfIpvD-HtJBPsRmfTBu5E7inizpiNVOJpmTyvkyniGTy8uRr8hzIuA1a04y2vswzDXrtDkdK9t1J7-8guN43_-zHW21SNRmHemc4NtGLvNduYWs_D1GTwFVxvqNt232ZXF0Bduh33HkEKV7LjmgdSmOSt-fP22KOewNg1aVJHXayDSTtsSjIXcfkK1gbQpuJP5GuqKOnEBpb1Q5FWeAtXL4-KHsrDGwAV1q2h7yKTQlHC-BwHItilzutJigEJS9VEWOFtDNXz1TXa8fPF-cej1_R08zWfc9-IgI7wopQ4MpToiDKUUZmqkCWOFuEdxpXigTOxrnYYcQ7EWKs04xhmJOJTfYpu2tOYOg2zf8ECbyA8lpmBCKCljITI_mqnQV3o2Yc8GRSe6Jz-nHhxFMiZBVidOAxP2eBStOsaPPwntDtaS9E5fJ9MIsR0nTDRhj8bXqB06g5HWlC3J0DkvYqhowm53VjaOgn8cxDhtnKyzlb8PnxytFu7h7r-LPmSX3x4sk9cvV6_usas-oRO3mbTLNpvPrbmP2KpRD5wP_QSpNyHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+acetyl-CoA+metabolism+attenuates+injury+and+alters+spinal+cord+lipid+content+in+mice+subjected+to+experimental+autoimmune+encephalomyelitis&rft.jtitle=Journal+of+neurochemistry&rft.au=Chevalier%2C+Amber+C&rft.au=Rosenberger%2C+Thad+A&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=141&rft.issue=5&rft.spage=721&rft_id=info:doi/10.1111%2Fjnc.14032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |