The Clock‐NAD+‐Sirtuin connection in nonalcoholic fatty liver disease

Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver i...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 237; no. 8; pp. 3164 - 3180
Main Authors Aggarwal, Savera, Trehanpati, Nirupma, Nagarajan, Perumal, Ramakrishna, Gayatri
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1‐SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock‐controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock‐NAD+‐Sirtuin connection represents a novel “feedback loop” circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder. Graphical Central clock machinery maintains the liver homeostasis via the metabolic regulators Nicotinamide adenine dinucleotide (NAD+) and sirtuins.
AbstractList Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1‐SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock‐controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock‐NAD+‐Sirtuin connection represents a novel “feedback loop” circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder.
Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1‐SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock‐controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock‐NAD+‐Sirtuin connection represents a novel “feedback loop” circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder. Graphical Central clock machinery maintains the liver homeostasis via the metabolic regulators Nicotinamide adenine dinucleotide (NAD+) and sirtuins.
Abstract Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1‐SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)‐dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock‐controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock‐NAD+‐Sirtuin connection represents a novel “feedback loop” circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder.
Author Nagarajan, Perumal
Ramakrishna, Gayatri
Aggarwal, Savera
Trehanpati, Nirupma
Author_xml – sequence: 1
  givenname: Savera
  surname: Aggarwal
  fullname: Aggarwal, Savera
  organization: Institute of Liver and Biliary Sciences
– sequence: 2
  givenname: Nirupma
  surname: Trehanpati
  fullname: Trehanpati, Nirupma
  organization: Institute of Liver and Biliary Sciences
– sequence: 3
  givenname: Perumal
  surname: Nagarajan
  fullname: Nagarajan, Perumal
  organization: National Institute of Immunology
– sequence: 4
  givenname: Gayatri
  orcidid: 0000-0003-4345-294X
  surname: Ramakrishna
  fullname: Ramakrishna, Gayatri
  email: rgayatri@ilbs.in
  organization: Institute of Liver and Biliary Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35616339$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtOwzAQhi0Eog9YcAEUiQ0IpbXjxq6XVXgVVYBEWUeuM1Fd0rjYCag7jsAZOQkuKSyQ2HhkzTffaP4O2i1NCQgdEdwjGEf9hVr1KOY82kFtggUPByyOdlHb90go4gFpoY5zC4yxEJTuoxaNGWGUijYaT-cQJIVRz5_vH3eji3NfHrWtal0GypQlqEqbMvA_v1MWysxNoVWQy6paB4V-BRtk2oF0cID2clk4ONzWLnq6upwmN-Hk_nqcjCahojGNQk4GcUSFJBnwiHFJqVQxp5T4J59RieVwmAlgasgVZ5EgjMwE5CojHISkknbRaeNdWfNSg6vSpXYKikKWYGqXeinGfhBzj578QRemtv4MT3FM4s1e5qmzhlLWOGchT1dWL6VdpwSnm3xTn2_6na9nj7fGeraE7Jf8CdQD_QZ40wWs_zelt8lDo_wC8jiFyQ
CitedBy_id crossref_primary_10_3390_life14060729
crossref_primary_10_1016_j_cclet_2023_109392
crossref_primary_10_3389_fpubh_2024_1332346
crossref_primary_10_1093_toxsci_kfae057
crossref_primary_10_3390_molecules28041874
crossref_primary_10_51507_j_jams_2023_16_3_109
crossref_primary_10_1016_j_lfs_2024_122814
Cites_doi 10.1126/science.1171641
10.1002/hep4.1530
10.1126/science.1243417
10.3389/fgene.2019.00435
10.1007/s10620-016-4401-1
10.1016/j.cell.2006.06.050
10.1242/jcs.081067
10.1016/j.ebiom.2018.09.037
10.1111/bph.13513
10.1152/physrev.00030.2018
10.3389/fphys.2018.00193
10.1371/journal.pgen.1004047
10.1073/pnas.1314066111
10.1126/science.1170803
10.1016/j.cell.2014.06.050
10.3748/wjg.v13.i31.4242
10.1016/j.cmet.2009.02.006
10.1016/j.cgh.2014.02.024
10.7150/ijbs.19370
10.1016/j.celrep.2018.07.014
10.1016/j.celrep.2017.07.065
10.1097/SHK.0000000000000094
10.1152/ajpgi.90358.2008
10.1074/jbc.M116.737114
10.1371/journal.pone.0149344
10.1016/j.jhep.2010.11.005
10.1016/j.freeradbiomed.2020.11.014
10.1126/science.1226339
10.1038/nature09253
10.2337/diabetes.48.11.2182
10.1016/S0016-5085(15)33324-2
10.1161/ATVBAHA.119.312613
10.1210/jc.2009-2148
10.1002/hep.28245
10.1038/ijo.2012.180
10.1038/cddis.2017.564
10.1074/jbc.M115.692244
10.1038/srep00425
10.1016/j.dld.2014.09.020
10.1371/journal.pgen.1004244
10.1371/journal.pbio.1000595
10.1016/j.cub.2006.04.026
10.1038/s42255-019-0136-6
10.1136/bmj.k4641
10.1016/j.cmet.2011.08.014
10.1016/j.cmet.2015.08.006
10.1136/oemed-2014-102150
10.1074/jbc.RA119.008708
10.1016/S2468-1253(20)30213-2
10.1093/aje/kwu117
10.1016/j.molmet.2015.09.003
10.1101/gad.180406.111
10.1016/j.celrep.2013.10.007
10.1038/nsmb.2990
10.1038/s41392-020-00311-7
10.1053/j.gastro.2019.11.312
10.1055/s-2001-12928
10.1007/s13105-015-0447-3
10.1002/hep.27297
10.2174/138920009787522179
10.1146/annurev-pharmtox-010617-052645
10.1111/imj.14709
10.1016/j.bbapap.2009.10.024
10.1159/000436997
10.1074/jbc.M111.218990
10.1002/hep.26992
10.1053/j.gastro.2020.01.050
10.1016/j.cell.2008.07.010
10.1016/j.diabres.2015.10.009
10.1126/science.1108750
10.1161/ATVBAHA.113.302342
10.1016/j.molcel.2017.09.008
10.1007/s00018-018-2860-6
10.1096/fj.10-173492
10.1017/S0007114515002433
10.1016/j.cell.2008.07.002
10.1038/ncomms15691
10.1016/j.cmet.2014.08.001
10.1016/j.cell.2019.04.025
10.1073/pnas.1803410115
10.1002/hep.28912
10.1371/journal.pcbi.1004144
10.1002/hep.23280
10.1128/MCB.01658-12
10.1016/j.cmet.2013.12.016
10.1016/j.cmet.2012.04.022
10.1016/j.cmet.2014.03.006
10.1113/JP275589
10.1016/j.cell.2013.05.027
10.1016/j.cmet.2010.06.009
10.1016/j.cmet.2010.10.005
10.1186/s12944-017-0464-z
10.1038/s41467-018-03898-2
10.1073/pnas.1118726109
10.1210/en.2011-2088
10.1016/j.cmet.2017.05.004
10.1016/j.cell.2018.06.031
10.1113/JP280908
10.1038/srep02806
10.18632/oncotarget.12157
10.1016/j.metabol.2020.154337
10.15403/jgld.2014.1121.233.yck
10.1089/ars.2018.7544
10.1038/s41467-017-02537-6
10.1016/S0092-8674(02)00722-5
10.1101/gad.1901210
10.1074/jbc.M114.567628
10.1021/tx200538r
10.1126/science.1195027
10.1172/JCI132765
10.1016/j.bbrc.2019.01.143
10.1002/bies.10297
10.1016/j.jneuroim.2014.02.001
10.1042/BJ20100791
10.1073/pnas.1706945114
10.1016/j.jhep.2013.03.035
10.1371/journal.pone.0069622
10.1016/S1665-2681(19)31635-7
10.1016/j.cell.2008.06.050
10.3389/fonc.2020.00474
10.1152/ajpgi.00152.2020
10.1016/j.jnutbio.2015.06.006
10.1096/fj.14-256594
10.1136/gut.23.8.637
10.1007/s12020-014-0465-x
10.1038/s41574-018-0122-1
10.3390/nu11020322
10.1126/science.aaw7365
10.1016/s0960-9822(02)00759-5
10.1074/jbc.M109.088682
10.1073/pnas.1612917113
10.1074/jbc.M110.122978
10.1016/j.cub.2013.01.048
10.1016/j.celrep.2019.03.064
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
DBID NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.30772
DatabaseName PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 3180
ExternalDocumentID 10_1002_jcp_30772
35616339
JCP30772
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology, India
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3532-7145239a1de7267a33ac57331573fb3a0a88d9e6c87c7629161b9efcd17e9a3a3
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Fri Aug 16 08:18:39 EDT 2024
Thu Oct 03 05:27:21 EDT 2024
Thu Sep 26 15:37:16 EDT 2024
Sat Sep 28 08:24:05 EDT 2024
Sat Aug 24 00:54:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords NAD
Clock genes (CLOCK and BMAL1)
NAFLD/MAFLD
Sirtuin
circadian rhythm
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-7145239a1de7267a33ac57331573fb3a0a88d9e6c87c7629161b9efcd17e9a3a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-4345-294X
PMID 35616339
PQID 2701557336
PQPubID 1006363
PageCount 17
ParticipantIDs proquest_miscellaneous_2670062907
proquest_journals_2701557336
crossref_primary_10_1002_jcp_30772
pubmed_primary_35616339
wiley_primary_10_1002_jcp_30772_JCP30772
PublicationCentury 2000
PublicationDate August 2022
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2013; 3
2015; 148
2015; 71
2019; 11
2015; 72
2019; 10
2002; 12
2010; 466
2021; 600
1999; 48
2019; 15
2021; 162
2011; 54
2012; 15
2014; 28
2020; 10
2012; 125
2013; 8
2013; 5
2014; 23
2014; 20
2018; 174
2018; 9
2011; 124
2013; 59
2009; 10
2010; 24
2019; 27
2014; 19
2012; 26
2014; 12
2018; 36
2010; 9
2014; 10
2017; 62
2019; 1
2017; 65
2019; 39
2013; 342
2010; 285
2014; 41
2014; 158
2007; 13
2014; 44
2012; 109
2011; 9
2018; 24
2001; 21
2016; 11
2015; 114
2018; 596
2018; 115
2015; 110
2010; 330
2003; 25
2020; 158
2008; 134
2019; 294
2016; 291
2019; 177
2014; 269
2010; 51
2016; 173
2020; 319
2017; 5
2011; 433
2017; 8
2018; 363
2013; 23
2020; 367
2011; 14
2014; 60
1982; 23
2020; 7
2015; 47
2020; 4
2015; 49
2020; 130
2020; 50
2016; 113
2019; 511
2014; 59
2005; 308
2010; 1804
2013; 153
2011; 25
2002; 109
2006; 126
2018; 75
2012; 338
2009; 324
2011; 286
2014; 289
2017; 20
2021; 6
2015; 4
2017; 25
2006; 16
2015; 11
2020; 100
2014; 111
2015; 8
2015; 26
2012; 153
2013; 37
2012; 2
2013; 33
2017; 16
2015; 22
2017; 13
2014; 180
2016; 63
2009; 9
2012; 6
2020; 111S
2008; 295
2010; 95
2018; 58
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_116_1
e_1_2_7_90_1
Wu T. (e_1_2_7_122_1) 2014; 44
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_131_1
e_1_2_7_135_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_132_1
e_1_2_7_136_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_133_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_134_1
References_xml – volume: 100
  start-page: 145
  year: 2020
  end-page: 169
  article-title: SIRT6, a mammalian deacylase with multitasking abilities
  publication-title: Physiological Reviews
– volume: 58
  start-page: 231
  year: 2018
  end-page: 252
  article-title: Development and therapeutic potential of small‐molecule modulators of circadian systems
  publication-title: Annual Review of Pharmacology and Toxicology
– volume: 12
  start-page: 2092
  year: 2014
  end-page: 2103
  article-title: Resveratrol does not benefit patients with nonalcoholic fatty liver disease
  publication-title: Clinical Gastroenterology and Hepatology
– volume: 11
  issue: 2
  year: 2019
  article-title: Association between sleep disturbances and liver status in obese subjects with nonalcoholic fatty liver disease: A comparison with healthy controls
  publication-title: Nutrients.
– volume: 115
  start-page: 11643
  year: 2018
  end-page: 11648
  article-title: Computational and experimental insights into the circadian effects of SIRT1
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 20
  start-page: 856
  issue: 5
  year: 2014
  end-page: 869
  article-title: A SIRT7‐dependent acetylation switch of GABPβ1 controls mitochondrial function
  publication-title: Cell Metabolism
– volume: 294
  start-page: 11805
  year: 2019
  end-page: 11816
  article-title: Enhanced acetylation of ATP‐citrate lyase promotes the progression of nonalcoholic fatty liver disease
  publication-title: Journal of Biological Chemistry
– volume: 4
  start-page: 846
  year: 2015
  end-page: 856
  article-title: Enhanced insulin sensitivity in skeletal muscle and liver by physiological overexpression of SIRT6
  publication-title: Molecular Metabolism
– volume: 153
  start-page: 3258
  issue: 7
  year: 2012
  end-page: 3268
  article-title: Resveratrol stimulates cortisol biosynthesis by activating SIRT‐dependent deacetylation of P450scc
  publication-title: Endocrinology
– volume: 6
  start-page: 57
  issue: 1
  year: 2021
  end-page: 64
  article-title: Nomenclature and definition of metabolic‐associated fatty liver disease: A consensus from the Middle East and North Africa
  publication-title: The Lancet Gastroenterology and Hepatology
– volume: 24
  start-page: 1403
  year: 2010
  end-page: 1417
  article-title: Conserved role of SIRT1 orthologs in fasting‐dependent inhibition of the lipid/cholesterol regulator SREBP
  publication-title: Genes and Development
– volume: 9
  issue: 2
  year: 2011
  article-title: Genome‐wide and phase specific DNA‐binding rhythms of BMAL1 control circadian output functions in mouse liver
  publication-title: PLoS Biology
– volume: 1804
  start-page: 1584
  year: 2010
  end-page: 1590
  article-title: “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging
  publication-title: Biochimica et Biophysica Acta ‐ Proteins and Proteomics
– volume: 158
  start-page: 659
  year: 2014
  end-page: 672
  article-title: Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
  publication-title: Cell
– volume: 8
  year: 2013
  article-title: Genetic variation in the NOC gene is associated with body mass index in Chinese subjects
  publication-title: PLoS One
– volume: 47
  start-page: 181
  issue: 3
  year: 2015
  end-page: 190
  article-title: Nonalcoholic fatty liver disease: A precursor of the metabolic syndrome
  publication-title: Digestive and Liver Disease
– volume: 289
  start-page: 25925
  year: 2014
  end-page: 25935
  article-title: Liver clock protein BMAL1 promotes de novo lipogenesis through insulin‐mTORC2‐AKT signaling
  publication-title: Journal of Biological Chemistry
– volume: 291
  start-page: 23318
  year: 2016
  end-page: 23329
  article-title: Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in Mice
  publication-title: Journal of Biological Chemistry
– volume: 162
  start-page: 571
  year: 2021
  end-page: 581
  article-title: Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE degradation
  publication-title: Free Radical Biology and Medicine
– volume: 15
  start-page: 838
  year: 2012
  end-page: 847
  article-title: The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high‐fat diet‐induced obesity
  publication-title: Cell Metabolism
– volume: 286
  start-page: 14575
  year: 2011
  end-page: 14587
  article-title: Structure and biochemical functions of SIRT6
  publication-title: Journal of Biological Chemistry
– volume: 26
  start-page: 259
  year: 2012
  end-page: 270
  article-title: Dietary obesity‐associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2‐NAD+ system
  publication-title: Genes and Development
– volume: 15
  start-page: 75
  year: 2019
  end-page: 89
  article-title: Circadian clocks and insulin resistance
  publication-title: Nature Reviews Endocrinology
– volume: 95
  start-page: 3039
  issue: 6
  year: 2010
  end-page: 3047
  article-title: Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down‐regulated in nonalcoholic fatty liver disease
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 111S
  year: 2020
  article-title: Perturbation of the circadian clock and pathogenesis of NAFLD
  publication-title: Metabolism: Clinical and Experimental
– volume: 134
  start-page: 329
  year: 2008
  end-page: 340
  article-title: The NAD+‐dependent deacetylase SIRT1 modulates CLOCK‐mediated chromatin remodeling and circadian control
  publication-title: Cell
– volume: 54
  start-page: 795
  year: 2011
  end-page: 809
  article-title: Endoplasmic reticulum stress in liver disease
  publication-title: Journal of Hepatology
– volume: 124
  start-page: 833
  year: 2011
  end-page: 838
  article-title: Sirtuins at a glance
  publication-title: Journal of Cell Science
– volume: 5
  start-page: 654
  year: 2013
  end-page: 665
  article-title: SIRT7 represses myc activity to suppress er stress and prevent fatty liver disease
  publication-title: Cell Reports
– volume: 9
  start-page: 30
  year: 2018
  article-title: Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein
  publication-title: Nature Communications
– volume: 130
  start-page: 4282
  year: 2020
  end-page: 4300
  article-title: Nonalcoholic fatty liver disease in CLOCK mutant mice
  publication-title: Journal of Clinical Investigation
– volume: 600
  start-page: 1135
  year: 2021
  end-page: 1154
  article-title: NAD and NAFLD ‐ caution, causality and careful optimism
  publication-title: Journal of Physiology
– volume: 6
  start-page: P57
  issue: Suppl 3
  year: 2012
  article-title: Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1
  publication-title: BMC proceedings
– volume: 12
  start-page: 540
  year: 2002
  end-page: 550
  article-title: Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
  publication-title: Current Biology
– volume: 12
  start-page: 224
  year: 2010
  end-page: 236
  article-title: Hepatic‐specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
  publication-title: Cell Metabolism
– volume: 180
  start-page: 245
  year: 2014
  end-page: 250
  article-title: The relationship between obesity and exposure to light at night: Cross‐sectional analyses of over 100,000 women in the breakthrough generations study
  publication-title: American Journal of Epidemiology
– volume: 9
  start-page: 266
  year: 2010
  end-page: 270
  article-title: Visceral adipose tissue visfatin in nonalcoholic fatty liver disease
  publication-title: Annals of hepatology: official journal of the Mexican Association of Hepatology
– volume: 11
  year: 2015
  article-title: Predicted role of NAD utilization in the control of circadian rhythms during DNA damage response
  publication-title: PLoS Computational Biology
– volume: 65
  start-page: 616
  year: 2017
  end-page: 630
  article-title: Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration
  publication-title: Hepatology
– volume: 134
  start-page: 212
  year: 2008
  end-page: 214
  article-title: SIRT1 is a circadian deacetylase for core clock components
  publication-title: Cell
– volume: 433
  start-page: 505
  year: 2011
  end-page: 514
  article-title: Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
  publication-title: Biochemical Journal
– volume: 13
  start-page: 852
  year: 2017
  end-page: 867
  article-title: Emerging roles of SIRT1 in fatty liver diseases
  publication-title: International Journal of Biological Sciences
– volume: 28
  start-page: 4950
  year: 2014
  end-page: 4960
  article-title: The light‐dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock
  publication-title: FASEB Journal
– volume: 25
  start-page: 683
  year: 2003
  end-page: 690
  article-title: Reconstructing eukaryotic NAD metabolism
  publication-title: BioEssays
– volume: 109
  start-page: 5541
  year: 2012
  end-page: 5546
  article-title: Coordination of the transcriptome and metabolome by the circadian clock
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 1664
  year: 2011
  end-page: 1679
  article-title: Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver
  publication-title: FASEB Journal
– volume: 10
  year: 2020
  article-title: Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer
  publication-title: Frontiers in Oncology
– volume: 19
  start-page: 319
  year: 2014
  end-page: 330
  article-title: Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides
  publication-title: Cell Metabolism
– volume: 8
  start-page: 234
  issue: 4
  year: 2015
  end-page: 242
  article-title: The association between sleep duration and nonalcoholic fatty liver disease among Japanese men and women
  publication-title: Obesity Facts
– volume: 10
  start-page: 387
  issue: 5
  year: 2019
  end-page: 402
  article-title: Peroxiredoxin 6 confers protection against nonalcoholic fatty liver disease through maintaining mitochondrial function
  publication-title: Antioxidants & Redox Signaling
– volume: 342
  start-page: 342
  year: 2013
  article-title: Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
  publication-title: Science
– volume: 511
  start-page: 234
  year: 2019
  end-page: 238
  article-title: Sirt6 deacetylase activity regulates circadian rhythms via Per2
  publication-title: Biochemical and Biophysical Research Communications
– volume: 49
  start-page: 711
  year: 2015
  end-page: 716
  article-title: Plasma levels of SIRT1 associate with nonalcoholic fatty liver disease in obese patients
  publication-title: Endocrine
– volume: 295
  start-page: 833
  year: 2008
  end-page: 842
  article-title: Resveratrol alleviates alcoholic fatty liver in mice
  publication-title: American Journal of Physiology‐Gastrointestinal and Liver Physiology
– volume: 338
  start-page: 349
  year: 2012
  end-page: 354
  article-title: Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
  publication-title: Science
– volume: 10
  start-page: 10
  year: 2014
  article-title: Cell type‐specific functions of period genes revealed by novel adipocyte and hepatocyte circadian clock models
  publication-title: PLoS Genetics
– volume: 59
  start-page: 2196
  year: 2014
  end-page: 2206
  article-title: CLOCK/BMAL1 regulates circadian change of mouse hepatic insulin sensitivity by SIRT1
  publication-title: Hepatology
– volume: 44
  start-page: 410
  year: 2014
  end-page: 418
  article-title: Direct evidence of sirtuin downregulation in the liver of nonalcoholic fatty liver disease patients
  publication-title: Annals of Clinical & Laboratory Science
– volume: 11
  year: 2016
  article-title: SIRT1 disruption in human fetal hepatocytes leads to increased accumulation of glucose and lipids
  publication-title: PLoS One
– volume: 10
  year: 2019
  article-title: Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC‐1α signaling pathways
  publication-title: Frontiers in Genetics
– volume: 14
  start-page: 528
  issue: 4
  year: 2011
  end-page: 536
  article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet‐ and age‐induced diabetes in mice
  publication-title: Cell Metab
– volume: 319
  start-page: G549
  issue: 5
  year: 2020
  end-page: G563
  article-title: Bile acid metabolism and circadian rhythms
  publication-title: American Journal of Physiology. Gastrointestinal and Liver Physiology
– volume: 26
  start-page: 1298
  year: 2015
  end-page: 1307
  article-title: Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB‐p65 and histone 3
  publication-title: J NutrBiochem
– volume: 177
  start-page: 1448
  year: 2019
  end-page: 1462
  article-title: Defining the independence of the liver circadian clock
  publication-title: Cell
– volume: 110
  start-page: 301
  year: 2015
  end-page: 308
  article-title: Association between brain‐muscle‐ARNT‐like protein‐2 (BMAL2) gene polymorphism and type 2 diabetes mellitus in obese Japanese individuals: A cross‐sectional analysis of the Japan multi‐institutional collaborative cohort study
  publication-title: Diabetes Research and Clinical Practice
– volume: 50
  start-page: 1038
  issue: 9
  year: 2020
  end-page: 1047
  article-title: Nonalcoholic fatty liver disease (NAFLD): A review of epidemiology, risk factors, diagnosis and management
  publication-title: Internal Medicine Journal
– volume: 39
  start-page: 1682
  year: 2019
  end-page: 1698
  article-title: Inhibition of mitochondrial oxidative damage improves re‐endothelialization capacity of endothelial progenitor cells via SIRT3 (Sirtuin 3)‐enhanced SOD2 (Superoxide Dismutase 2) deacetylation in hypertension
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 113
  start-page: E6072
  year: 2016
  end-page: E6079
  article-title: Mammalian period represses and de‐represses transcription by displacing CLOCK‐BMAL1 from promoters in a cryptochrome‐dependent manner
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 596
  start-page: 2381
  year: 2018
  end-page: 2395
  article-title: Temporal dynamics of circadian phase shifting response to consecutive night shifts in healthcare workers: Role of light–dark exposure
  publication-title: Journal of Physiology
– volume: 158
  start-page: 1999
  year: 2020
  end-page: 2014
  article-title: MAFLD: A consensus‐driven proposed nomenclature for metabolic associated fatty liver disease
  publication-title: Gastroenterology
– volume: 158
  start-page: 1948
  issue: 7
  year: 2020
  end-page: 1966
  article-title: Circadian rhythms in the pathogenesis and treatment of fatty liver disease
  publication-title: Gastroenterology
– volume: 7
  start-page: 227
  issue: 1
  year: 2020
  article-title: NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential
  publication-title: Signal Transduction and Targeted Therapy
– volume: 173
  start-page: 2352
  issue: 15
  year: 2016
  end-page: 2368
  article-title: Hepatic NAD (+) deficiency as a therapeutic target for nonalcoholic fatty liver disease in ageing
  publication-title: British Journal of Pharmacology
– volume: 8
  year: 2017
  article-title: SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity
  publication-title: Cell Death and Disease
– volume: 23
  start-page: 637
  issue: 8
  year: 1982
  end-page: 642
  article-title: Diurnal changes in serum unconjugated bile acids in normal man
  publication-title: Gut
– volume: 37
  start-page: 1044
  year: 2013
  end-page: 1050
  article-title: Differences in circadian rhythmicity in CLOCK 3111T/C genetic variants in moderate obese women as assessed by thermometry, actimetry and body position
  publication-title: International Journal of Obesity
– volume: 308
  start-page: 1043
  year: 2005
  end-page: 1045
  article-title: Obesity and metabolic syndrome in circadian Clock mutant mice
  publication-title: Science
– volume: 3
  year: 2013
  article-title: Metabolic characterization of a Sirt5 deficient mouse model
  publication-title: Scientific Reports
– volume: 1
  start-page: 1141
  issue: 11
  year: 2019
  end-page: 1156
  article-title: SIRT7 couples light‐driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis
  publication-title: Nat Metab
– volume: 285
  start-page: 33959
  year: 2010
  end-page: 33970
  article-title: SIRT1 deacetylates and inhibits SREBP‐1C activity in regulation of hepatic lipid metabolism
  publication-title: Journal of Biological Chemistry
– volume: 63
  start-page: 1190
  issue: 4
  year: 2016
  end-page: 1204
  article-title: Eliciting the mitochondrial unfolded protein response by nictotinamide adenine dinucleotide repletion reverses fatty liver disease in mice
  publication-title: Hepatology
– volume: 126
  start-page: 801
  issue: 4
  year: 2006
  end-page: 810
  article-title: Nuclear receptor expression links the circadian clock to metabolism
  publication-title: Cell. 25
– volume: 324
  start-page: 654
  year: 2009
  end-page: 657
  article-title: Circadian control of the NAD+ salvage pathway by CLOCK‐SIRT1
  publication-title: Science
– volume: 22
  start-page: 709
  year: 2015
  end-page: 720
  article-title: Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness
  publication-title: Cell Metabolism
– volume: 291
  start-page: 10277
  year: 2016
  end-page: 10292
  article-title: Sirtuin 3 (SIRT3) Regulates alpha‐Smooth Muscle Actin (alpha‐SMA) production through the Succinate Dehydrogenase‐G Protein‐coupled Receptor 91 (GPR91) Pathway in Hepatic Stellate Cells
  publication-title: Journal of Biological Chemistry
– volume: 19
  start-page: 712
  issue: 4
  year: 2014
  end-page: 721
  article-title: SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin‐proteasome pathway
  publication-title: Cell Metabolism
– volume: 12
  start-page: 509
  year: 2010
  end-page: 520
  article-title: PER2 controls lipid metabolism by direct regulation of PPARγ
  publication-title: Cell Metabolism
– volume: 9
  start-page: 327
  year: 2009
  end-page: 338
  article-title: Hepatocyte‐specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
  publication-title: Cell Metabolism
– volume: 4
  start-page: 1183
  issue: 8
  year: 2020
  end-page: 1192
  article-title: Nicotinamide Adenine Dinucleotide metabolome is functionally depressed in patients undergoing liver transplantation for alcohol‐related liver disease
  publication-title: Hepatology Communications
– volume: 8
  start-page: 1845
  year: 2017
  end-page: 1859
  article-title: Sirtuins in glucose and lipid metabolism
  publication-title: Oncotarget
– volume: 20
  start-page: 1729
  year: 2017
  end-page: 1743
  article-title: Circadian and feeding rhythms orchestrate the diurnal liver acetylome
  publication-title: Cell Reports
– volume: 10
  start-page: 104
  issue: 2
  year: 2009
  end-page: 115
  article-title: Cytochrome P450 and the biological clock in mammals
  publication-title: Current Drug Metabolism
– volume: 9
  year: 2018
  article-title: The biological clock: A pivotal hub in nonalcoholic fatty liver disease pathogenesis
  publication-title: Frontiers in Physiology
– volume: 24
  start-page: 1597
  year: 2018
  end-page: 1609
  article-title: Elimination of age‐associated hepatic steatosis and correction of aging phenotype by inhibition of cdk4‐C/EBPα‐p300 Axis
  publication-title: Cell Reports
– volume: 23
  start-page: 372
  year: 2013
  end-page: 381
  article-title: Circadian disruption leads to insulin resistance and obesity
  publication-title: Current Biology
– volume: 27
  start-page: 649
  year: 2019
  end-page: 657
  article-title: Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice
  publication-title: Cell Reports
– volume: 363
  year: 2018
  article-title: Rotating night shift work and adherence to unhealthy lifestyle in predicting risk of type 2 diabetes: results from two large US cohorts of female nurses
  publication-title: BMJ
– volume: 324
  start-page: 651
  year: 2009
  end-page: 654
  article-title: Circadian clock feedback cycle through NAMPT‐mediated NAD+ biosynthesis
  publication-title: Science
– volume: 59
  start-page: 351
  issue: 2
  year: 2013
  end-page: 357
  article-title: Sleep duration and quality in relation to nonalcoholic fatty liver disease in middle‐aged workers and their spouses
  publication-title: Journal of Hepatology
– volume: 111
  start-page: 167
  year: 2014
  end-page: 172
  article-title: Circadian clock‐dependent and‐independent rhythmic proteomes implement distinct diurnal functions in mouse liver
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 174
  start-page: e12
  issue: 831‐842
  year: 2018
  end-page: e842
  article-title: Diet‐induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes
  publication-title: Cell
– volume: 62
  start-page: 526
  issue: 2
  year: 2017
  end-page: 533
  article-title: Shiftwork is not associated with increased risk of NAFLD: Findings from the National Health and Nutrition Examination Survey
  publication-title: Digestive Diseases and Sciences
– volume: 71
  start-page: 855
  year: 2015
  end-page: 860
  article-title: Association between genetic variants of the clock gene and obesity and sleep duration
  publication-title: Journal of Physiology and Biochemistry
– volume: 16
  start-page: 1107
  year: 2006
  end-page: 1115
  article-title: Circadian orchestration of the hepatic proteome
  publication-title: Current Biology
– volume: 330
  start-page: 1349
  year: 2010
  end-page: 1354
  article-title: Circadian integration of metabolism and energetics
  publication-title: Science
– volume: 2
  year: 2012
  article-title: Muscle or liver‐specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
  publication-title: Scientific Reports
– volume: 75
  start-page: 3313
  year: 2018
  end-page: 3327
  article-title: Molecular mechanisms of hepatic lipid accumulation in nonalcoholic fatty liver disease
  publication-title: Cellular and Molecular Life Sciences
– volume: 125
  start-page: 811
  issue: 4
  year: 2012
  end-page: 824
  article-title: Circadian regulation of the hepatic endobiotic and xenobitoic detoxification pathways: the time matters
  publication-title: Chemical Research in Toxicology
– volume: 13
  start-page: 4242
  issue: 31
  year: 2007
  end-page: 4248
  article-title: Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease
  publication-title: World Journal of Gastroenterology
– volume: 21
  start-page: 43
  year: 2001
  end-page: 55
  article-title: Peroxisomal beta‐oxidation steatohepatitis
  publication-title: Seminars in Liver Disease
– volume: 33
  start-page: 2047
  year: 2013
  end-page: 2055
  article-title: Activation of the aryl hydrocarbon receptor sensitizes mice to nonalcoholic steatohepatitis by deactivating mitochondrial sirtuin deacetylase Sirt3
  publication-title: Molecular and Cellular Biology
– volume: 41
  start-page: 214
  year: 2014
  end-page: 221
  article-title: Uncoupling of peripheral and master clock gene rhythms by reversed feeding leads to an exacerbated inflammatory response after polymicrobial sepsis in mice
  publication-title: Shock
– volume: 134
  start-page: 317
  year: 2008
  end-page: 328
  article-title: SIRT1 regulates circadian clock gene expression through PER2 deacetylation
  publication-title: Cell
– volume: 367
  start-page: 800
  year: 2020
  end-page: 806
  article-title: Circadian rhythms in the absence of the clock gene Bmal1
  publication-title: Science
– volume: 466
  start-page: 627
  year: 2010
  end-page: 631
  article-title: Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
  publication-title: Nature
– volume: 114
  start-page: 796
  year: 2015
  end-page: 803
  article-title: The effects of resveratrol supplementation on cardiovascular risk factors in patients with nonalcoholic fatty liver disease: A randomised, double‐blind, placebo‐controlled study
  publication-title: British Journal of Nutrition
– volume: 22
  start-page: 312
  year: 2015
  end-page: 318
  article-title: NAD (+)‐SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1
  publication-title: Nature Structural & Molecular Biology
– volume: 16
  start-page: 82
  year: 2017
  article-title: Inhibition of NAMPT aggravates high fat diet‐induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway
  publication-title: Lipids in Health and Disease
– volume: 36
  start-page: 347
  year: 2018
  end-page: 357
  article-title: SIRT5 deacylates metabolism‐related proteins and attenuates hepatic steatosis in ob/ob mice
  publication-title: EBioMedicine
– volume: 109
  start-page: 307
  year: 2002
  end-page: 320
  article-title: Coordinated transcription of key pathways in the mouse by the circadian clock
  publication-title: Cell
– volume: 10
  year: 2014
  article-title: In‐Vivo quantitative proteomics reveals a key contribution of post‐transcriptional mechanisms to the circadian regulation of liver metabolism
  publication-title: PLoS Genetics
– volume: 33
  start-page: 2895
  year: 2013
  end-page: 2901
  article-title: High‐dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 285
  start-page: 8340
  year: 2010
  end-page: 8351
  article-title: SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
  publication-title: Journal of Biological Chemistry
– volume: 269
  start-page: 38
  year: 2014
  end-page: 43
  article-title: Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes
  publication-title: Journal of Neuroimmunology
– volume: 8
  start-page: 8
  year: 2017
  article-title: Cellular senescence drives age‐dependent hepatic steatosis
  publication-title: Nature Communications
– volume: 9
  start-page: 1553
  year: 2018
  article-title: A proteomics landscape of circadian clock in mouse liver
  publication-title: Nature Communications
– volume: 72
  start-page: 72
  year: 2015
  end-page: 78
  article-title: Shift work and diabetes mellitus: a meta‐analysis of observational studies
  publication-title: Occupational and Environmental Medicine
– volume: 25
  start-page: 1305
  year: 2017
  end-page: 1319
  article-title: A cell‐autonomous mammalian 12 hr clock coordinates metabolic and stress rhythms
  publication-title: Cell Metabolism
– volume: 60
  start-page: 1593
  year: 2014
  end-page: 1606
  article-title: The transrepressive activity of peroxisome proliferator‐activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice
  publication-title: Hepatology
– volume: 5
  start-page: 198
  issue: 1
  year: 2017
  end-page: 209
  article-title: CLOCK acetylates ASS1 to drive circadian rhythm of ureagenesis
  publication-title: Molecular Cell
– volume: 48
  start-page: 2182
  year: 1999
  end-page: 2188
  article-title: Disruption of circadian insulin secretion is associated with reduced glucose uptake in first‐degree relatives of patients with type 2 diabetes
  publication-title: Diabetes
– volume: 23
  start-page: 311
  year: 2014
  end-page: 319
  article-title: A potential treatment of nonalcoholic fatty liver disease with SIRT1 activators
  publication-title: Journal of gastrointestinal and liver diseases: JGLD
– volume: 153
  start-page: 1448
  year: 2013
  end-page: 1460
  article-title: SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
  publication-title: Cell
– volume: 51
  start-page: 679
  year: 2010
  end-page: 689
  article-title: Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications
  publication-title: Hepatology
– volume: 148
  start-page: S
  year: 2015
  end-page: 973
  article-title: Hepatic Overexpression of SIRT3 in mice heterozygous for mitochondrial trifunctional protein rescues hepatic steatosis and improves insulin sensitivity
  publication-title: Gastroenterology
– ident: e_1_2_7_97_1
  doi: 10.1126/science.1171641
– ident: e_1_2_7_91_1
  doi: 10.1002/hep4.1530
– ident: e_1_2_7_93_1
  doi: 10.1126/science.1243417
– ident: e_1_2_7_45_1
  doi: 10.3389/fgene.2019.00435
– ident: e_1_2_7_9_1
  doi: 10.1007/s10620-016-4401-1
– ident: e_1_2_7_125_1
  doi: 10.1016/j.cell.2006.06.050
– ident: e_1_2_7_80_1
  doi: 10.1242/jcs.081067
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ebiom.2018.09.037
– ident: e_1_2_7_133_1
  doi: 10.1111/bph.13513
– ident: e_1_2_7_18_1
  doi: 10.1152/physrev.00030.2018
– ident: e_1_2_7_76_1
  doi: 10.3389/fphys.2018.00193
– ident: e_1_2_7_101_1
  doi: 10.1371/journal.pgen.1004047
– ident: e_1_2_7_75_1
  doi: 10.1073/pnas.1314066111
– ident: e_1_2_7_82_1
  doi: 10.1126/science.1170803
– ident: e_1_2_7_73_1
  doi: 10.1016/j.cell.2014.06.050
– ident: e_1_2_7_110_1
  doi: 10.3748/wjg.v13.i31.4242
– ident: e_1_2_7_95_1
  doi: 10.1016/j.cmet.2009.02.006
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cgh.2014.02.024
– ident: e_1_2_7_28_1
  doi: 10.7150/ijbs.19370
– ident: e_1_2_7_84_1
  doi: 10.1016/j.celrep.2018.07.014
– ident: e_1_2_7_74_1
  doi: 10.1016/j.celrep.2017.07.065
– ident: e_1_2_7_86_1
  doi: 10.1097/SHK.0000000000000094
– ident: e_1_2_7_4_1
  doi: 10.1152/ajpgi.90358.2008
– ident: e_1_2_7_13_1
  doi: 10.1074/jbc.M116.737114
– ident: e_1_2_7_114_1
  doi: 10.1371/journal.pone.0149344
– ident: e_1_2_7_69_1
  doi: 10.1016/j.jhep.2010.11.005
– ident: e_1_2_7_136_1
  doi: 10.1016/j.freeradbiomed.2020.11.014
– ident: e_1_2_7_57_1
  doi: 10.1126/science.1226339
– ident: e_1_2_7_70_1
  doi: 10.1038/nature09253
– ident: e_1_2_7_15_1
  doi: 10.2337/diabetes.48.11.2182
– ident: e_1_2_7_83_1
  doi: 10.1016/S0016-5085(15)33324-2
– ident: e_1_2_7_47_1
  doi: 10.1161/ATVBAHA.119.312613
– ident: e_1_2_7_25_1
  doi: 10.1210/jc.2009-2148
– ident: e_1_2_7_39_1
  doi: 10.1002/hep.28245
– ident: e_1_2_7_10_1
  doi: 10.1038/ijo.2012.180
– ident: e_1_2_7_65_1
  doi: 10.1038/cddis.2017.564
– ident: e_1_2_7_63_1
  doi: 10.1074/jbc.M115.692244
– ident: e_1_2_7_34_1
  doi: 10.1038/srep00425
– ident: e_1_2_7_67_1
  doi: 10.1016/j.dld.2014.09.020
– ident: e_1_2_7_96_1
  doi: 10.1371/journal.pgen.1004244
– ident: e_1_2_7_43_1
  doi: 10.1371/journal.pbio.1000595
– ident: e_1_2_7_100_1
  doi: 10.1016/j.cub.2006.04.026
– ident: e_1_2_7_66_1
  doi: 10.1038/s42255-019-0136-6
– ident: e_1_2_7_106_1
  doi: 10.1136/bmj.k4641
– ident: e_1_2_7_128_1
  doi: 10.1016/j.cmet.2011.08.014
– ident: e_1_2_7_53_1
  doi: 10.1016/j.cmet.2015.08.006
– ident: e_1_2_7_38_1
  doi: 10.1136/oemed-2014-102150
– ident: e_1_2_7_44_1
  doi: 10.1074/jbc.RA119.008708
– ident: e_1_2_7_108_1
  doi: 10.1016/S2468-1253(20)30213-2
– ident: e_1_2_7_77_1
  doi: 10.1093/aje/kwu117
– ident: e_1_2_7_6_1
  doi: 10.1016/j.molmet.2015.09.003
– ident: e_1_2_7_59_1
  doi: 10.1101/gad.180406.111
– ident: e_1_2_7_109_1
  doi: 10.1016/j.celrep.2013.10.007
– ident: e_1_2_7_3_1
  doi: 10.1038/nsmb.2990
– ident: e_1_2_7_123_1
  doi: 10.1038/s41392-020-00311-7
– ident: e_1_2_7_31_1
  doi: 10.1053/j.gastro.2019.11.312
– ident: e_1_2_7_98_1
  doi: 10.1055/s-2001-12928
– ident: e_1_2_7_117_1
  doi: 10.1007/s13105-015-0447-3
– ident: e_1_2_7_92_1
  doi: 10.1002/hep.27297
– volume: 44
  start-page: 410
  year: 2014
  ident: e_1_2_7_122_1
  article-title: Direct evidence of sirtuin downregulation in the liver of nonalcoholic fatty liver disease patients
  publication-title: Annals of Clinical & Laboratory Science
  contributor:
    fullname: Wu T.
– ident: e_1_2_7_36_1
  doi: 10.2174/138920009787522179
– ident: e_1_2_7_21_1
  doi: 10.1146/annurev-pharmtox-010617-052645
– ident: e_1_2_7_48_1
  doi: 10.1111/imj.14709
– ident: e_1_2_7_50_1
  doi: 10.1016/j.bbapap.2009.10.024
– ident: e_1_2_7_51_1
  doi: 10.1159/000436997
– ident: e_1_2_7_88_1
  doi: 10.1074/jbc.M111.218990
– ident: e_1_2_7_132_1
  doi: 10.1002/hep.26992
– ident: e_1_2_7_104_1
  doi: 10.1053/j.gastro.2020.01.050
– ident: e_1_2_7_12_1
  doi: 10.1016/j.cell.2008.07.010
– ident: e_1_2_7_124_1
  doi: 10.1016/j.diabres.2015.10.009
– ident: e_1_2_7_116_1
  doi: 10.1126/science.1108750
– ident: e_1_2_7_27_1
  doi: 10.1161/ATVBAHA.113.302342
– ident: e_1_2_7_64_1
  doi: 10.1016/j.molcel.2017.09.008
– ident: e_1_2_7_52_1
  doi: 10.1007/s00018-018-2860-6
– ident: e_1_2_7_62_1
  doi: 10.1096/fj.10-173492
– ident: e_1_2_7_33_1
  doi: 10.1017/S0007114515002433
– ident: e_1_2_7_81_1
  doi: 10.1016/j.cell.2008.07.002
– ident: e_1_2_7_85_1
  doi: 10.1038/ncomms15691
– ident: e_1_2_7_103_1
  doi: 10.1016/j.cmet.2014.08.001
– ident: e_1_2_7_58_1
  doi: 10.1016/j.cell.2019.04.025
– ident: e_1_2_7_35_1
  doi: 10.1073/pnas.1803410115
– ident: e_1_2_7_78_1
  doi: 10.1002/hep.28912
– ident: e_1_2_7_68_1
  doi: 10.1371/journal.pcbi.1004144
– ident: e_1_2_7_32_1
  doi: 10.1002/hep.23280
– ident: e_1_2_7_46_1
  doi: 10.1128/MCB.01658-12
– ident: e_1_2_7_2_1
  doi: 10.1016/j.cmet.2013.12.016
– ident: e_1_2_7_16_1
  doi: 10.1016/j.cmet.2012.04.022
– ident: e_1_2_7_129_1
  doi: 10.1016/j.cmet.2014.03.006
– ident: e_1_2_7_112_1
  doi: 10.1113/JP275589
– ident: e_1_2_7_19_1
  doi: 10.1016/j.cell.2013.05.027
– ident: e_1_2_7_56_1
  doi: 10.1016/j.cmet.2010.06.009
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cmet.2010.10.005
– ident: e_1_2_7_119_1
  doi: 10.1186/s12944-017-0464-z
– ident: e_1_2_7_120_1
  doi: 10.1038/s41467-018-03898-2
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1118726109
– ident: e_1_2_7_61_1
  doi: 10.1210/en.2011-2088
– ident: e_1_2_7_134_1
  doi: 10.1016/j.cmet.2017.05.004
– ident: e_1_2_7_42_1
  doi: 10.1016/j.cell.2018.06.031
– ident: e_1_2_7_26_1
  doi: 10.1113/JP280908
– ident: e_1_2_7_130_1
  doi: 10.1038/srep02806
– ident: e_1_2_7_127_1
  doi: 10.18632/oncotarget.12157
– ident: e_1_2_7_79_1
  doi: 10.1016/j.metabol.2020.154337
– ident: e_1_2_7_24_1
  doi: 10.15403/jgld.2014.1121.233.yck
– ident: e_1_2_7_60_1
  doi: 10.1089/ars.2018.7544
– ident: e_1_2_7_121_1
  doi: 10.1038/s41467-017-02537-6
– ident: e_1_2_7_90_1
  doi: 10.1016/S0092-8674(02)00722-5
– ident: e_1_2_7_118_1
  doi: 10.1101/gad.1901210
– ident: e_1_2_7_131_1
  doi: 10.1074/jbc.M114.567628
– ident: e_1_2_7_135_1
  doi: 10.1021/tx200538r
– ident: e_1_2_7_11_1
  doi: 10.1126/science.1195027
– ident: e_1_2_7_89_1
  doi: 10.1172/JCI132765
– ident: e_1_2_7_113_1
  doi: 10.1016/j.bbrc.2019.01.143
– ident: e_1_2_7_102_1
  doi: 10.1002/bies.10297
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jneuroim.2014.02.001
– ident: e_1_2_7_54_1
  doi: 10.1042/BJ20100791
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.1706945114
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jhep.2013.03.035
– ident: e_1_2_7_20_1
  doi: 10.1371/journal.pone.0069622
– ident: e_1_2_7_37_1
  doi: 10.1016/S1665-2681(19)31635-7
– ident: e_1_2_7_7_1
  doi: 10.1016/j.cell.2008.06.050
– ident: e_1_2_7_115_1
  doi: 10.3389/fonc.2020.00474
– ident: e_1_2_7_126_1
  doi: 10.1152/ajpgi.00152.2020
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jnutbio.2015.06.006
– ident: e_1_2_7_49_1
  doi: 10.1096/fj.14-256594
– ident: e_1_2_7_105_1
  doi: 10.1136/gut.23.8.637
– ident: e_1_2_7_71_1
  doi: 10.1007/s12020-014-0465-x
– ident: e_1_2_7_111_1
  doi: 10.1038/s41574-018-0122-1
– ident: e_1_2_7_72_1
  doi: 10.3390/nu11020322
– ident: e_1_2_7_99_1
  doi: 10.1126/science.aaw7365
– ident: e_1_2_7_5_1
  doi: 10.1016/s0960-9822(02)00759-5
– ident: e_1_2_7_87_1
  doi: 10.1074/jbc.M109.088682
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.1612917113
– ident: e_1_2_7_94_1
  doi: 10.1074/jbc.M110.122978
– ident: e_1_2_7_107_1
  doi: 10.1016/j.cub.2013.01.048
– ident: e_1_2_7_40_1
  doi: 10.1016/j.celrep.2019.03.064
SSID ssj0009933
Score 2.4660945
SecondaryResourceType review_article
Snippet Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition...
Abstract Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3164
SubjectTerms Acetylation
Adenine
Biological clocks
Biosynthesis
BMAL1 protein
Circadian rhythm
Circadian rhythms
Circuits
Clock genes (CLOCK and BMAL1)
Control theory
Deacetylation
Fatty liver
Feedback loops
Gene expression
Genes
Hepatocytes
Homeostasis
Lipid metabolism
Lipids
Liver
Liver diseases
Metabolism
Metabolites
NAD
NAFLD/MAFLD
Nicotinamide
Nicotinamide adenine dinucleotide
Oscillations
Phenotypes
Proteins
SIRT1 protein
Sirtuin
Sirtuins
Title The Clock‐NAD+‐Sirtuin connection in nonalcoholic fatty liver disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.30772
https://www.ncbi.nlm.nih.gov/pubmed/35616339
https://www.proquest.com/docview/2701557336/abstract/
https://search.proquest.com/docview/2670062907
Volume 237
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EELz4ftQXUUQEqbZN2rR4WlZFBUV8gAehJGkK62oV7R7Wkz_B3-gvcZK2KyqCeOmDtiTNzCRfkplvANaVFEqh6ri5lqHLokC7sRK5qwKtqFaS6cwEOJ-cRodX7Pg6vB6C3SYWpuKHGCy4Gcuw_bUxcCGfdz5JQ28VTtg9BIfY_xoiPQOIzj-po5I6jbx1QQiZ37AKecHO4MuvY9EPgPkVr9oB52AcbpqqVn4m3e1eKbfVyzcWx3_-ywSM1UCUtCrNmYQhXUzBdKvASfh9n2wQ6xpq19ynYKTKWNmfhiNUK9LGAbD7_vp22trbwtNF56nsdQqijM-MDZMgeFcYiG_T73YUyUVZ9smd8QEh9ZbQDFwd7F-2D906G4OraEgRhvsMJ62J8DPNg4gLSoUyZIo-HnJJhSfiOEt0pGKusIdF2OnLROcq87lOBBV0FoaxaD0PhGc8FCKWLOeaSbNTqlnCssjXgReJ3HNgrZFL-liRbqQVvXKQYlOltqkcWGokltZ295wG3GBAQ_HowOrgMVqM2QYRhX7o4TsmMgkr6HEH5ipJD0qhCCcjShMHNq28fi8-PW6f2YuFv7-6CKOBiZ6w_oNLMFw-9fQyYppSrljl_QAVt_MA
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVUUv5Q3haaqqQkKBJHbiROKy2oKW16qiIO0FRbbjSFsgVJA9LCd-Qn9jfwljJ1kEVSXEJQ_FkR3PTPyNPfMZ4KuSQilUHTfXMnRZFGg3ViJ3VaAV1UoynZkE59Nu1LlgR72wNwZ7TS5MxQ8xmnAzlmH_18bAzYT07jNr6C-FHruH6HAcPqC5h9ahOnsmj0rqjeRtEELI_IZXyAt2R6--HI3-gZgvEasdcg6m4LJpbBVpcrUzKOWOenjF4_jer5mGzzUWJa1KeWZgTBezMNcq0A-_GZJvxEaH2mn3WfhYbVo5nIND1CzSxjHw6u_jn27r-zaefvbvykG_IMqEzdhMCYJ3hUH5dgfeviK5KMshuTZhIKReFZqHi4P983bHrTdkcBUNKSJxn6Hfmgg_0zyIuKBUKMOn6OMhl1R4Io6zREcq5gp_sog8fZnoXGU-14mggi7ABFatl4DwjIdCxJLlXDNpFks1S1gW-TrwIpF7DnxpBJP-rng30ophOUixq1LbVQ6sNiJLa9O7TwNuYKBheXRgc_QYjcashIhC3w6wjElOwgZ63IHFStSjWigiyojSxIEtK7D_V58etX_Yi-W3F92Ayc756Ul6ctg9XoFPgUmmsOGEqzBR3g30GkKcUq5bTX4CVjL3Ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUBGX8mpLgLamqqpKKJDYTpyop9VuVzzaFWqLxAEpsh1HWh4B0exhOfET-I38EsZOsohWlSoueSiO7Hhm4s_2zDcAH7WSWqPq-IVRkc9javxEy8LX1GhmtOImtwHO3wfx7hHfP46Op-BLGwtT80NMFtysZbj_tTXwq7zYeSQNPdU4YQ8QHE7DLI8ZtSrd-_HIHZU2eeSdD0LEw5ZWKKA7k1efDkZ_IcyngNWNOP0FOGnbWjuanG2PKrWtb_6gcXzmxyzCywaJkk6tOkswZcplWOmUOAu_GJNPxPmGukX3ZXhRp6wcr8Ae6hXp4gh4dn97N-j0tvD0c3hdjYYl0dZpxsVJELwrLcZ3-XeHmhSyqsbk3DqBkGZP6BUc9b_-6u76TToGX7OIIQ4POc5aUxnmRtBYSMaktmyKIR4KxWQgkyRPTawTofEXi7gzVKkpdB4Kk0om2WuYwarNKhCRi0jKRPFCGK7sVqnhKc_j0NAglkXgwYdWLtlVzbqR1fzKNMOuylxXebDRSixrDO93RoUFgZbj0YPNyWM0GbsPIktzOcIyNjQJGxgID97Ukp7UwhBPxoylHnx28vp39dl-99BdrP1_0fcwd9jrZ9_2BgfrME9tJIXzJdyAmep6ZN4ivqnUO6fHD31u9dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Clock%E2%80%90NAD%2B%E2%80%90Sirtuin+connection+in+nonalcoholic+fatty+liver+disease&rft.jtitle=Journal+of+cellular+physiology&rft.au=Aggarwal%2C+Savera&rft.au=Trehanpati%2C+Nirupma&rft.au=Nagarajan%2C+Perumal&rft.au=Ramakrishna%2C+Gayatri&rft.date=2022-08-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=237&rft.issue=8&rft.spage=3164&rft.epage=3180&rft_id=info:doi/10.1002%2Fjcp.30772&rft.externalDBID=10.1002%252Fjcp.30772&rft.externalDocID=JCP30772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon