Non‐water‐excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T

Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Methods Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CS...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 84; no. 5; pp. 2352 - 2363
Main Authors Dziadosz, Martyna, Bogner, Wolfgang, Kreis, Roland
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Methods Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms. Results The novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times. Conclusion Novel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
AbstractList To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.PURPOSETo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms.METHODSImage-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms.The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times.RESULTSThe novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times.Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.CONCLUSIONNovel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Image-selected in vivo spectroscopy (ISIS) localization and chemical-shift-selective excitation (termed I-CSE) was combined in two ways: first, full ISIS localization plus a frequency-selective spin-echo and second, two-dimensional (2D) ISIS plus a frequency-selective excitation and slice-selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite-cycling. ISIS included gradient-modulated offset-independent adiabatic (GOIA)-type adiabatic inversion pulses; echo times were 8-10 ms. The novel 2D and 3D I-CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high-frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite-cycling and longer echo times. Novel non-water-excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T relaxation.
Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water. Methods Image‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms. Results The novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times. Conclusion Novel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
PurposeTo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization transfer from water.MethodsImage‐selected in vivo spectroscopy (ISIS) localization and chemical‐shift‐selective excitation (termed I‐CSE) was combined in two ways: first, full ISIS localization plus a frequency‐selective spin‐echo and second, two‐dimensional (2D) ISIS plus a frequency‐selective excitation and slice‐selective refocusing. The techniques were evaluated at 3 T in phantoms and human subjects in comparison to standard techniques with water presaturation or metabolite‐cycling. ISIS included gradient‐modulated offset‐independent adiabatic (GOIA)‐type adiabatic inversion pulses; echo times were 8‐10 ms.ResultsThe novel 2D and 3D I‐CSE methods yield upfield spectra that are comparable to those from standard MRS, except for shorter echo times and a limited frequency range. On the downfield/high‐frequency side, they yield much more signal for exchangeable protons when compared to MRS with water presaturation or metabolite‐cycling and longer echo times.ConclusionNovel non‐water‐excitation MRS sequences offer substantial benefits for the detection of metabolite signals that are otherwise suppressed by saturation transfer from water. Avoiding water saturation and using very short echo times allows direct observation of faster exchanging moieties than was previously possible at 3 T and additionally makes the methods less susceptible to fast T2 relaxation.
Author Dziadosz, Martyna
Kreis, Roland
Bogner, Wolfgang
Author_xml – sequence: 1
  givenname: Martyna
  surname: Dziadosz
  fullname: Dziadosz, Martyna
  organization: University of Bern
– sequence: 2
  givenname: Wolfgang
  surname: Bogner
  fullname: Bogner, Wolfgang
  organization: Medical University Vienna
– sequence: 3
  givenname: Roland
  orcidid: 0000-0002-8618-6875
  surname: Kreis
  fullname: Kreis, Roland
  email: roland.kreis@insel.ch
  organization: University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32602971$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9u1DAYxa2qqJ0WFlwAWWIDi7T-EyfxElUFKnVAqsrasp0vnVSJHWxH7ew4AkfgLByFk9TDzGwqWL1v8XtPT-87QYfOO0DoNSVnlBB2PobxjDWcsQO0oIKxgglZHqIFqUtScCrLY3QS4z0hRMq6PELHnFWEyZou0OqLd39-_HzQCUJWeLR90qn3Di9vcJzApuCj9dMaJ7Ar13-fIeLkMTxOgw-Q1a60u-vdHZ6CT95F3Du8mkftsAk63zph_vvX7Uv0otNDhFc7PUXfPl7eXnwurr9-urr4cF1YLjgrRMkqrZuyBtFVnHdN03LKNBiupWgrYpggEqgwpoK649SIllnODLG0aS01_BS92-bmOpuySY19tDAM2oGfo2IllaRpSFNm9O0z9N7PweV2mWKSl7UQG-rNjprNCK2aQj_qsFb7DTNwvgVsnioG6NR-w5QHGBQlavMllb-k_n4pO94_c-xD_8Xu0h_6Adb_B9XyZrl1PAGFvKOZ
CitedBy_id crossref_primary_10_1002_mrm_29119
crossref_primary_10_1002_mrm_30075
crossref_primary_10_1002_mrm_30273
crossref_primary_10_1002_mrm_29267
crossref_primary_10_1002_mrm_29243
crossref_primary_10_1002_mrm_29142
Cites_doi 10.1002/mrm.22897
10.1002/mrm.20989
10.1038/s41598-018-37295-y
10.1148/radiology.164.2.3602398
10.1002/nbm.3121
10.1002/mrm.26873
10.1002/mrm.20549
10.1002/mrm.24537
10.1002/mrm.26968
10.1002/mrm.27222
10.1002/mrm.27971
10.1002/mrm.1910400302
10.1002/nbm.1280
10.1007/BF02192855
10.1006/jmre.1999.1956
10.1016/S0079-6565(97)00024-1
10.1016/j.jmr.2010.01.010
10.1002/mrm.21043
10.1016/j.neuroimage.2019.116075
10.1016/j.neuroimage.2017.04.045
10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G
10.1002/chem.201300955
10.1016/0022-2364(86)90031-4
10.1002/nbm.3317
10.1006/jmrb.1994.1048
10.1002/mrm.24387
10.1038/ncomms5958
10.1088/0031-9155/30/4/008
10.1002/mrm.27806
10.1002/mrm.22813
10.1002/mrm.1910400105
10.1002/nbm.3714
10.1002/mrm.26343
10.1002/1522-2594(200010)44:4<546::AID-MRM8>3.0.CO;2-7
10.1007/BF02668096
10.1002/nbm.678
10.1016/0022-2364(91)90034-Q
10.1002/mrm.26132
10.1016/0022-2364(88)90136-9
10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X
10.1016/0022-2364(86)90016-8
10.1016/j.pnmrs.2014.12.001
10.1016/j.jmr.2008.02.016
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28322
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2363
ExternalDocumentID 32602971
10_1002_mrm_28322
MRM28322
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  funderid: 320030‐175984
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3532-5426aa847e5f633f88d312aeb3a95d60b2509e15bb6e7f31b5d2c32b0c18dc1b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 23:18:10 EDT 2025
Fri Jul 25 12:04:31 EDT 2025
Wed Feb 19 02:29:49 EST 2025
Tue Jul 01 04:26:57 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Wed Jan 22 16:34:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords proton MR spectroscopy
magnetization exchange
amides
brain
human
downfield
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-5426aa847e5f633f88d312aeb3a95d60b2509e15bb6e7f31b5d2c32b0c18dc1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8618-6875
PMID 32602971
PQID 2429347554
PQPubID 1016391
PageCount 12
ParticipantIDs proquest_miscellaneous_2419088084
proquest_journals_2429347554
pubmed_primary_32602971
crossref_citationtrail_10_1002_mrm_28322
crossref_primary_10_1002_mrm_28322
wiley_primary_10_1002_mrm_28322_MRM28322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2008; 192
1987; 164
2019; 9
1986; 70
2013; 69
2006; 56
2020; 83
2018; 168
2010; 203
2000; 44
1998
2014; 27
2016; 32
2018; 80
1988; 78
2007
2006
2013; 70
2019; 202
1999; 41
1998; 40
2013; 19
2017; 30
2014; 5
2019; 82
2015; 28
1994; 104
1997; 10
1986; 66
2017; 77
2017; 79
2017; 78
2019
1991; 93
2011; 66
2005; 54
2011; 65
1984
2008; 21
1985; 30
2015; 86–87
2000; 143
2001; 12
1998; 32
2001; 14
1992; 2
2018; 79
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
De Graaf RA (e_1_2_8_25_1) 2016; 32
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Maudsley A (e_1_2_8_50_1) 2007
Morris PG (e_1_2_8_51_1) 2007
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 30
  start-page: 341
  year: 1985
  end-page: 344
  article-title: 1H NMR chemical shift selective (CHESS) imaging
  publication-title: Phys Med Biol
– start-page: 24
  year: 1998
– volume: 32
  start-page: 828
  year: 2016
  end-page: 835
  article-title: Detection of cerebral NAD+ in humans at 7 T
  publication-title: Magn Reson Med
– volume: 78
  start-page: 11
  year: 2017
  end-page: 19
  article-title: Elucidation of the downfield spectrum of human brain at 7 T using multiple inversion recovery delays and echo times
  publication-title: Magn Reson Med
– volume: 79
  start-page: 2863
  year: 2017
  end-page: 2873
  article-title: In vivo characterization of the downfield part of 1H MR spectra of human brain at 9.4 T: Magnetization exchange with water and relation to conventionally determined metabolite content
  publication-title: Magn Reson Med
– volume: 56
  start-page: 965
  year: 2006
  end-page: 970
  article-title: Localized short‐echo‐time proton MR spectroscopy with full signal‐intensity acquisition
  publication-title: Magn Reson Med
– volume: 30
  year: 2017
  article-title: Non‐water‐suppressed short‐echo‐time magnetic resonance spectroscopic imaging using a concentric ring k‐space trajectory
  publication-title: NMR Biomed
– volume: 168
  start-page: 222
  year: 2018
  end-page: 241
  article-title: Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field‐dependent saturation spectrum
  publication-title: NeuroImage
– volume: 104
  start-page: 1
  year: 1994
  end-page: 10
  article-title: WET, a T1‐ and B1‐insensitive water‐suppression method for in vivo localized 1H NMR spectroscopy
  publication-title: J Magn Reson
– volume: 83
  start-page: 806
  year: 2020
  end-page: 814
  article-title: Single‐voxel (1) H MR spectroscopy of cerebral nicotinamide adenine dinucleotide (NAD(+) ) in humans at 7 T using a 32‐channel volume coil
  publication-title: Magn Reson Med
– volume: 66
  start-page: 283
  year: 1986
  end-page: 294
  article-title: Image‐selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy
  publication-title: J Magn Reson
– volume: 70
  start-page: 916
  year: 2013
  end-page: 924
  article-title: Magnetization exchange observed in human skeletal muscle by non‐water‐suppressed proton MR spectroscopy
  publication-title: Magn Reson Med
– volume: 12
  start-page: 141
  year: 2001
  end-page: 152
  article-title: Java‐based graphical user interface for the MRUI quantitation package
  publication-title: MAGMA
– volume: 80
  start-page: 2326
  year: 2018
  end-page: 2338
  article-title: Diffusion–weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals
  publication-title: Magn Reson Med
– volume: 82
  start-page: 1266
  year: 2019
  end-page: 1277
  article-title: Short echo time relaxation‐enhanced MR spectroscopy reveals broad downfield resonances
  publication-title: Magn Reson Med
– volume: 44
  start-page: 546
  year: 2000
  end-page: 555
  article-title: Extended ISIS sequences insensitive to T(1) smearing
  publication-title: Magn Reson Med
– volume: 203
  start-page: 283
  year: 2010
  end-page: 293
  article-title: Spectroscopic imaging with improved gradient modulated constant adiabaticity pulses on high‐field clinical scanners
  publication-title: J Magn Reson
– volume: 86–87
  start-page: 65
  year: 2015
  end-page: 79
  article-title: Proton MRS and MRSI of the brain without water suppression
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 54
  start-page: 190
  year: 2005
  end-page: 195
  article-title: New method for the simultaneous detection of metabolites and water in localized in vivo 1H nuclear magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 19
  start-page: 13002
  year: 2013
  end-page: 13008
  article-title: Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation
  publication-title: Chemistry
– volume: 70
  start-page: 310
  year: 1986
  end-page: 318
  article-title: Selective inversion radiofrequency pulses by optimal control
  publication-title: J Magn Reson
– volume: 40
  start-page: 36
  year: 1998
  end-page: 42
  article-title: Proton NMR spectroscopy of solvent‐saturable resonances: A new approach to study pH effects in situ
  publication-title: Magn Reson Med
– volume: 202
  start-page: 116075
  year: 2019
  article-title: Magnetic resonance spectroscopy extended by oscillating diffusion gradients: Cell‐specific anomalous diffusion as a probe for tissue microstructure in human brain
  publication-title: NeuroImage
– volume: 32
  start-page: 59
  year: 1998
  end-page: 106
  article-title: Shaped radiofrequency pulses in high resolution NMR
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 66
  start-page: 923
  year: 2011
  end-page: 930
  article-title: In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: A comparison between 3 T and 7 T
  publication-title: Magn Reson Med
– volume: 40
  start-page: 343
  year: 1998
  end-page: 347
  article-title: Proton spectroscopy without water suppression: The oversampled J‐ resolved experiment
  publication-title: Magn Reson Med
– volume: 21
  start-page: 1057
  year: 2008
  end-page: 1065
  article-title: Identification of amide protons of glutathione in MR spectra of tumour cells
  publication-title: NMR Biomed
– volume: 192
  start-page: 209
  year: 2008
  end-page: 217
  article-title: Compensation of gradient‐induced magnetic field perturbations
  publication-title: J Magn Reson
– volume: 56
  start-page: 585
  year: 2006
  end-page: 592
  article-title: Amide proton transfer imaging of human brain tumors at 3 T
  publication-title: Magn Reson Med
– volume: 5
  start-page: 4958
  year: 2014
  article-title: Metabolic properties in stroked rats revealed by relaxation‐enhanced magnetic resonance spectroscopy at ultrahigh fields
  publication-title: Nat Commun
– year: 2007
– volume: 2
  start-page: 661
  year: 1992
  end-page: 665
  article-title: Gradient‐tailored excitation for single‐quantum NMR spectroscopy of aqueous solutions
  publication-title: J Biomol NMR
– volume: 41
  start-page: 649
  year: 1999
  end-page: 656
  article-title: In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time
  publication-title: Magn Reson Med
– start-page: 46
  year: 2019
– volume: 93
  start-page: 93
  year: 1991
  end-page: 141
  article-title: Band‐selective radiofrequency pulses
  publication-title: J Magn Reson
– volume: 14
  start-page: 1
  year: 2001
  end-page: 4
  article-title: Magnetic coupling between water and creatine protons in human brain and skeletal muscle, as measured using inversion transfer (1)H‐MRS
  publication-title: NMR Biomed
– volume: 143
  start-page: 79
  year: 2000
  end-page: 87
  article-title: A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)
  publication-title: J Magn Reson
– year: 1984
– volume: 69
  start-page: 1253
  year: 2013
  end-page: 1260
  article-title: Non‐water‐suppressed proton MR spectroscopy improves spectral quality in the human spinal cord
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1841
  year: 2018
  end-page: 1850
  article-title: Metabolite‐cycled STEAM and semi‐LASER localization for MR spectroscopy of the human brain at 9.4 T
  publication-title: Magn Reson Med
– volume: 27
  start-page: 802
  year: 2014
  end-page: 809
  article-title: Detection of cerebral NAD+ by in vivo 1H NMR spectroscopy
  publication-title: NMR Biomed
– volume: 10
  start-page: 423
  year: 1997
  end-page: 434
  article-title: Adiabatic pulses
  publication-title: NMR Biomed
– volume: 164
  start-page: 539
  year: 1987
  end-page: 541
  article-title: Multisection fat‐water imaging with chemical shift selective presaturation
  publication-title: Radiology
– volume: 65
  start-page: 1239
  year: 2011
  end-page: 1246
  article-title: Magnetization exchange with water and T1 relaxation of the downfield resonances in human brain spectra at 3.0 T
  publication-title: Magn Reson Med
– volume: 77
  start-page: 520
  year: 2017
  end-page: 528
  article-title: Transverse relaxation of selectively excited metabolites in stroke at 21.1T
  publication-title: Magn Reson Med
– start-page: 3063
  year: 2006
– volume: 78
  start-page: 519
  year: 1988
  end-page: 525
  article-title: Outer volume suppressed image related in vivo spectroscopy (OSIRIS), a high‐sensitivity localization technique
  publication-title: J Magn Reson
– volume: 9
  start-page: 1089
  year: 2019
  article-title: Analysis of chemical exchange saturation transfer contributions from brain metabolites to the Z‐spectra at various field strengths and pH
  publication-title: Sci Rep
– volume: 28
  start-page: 906
  year: 2015
  end-page: 913
  article-title: Signature of protein unfolding in chemical exchange saturation transfer imaging
  publication-title: NMR Biomed
– volume-title: Selective Excitation in MRI and MR Spectroscopy Encyclopedia of Magnetic Resonance
  year: 2007
  ident: e_1_2_8_50_1
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.22897
– ident: e_1_2_8_40_1
  doi: 10.1002/mrm.20989
– ident: e_1_2_8_47_1
  doi: 10.1038/s41598-018-37295-y
– ident: e_1_2_8_3_1
  doi: 10.1148/radiology.164.2.3602398
– ident: e_1_2_8_22_1
– ident: e_1_2_8_24_1
  doi: 10.1002/nbm.3121
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.26873
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.20549
– ident: e_1_2_8_15_1
  doi: 10.1002/mrm.24537
– ident: e_1_2_8_17_1
  doi: 10.1002/mrm.26968
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.27222
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.27971
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.1910400302
– ident: e_1_2_8_46_1
  doi: 10.1002/nbm.1280
– ident: e_1_2_8_10_1
  doi: 10.1007/BF02192855
– ident: e_1_2_8_39_1
  doi: 10.1006/jmre.1999.1956
– ident: e_1_2_8_49_1
  doi: 10.1016/S0079-6565(97)00024-1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jmr.2010.01.010
– ident: e_1_2_8_12_1
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.21043
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2019.116075
– ident: e_1_2_8_42_1
– ident: e_1_2_8_41_1
  doi: 10.1016/j.neuroimage.2017.04.045
– volume: 32
  start-page: 828
  year: 2016
  ident: e_1_2_8_25_1
  article-title: Detection of cerebral NAD+ in humans at 7 T
  publication-title: Magn Reson Med
– ident: e_1_2_8_4_1
  doi: 10.1002/(SICI)1522-2594(199904)41:4<649::AID-MRM2>3.0.CO;2-G
– ident: e_1_2_8_6_1
– ident: e_1_2_8_14_1
  doi: 10.1002/chem.201300955
– ident: e_1_2_8_23_1
  doi: 10.1016/0022-2364(86)90031-4
– ident: e_1_2_8_45_1
  doi: 10.1002/nbm.3317
– ident: e_1_2_8_36_1
  doi: 10.1006/jmrb.1994.1048
– ident: e_1_2_8_16_1
  doi: 10.1002/mrm.24387
– ident: e_1_2_8_28_1
  doi: 10.1038/ncomms5958
– ident: e_1_2_8_2_1
  doi: 10.1088/0031-9155/30/4/008
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.27806
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.22813
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.1910400105
– ident: e_1_2_8_19_1
  doi: 10.1002/nbm.3714
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.26343
– ident: e_1_2_8_43_1
  doi: 10.1002/1522-2594(200010)44:4<546::AID-MRM8>3.0.CO;2-7
– ident: e_1_2_8_37_1
  doi: 10.1007/BF02668096
– ident: e_1_2_8_38_1
  doi: 10.1002/nbm.678
– ident: e_1_2_8_48_1
  doi: 10.1016/0022-2364(91)90034-Q
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.26132
– ident: e_1_2_8_30_1
  doi: 10.1016/0022-2364(88)90136-9
– ident: e_1_2_8_32_1
  doi: 10.1002/(SICI)1099-1492(199712)10:8<423::AID-NBM488>3.0.CO;2-X
– ident: e_1_2_8_35_1
  doi: 10.1016/0022-2364(86)90016-8
– ident: e_1_2_8_5_1
  doi: 10.1016/j.pnmrs.2014.12.001
– ident: e_1_2_8_8_1
  doi: 10.1016/j.jmr.2008.02.016
– volume-title: Complex Radiofrequency Pulses. Encyclopedia of Magnetic Resonance
  year: 2007
  ident: e_1_2_8_51_1
SSID ssj0009974
Score 2.3725712
Snippet Purpose To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by...
To develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by magnetization...
PurposeTo develop localization sequences for in vivo MR spectroscopy (MRS) on clinical scanners of 3 T to record spectra that are not influenced by...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2352
SubjectTerms Adiabatic
Adiabatic flow
amides
brain
Brain - diagnostic imaging
Cycles
downfield
Exchanging
Excitation
Excitation spectra
Frequency ranges
human
Humans
In vivo methods and tests
Localization
Magnetic Resonance Spectroscopy
magnetization exchange
Metabolites
Phantoms, Imaging
proton MR spectroscopy
Protons
Saturation
Scanners
Spectroscopy
Spectrum analysis
Water
Title Non‐water‐excitation MR spectroscopy techniques to explore exchanging protons in human brain at 3 T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28322
https://www.ncbi.nlm.nih.gov/pubmed/32602971
https://www.proquest.com/docview/2429347554
https://www.proquest.com/docview/2419088084
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lat0wEB1CoKGbPtLXbdOgli668Y1lybJFV6U0hMDN4pJAFgUjyTItbexwry99rPoJ_YR-Sz8lX5IZ-RGSthCyMDJ4jPUYac5YozMAr-IUUYgVZZTrtIpkZiSug1USmRwdopKXubIhyvdA7R3J_eP0eA3eDGdhOn6I8YcbzYywXtMEN3a5c0EaerI4mVKeHVp_KVaLANH8gjpK646BOZO0zmg5sArFyc745mVb9BfAvIxXg8HZvQsfhqp2cSafp6vWTt2PKyyON2zLPbjTA1H2ttOc-7Dm603YmPVb7ZtwK8SGuuUD-HjQ1Gc_f31FVLrA0n9zPa83m81ZOKlJjJjN6Xc2EsIuWdswH8L7PJbhdDHaSEasEKjm7FPNQnJAZilDBTMtE39-Hz6Eo933h-_2oj5BQ-REKiiHQqKMQfvm00oJUeV5KXhi0D83Oi1VbBFfac9Ta5XPKsFtWiZOJDZ2PC8dt-IRrNdN7Z8AQ0eOq5JbncW5dGgkpcdLqFg6p4zOJ_B6GKpiaCUl0fhSdLzLSYF9WIQ-nMDLUfS0o-z4l9DWMN5FP2uXBcIVLWSGCGsCL8bHON9oE8XUvlmRDKfQMKzlBB53ejJ-BaEw5QLjWNkw2v__fDGbz8LN0-uLPoPbCTn74SDkFqy3i5V_joiotdtB9c8BfgMH1A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUAv_BRaFgoYxIFLtnHsOLHEBSGqBZo9rLZSLyiyHUegtkm1mxUtJx6BR-BZeBSehLHzU5UfCXGIHCmO_Dueb-zxNwDPwhhRiGZFkMq4DHiiOK6DZRSoFA2ighap0N7LdyomB_ztYXy4Bi_6uzAtP8Sw4eYkw6_XTsDdhvTuBWvoyeJk7ALt4AJ8xUX09gbV7II8SsqWgznhbqWRvOcVCqPd4dfL2ug3iHkZsXqVs3cT3veVbT1NjsarRo_N5194HP-3NbfgRodFyct28tyGNVttwrWsO23fhKvePdQs78CHaV39-PL1EwLTBab2zHTU3iSbEX9Z05Fi1qfnZOCEXZKmJtZ7-FlM_QVjVJPEEUPgTCcfK-LjAxLtglQQ1RD2_dv8LhzsvZ6_mgRdjIbAsJi5MAqRUApVnI1LwViZpgWjkUITXcm4EKFGiCUtjbUWNikZ1XERGRbp0NC0MFSzLViv6sreA4K2HBUF1TIJU25QT3KLDxMhN0YomY7geT9Wed9KF0fjOG-pl6Mc-zD3fTiCp0PW05a140-ZdvoBzzvBXeaIWCTjCYKsETwZPqPIuXMUVdl65fJQ5x2GtRzBdjtRhlIQDbtwYBQr64f778Xn2SzzL_f_PetjuD6ZZ_v5_pvpuwewETnb39-L3IH1ZrGyDxEgNfqRl4Of59UL7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtQwFL2qiqh4YSlQBgoYxAMvmcax48TiCVFGZZkRGrVSH5AibxEImoxmMmJ54hP4BL6FT-FLuHaWqiwS4iFypDiKl7scx9fnAjyIU0Qhmtkol2kZ8UxxtINlEqkcF0SW2lzoEOU7EwdH_PlxerwBj_qzMC0_xPDDzWtGsNdewRe23DslDT1Znox9nh20v-e4iHMv0vvzU-4oKVsK5ox7QyN5TysUJ3vDq2ed0W8I8yxgDR5ncgle921tA03ejdeNHpvPv9A4_mdnLsPFDomSx63oXIENV23D1rTba9-G8yE41KyuwptZXf348vUDwtIllu6j6Yi9yXROwlFNT4lZLz6RgRF2RZqauBDf57AMx4vRSRJPC4FyTt5WJGQHJNqnqCCqIez7t8NrcDR5evjkIOoyNESGpcwnUUiEUujgXFoKxso8t4wmChfoSqZWxBoBlnQ01Vq4rGRUpzYxLNGxobk1VLPrsFnVlbsBBFdyVFiqZRbn3KCX5A4vJmJujFAyH8HDfqqKvpc-i8b7oiVeTgocwyKM4QjuD1UXLWfHnyrt9vNddGq7KhCvSMYzhFgjuDc8RoXzuyiqcvXa16E-NgxbOYKdVk6GryAW9snAKDY2zPbfP19M59Nwc_Pfq96FrVf7k-Lls9mLW3Ah8Qv_cChyFzab5drdRnTU6DtBC34C3sMKpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-water-excitation+MR+spectroscopy+techniques+to+explore+exchanging+protons+in+human+brain+at+3%C2%A0T&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Dziadosz%2C+Martyna&rft.au=Bogner%2C+Wolfgang&rft.au=Kreis%2C+Roland&rft.date=2020-11-01&rft.eissn=1522-2594&rft.volume=84&rft.issue=5&rft.spage=2352&rft_id=info:doi/10.1002%2Fmrm.28322&rft_id=info%3Apmid%2F32602971&rft.externalDocID=32602971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon