Non‐water‐excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T
Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Methods Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CS...
Saved in:
Published in | Magnetic resonance in medicine Vol. 84; no. 5; pp. 2352 - 2363 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.
Methods
Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms.
Results
The novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times.
Conclusion
Novel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation. |
---|---|
AbstractList | To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.PURPOSETo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms.METHODSImage-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms.The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times.RESULTSThe novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times.Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.CONCLUSIONNovel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation. To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms. The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times. Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T relaxation. Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Methods Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms. Results The novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times. Conclusion Novel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation. PurposeTo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.MethodsImage‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms.ResultsThe novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times.ConclusionNovel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation. |
Author | Dziadosz, Martyna Kreis, Roland Bogner, Wolfgang |
Author_xml | – sequence: 1 givenname: Martyna surname: Dziadosz fullname: Dziadosz, Martyna organization: University of Bern – sequence: 2 givenname: Wolfgang surname: Bogner fullname: Bogner, Wolfgang organization: Medical University Vienna – sequence: 3 givenname: Roland orcidid: 0000-0002-8618-6875 surname: Kreis fullname: Kreis, Roland email: roland.kreis@insel.ch organization: University of Bern |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32602971$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9u1DAYxa2qqJ0WFlwAWWIDi7T-EyfxElUFKnVAqsrasp0vnVSJHWxH7ew4AkfgLByFk9TDzGwqWL1v8XtPT-87QYfOO0DoNSVnlBB2PobxjDWcsQO0oIKxgglZHqIFqUtScCrLY3QS4z0hRMq6PELHnFWEyZou0OqLd39-_HzQCUJWeLR90qn3Di9vcJzApuCj9dMaJ7Ar13-fIeLkMTxOgw-Q1a60u-vdHZ6CT95F3Du8mkftsAk63zph_vvX7Uv0otNDhFc7PUXfPl7eXnwurr9-urr4cF1YLjgrRMkqrZuyBtFVnHdN03LKNBiupWgrYpggEqgwpoK649SIllnODLG0aS01_BS92-bmOpuySY19tDAM2oGfo2IllaRpSFNm9O0z9N7PweV2mWKSl7UQG-rNjprNCK2aQj_qsFb7DTNwvgVsnioG6NR-w5QHGBQlavMllb-k_n4pO94_c-xD_8Xu0h_6Adb_B9XyZrl1PAGFvKOZ |
CitedBy_id | crossref_primary_10_1002_mrm_29119 crossref_primary_10_1002_mrm_30075 crossref_primary_10_1002_mrm_30273 crossref_primary_10_1002_mrm_29267 crossref_primary_10_1002_mrm_29243 crossref_primary_10_1002_mrm_29142 |
Cites_doi | 10.1002/mrm.22897 10.1002/mrm.20989 10.1038/s41598-018-37295-y 10.1148/radiology.164.2.3602398 10.1002/nbm.3121 10.1002/mrm.26873 10.1002/mrm.20549 10.1002/mrm.24537 10.1002/mrm.26968 10.1002/mrm.27222 10.1002/mrm.27971 10.1002/mrm.1910400302 10.1002/nbm.1280 10.1007/BF02192855 10.1006/jmre.1999.1956 10.1016/S0079-6565(97)00024-1 10.1016/j.jmr.2010.01.010 10.1002/mrm.21043 10.1016/j.neuroimage.2019.116075 10.1016/j.neuroimage.2017.04.045 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G 10.1002/chem.201300955 10.1016/0022-2364(86)90031-4 10.1002/nbm.3317 10.1006/jmrb.1994.1048 10.1002/mrm.24387 10.1038/ncomms5958 10.1088/0031-9155/30/4/008 10.1002/mrm.27806 10.1002/mrm.22813 10.1002/mrm.1910400105 10.1002/nbm.3714 10.1002/mrm.26343 10.1002/1522-2594(200010)44:4<546::AID-MRM8>3.0.CO;2-7 10.1007/BF02668096 10.1002/nbm.678 10.1016/0022-2364(91)90034-Q 10.1002/mrm.26132 10.1016/0022-2364(88)90136-9 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X 10.1016/0022-2364(86)90016-8 10.1016/j.pnmrs.2014.12.001 10.1016/j.jmr.2008.02.016 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28322 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2363 |
ExternalDocumentID | 32602971 10_1002_mrm_28322 MRM28322 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung funderid: 320030‐175984 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3532-5426aa847e5f633f88d312aeb3a95d60b2509e15bb6e7f31b5d2c32b0c18dc1b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Jul 10 23:18:10 EDT 2025 Fri Jul 25 12:04:31 EDT 2025 Wed Feb 19 02:29:49 EST 2025 Tue Jul 01 04:26:57 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 Wed Jan 22 16:34:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | proton MR spectroscopy magnetization exchange amides brain human downfield |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-5426aa847e5f633f88d312aeb3a95d60b2509e15bb6e7f31b5d2c32b0c18dc1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8618-6875 |
PMID | 32602971 |
PQID | 2429347554 |
PQPubID | 1016391 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2419088084 proquest_journals_2429347554 pubmed_primary_32602971 crossref_citationtrail_10_1002_mrm_28322 crossref_primary_10_1002_mrm_28322 wiley_primary_10_1002_mrm_28322_MRM28322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2008; 192 1987; 164 2019; 9 1986; 70 2013; 69 2006; 56 2020; 83 2018; 168 2010; 203 2000; 44 1998 2014; 27 2016; 32 2018; 80 1988; 78 2007 2006 2013; 70 2019; 202 1999; 41 1998; 40 2013; 19 2017; 30 2014; 5 2019; 82 2015; 28 1994; 104 1997; 10 1986; 66 2017; 77 2017; 79 2017; 78 2019 1991; 93 2011; 66 2005; 54 2011; 65 1984 2008; 21 1985; 30 2015; 86–87 2000; 143 2001; 12 1998; 32 2001; 14 1992; 2 2018; 79 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 De Graaf RA (e_1_2_8_25_1) 2016; 32 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Maudsley A (e_1_2_8_50_1) 2007 Morris PG (e_1_2_8_51_1) 2007 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 30 start-page: 341 year: 1985 end-page: 344 article-title: 1H NMR chemical shift selective (CHESS) imaging publication-title: Phys Med Biol – start-page: 24 year: 1998 – volume: 32 start-page: 828 year: 2016 end-page: 835 article-title: Detection of cerebral NAD+ in humans at 7 T publication-title: Magn Reson Med – volume: 78 start-page: 11 year: 2017 end-page: 19 article-title: Elucidation of the downfield spectrum of human brain at 7 T using multiple inversion recovery delays and echo times publication-title: Magn Reson Med – volume: 79 start-page: 2863 year: 2017 end-page: 2873 article-title: In vivo characterization of the downfield part of 1H MR spectra of human brain at 9.4 T: Magnetization exchange with water and relation to conventionally determined metabolite content publication-title: Magn Reson Med – volume: 56 start-page: 965 year: 2006 end-page: 970 article-title: Localized short‐echo‐time proton MR spectroscopy with full signal‐intensity acquisition publication-title: Magn Reson Med – volume: 30 year: 2017 article-title: Non‐water‐suppressed short‐echo‐time magnetic resonance spectroscopic imaging using a concentric ring k‐space trajectory publication-title: NMR Biomed – volume: 168 start-page: 222 year: 2018 end-page: 241 article-title: Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field‐dependent saturation spectrum publication-title: NeuroImage – volume: 104 start-page: 1 year: 1994 end-page: 10 article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy publication-title: J Magn Reson – volume: 83 start-page: 806 year: 2020 end-page: 814 article-title: Single‐voxel (1) H MR spectroscopy of cerebral nicotinamide adenine dinucleotide (NAD(+) ) in humans at 7 T using a 32‐channel volume coil publication-title: Magn Reson Med – volume: 66 start-page: 283 year: 1986 end-page: 294 article-title: Image‐selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy publication-title: J Magn Reson – volume: 70 start-page: 916 year: 2013 end-page: 924 article-title: Magnetization exchange observed in human skeletal muscle by non‐water‐suppressed proton MR spectroscopy publication-title: Magn Reson Med – volume: 12 start-page: 141 year: 2001 end-page: 152 article-title: Java‐based graphical user interface for the MRUI quantitation package publication-title: MAGMA – volume: 80 start-page: 2326 year: 2018 end-page: 2338 article-title: Diffusion–weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals publication-title: Magn Reson Med – volume: 82 start-page: 1266 year: 2019 end-page: 1277 article-title: Short echo time relaxation‐enhanced MR spectroscopy reveals broad downfield resonances publication-title: Magn Reson Med – volume: 44 start-page: 546 year: 2000 end-page: 555 article-title: Extended ISIS sequences insensitive to T(1) smearing publication-title: Magn Reson Med – volume: 203 start-page: 283 year: 2010 end-page: 293 article-title: Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high‐field clinical scanners publication-title: J Magn Reson – volume: 86–87 start-page: 65 year: 2015 end-page: 79 article-title: Proton MRS and MRSI of the brain without water suppression publication-title: Prog Nucl Magn Reson Spectrosc – volume: 54 start-page: 190 year: 2005 end-page: 195 article-title: New method for the simultaneous detection of metabolites and water in localized in vivo 1H nuclear magnetic resonance spectroscopy publication-title: Magn Reson Med – volume: 19 start-page: 13002 year: 2013 end-page: 13008 article-title: Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation publication-title: Chemistry – volume: 70 start-page: 310 year: 1986 end-page: 318 article-title: Selective inversion radiofrequency pulses by optimal control publication-title: J Magn Reson – volume: 40 start-page: 36 year: 1998 end-page: 42 article-title: Proton NMR spectroscopy of solvent‐saturable resonances: A new approach to study pH effects in situ publication-title: Magn Reson Med – volume: 202 start-page: 116075 year: 2019 article-title: Magnetic resonance spectroscopy extended by oscillating diffusion gradients: Cell‐specific anomalous diffusion as a probe for tissue microstructure in human brain publication-title: NeuroImage – volume: 32 start-page: 59 year: 1998 end-page: 106 article-title: Shaped radiofrequency pulses in high resolution NMR publication-title: Prog Nucl Magn Reson Spectrosc – volume: 66 start-page: 923 year: 2011 end-page: 930 article-title: In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3 T and 7 T publication-title: Magn Reson Med – volume: 40 start-page: 343 year: 1998 end-page: 347 article-title: Proton spectroscopy without water suppression: The oversampled J‐ resolved experiment publication-title: Magn Reson Med – volume: 21 start-page: 1057 year: 2008 end-page: 1065 article-title: Identification of amide protons of glutathione in MR spectra of tumour cells publication-title: NMR Biomed – volume: 192 start-page: 209 year: 2008 end-page: 217 article-title: Compensation of gradient‐induced magnetic field perturbations publication-title: J Magn Reson – volume: 56 start-page: 585 year: 2006 end-page: 592 article-title: Amide proton transfer imaging of human brain tumors at 3 T publication-title: Magn Reson Med – volume: 5 start-page: 4958 year: 2014 article-title: Metabolic properties in stroked rats revealed by relaxation‐enhanced magnetic resonance spectroscopy at ultrahigh fields publication-title: Nat Commun – year: 2007 – volume: 2 start-page: 661 year: 1992 end-page: 665 article-title: Gradient‐tailored excitation for single‐quantum NMR spectroscopy of aqueous solutions publication-title: J Biomol NMR – volume: 41 start-page: 649 year: 1999 end-page: 656 article-title: In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time publication-title: Magn Reson Med – start-page: 46 year: 2019 – volume: 93 start-page: 93 year: 1991 end-page: 141 article-title: Band‐selective radiofrequency pulses publication-title: J Magn Reson – volume: 14 start-page: 1 year: 2001 end-page: 4 article-title: Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer (1)H‐MRS publication-title: NMR Biomed – volume: 143 start-page: 79 year: 2000 end-page: 87 article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST) publication-title: J Magn Reson – year: 1984 – volume: 69 start-page: 1253 year: 2013 end-page: 1260 article-title: Non‐water‐suppressed proton MR spectroscopy improves spectral quality in the human spinal cord publication-title: Magn Reson Med – volume: 79 start-page: 1841 year: 2018 end-page: 1850 article-title: Metabolite‐cycled STEAM and semi‐LASER localization for MR spectroscopy of the human brain at 9.4 T publication-title: Magn Reson Med – volume: 27 start-page: 802 year: 2014 end-page: 809 article-title: Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy publication-title: NMR Biomed – volume: 10 start-page: 423 year: 1997 end-page: 434 article-title: Adiabatic pulses publication-title: NMR Biomed – volume: 164 start-page: 539 year: 1987 end-page: 541 article-title: Multisection fat‐water imaging with chemical shift selective presaturation publication-title: Radiology – volume: 65 start-page: 1239 year: 2011 end-page: 1246 article-title: Magnetization exchange with water and T1 relaxation of the downfield resonances in human brain spectra at 3.0 T publication-title: Magn Reson Med – volume: 77 start-page: 520 year: 2017 end-page: 528 article-title: Transverse relaxation of selectively excited metabolites in stroke at 21.1T publication-title: Magn Reson Med – start-page: 3063 year: 2006 – volume: 78 start-page: 519 year: 1988 end-page: 525 article-title: Outer volume suppressed image related in vivo spectroscopy (OSIRIS), a high‐sensitivity localization technique publication-title: J Magn Reson – volume: 9 start-page: 1089 year: 2019 article-title: Analysis of chemical exchange saturation transfer contributions from brain metabolites to the Z‐spectra at various field strengths and pH publication-title: Sci Rep – volume: 28 start-page: 906 year: 2015 end-page: 913 article-title: Signature of protein unfolding in chemical exchange saturation transfer imaging publication-title: NMR Biomed – volume-title: Selective Excitation in MRI and MR Spectroscopy Encyclopedia of Magnetic Resonance year: 2007 ident: e_1_2_8_50_1 – ident: e_1_2_8_33_1 doi: 10.1002/mrm.22897 – ident: e_1_2_8_40_1 doi: 10.1002/mrm.20989 – ident: e_1_2_8_47_1 doi: 10.1038/s41598-018-37295-y – ident: e_1_2_8_3_1 doi: 10.1148/radiology.164.2.3602398 – ident: e_1_2_8_22_1 – ident: e_1_2_8_24_1 doi: 10.1002/nbm.3121 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.26873 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.20549 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.24537 – ident: e_1_2_8_17_1 doi: 10.1002/mrm.26968 – ident: e_1_2_8_20_1 doi: 10.1002/mrm.27222 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.27971 – ident: e_1_2_8_7_1 doi: 10.1002/mrm.1910400302 – ident: e_1_2_8_46_1 doi: 10.1002/nbm.1280 – ident: e_1_2_8_10_1 doi: 10.1007/BF02192855 – ident: e_1_2_8_39_1 doi: 10.1006/jmre.1999.1956 – ident: e_1_2_8_49_1 doi: 10.1016/S0079-6565(97)00024-1 – ident: e_1_2_8_34_1 doi: 10.1016/j.jmr.2010.01.010 – ident: e_1_2_8_12_1 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.21043 – ident: e_1_2_8_21_1 doi: 10.1016/j.neuroimage.2019.116075 – ident: e_1_2_8_42_1 – ident: e_1_2_8_41_1 doi: 10.1016/j.neuroimage.2017.04.045 – volume: 32 start-page: 828 year: 2016 ident: e_1_2_8_25_1 article-title: Detection of cerebral NAD+ in humans at 7 T publication-title: Magn Reson Med – ident: e_1_2_8_4_1 doi: 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G – ident: e_1_2_8_6_1 – ident: e_1_2_8_14_1 doi: 10.1002/chem.201300955 – ident: e_1_2_8_23_1 doi: 10.1016/0022-2364(86)90031-4 – ident: e_1_2_8_45_1 doi: 10.1002/nbm.3317 – ident: e_1_2_8_36_1 doi: 10.1006/jmrb.1994.1048 – ident: e_1_2_8_16_1 doi: 10.1002/mrm.24387 – ident: e_1_2_8_28_1 doi: 10.1038/ncomms5958 – ident: e_1_2_8_2_1 doi: 10.1088/0031-9155/30/4/008 – ident: e_1_2_8_29_1 doi: 10.1002/mrm.27806 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.22813 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.1910400105 – ident: e_1_2_8_19_1 doi: 10.1002/nbm.3714 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.26343 – ident: e_1_2_8_43_1 doi: 10.1002/1522-2594(200010)44:4<546::AID-MRM8>3.0.CO;2-7 – ident: e_1_2_8_37_1 doi: 10.1007/BF02668096 – ident: e_1_2_8_38_1 doi: 10.1002/nbm.678 – ident: e_1_2_8_48_1 doi: 10.1016/0022-2364(91)90034-Q – ident: e_1_2_8_27_1 doi: 10.1002/mrm.26132 – ident: e_1_2_8_30_1 doi: 10.1016/0022-2364(88)90136-9 – ident: e_1_2_8_32_1 doi: 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X – ident: e_1_2_8_35_1 doi: 10.1016/0022-2364(86)90016-8 – ident: e_1_2_8_5_1 doi: 10.1016/j.pnmrs.2014.12.001 – ident: e_1_2_8_8_1 doi: 10.1016/j.jmr.2008.02.016 – volume-title: Complex Radiofrequency Pulses. Encyclopedia of Magnetic Resonance year: 2007 ident: e_1_2_8_51_1 |
SSID | ssj0009974 |
Score | 2.3725712 |
Snippet | Purpose
To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by... To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization... PurposeTo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2352 |
SubjectTerms | Adiabatic Adiabatic flow amides brain Brain - diagnostic imaging Cycles downfield Exchanging Excitation Excitation spectra Frequency ranges human Humans In vivo methods and tests Localization Magnetic Resonance Spectroscopy magnetization exchange Metabolites Phantoms, Imaging proton MR spectroscopy Protons Saturation Scanners Spectroscopy Spectrum analysis Water |
Title | Non‐water‐excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28322 https://www.ncbi.nlm.nih.gov/pubmed/32602971 https://www.proquest.com/docview/2429347554 https://www.proquest.com/docview/2419088084 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lat0wEB1CoKGbPtLXbdOgli668Y1lybJFV6U0hMDN4pJAFgUjyTItbexwry99rPoJ_YR-Sz8lX5IZ-RGSthCyMDJ4jPUYac5YozMAr-IUUYgVZZTrtIpkZiSug1USmRwdopKXubIhyvdA7R3J_eP0eA3eDGdhOn6I8YcbzYywXtMEN3a5c0EaerI4mVKeHVp_KVaLANH8gjpK646BOZO0zmg5sArFyc745mVb9BfAvIxXg8HZvQsfhqp2cSafp6vWTt2PKyyON2zLPbjTA1H2ttOc-7Dm603YmPVb7ZtwK8SGuuUD-HjQ1Gc_f31FVLrA0n9zPa83m81ZOKlJjJjN6Xc2EsIuWdswH8L7PJbhdDHaSEasEKjm7FPNQnJAZilDBTMtE39-Hz6Eo933h-_2oj5BQ-REKiiHQqKMQfvm00oJUeV5KXhi0D83Oi1VbBFfac9Ta5XPKsFtWiZOJDZ2PC8dt-IRrNdN7Z8AQ0eOq5JbncW5dGgkpcdLqFg6p4zOJ_B6GKpiaCUl0fhSdLzLSYF9WIQ-nMDLUfS0o-z4l9DWMN5FP2uXBcIVLWSGCGsCL8bHON9oE8XUvlmRDKfQMKzlBB53ejJ-BaEw5QLjWNkw2v__fDGbz8LN0-uLPoPbCTn74SDkFqy3i5V_joiotdtB9c8BfgMH1A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUAv_BRaFgoYxIFLtnHsOLHEBSGqBZo9rLZSLyiyHUegtkm1mxUtJx6BR-BZeBSehLHzU5UfCXGIHCmO_Dueb-zxNwDPwhhRiGZFkMq4DHiiOK6DZRSoFA2ighap0N7LdyomB_ztYXy4Bi_6uzAtP8Sw4eYkw6_XTsDdhvTuBWvoyeJk7ALt4AJ8xUX09gbV7II8SsqWgznhbqWRvOcVCqPd4dfL2ug3iHkZsXqVs3cT3veVbT1NjsarRo_N5194HP-3NbfgRodFyct28tyGNVttwrWsO23fhKvePdQs78CHaV39-PL1EwLTBab2zHTU3iSbEX9Z05Fi1qfnZOCEXZKmJtZ7-FlM_QVjVJPEEUPgTCcfK-LjAxLtglQQ1RD2_dv8LhzsvZ6_mgRdjIbAsJi5MAqRUApVnI1LwViZpgWjkUITXcm4EKFGiCUtjbUWNikZ1XERGRbp0NC0MFSzLViv6sreA4K2HBUF1TIJU25QT3KLDxMhN0YomY7geT9Wed9KF0fjOG-pl6Mc-zD3fTiCp0PW05a140-ZdvoBzzvBXeaIWCTjCYKsETwZPqPIuXMUVdl65fJQ5x2GtRzBdjtRhlIQDbtwYBQr64f778Xn2SzzL_f_PetjuD6ZZ_v5_pvpuwewETnb39-L3IH1ZrGyDxEgNfqRl4Of59UL7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFL2qiqh4YSlQBgoYxAMvmcax48TiCVFGZZkRGrVSH5AibxEImoxmMmJ54hP4BL6FT-FLuHaWqiwS4iFypDiKl7scx9fnAjyIU0Qhmtkol2kZ8UxxtINlEqkcF0SW2lzoEOU7EwdH_PlxerwBj_qzMC0_xPDDzWtGsNdewRe23DslDT1Znox9nh20v-e4iHMv0vvzU-4oKVsK5ox7QyN5TysUJ3vDq2ed0W8I8yxgDR5ncgle921tA03ejdeNHpvPv9A4_mdnLsPFDomSx63oXIENV23D1rTba9-G8yE41KyuwptZXf348vUDwtIllu6j6Yi9yXROwlFNT4lZLz6RgRF2RZqauBDf57AMx4vRSRJPC4FyTt5WJGQHJNqnqCCqIez7t8NrcDR5evjkIOoyNESGpcwnUUiEUujgXFoKxso8t4wmChfoSqZWxBoBlnQ01Vq4rGRUpzYxLNGxobk1VLPrsFnVlbsBBFdyVFiqZRbn3KCX5A4vJmJujFAyH8HDfqqKvpc-i8b7oiVeTgocwyKM4QjuD1UXLWfHnyrt9vNddGq7KhCvSMYzhFgjuDc8RoXzuyiqcvXa16E-NgxbOYKdVk6GryAW9snAKDY2zPbfP19M59Nwc_Pfq96FrVf7k-Lls9mLW3Ah8Qv_cChyFzab5drdRnTU6DtBC34C3sMKpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-water-excitation+MR+spectroscopy+techniques+to+explore+exchanging+protons+in+human+brain+at+3%C2%A0T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dziadosz%2C+Martyna&rft.au=Bogner%2C+Wolfgang&rft.au=Kreis%2C+Roland&rft.date=2020-11-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=5&rft.spage=2352&rft_id=info:doi/10.1002%2Fmrm.28322&rft_id=info%3Apmid%2F32602971&rft.externalDocID=32602971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |