Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis

Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation ha...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurochemistry Vol. 141; no. 5; pp. 721 - 737
Main Authors Chevalier, Amber C., Rosenberger, Thad A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35–55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control‐treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non‐phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. Experimental autoimmune encephalomyelitis (EAE) results in loss of lipid and demyelination by immune‐mediated mechanisms. In this study, we demonstrate that acetate supplementation attenuated the onset of clinical signs in EAE mice. Treatment prevented the loss of many spinal cord lipids, returned cytosolic phospholipase PLA2 to control levels, and maintained some myelin structural characteristics. Thus, treatment may reduce injury by altering lipid metabolism.
AbstractList Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin(TM) histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is anti‐inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35–55), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control‐treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non‐phosphorylated cytosolic phospholipase A2 (cPLA2) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE. Experimental autoimmune encephalomyelitis (EAE) results in loss of lipid and demyelination by immune‐mediated mechanisms. In this study, we demonstrate that acetate supplementation attenuated the onset of clinical signs in EAE mice. Treatment prevented the loss of many spinal cord lipids, returned cytosolic phospholipase PLA2 to control levels, and maintained some myelin structural characteristics. Thus, treatment may reduce injury by altering lipid metabolism.
Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A (cPLA ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Author Rosenberger, Thad A.
Chevalier, Amber C.
Author_xml – sequence: 1
  givenname: Amber C.
  surname: Chevalier
  fullname: Chevalier, Amber C.
  organization: University of North Dakota School of Medicine and Health Sciences
– sequence: 2
  givenname: Thad A.
  surname: Rosenberger
  fullname: Rosenberger, Thad A.
  email: thad.rosenberger@med.und.edu
  organization: University of North Dakota School of Medicine and Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28369944$$D View this record in MEDLINE/PubMed
BookMark eNp90c1u1DAQB3ALFdFt4cALIEtc6CGtv-JsjtWKj6IKLnCOJs4sOHLsYDuC3HgEjjwfT1KXLRwqgS-25N-M9J85IUc-eCTkKWfnvJyL0ZtzrpgUD8iGq4ZXitftEdkwJkQlmRLH5CSlkTGuleaPyLHYSt22Sm3IzytvIkKy_hMFg3l1v77_2IVLOmGGPjibJgo5o18gY6LWj0tcKfiBgssYE02z9eCoCXGgzs52KE9ffC6WTtYgTUs_osk40Bwofpsx2qn8lyJYcrDTtHik6A3On8GFaUVns02PycM9uIRP7u5T8vHVyw-7N9X1-9dXu8vryshaiqrV-1qxGsBoZKIu6RsAhRwBm7YvOXvZ91L32ApjhkbCMBjVD3upRA261vKUvDj0nWP4smDK3WSTQefAY1hSx7dbxbXmclvo83t0DEss6W9V22gphOJFPbtTSz_h0M0lLsS1-zPzAs4OwMSQUsT9X8JZd7vPruyz-73PYi_uWWMzZFtGHMG6_1V8tQ7Xf7fu3r7bHSpuACDAtUc
CitedBy_id crossref_primary_10_1371_journal_pone_0268479
crossref_primary_10_1016_j_jaut_2022_102957
crossref_primary_10_1016_j_chemphyslip_2024_105422
crossref_primary_10_1016_j_lfs_2023_122022
crossref_primary_10_1038_s41423_024_01233_y
crossref_primary_10_3389_fimmu_2020_604179
crossref_primary_10_3389_fnagi_2022_975176
crossref_primary_10_3389_fnut_2023_1146748
crossref_primary_10_1080_19490976_2023_2274126
crossref_primary_10_1186_s40168_022_01408_7
crossref_primary_10_1080_10408398_2021_1895064
crossref_primary_10_1080_19490976_2024_2418415
crossref_primary_10_1016_j_bj_2022_01_004
crossref_primary_10_1016_j_pharmthera_2021_107988
crossref_primary_10_1016_j_mce_2022_111572
crossref_primary_10_12998_wjcc_v10_i6_1754
crossref_primary_10_1155_2020_2058272
crossref_primary_10_3390_ijms231710073
crossref_primary_10_1016_j_phrs_2024_107456
crossref_primary_10_3389_fendo_2020_00025
crossref_primary_10_3390_ijms231710128
crossref_primary_10_1016_j_chembiol_2019_01_009
crossref_primary_10_1111_bpa_12908
crossref_primary_10_1016_j_micinf_2021_104814
crossref_primary_10_1007_s12272_020_01278_3
crossref_primary_10_1186_s12974_022_02502_1
crossref_primary_10_1016_j_ebiom_2022_103908
crossref_primary_10_3390_antiox10040572
crossref_primary_10_1016_j_nutres_2022_07_007
crossref_primary_10_1007_s12035_023_03546_x
crossref_primary_10_1111_imr_13343
crossref_primary_10_1186_s12974_023_02942_3
crossref_primary_10_1007_s12016_020_08821_6
Cites_doi 10.1016/S0300-9084(01)01308-6
10.1074/jbc.M209572200
10.1111/j.1471-4159.2007.05178.x
10.1093/jb/mvs105
10.1186/1742-2094-11-99
10.1007/s00018-013-1365-6
10.1186/1742-2094-9-249
10.1172/JCI116309
10.1212/WNL.31.10.1241
10.1007/s10517-011-1494-6
10.1023/A:1021635826032
10.1385/JMN:16:2-3:309
10.1002/jcp.24927
10.1016/0896-6273(94)90042-6
10.1038/srep16524
10.1016/j.bbamcr.2006.09.010
10.1111/j.1471-4159.2012.07934.x
10.1007/s11010-011-0751-3
10.1016/S0076-6879(81)72003-2
10.1523/JNEUROSCI.4537-10.2011
10.1016/j.tcb.2011.06.004
10.1007/s11481-012-9426-4
10.1002/ana.410210305
10.1016/0165-3806(85)90252-4
10.1096/fj.05-3861com
10.1203/PDR.0b013e31819ea4eb
10.1007/s10545-010-9100-z
10.1007/s11011-007-9079-9
10.1146/annurev.genom.4.070802.110424
10.1093/brain/84.2.310
10.4049/jimmunol.1103109
10.1016/j.bpa.2010.11.001
10.1016/S0022-2275(20)40700-X
10.1016/j.bbadis.2012.03.011
10.1007/BF01101703
10.1016/j.neuint.2013.01.004
10.1016/S0896-6273(04)00003-0
10.1093/brain/76.4.551
10.1093/clinchem/8.3.302
10.1007/s11745-014-3911-x
10.1124/jpet.105.087536
10.1016/j.plefa.2013.08.008
10.1038/ng1196-348
10.1016/j.bbadis.2012.05.008
10.1002/jcb.25305
10.1016/j.bbamcr.2006.08.010
10.1046/j.1471-4159.2003.02246.x
10.1016/j.bbalip.2010.01.001
10.1006/bbrc.1996.1478
10.1016/j.expneurol.2005.04.017
10.1016/S0022-2275(20)43109-8
10.1053/ejpn.2001.0467
10.1073/pnas.93.2.814
10.1186/1742-2094-9-51
10.1007/978-1-4757-1830-0
10.1194/jlr.M044586
10.1007/s10545-009-1155-3
10.1016/j.mce.2006.03.016
10.1016/0003-2697(76)90527-3
10.1212/WNL.51.1.26
10.1006/exnr.2000.7504
10.1007/s11745-013-3799-x
10.1016/0896-6273(94)90247-X
10.1093/ajcn/71.1.376s
10.1111/j.1600-0404.1996.tb00182.x
10.1007/BF02637067
10.1093/brain/123.1.105
10.1073/pnas.072211699
10.1002/ana.410440621
10.1155/2013/249101
10.1016/j.bbalip.2014.12.016
10.1016/j.pathophys.2010.04.004
10.1177/135245859900500i603
10.1016/S0022-2275(20)30187-5
10.1111/j.1471-4159.1970.tb00547.x
10.1194/jlr.R009761
10.1111/j.1742-1241.2009.02261.x
10.1136/jnnp-2016-313300
10.1023/A:1022549618333
10.1002/ana.410210304
10.1097/BOR.0b013e328362004d
10.1046/j.1471-4159.2001.00456.x
10.1007/s10545-007-0537-7
10.1016/j.febslet.2011.08.004
10.1111/j.1471-4159.1964.tb06720.x
10.1111/j.1471-4159.1966.tb10292.x
10.1086/662453
10.1002/(SICI)1098-1136(20000115)29:2<154::AID-GLIA9>3.0.CO;2-3
10.1016/j.febslet.2009.10.011
10.1016/S0022-2275(20)31527-3
10.1016/0024-3205(82)90600-2
10.1007/s00401-012-0978-4
10.1212/WNL.43.7.1389
10.1242/dmm.011338
10.1523/JNEUROSCI.4077-15.2016
10.1152/physrev.00033.2013
10.1007/BF02430599
10.1007/BF02668129
10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
10.1111/j.1471-4159.2012.07955.x
10.1007/s12031-007-0041-4
10.1016/j.ymgme.2004.08.008
10.1089/neu.2009.0994
10.1016/j.ymgme.2011.03.012
10.1002/eji.201344429
10.1016/0006-3002(57)90254-8
10.1002/mrdd.20108
10.1046/j.1471-4159.1997.69030889.x
10.1111/j.1471-4159.2011.07198.x
10.1002/ijc.28465
10.1007/S11745-000-0598-7
ContentType Journal Article
Copyright 2017 International Society for Neurochemistry
2017 International Society for Neurochemistry.
Copyright © 2017 International Society for Neurochemistry
Copyright_xml – notice: 2017 International Society for Neurochemistry
– notice: 2017 International Society for Neurochemistry.
– notice: Copyright © 2017 International Society for Neurochemistry
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
7U9
8FD
C1K
FR3
H94
P64
7X8
DOI 10.1111/jnc.14032
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1471-4159
EndPage 737
ExternalDocumentID 28369944
10_1111_jnc_14032
JNC14032
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: UND SMHS Seed Grant
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29L
2WC
31~
33P
36B
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
GX1
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
V8K
VH1
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XJT
YFH
YNH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QR
7TK
7U7
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
P64
7X8
ID FETCH-LOGICAL-c3532-96f5405aac6e0251477aa4e1eae79b283b3bb36be92ccd73addc4bdf3425a6563
IEDL.DBID DR2
ISSN 0022-3042
1471-4159
IngestDate Fri Jul 11 02:13:12 EDT 2025
Fri Jul 25 19:41:35 EDT 2025
Wed Feb 19 02:33:27 EST 2025
Tue Jul 01 04:39:09 EDT 2025
Thu Apr 24 23:02:37 EDT 2025
Wed Jan 22 16:22:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords acetate
phospholipase
fatty acid
myelination
acetyl-CoA
lipid
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 International Society for Neurochemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-96f5405aac6e0251477aa4e1eae79b283b3bb36be92ccd73addc4bdf3425a6563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28369944
PQID 1897632241
PQPubID 31528
PageCount 17
ParticipantIDs proquest_miscellaneous_1884166138
proquest_journals_1897632241
pubmed_primary_28369944
crossref_primary_10_1111_jnc_14032
crossref_citationtrail_10_1111_jnc_14032
wiley_primary_10_1111_jnc_14032_JNC14032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Journal of neurochemistry
PublicationTitleAlternate J Neurochem
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1968; 9
2012; 123
2011; 117
2013; 62
2002; 99
2011; 52
2010; 584
2013; 70
2008; 105
2010b; 33
2003; 278
2013; 6
2016; 36
1953; 76
2001; 42
2011; 352
2014; 134
2013b; 48
2010; 24
1976; 72
2008; 23
1984
1961; 84
2000; 123
1981; 72
2014; 94
1985; 10
2014; 11
2004; 41
2005; 195
2012; 188
2009; 65
1962; 8
2013; 89
1982; 30
1993; 43
2014; 49
1999; 24
1996; 93
2015; 1851
2000; 71
1996; 14
1970; 17
2005; 19
2001; 152
2010a; 27
2015; 230
2011; 86
1964; 11
1994; 13
2003; 28
2013; 25
2000; 47
1990; 15
2000; 5
2006; 1763
2006; 252
2007; 30
1966; 13
2007; 33
2011; 18
1996; 31
1998; 44
1996; 227
2015; 45
2010; 64
1969; 1
1969; 7
2002; 43
2003; 4
2011; 21
2010; 1801
2016; 117
2001; 16
2000; 166
1998; 51
2012a; 123
1981; 31
2014; 55
2016; 88
2004; 88
2000; 29
2004; 83
2015; 5
2006; 12
1991; 35
2013a; 8
2012; 1822
1997; 69
2005; 315
2011; 31
1978; 19
1993; 91
1999; 5
2012b; 9
2012; 152
2011; 103
2001; 83
1987; 21
2009; 32
2000; 35
2013
2001; 78
2011; 585
1985; 350
1957; 24
2012; 9
e_1_2_7_108_1
e_1_2_7_3_1
Ueno K. (e_1_2_7_106_1) 1978; 19
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Kracun I. (e_1_2_7_40_1) 1991; 35
Cumings J. N. (e_1_2_7_22_1) 1969; 7
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
Ferdinandusse S. (e_1_2_7_28_1) 2001; 42
e_1_2_7_91_1
Breackenridge W. C. (e_1_2_7_13_1) 1968; 9
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 44
  start-page: 980
  year: 1998
  end-page: 983
  article-title: Increased circulating antiganglioside antibodies in primary and secondary progressive multiple sclerosis
  publication-title: Ann. Neurol.
– volume: 23
  start-page: 43
  year: 2008
  end-page: 49
  article-title: Hexacosanoic and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X‐linked adrenoleukodystrophy: Lorenzo's oil effect
  publication-title: Metab. Brain Dis.
– volume: 70
  start-page: 4355
  year: 2013
  end-page: 4368
  article-title: Regulation of oligodendrocyte precursor migration during development, in adulthood and in pathology
  publication-title: Cell. Mol. Life Sci.
– volume: 13
  start-page: 805
  year: 1994
  end-page: 811
  article-title: Identification of myelin‐associated glycoprotein as a major myelin‐derived inhibitor of neurite growth
  publication-title: Neuron
– volume: 33
  start-page: 105
  year: 2007
  end-page: 113
  article-title: “Lorenzo's oil” therapy for x‐linked adrenoleukodystrophy: rationale and current assessment of efficacy
  publication-title: J. Mol. Neurosci.
– volume: 71
  start-page: 376S
  year: 2000
  end-page: 385S
  article-title: Therapeutic effects of docosahexaenoic acid ethyl ester in patients with generalized peroxisomal disorders
  publication-title: Am. J. Clin. Nur.
– volume: 123
  start-page: 873
  year: 2012
  end-page: 886
  article-title: Gap junction pathology in multiple sclerosis lesions and normal‐appearing white matter
  publication-title: Acta Neuropathol.
– volume: 21
  start-page: 232
  year: 1987
  end-page: 239
  article-title: Adrenoleukodystrophy: dietary oleic acid lowers hexacosanoate levels
  publication-title: Ann. Neurol.
– volume: 35
  start-page: 891
  year: 2000
  end-page: 898
  article-title: Intravenously injected [1‐14C]arachidonic acid targets phospholipids, and [1‐14C]palmitic acid targets neutral lipids in hearts of awake rats
  publication-title: Lipids
– volume: 31
  start-page: S145
  issue: Suppl
  year: 1996
  end-page: S152
  article-title: Docosahexaenoic acid therapy in docosahexaenoic acid‐deficient patients with disorders of peroxisomal biogenesis
  publication-title: Lipids
– volume: 62
  start-page: 296
  year: 2013
  end-page: 305
  article-title: Acetate supplementation increases brain phosphocreatine and reduces AMP levels with no effect on mitochondrial biogenesis
  publication-title: Neurochem. Int.
– volume: 117
  start-page: 574
  year: 2016
  end-page: 588
  article-title: Acetate as a metabolic and epigenetic modifier of cancer therapy
  publication-title: J. Cell. Biochem.
– volume: 31
  start-page: 2009
  year: 2011
  end-page: 2015
  article-title: Actin polymerization is essential for myelin sheath fragmentation during Wallerian degeneration
  publication-title: J. Neurosci.
– volume: 19
  start-page: 1407
  year: 2005
  end-page: 1421
  article-title: HMG‐CoA reductase inhibitor augments survival and differentiation of oligodendrocyte progenitors in animal model of multiple sclerosis
  publication-title: FASEB J.
– volume: 278
  start-page: 2758
  year: 2003
  end-page: 2766
  article-title: Post‐activation turn‐off of NF‐kappa B‐dependent transcription is regulated by acetylation of p65
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 681
  year: 2009
  end-page: 685
  article-title: Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith‐Lemli‐Opitz syndrome
  publication-title: Pediatr. Res.
– volume: 18
  start-page: 21
  year: 2011
  end-page: 29
  article-title: The relevance of animal models in multiple sclerosis research
  publication-title: Pathophysiology
– volume: 21
  start-page: 240
  year: 1987
  end-page: 249
  article-title: A new dietary therapy for adrenoleukodystrophy: biochemical and preliminary clinical results in 36 patients
  publication-title: Ann. Neurol.
– volume: 134
  start-page: 1300
  year: 2014
  end-page: 1310
  article-title: Triacetin‐based acetate supplementation as chemotherapeutic adjuvant therapy in glioma
  publication-title: Int. J. Cancer
– volume: 21
  start-page: 585
  year: 2011
  end-page: 593
  article-title: Central nervous ystem myelin: structure, synthesis, and assembly
  publication-title: Trends Cell Biol.
– volume: 11
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation
  publication-title: J. Neuroinflammation
– volume: 84
  start-page: 310
  year: 1961
  end-page: 319
  article-title: Brain lipids in multiple sclerosis and other diseases
  publication-title: Brain
– volume: 25
  start-page: 496
  year: 2013
  end-page: 501
  article-title: Multiple sclerosis: autoimmunity and viruses
  publication-title: Curr. Opin. Rheumatol.
– volume: 33
  start-page: 195
  year: 2010b
  end-page: 210
  article-title: Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease
  publication-title: J. Inherit. Metab. Dis.
– volume: 94
  start-page: 461
  year: 2014
  end-page: 518
  article-title: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration
  publication-title: Physiol. Rev.
– volume: 10
  start-page: 1483
  year: 1985
  end-page: 1497
  article-title: Disturbance of lipid composition in spinal cord of rabbits with experimental allergic encephalomyelitis
  publication-title: Neurochem. Res.
– volume: 15
  start-page: 1051
  year: 1990
  end-page: 1053
  article-title: Lipid changes in central nervous system membranes in experimental allergic encephalomyelitis (EAE)
  publication-title: Neurochem. Res.
– volume: 5
  start-page: 379
  year: 1999
  end-page: 388
  article-title: Multiple sclerosis is associated with enhanced B cell responses to the ganglioside GD1a
  publication-title: Mult. Scler.
– volume: 1763
  start-page: 1733
  year: 2006
  end-page: 1748
  article-title: Peroxisome biogenesis disorders
  publication-title: Biochim. Biophys. Acta
– volume: 117
  start-page: 264
  year: 2011
  end-page: 274
  article-title: Acetate supplementation attenuates lipopolysaccharide‐induced neuroinflammation
  publication-title: J. Neurochem.
– start-page: 1
  year: 2013
  end-page: 11
  article-title: Current and future therapies for multiple sclerosis
  publication-title: Scientifica
– volume: 13
  start-page: 757
  year: 1994
  end-page: 767
  article-title: A novel role for myelin‐associated glycoprotein as an inhibitor of axonal regeneration
  publication-title: Neuron
– volume: 43
  start-page: 1389
  year: 1993
  end-page: 1397
  article-title: Docosahexaenoic acid–a new therapeutic approach to peroxisomal‐disorder patients: experience with two cases
  publication-title: Neurology
– volume: 103
  start-page: 203
  year: 2011
  end-page: 206
  article-title: A safety trial of high dose glyceryl triacetate for canavan disease
  publication-title: Mol. Genet. Metab.
– volume: 1822
  start-page: 1421
  year: 2012
  end-page: 1429
  article-title: Clinical diagnosis, biochemical findings and MRI spectrum of perxisomal disorders
  publication-title: Biochem. Biophys. Acta.
– volume: 83
  start-page: 252
  year: 2004
  end-page: 263
  article-title: The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum
  publication-title: Mol. Genet. Metab.
– volume: 47
  start-page: 707
  year: 2000
  end-page: 717
  article-title: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination
  publication-title: Ann. Neurol.
– volume: 1
  start-page: 85
  year: 1969
  end-page: 86
  article-title: Quantitative analysis of phospholipids by thin‐layer chromatography and phosphorus analysis of spots
  publication-title: Lipids
– volume: 152
  start-page: 387
  year: 2012
  end-page: 395
  article-title: Very long‐chain fatty acids: elongation, physiology and related disorders
  publication-title: J. Biochem.
– volume: 43
  start-page: 59
  year: 2002
  end-page: 68
  article-title: Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat
  publication-title: J. Lipid Res.
– volume: 230
  start-page: 1929
  year: 2015
  end-page: 1943
  article-title: Acetate supplementation as a means of inducing glioblastoma stem‐like cell growth arrest
  publication-title: J. Cell. Physiol.
– volume: 152
  start-page: 224
  year: 2001
  end-page: 227
  article-title: Changes in phospholipid composiiton of the spinal cord in rabbits with allergic encephalomyelitis as an experimental model of multiple sclerosis
  publication-title: Exp. Biol. Med.
– year: 1984
– volume: 166
  start-page: 227
  year: 2000
  end-page: 234
  article-title: A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice
  publication-title: Exp. Neurol.
– volume: 27
  start-page: 293
  year: 2010a
  end-page: 298
  article-title: Metabolic acetate therapy for the treatment of traumatic brain injury
  publication-title: J. Neurotrauma
– volume: 42
  start-page: 1987
  year: 2001
  end-page: 1995
  article-title: Identification of the peroxisomal β‐oxidation enzymes involved in the biosynthesis of docosahexaeonic acid
  publication-title: J. Lipid Res.
– volume: 19
  start-page: 863
  year: 1978
  end-page: 871
  article-title: Gangliosides of human, cat, and rabbit spinal cords and cord myelin
  publication-title: J. Lipid Res.
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal. Biochem.
– volume: 252
  start-page: 216
  year: 2006
  end-page: 223
  article-title: Canavan disease and the role of ‐acetylaspartate in myelin synthesis
  publication-title: Mol. Cell. Endocrinol.
– volume: 51
  start-page: 26
  year: 1998
  end-page: 32
  article-title: MRI evidence that docosahexaenoic acid ethyl ester improves myelination in generalized peroxisomal disorders
  publication-title: Neurology
– volume: 584
  start-page: 1741
  year: 2010
  end-page: 1747
  article-title: Brain gangliosides in axon‐myelin stability and axon regeneration
  publication-title: FEBS Lett.
– volume: 99
  start-page: 8412
  year: 2002
  end-page: 8417
  article-title: Gangliosides are functional nerve cell ligands for myelin‐associated glycoprotein (MAG), an inhibitor of nerve regeneration
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 585
  start-page: 3715
  year: 2011
  end-page: 3723
  article-title: The molecular basis of neurodegeneration in multiple sclerosis
  publication-title: FEBS Lett.
– volume: 24
  start-page: 604
  year: 1957
  end-page: 611
  article-title: Quantitative estimation of sialic acids. II. A colorimetric resorcinol‐hydrochloric acid method
  publication-title: Biochim. Biophys. Acta
– volume: 8
  start-page: 287
  year: 2013a
  end-page: 300
  article-title: Modulation of inflammatory cytokines and mitogen‐activated protein kinases by acetate in primary astrocytes
  publication-title: J. Neuroimmune Pharmacol.
– volume: 35
  start-page: 289
  year: 1991
  end-page: 295
  article-title: Human brain gangliosides in development, aging and disease
  publication-title: Int. J. Dev. Biol.
– volume: 105
  start-page: 763
  year: 2008
  end-page: 772
  article-title: Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis
  publication-title: J. Neurochem.
– volume: 89
  start-page: 273
  year: 2013
  end-page: 278
  article-title: Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelinatin: role of cyclooxygenase‐2
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
– volume: 188
  start-page: 5723
  year: 2012
  end-page: 5733
  article-title: Ceramide synthase 6 plays a critical role in the development of experimental autoimmune encephalomyelitis
  publication-title: J. Immunol.
– volume: 8
  start-page: 302
  year: 1962
  end-page: 309
  article-title: A rapid and specific ultramicro method for total serum cholesterol
  publication-title: Clin. Chem.
– volume: 7
  start-page: 255
  year: 1969
  end-page: 260
  article-title: The lipid composition of pure myelin in some demyelinating disorders
  publication-title: Neuropatol. Pol.
– volume: 52
  start-page: 419
  year: 2011
  end-page: 434
  article-title: Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models
  publication-title: J. Lipid Res.
– volume: 1851
  start-page: 999
  year: 2015
  end-page: 1005
  article-title: Metabolism and functions of lipids in myelin
  publication-title: Biochem. Biophys. Acta.
– volume: 350
  start-page: 85
  year: 1985
  end-page: 95
  article-title: Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies
  publication-title: Brain Res.
– volume: 69
  start-page: 889
  year: 1997
  end-page: 901
  article-title: Phospholipase A and its role in brain tissue
  publication-title: J. Neurochem.
– volume: 315
  start-page: 297
  year: 2005
  end-page: 303
  article-title: Progress toward acetate supplementation therapy for canavan disease: glyceryl triacetate administration increases acetate but not ‐acetylaspartate, levels in brain
  publication-title: J. Pharmacol. Exp. Ther.
– volume: 78
  start-page: 736
  year: 2001
  end-page: 745
  article-title: Intraneuronal ‐acetylaspartate supplies acetyl groups for myelin lipid synthesis: evidence for myelin‐associated aspartoacylase
  publication-title: J. Neurochem.
– volume: 28
  start-page: 5
  year: 2003
  end-page: 13
  article-title: Turnover of myelin lipids in aging brain
  publication-title: Neurochem. Res.
– volume: 49
  start-page: 621
  year: 2014
  end-page: 631
  article-title: Acetate treatment increases fatty acid content in LPS‐stimulated BV2 microglia
  publication-title: Lipids
– volume: 55
  start-page: 524
  year: 2014
  end-page: 530
  article-title: Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long‐chain fatty acid
  publication-title: J. Lipid Res.
– volume: 48
  start-page: 651
  year: 2013b
  end-page: 662
  article-title: Acetate reduces PGE2 release and modulates phospholipase and cyclooxygenase levels in neuroglia stimulated with lipopolysaccharide
  publication-title: Lipids
– volume: 1763
  start-page: 1707
  year: 2006
  end-page: 1720
  article-title: Peroxisomal disorders: the single peroxisomal enzyme deficiencies
  publication-title: Biochim. Biophys. Acta
– volume: 76
  start-page: 551
  year: 1953
  end-page: 562
  article-title: The cerebral lipids in disseminated sclerosis and in amaurotic family idiocy
  publication-title: Brain
– volume: 14
  start-page: 348
  year: 1996
  end-page: 352
  article-title: Mice lacking both subunits of lysosomal beta‐hexosaminidase display ganliosidosis and mucopolysaccharidosis
  publication-title: Nat. Genet.
– volume: 41
  start-page: 323
  year: 2004
  end-page: 335
  article-title: Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis‐like disease
  publication-title: Neuron
– volume: 91
  start-page: 881
  year: 1993
  end-page: 888
  article-title: Impaired degradation of leukotrienes in patients with peroxisome deficiency disorders
  publication-title: J. Clin. Invest.
– volume: 30
  start-page: 375
  year: 2007
  end-page: 387
  article-title: Effects of cholesterol and simvastatin treatment in patients with Smith‐Lemli‐Opitz syndrome (SLOS)
  publication-title: J. Inherit. Metab. Dis.
– volume: 32
  start-page: 640
  year: 2009
  end-page: 650
  article-title: Glyceryl triacetate for canavan disease: a low‐dose trial in infants and evaluation of a higher dose for toxicity in the tremor rat model
  publication-title: J. Inherit. Metab. Dis.
– volume: 4
  start-page: 165
  year: 2003
  end-page: 211
  article-title: Peroxisome biogenesis disorders
  publication-title: Annu. Rev. Genomics Hum. Genet.
– volume: 36
  start-page: 4698
  year: 2016
  end-page: 4707
  article-title: Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival
  publication-title: J. Neurosci.
– volume: 123
  start-page: 105
  year: 2000
  end-page: 115
  article-title: Oligodendrocyte survival, loss and brith in lesions of chronic‐stage mutliple sclerosis
  publication-title: Brain
– volume: 31
  start-page: 1241
  year: 1981
  end-page: 1249
  article-title: Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids
  publication-title: Neurology
– volume: 1801
  start-page: 272
  year: 2010
  end-page: 280
  article-title: Peroxisomes, lipid metabolism and lipotoxicity
  publication-title: Biochim. Biophys. Acta
– volume: 83
  start-page: 677
  year: 2001
  end-page: 682
  article-title: Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration
  publication-title: Biochimie
– volume: 72
  start-page: 5
  year: 1981
  end-page: 7
  article-title: Extraction of tissue lipids with a solvent of low toxicity
  publication-title: Methods Enzymol.
– volume: 5
  start-page: 65
  year: 2000
  end-page: 69
  article-title: Canavan disease: a review of recent developments
  publication-title: Eur. J. Paediatr. Neurol.
– volume: 24
  start-page: 551
  year: 2010
  end-page: 562
  article-title: Neuronal injury in chronic CNS inflammation
  publication-title: Best Pract. Res. Clin. Anaesthesiol.
– volume: 195
  start-page: 208
  year: 2005
  end-page: 217
  article-title: Myelin‐associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single‐ and double‐null mice
  publication-title: Exp. Neurol.
– volume: 13
  start-page: 961
  year: 1966
  end-page: 965
  article-title: Acetate metabolism in the nervous system. N‐acetyl‐L‐aspartic acid and the biosynthesis of brain lipids
  publication-title: J. Neurochem.
– volume: 227
  start-page: 131
  year: 1996
  end-page: 134
  article-title: Defective degradation of leukotrienes in peroxisomal‐deficient human hepatocytes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 29
  start-page: 154
  year: 2000
  end-page: 165
  article-title: Multiple functions of the myelin‐associated glycoprotein MAG (siglec‐4a) in formation and maintenance of myelin
  publication-title: Glia
– volume: 30
  start-page: 859
  year: 1982
  end-page: 866
  article-title: Central nervous system lipid alterations in rats with experimental allergic encephalomyelitis and its suppression by immunosuppressive drugs
  publication-title: Life Sci.
– volume: 11
  start-page: 29
  year: 1964
  end-page: 37
  article-title: Lipid biosynthesis in the central nervous system in experimental allergic encephalomyelitis
  publication-title: J. Neurochem.
– volume: 88
  start-page: 1168
  year: 2004
  end-page: 1178
  article-title: Rat brain arachidonic acid metabolism is increased by a 6‐day intracerebral ventricular infusion of bacterial lipopolysaccharide
  publication-title: J. Neurochem.
– volume: 17
  start-page: 677
  year: 1970
  end-page: 689
  article-title: Lipids and proteins in multiple sclerosis white matter
  publication-title: J. Neurochem.
– volume: 45
  start-page: 142
  year: 2015
  end-page: 152
  article-title: Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages
  publication-title: Eur. J. Immunol.
– volume: 16
  start-page: 317
  year: 2001
  end-page: 321
  article-title: Restoring the DHA levels in the brains of zellweger patients
  publication-title: J. Mol. Neurosci.
– volume: 9
  start-page: 249
  year: 2012
  article-title: Acetate supplemenation reduces microglia activation and brain interleukin‐1beta levels in a rat model of Lyme neuroborreliosis
  publication-title: J. Neuroinflammation
– volume: 88
  start-page: 137
  year: 2016
  end-page: 145
  article-title: Neurodegeneration in multiple sclerosis and neuromyelitis optica
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 86
  start-page: 287
  year: 2011
  end-page: 321
  article-title: Multiple sclerosis is not a disease of the immune system
  publication-title: Q. Rev. Biol.
– volume: 93
  start-page: 99
  year: 1996
  end-page: 103
  article-title: Different antiganglioside antibody pattern between relapsing‐remitting and progressive multiple sclerosis
  publication-title: Acta Neurol. Scand.
– volume: 64
  start-page: 637
  year: 2010
  end-page: 650
  article-title: Current and future disease‐modifying therapies in multiple sclerosis
  publication-title: Int. J. Clin. Pract.
– volume: 9
  start-page: 51
  year: 2012b
  article-title: Acetate supplementation modulates brain histone acetylation and decreases interleukin‐1beta expression in a rat model of neuroinflammation
  publication-title: J. Neuroinflammation
– volume: 93
  start-page: 814
  year: 1996
  end-page: 818
  article-title: Gangliosides are neuronal ligands for myelin‐associated glycoprotein
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 6
  start-page: 1353
  year: 2013
  end-page: 1363
  article-title: Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development
  publication-title: Dis. Model Mech.
– volume: 123
  start-page: 622
  year: 2012
  end-page: 634
  article-title: Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism
  publication-title: J. Neurochem.
– volume: 123
  start-page: 555
  year: 2012a
  end-page: 567
  article-title: Acetate reduces microglia inflammatory signaling in vitro
  publication-title: J. Neurochem.
– volume: 1822
  start-page: 1442
  year: 2012
  end-page: 1452
  article-title: Functions of plasmalogen lipids in health and disease
  publication-title: Biochem. Biophys. Acta.
– volume: 9
  start-page: 388
  year: 1968
  end-page: 393
  article-title: Specific distribution of short‐chain fatty acids in molecular distillates of bovine milk fat
  publication-title: J. Lipid Res.
– volume: 5
  start-page: 16524
  year: 2015
  article-title: Cofilin 1 activation prevents the defects in axon elongation and guidance induced by extracellular alpha‐synuclein
  publication-title: Sci. Rep.
– volume: 24
  start-page: 187
  year: 1999
  end-page: 197
  article-title: Plasma and red blood cell fatty acids in peroxisomal disorders
  publication-title: Neurochem. Res.
– volume: 12
  start-page: 157
  year: 2006
  end-page: 165
  article-title: Canavan disease: a white matter disorder
  publication-title: Ment. Retard. Dev. Disabil. Res. Rev.
– volume: 352
  start-page: 173
  year: 2011
  end-page: 180
  article-title: Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression
  publication-title: Mol. Cell. Biochem.
– ident: e_1_2_7_107_1
  doi: 10.1016/S0300-9084(01)01308-6
– ident: e_1_2_7_38_1
  doi: 10.1074/jbc.M209572200
– ident: e_1_2_7_92_1
  doi: 10.1111/j.1471-4159.2007.05178.x
– ident: e_1_2_7_39_1
  doi: 10.1093/jb/mvs105
– ident: e_1_2_7_94_1
  doi: 10.1186/1742-2094-11-99
– ident: e_1_2_7_15_1
  doi: 10.1007/s00018-013-1365-6
– ident: e_1_2_7_14_1
  doi: 10.1186/1742-2094-9-249
– ident: e_1_2_7_57_1
  doi: 10.1172/JCI116309
– ident: e_1_2_7_61_1
  doi: 10.1212/WNL.31.10.1241
– ident: e_1_2_7_74_1
  doi: 10.1007/s10517-011-1494-6
– ident: e_1_2_7_4_1
  doi: 10.1023/A:1021635826032
– ident: e_1_2_7_50_1
  doi: 10.1385/JMN:16:2-3:309
– ident: e_1_2_7_45_1
  doi: 10.1002/jcp.24927
– ident: e_1_2_7_65_1
  doi: 10.1016/0896-6273(94)90042-6
– volume: 35
  start-page: 289
  year: 1991
  ident: e_1_2_7_40_1
  article-title: Human brain gangliosides in development, aging and disease
  publication-title: Int. J. Dev. Biol.
– ident: e_1_2_7_104_1
  doi: 10.1038/srep16524
– ident: e_1_2_7_101_1
  doi: 10.1016/j.bbamcr.2006.09.010
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1471-4159.2012.07934.x
– ident: e_1_2_7_95_1
  doi: 10.1007/s11010-011-0751-3
– ident: e_1_2_7_72_1
  doi: 10.1016/S0076-6879(81)72003-2
– ident: e_1_2_7_35_1
  doi: 10.1523/JNEUROSCI.4537-10.2011
– ident: e_1_2_7_3_1
  doi: 10.1016/j.tcb.2011.06.004
– ident: e_1_2_7_98_1
  doi: 10.1007/s11481-012-9426-4
– ident: e_1_2_7_62_1
  doi: 10.1002/ana.410210305
– ident: e_1_2_7_79_1
  doi: 10.1016/0165-3806(85)90252-4
– ident: e_1_2_7_68_1
  doi: 10.1096/fj.05-3861com
– ident: e_1_2_7_17_1
  doi: 10.1203/PDR.0b013e31819ea4eb
– ident: e_1_2_7_6_1
  doi: 10.1007/s10545-010-9100-z
– ident: e_1_2_7_26_1
  doi: 10.1007/s11011-007-9079-9
– ident: e_1_2_7_111_1
  doi: 10.1146/annurev.genom.4.070802.110424
– ident: e_1_2_7_29_1
  doi: 10.1093/brain/84.2.310
– ident: e_1_2_7_87_1
  doi: 10.4049/jimmunol.1103109
– ident: e_1_2_7_114_1
  doi: 10.1016/j.bpa.2010.11.001
– volume: 19
  start-page: 863
  year: 1978
  ident: e_1_2_7_106_1
  article-title: Gangliosides of human, cat, and rabbit spinal cords and cord myelin
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)40700-X
– ident: e_1_2_7_71_1
  doi: 10.1016/j.bbadis.2012.03.011
– ident: e_1_2_7_83_1
  doi: 10.1007/BF01101703
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuint.2013.01.004
– ident: e_1_2_7_36_1
  doi: 10.1016/S0896-6273(04)00003-0
– ident: e_1_2_7_21_1
  doi: 10.1093/brain/76.4.551
– ident: e_1_2_7_10_1
  doi: 10.1093/clinchem/8.3.302
– ident: e_1_2_7_8_1
  doi: 10.1007/s11745-014-3911-x
– ident: e_1_2_7_55_1
  doi: 10.1124/jpet.105.087536
– ident: e_1_2_7_69_1
  doi: 10.1016/j.plefa.2013.08.008
– ident: e_1_2_7_84_1
  doi: 10.1038/ng1196-348
– ident: e_1_2_7_12_1
  doi: 10.1016/j.bbadis.2012.05.008
– ident: e_1_2_7_34_1
  doi: 10.1002/jcb.25305
– ident: e_1_2_7_109_1
  doi: 10.1016/j.bbamcr.2006.08.010
– ident: e_1_2_7_78_1
  doi: 10.1046/j.1471-4159.2003.02246.x
– ident: e_1_2_7_110_1
  doi: 10.1016/j.bbalip.2010.01.001
– ident: e_1_2_7_56_1
  doi: 10.1006/bbrc.1996.1478
– ident: e_1_2_7_70_1
  doi: 10.1016/j.expneurol.2005.04.017
– volume: 9
  start-page: 388
  year: 1968
  ident: e_1_2_7_13_1
  article-title: Specific distribution of short‐chain fatty acids in molecular distillates of bovine milk fat
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)43109-8
– ident: e_1_2_7_32_1
  doi: 10.1053/ejpn.2001.0467
– ident: e_1_2_7_113_1
  doi: 10.1073/pnas.93.2.814
– ident: e_1_2_7_97_1
  doi: 10.1186/1742-2094-9-51
– ident: e_1_2_7_60_1
  doi: 10.1007/978-1-4757-1830-0
– ident: e_1_2_7_85_1
  doi: 10.1194/jlr.M044586
– ident: e_1_2_7_47_1
  doi: 10.1007/s10545-009-1155-3
– ident: e_1_2_7_67_1
  doi: 10.1016/j.mce.2006.03.016
– ident: e_1_2_7_11_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_7_51_1
  doi: 10.1212/WNL.51.1.26
– ident: e_1_2_7_18_1
  doi: 10.1006/exnr.2000.7504
– ident: e_1_2_7_99_1
  doi: 10.1007/s11745-013-3799-x
– ident: e_1_2_7_58_1
  doi: 10.1016/0896-6273(94)90247-X
– ident: e_1_2_7_53_1
  doi: 10.1093/ajcn/71.1.376s
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1600-0404.1996.tb00182.x
– ident: e_1_2_7_49_1
  doi: 10.1007/BF02637067
– ident: e_1_2_7_112_1
  doi: 10.1093/brain/123.1.105
– ident: e_1_2_7_108_1
  doi: 10.1073/pnas.072211699
– ident: e_1_2_7_82_1
  doi: 10.1002/ana.410440621
– ident: e_1_2_7_59_1
  doi: 10.1155/2013/249101
– ident: e_1_2_7_88_1
  doi: 10.1016/j.bbalip.2014.12.016
– ident: e_1_2_7_25_1
  doi: 10.1016/j.pathophys.2010.04.004
– ident: e_1_2_7_54_1
  doi: 10.1177/135245859900500i603
– ident: e_1_2_7_77_1
  doi: 10.1016/S0022-2275(20)30187-5
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1471-4159.1970.tb00547.x
– ident: e_1_2_7_19_1
  doi: 10.1194/jlr.R009761
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1742-1241.2009.02261.x
– ident: e_1_2_7_37_1
  doi: 10.1136/jnnp-2016-313300
– ident: e_1_2_7_63_1
  doi: 10.1023/A:1022549618333
– ident: e_1_2_7_75_1
  doi: 10.1002/ana.410210304
– ident: e_1_2_7_23_1
  doi: 10.1097/BOR.0b013e328362004d
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1471-4159.2001.00456.x
– ident: e_1_2_7_33_1
  doi: 10.1007/s10545-007-0537-7
– ident: e_1_2_7_42_1
  doi: 10.1016/j.febslet.2011.08.004
– ident: e_1_2_7_93_1
  doi: 10.1111/j.1471-4159.1964.tb06720.x
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1471-4159.1966.tb10292.x
– ident: e_1_2_7_20_1
  doi: 10.1086/662453
– ident: e_1_2_7_86_1
  doi: 10.1002/(SICI)1098-1136(20000115)29:2<154::AID-GLIA9>3.0.CO;2-3
– ident: e_1_2_7_89_1
  doi: 10.1016/j.febslet.2009.10.011
– volume: 42
  start-page: 1987
  year: 2001
  ident: e_1_2_7_28_1
  article-title: Identification of the peroxisomal β‐oxidation enzymes involved in the biosynthesis of docosahexaeonic acid
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)31527-3
– ident: e_1_2_7_80_1
  doi: 10.1016/0024-3205(82)90600-2
– ident: e_1_2_7_48_1
  doi: 10.1007/s00401-012-0978-4
– ident: e_1_2_7_52_1
  doi: 10.1212/WNL.43.7.1389
– ident: e_1_2_7_7_1
  doi: 10.1242/dmm.011338
– ident: e_1_2_7_76_1
  doi: 10.1523/JNEUROSCI.4077-15.2016
– ident: e_1_2_7_90_1
  doi: 10.1152/physrev.00033.2013
– ident: e_1_2_7_103_1
  doi: 10.1007/BF02430599
– ident: e_1_2_7_81_1
  doi: 10.1007/BF02668129
– volume: 7
  start-page: 255
  year: 1969
  ident: e_1_2_7_22_1
  article-title: The lipid composition of pure myelin in some demyelinating disorders
  publication-title: Neuropatol. Pol.
– ident: e_1_2_7_46_1
  doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
– ident: e_1_2_7_96_1
  doi: 10.1111/j.1471-4159.2012.07955.x
– ident: e_1_2_7_64_1
  doi: 10.1007/s12031-007-0041-4
– ident: e_1_2_7_100_1
  doi: 10.1016/j.ymgme.2004.08.008
– ident: e_1_2_7_5_1
  doi: 10.1089/neu.2009.0994
– ident: e_1_2_7_91_1
  doi: 10.1016/j.ymgme.2011.03.012
– ident: e_1_2_7_44_1
  doi: 10.1002/eji.201344429
– ident: e_1_2_7_102_1
  doi: 10.1016/0006-3002(57)90254-8
– ident: e_1_2_7_41_1
  doi: 10.1002/mrdd.20108
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1471-4159.1997.69030889.x
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1471-4159.2011.07198.x
– ident: e_1_2_7_105_1
  doi: 10.1002/ijc.28465
– ident: e_1_2_7_66_1
  doi: 10.1007/S11745-000-0598-7
SSID ssj0016461
Score 2.397055
Snippet Acetate supplementation increases brain acetyl‐CoA metabolism, alters histone and non‐histone protein acetylation, increases brain energy reserves, and is...
Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms acetate
Acetates - therapeutic use
Acetic acid
Acetyl Coenzyme A - metabolism
Acetylation
acetyl‐CoA
Animal models
Animals
Behavior, Animal - drug effects
Borreliosis
Brain
Cholesterol
Choline
Chromatography, Thin Layer
Dietary supplements
Disease Models, Animal
Encephalomyelitis, Autoimmune, Experimental - chemically induced
Encephalomyelitis, Autoimmune, Experimental - immunology
Encephalomyelitis, Autoimmune, Experimental - pathology
Encephalomyelitis, Autoimmune, Experimental - prevention & control
Energy reserves
Esters
Ethanolamine
Experimental allergic encephalomyelitis
fatty acid
Fatty acids
Fatty Acids - metabolism
Female
Glycoproteins
Histochemistry
Histones
Inflammation
lipid
Lipid metabolism
Lipid Metabolism - drug effects
Lipid Metabolism - physiology
Lipids
Metabolism
Mice
Mice, Inbred C57BL
Multiple sclerosis
Myelin
Myelin Sheath - metabolism
Myelin-Oligodendrocyte Glycoprotein - toxicity
myelination
Neurochemistry
Neuroprotection
Oligodendrocyte-myelin glycoprotein
Peptide Fragments - toxicity
Phosphatidylserine
Phospholipase
Phospholipase A2
Phospholipases A2 - metabolism
Protein turnover
Rodents
Spinal cord
Spinal Cord - drug effects
Spinal Cord - enzymology
Spinal cord injuries
Statistics, Nonparametric
Triglycerides - pharmacology
Title Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.14032
https://www.ncbi.nlm.nih.gov/pubmed/28369944
https://www.proquest.com/docview/1897632241
https://www.proquest.com/docview/1884166138
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CLu2lj6SPbdIyLaX04tC1tH6Q07J0SRaaQ2kgh4KRZJk69dpLbR-SU39Cj_19_SWZkR8kbQOlF2PwGEloZvSNNPoG4HUwVWTOofAIq2Z8JUd62lDUytxhMvSDNHLJ4x9OgqNTuTqbnW3B4XAXpuOHGDfc2DKcv2YDV7q-buRkP0w2x_6Xc7UYEH0cqaOYNms6MoWTZvasQi6LZ_jz5lr0B8C8iVfdgrO8D5-HrnZ5Jl8P2kYfmMvfWBz_cywP4F4PRHHeac5D2LLlDuzOSwrC1xf4Bl1qqNtz34E7i6Es3C78JI_Ciey05KEytrkofn3_sajmuLYNKVSR12tkzs6yZRSLeXlOs4aqTNEdzNdYb7gQF3LUi0W-yVPkdHla-0gW1-S3sG417w7ZFJsKr5cgQNU2Vc43WiyyR9p8UQX11nIKX_0ITpfvPy2OvL68g2fETPheHGQMF5UygeVIR4ahUtJOrbJhrAn2aKG1CLSNfWPSUJAnNlKnmSA3owiGisewXValfQqYvbMiMDbyQ0URmJRaqVjKzI9mOvS1mU3g7TDRiem5z7kER5GMMVBpEjcDE3g1im46wo-_Ce0P2pL0Nl8n04ignWBINIGX42eaHT6CUaWtWpbhY16CUNEEnnRaNrZCIw5i6jZ11unK7c0nq5OFe3n276J7cNdnROI2kPZhu_nW2ueEpxr9whkOPZfHqyv1uiAH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VAuFFoeCwUGhBCXrbqxNw-Jy2pFtZR2D6iVekGR7TgikE1WTXIoJ34CR34fv4QZ56GWh4S4RcpEduSZ8Tfj8TcAL_yJInMOxJiwaspXcuRYG4pamTtMBp6fhK54_GTpL87k0fn0fANe93dhWn6IIeHGluH8NRs4J6SvWjkZELPNkQO-wR29XUD1fiCPYuKsycAVTrrZ8Qq5Op7-0-u70W8Q8zpidVvO4TZ86CfbVpp83m9qvW--_MLj-L9_cxtudVgUZ63y3IENW-zA7qygOHx1iS_RVYe6tPsObM37znC78J2cCtey066Hytj6Mv_x9du8nOHK1qRTeVatkGk7i4aBLGbFJ1o4VEWC7my-wmrNvbiQA1_Ms3WWIFfM0_ZHsrgi14VVozlBZBOsS7zahQBVU5cZX2qxyE5p_VHlNFvLVXzVXTg7fHM6X4y7Dg9jI6bCG0d-yohRKeNbDnZkECgl7cQqG0SakI8WWgtf28gzJgkEOWMjdZIK8jSKkKi4B5tFWdgHgOmBFb6xoRcoCsKk1EpFUqZeONWBp810BK_6lY5NR3_OXTjyeAiDChO7FRjB80F03XJ-_Elor1eXuDP7Kp6EhO4Eo6IRPBte0-rwKYwqbNmwDJ_0EooKR3C_VbNhFPpjP6Jp02Sdsvx9-PhoOXcPD_9d9ClsLU5PjuPjt8t3j-CmxwDF5ZP2YLO-aOxjgle1fuKs6CcB8yMo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgGXAi2PhQIDQohLqm7szUOcVltWpcAKISr1gBTZjiNCs05EkkM58RM48vv4Jcw4D7U8JMQtUiayo3n4G3v8DWNPgqlEdw65h1g1oys5wlMas1biDhOhH6SRKx5_swoOj8XRyexkgz0f7sJ0_BDjhht5hovX5OBVmp13cvQfIpvD-HtJBPsRmfTBu5E7inizpiNVOJpmTyvkyniGTy8uRr8hzIuA1a04y2vswzDXrtDkdK9t1J7-8guN43_-zHW21SNRmHemc4NtGLvNduYWs_D1GTwFVxvqNt232ZXF0Bduh33HkEKV7LjmgdSmOSt-fP22KOewNg1aVJHXayDSTtsSjIXcfkK1gbQpuJP5GuqKOnEBpb1Q5FWeAtXL4-KHsrDGwAV1q2h7yKTQlHC-BwHItilzutJigEJS9VEWOFtDNXz1TXa8fPF-cej1_R08zWfc9-IgI7wopQ4MpToiDKUUZmqkCWOFuEdxpXigTOxrnYYcQ7EWKs04xhmJOJTfYpu2tOYOg2zf8ECbyA8lpmBCKCljITI_mqnQV3o2Yc8GRSe6Jz-nHhxFMiZBVidOAxP2eBStOsaPPwntDtaS9E5fJ9MIsR0nTDRhj8bXqB06g5HWlC3J0DkvYqhowm53VjaOgn8cxDhtnKyzlb8PnxytFu7h7r-LPmSX3x4sk9cvV6_usas-oRO3mbTLNpvPrbmP2KpRD5wP_QSpNyHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+acetyl-CoA+metabolism+attenuates+injury+and+alters+spinal+cord+lipid+content+in+mice+subjected+to+experimental+autoimmune+encephalomyelitis&rft.jtitle=Journal+of+neurochemistry&rft.au=Chevalier%2C+Amber+C&rft.au=Rosenberger%2C+Thad+A&rft.date=2017-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=141&rft.issue=5&rft.spage=721&rft_id=info:doi/10.1111%2Fjnc.14032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon