Diffusion‐weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals

Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Methods Diffusion‐weighted spectra of wa...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 80; no. 6; pp. 2326 - 2338
Main Authors Döring, André, Adalid, Victor, Boesch, Chris, Kreis, Roland
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Methods Diffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter. Results Metabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average). Conclusion Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.
AbstractList PurposeTo combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).MethodsDiffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.ResultsMetabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).ConclusionUsing the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.
Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Methods Diffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter. Results Metabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average). Conclusion Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.
To combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).PURPOSETo combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).Diffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.METHODSDiffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.Metabolite-cycled diffusion 1 H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).RESULTSMetabolite-cycled diffusion 1 H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.CONCLUSIONUsing the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.
To combine the metabolite-cycling technique with diffusion-weighted H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Diffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter. Metabolite-cycled diffusion H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average). Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.
Author Kreis, Roland
Adalid, Victor
Boesch, Chris
Döring, André
Author_xml – sequence: 1
  givenname: André
  surname: Döring
  fullname: Döring, André
  organization: University of Bern
– sequence: 2
  givenname: Victor
  surname: Adalid
  fullname: Adalid, Victor
  organization: University of Bern
– sequence: 3
  givenname: Chris
  surname: Boesch
  fullname: Boesch, Chris
  organization: University of Bern
– sequence: 4
  givenname: Roland
  orcidid: 0000-0002-8618-6875
  surname: Kreis
  fullname: Kreis, Roland
  email: roland.kreis@insel.ch
  organization: University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29687927$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-AIrGBRVr72onHS1R-pVZICNaW47keXCXx1HY0yo5H4Bl5EpzOdFPB6i7ud47uPeeMnIxhREJeMnrBKIXLIQ4XIAHgCVmxBqCGRokTsqJS0JozJU7JWUq3lFKlpHhGTkG1a6lArkh4752bkg_jn1-_9-i3PzNuqsFsR8zeVhFTGM1osUo7tDmGZMNurroQ0sJ1c5X8MPXZjBim1M-VsXeTj2W1Nxlj0TuMeK_329H06Tl56srAF8d5Tn58_PD96nN9_fXTl6t317XlDYdaSCpRuVYypzjytcOGCwmu7SjvWqGo6TYWWuAb4Tq1Zp1Eg7i8BSDWrePn5M3BdxfD3YQp68Eni31_uFQD5YxCq4Qs6OtH6G2Y4nKsBgat5A3IhXp1pKZuwI3eRT-YOOuHKAtweQBsSSmVx7X12eSSbI7G95pRvZSlS1n6vqyiePtI8WD6L_bovvc9zv8H9c23m4PiL0BDpd8
CitedBy_id crossref_primary_10_1002_nbm_4270
crossref_primary_10_3389_fneur_2023_1120227
crossref_primary_10_1002_mrm_30141
crossref_primary_10_1002_mrm_29267
crossref_primary_10_3389_fnins_2023_1258408
crossref_primary_10_1002_mrm_29367
crossref_primary_10_1002_nbm_4347
crossref_primary_10_1002_mrm_28322
crossref_primary_10_1002_nbm_5123
crossref_primary_10_1002_jmri_26979
crossref_primary_10_1002_jmri_26846
crossref_primary_10_1002_mrm_28500
crossref_primary_10_1016_j_neuroimage_2021_118424
crossref_primary_10_1002_mrm_29877
crossref_primary_10_1002_nbm_5318
crossref_primary_10_1002_nbm_4206
crossref_primary_10_1002_nbm_4459
crossref_primary_10_1016_j_neuroimage_2019_116075
crossref_primary_10_1111_acel_14477
crossref_primary_10_1002_mrm_27605
Cites_doi 10.1002/nbm.686
10.1016/0022-4073(77)90161-3
10.1002/mrm.26518
10.1016/j.mri.2007.01.005
10.1002/mrm.25568
10.1002/mrm.20427
10.1002/nbm.3481
10.1007/s10334-011-0246-y
10.1007/s10334-017-0618-z
10.1002/nbm.1586
10.1080/00031305.1994.10476090
10.1002/nbm.1940080711
10.1159/000111347
10.1148/radiology.188.3.8351339
10.1016/j.neuroimage.2013.12.045
10.1002/mrm.23129
10.1063/1.1695690
10.1002/mrm.26969
10.1016/j.neuroimage.2013.04.077
10.1002/mrm.21372
10.1002/mrm.20549
10.1007/s00429-013-0691-7
10.1007/s00429-014-0968-5
10.1002/nbm.1026
10.1002/mrm.25139
10.1002/nbm.3671
10.1002/mrm.1203
10.1002/nbm.1940050408
10.1351/pac199264060815
10.1006/jmre.1999.1713
10.1148/radiology.177.2.2217776
10.1002/9780470034590.emrstm1471
10.1002/nbm.759
10.1002/mrm.1910140104
10.1002/mrm.26615
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27222
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2338
ExternalDocumentID 29687927
10_1002_mrm_27222
MRM27222
Genre article
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 320030‐156952 ; 320030‐175984
– fundername: Swiss National Science Foundation
  grantid: 320030-156952
– fundername: Swiss National Science Foundation
  grantid: 320030-175984
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3532-4707e9f671f93e38fe53472f6b03b6490abdc2623d4fb981b7eaee296822486f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 03:50:54 EDT 2025
Fri Jul 25 12:14:21 EDT 2025
Wed Feb 19 02:35:39 EST 2025
Tue Jul 01 01:21:05 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Jan 22 16:56:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords signal correction
diffusion
quantification
motion
artefact
magnetic resonance spectroscopy
brain
metabolites
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-4707e9f671f93e38fe53472f6b03b6490abdc2623d4fb981b7eaee296822486f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8618-6875
PMID 29687927
PQID 2126735277
PQPubID 1016391
PageCount 13
ParticipantIDs proquest_miscellaneous_2031026947
proquest_journals_2126735277
pubmed_primary_29687927
crossref_citationtrail_10_1002_mrm_27222
crossref_primary_10_1002_mrm_27222
wiley_primary_10_1002_mrm_27222_MRM27222
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
2018-12-00
2018-Dec
20181201
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 15
2015; 4
2014; 90
1990; 14
2011
2015; 220
2016; 75
2016; 221
2006; 19
1994; 48
2001; 46
2007; 58
1995; 8
1993; 188
2014; 86
1993; 15
1965; 42
2017; 30
1990; 88
1977; 17
2017; 78
2005; 53
2005; 54
2017
2011; 24
1992; 64
2014; 73
2012; 67
2001; 14
1999; 138
1990; 177
2007; 25
1992; 5
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Ormondt D (e_1_2_7_31_1) 1990; 88
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 14
  start-page: 26
  year: 1990
  end-page: 30
  article-title: In vivo proton spectroscopy in presence of eddy currents
  publication-title: Magn Reson Med
– volume: 86
  start-page: 35
  year: 2014
  end-page: 42
  article-title: Methodology for improved detection of low concentration metabolites in MRS: optimised combination of signals from multi‐element coil arrays
  publication-title: Neuroimage
– volume: 30
  start-page: e3671
  year: 2017
  article-title: Probing metabolite diffusion at ultra‐short time scales in the mouse brain using optimized oscillating gradients and “short”‐echo‐time diffusion‐weighted MRS
  publication-title: NMR Biomed
– volume: 138
  start-page: 173
  year: 1999
  end-page: 177
  article-title: Asymmetric adiabatic pulses for NH selection
  publication-title: J Magn Reson
– volume: 17
  start-page: 233
  year: 1977
  end-page: 236
  article-title: Empirical fits to the Voigt line width: a brief review
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient
  publication-title: J Chem Phys
– volume: 58
  start-page: 1045
  year: 2007
  end-page: 1053
  article-title: Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy
  publication-title: Magn Reson Med
– start-page: 1410
  year: 2011
– volume: 75
  start-page: 15
  year: 2016
  end-page: 18
  article-title: The trouble with quality filtering based on relative Cramér‐Rao lower bounds
  publication-title: Magn Reson Med
– volume: 177
  start-page: 401
  year: 1990
  end-page: 405
  article-title: Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo
  publication-title: Radiology
– volume: 8
  start-page: 375
  year: 1995
  end-page: 386
  article-title: Molecular diffusion, tissue microdynamics and microstructure
  publication-title: NMR Biomed
– volume: 15
  start-page: 289
  year: 1993
  end-page: 298
  article-title: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells
  publication-title: Dev Neurosci
– volume: 73
  start-page: 481
  year: 2014
  end-page: 487
  article-title: Proton diffusion tensor spectroscopy of metabolites in human muscle in vivo
  publication-title: Magn Reson Med
– volume: 24
  start-page: 147
  year: 2011
  end-page: 164
  article-title: Two‐dimensional linear‐combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a Fitting Tool for Arrays of Interrelated Datasets
  publication-title: MAGMA
– volume: 25
  start-page: 1148
  year: 2007
  end-page: 1154
  article-title: The rapid and automatic combination of proton MRSI data using multi‐channel coils without water suppression
  publication-title: Magn Reson Imaging
– volume: 221
  start-page: 1245
  year: 2016
  end-page: 1254
  article-title: Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion‐weighted MR spectroscopy in the human brain at 7 T
  publication-title: Brain Struct Funct
– volume: 46
  start-page: 395
  year: 2001
  end-page: 400
  article-title: Restoration of motion‐related signal loss and line‐shape deterioration of proton MR spectra using the residual water as intrinsic reference
  publication-title: Magn Reson Med
– volume: 19
  start-page: 255
  year: 2006
  end-page: 263
  article-title: ProFit: two‐dimensional prior‐knowledge fitting of J‐resolved spectra
  publication-title: NMR Biomed
– volume: 15
  start-page: 69
  year: 2002
  end-page: 74
  article-title: Diffusion‐weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor
  publication-title: NMR Biomed
– volume: 54
  start-page: 190
  year: 2005
  end-page: 195
  article-title: New method for the simultaneous detection of metabolites and water in localized in vivo 1H nuclear magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 188
  start-page: 719
  year: 1993
  end-page: 725
  article-title: Human brain: proton diffusion MR spectroscopy
  publication-title: Radiology
– volume: 90
  start-page: 374
  year: 2014
  end-page: 380
  article-title: Intracellular metabolites in the primate brain are primarily localized in long fibers rather than in cell bodies, as shown by diffusion‐weighted magnetic resonance spectroscopy
  publication-title: Neuroimage
– volume: 88
  start-page: 652
  year: 1990
  end-page: 659
  article-title: 2D approach to quantitation of inversion‐recovery data
  publication-title: J Magn Reson
– volume: 48
  start-page: 315
  year: 1994
  end-page: 321
  article-title: Simultaneous confidence intervals in multiple regression
  publication-title: Am Stat
– volume: 30
  start-page: e3481
  year: 2017
  article-title: In vivo diffusion MRS investigation of non‐water molecules in biological tissues
  publication-title: NMR Biomed
– volume: 64
  start-page: 815
  year: 1992
  end-page: 823
  article-title: Quantification of 1‐D and 2‐D magnetic resonance time domain signals
  publication-title: Pure Appl Chem
– volume: 79
  start-page: 2896
  year: 2018
  end-page: 2901
  article-title: Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T
  publication-title: Magn Reson Med
– start-page: 2996
  year: 2011
– volume: 220
  start-page: 899
  year: 2015
  end-page: 917
  article-title: Localisation of N‐acetylaspartate in oligodendrocytes/myelin
  publication-title: Brain Struct Funct
– start-page: 1412
  year: 2011
– volume: 67
  start-page: 1203
  year: 2012
  end-page: 1209
  article-title: Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T
  publication-title: Magn Reson Med
– volume: 14
  start-page: 94
  year: 2001
  end-page: 111
  article-title: Diffusion NMR spectroscopy
  publication-title: NMR Biomed
– volume: 78
  start-page: 1246
  year: 2017
  end-page: 1256
  article-title: Diffusion tensor spectroscopic imaging of the human brain in children and adults
  publication-title: Magn Reson Med
– volume: 24
  start-page: 270
  year: 2011
  end-page: 280
  article-title: Considerations for measuring the fractional anisotropy of metabolites with diffusion tensor spectroscopy
  publication-title: NMR Biomed
– volume: 5
  start-page: 209
  year: 1992
  end-page: 211
  article-title: Motional degradation of metabolite signal strengths when using STEAM: a correction method
  publication-title: NMR Biomed
– volume: 30
  start-page: 429
  year: 2017
  end-page: 448
  article-title: Fitting interrelated datasets: metabolite diffusion and general lineshapes
  publication-title: MAGMA
– year: 2017
– volume: 53
  start-page: 1025
  year: 2005
  end-page: 1032
  article-title: Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 78
  start-page: 2082
  year: 2017
  end-page: 2094
  article-title: Weighted averaging in spectroscopic studies improves statistical power
  publication-title: Magn Reson Med
– volume: 4
  start-page: 733
  year: 2015
  end-page: 750
  article-title: Diffusion‐weighted magnetic resonance spectroscopy
  publication-title: eMagRes
– ident: e_1_2_7_3_1
  doi: 10.1002/nbm.686
– ident: e_1_2_7_22_1
  doi: 10.1016/0022-4073(77)90161-3
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.26518
– ident: e_1_2_7_23_1
  doi: 10.1016/j.mri.2007.01.005
– ident: e_1_2_7_29_1
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.25568
– volume: 88
  start-page: 652
  year: 1990
  ident: e_1_2_7_31_1
  article-title: 2D approach to quantitation of inversion‐recovery data
  publication-title: J Magn Reson
– ident: e_1_2_7_39_1
  doi: 10.1002/mrm.20427
– ident: e_1_2_7_5_1
  doi: 10.1002/nbm.3481
– ident: e_1_2_7_16_1
  doi: 10.1007/s10334-011-0246-y
– ident: e_1_2_7_17_1
  doi: 10.1007/s10334-017-0618-z
– ident: e_1_2_7_40_1
  doi: 10.1002/nbm.1586
– ident: e_1_2_7_21_1
  doi: 10.1080/00031305.1994.10476090
– ident: e_1_2_7_6_1
  doi: 10.1002/nbm.1940080711
– ident: e_1_2_7_8_1
  doi: 10.1159/000111347
– ident: e_1_2_7_12_1
  doi: 10.1148/radiology.188.3.8351339
– ident: e_1_2_7_37_1
  doi: 10.1016/j.neuroimage.2013.12.045
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.23129
– ident: e_1_2_7_2_1
  doi: 10.1063/1.1695690
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.26969
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2013.04.077
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.21372
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.20549
– ident: e_1_2_7_7_1
  doi: 10.1007/s00429-013-0691-7
– ident: e_1_2_7_9_1
  doi: 10.1007/s00429-014-0968-5
– ident: e_1_2_7_33_1
  doi: 10.1002/nbm.1026
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.25139
– ident: e_1_2_7_27_1
– ident: e_1_2_7_35_1
  doi: 10.1002/nbm.3671
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.1203
– ident: e_1_2_7_11_1
  doi: 10.1002/nbm.1940050408
– ident: e_1_2_7_18_1
– ident: e_1_2_7_32_1
  doi: 10.1351/pac199264060815
– ident: e_1_2_7_15_1
  doi: 10.1006/jmre.1999.1713
– ident: e_1_2_7_26_1
– ident: e_1_2_7_30_1
  doi: 10.1148/radiology.177.2.2217776
– ident: e_1_2_7_4_1
  doi: 10.1002/9780470034590.emrstm1471
– ident: e_1_2_7_41_1
  doi: 10.1002/nbm.759
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.1910140104
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.26615
SSID ssj0009974
Score 2.394628
Snippet Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of...
To combine the metabolite-cycling technique with diffusion-weighted H-MR spectroscopy and to use the inherent water reference for compensation of...
PurposeTo combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of...
To combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2326
SubjectTerms Amplitudes
artefact
Artefacts
brain
Compensation
Cycles
Diffusion
Eddy currents
Magnetic resonance spectroscopy
Metabolites
motion
quantification
Reference signals
Restoration
signal correction
Spectrum analysis
Substantia grisea
Three dimensional motion
Variation
Title Diffusion‐weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27222
https://www.ncbi.nlm.nih.gov/pubmed/29687927
https://www.proquest.com/docview/2126735277
https://www.proquest.com/docview/2031026947
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CoKWXtkn_tk2KWnrIxRuvLEsrciptQyhsD6GBHArGkqUSkrXDepewPfUR-ox9ksxItkP6A6U3g8bI1mhGn0YznwDeVCr30guR8NzJREjvEu2MTWxm3WRilcwNVSPPPsmjE_HxND_dgIO-FibyQwwBN7KM4K_JwEvT7t-Qhs4X8zFXuLyh_6VcLQJExzfUUVpHBmYlyM9o0bMKpXx_ePP2WvQbwLyNV8OCc_gAvvSfGvNMzserpRnbb7-wOP7nvzyE-x0QZW_jzNmCDVdvw91Zd9S-DXdCbqhtH0Hz_sz7FUXVfn7_cRVCqa5i8_JrTQWQDPfrDbF2OBaqNokds7lcM0TvFEllZs3aM0pbLGvXrNqLNSstZR9j0xXi3AUbLjphlEuC1vAYTg4_fH53lHT3NKBG84wnQqXKaS_VxOvMZVPv8kwo7qVJMyOFTktTWY44qxLeaMTJypXOcS0pg3UqffYENuumds-AUZ2vV1OUM7TzdCbH7VFlrEk9Oo7KjGCv11hhOxJzukvjooj0y7zAoSzCUI7g9SB6GZk7_iS006u96Iy3LXA1lwqBqVIjeDU0o9nRWUocrIITpSpVAaPM0zhdhl7oz5Tm2LIXlP737ovZ8Sw8PP930RdwD0HbNKbU7MDmcrFyuwiMluZlsIBrRY0MXw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqXAQgGDOPSSbdZx7LXEBQHVAk0PVSv1gqLYsVFFN6n2oWo58RP4jfwSZpxHVR4S4hbJEznxeDyfxzOfAV6WKvXSCxHx1MlISO8i7YyNbGLdaGSVTA1VI2f7cnIkPhynx2vwqquFafgh-oAbWUZYr8nAKSC9c8EaOp1Nh1yhf7sCV-lG77ChOrggj9K64WBWglYaLTpeoZjv9K9e9ka_QczLiDW4nN3b8Kn72CbT5MtwuTBD-_UXHsf__Zs7cKvFoux1M3nuwpqrNuB61p62b8C1kB5q5_egfnvi_ZICaz--fT8P0VRXsmnxuaIaSIZb9pqIOxwLhZtEkFmfrRgCeAqmMrNi8xPKXCwqVy_npytWWEpAxqZzhLoz1t91wiidBA1iE4523x2-mUTtVQ2o1DThkVCxctpLNfI6ccnYuzQRintp4sRIoePClJYj1CqFNxqhsnKFc1xLSmIdS5_ch_WqrtxDYFTq69UY5QxtPp1JcYdUGmtij2tHaQaw3aksty2POV2ncZo3DMw8x6HMw1AO4EUvetaQd_xJaKvTe97a7zxHhy4VYlOlBvC8b0bLo-OUZrByTqyqVAiMMg-a-dL3Qn-mNMeW7aD1v3efZwdZeHj076LP4MbkMNvL997vf3wMNxHDjZsMmy1YX8yW7gnipIV5GszhJ_FbEHo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouFAqFhQIGcegl26zj2LF6qlhW5bEVqqjUA1IUOzaq6CarfahaTvwEfiO_pDN5VeUhIW6RPJETj8fzeTzzGeBVrmIvvRABj50MhPQu0M7YwEbWDQZWydhQNfL4SB6eiHen8eka7Le1MDU_RBdwI8uo1msy8Gnu965IQyezSZ8rdG834KaQYUJTenh8xR2ldU3BrAQtNFq0tEIh3-teve6MfkOY1wFr5XFGm_C5_dY60eRrf7kwffvtFxrH__yZu3CnQaLsoJ4692DNFVuwMW7O2rfgVpUcauf3oRyeeb-ksNrP7z8uqliqy9kk-1JQBSTDDXtJtB2OVWWbRI9ZTlcM4TuFUplZsfkZ5S1mhSuX8_MVyyylH2PTBQLdGetuOmGUTILm8ABORm8-vT4MmosaUKVxxAOhQuW0l2rgdeSixLs4Eop7acLISKHDzOSWI9DKhTcagbJymXNcS0phTaSPtmG9KAv3CBgV-nqVoJyhraczMe6PcmNN6HHlyE0PdluNpbZhMafLNM7Tmn-ZpziUaTWUPXjZiU5r6o4_Ce20ak8b652n6M6lQmSqVA9edM1od3SYUg9WyolTlcqAUeZhPV26XujPlObYslsp_e_dp-PjcfXw-N9Fn8PGx-Eo_fD26P0TuI0ALqnTa3ZgfTFbuqcIkhbmWWUMl9r8DzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-weighted+magnetic+resonance+spectroscopy+boosted+by+simultaneously+acquired+water+reference+signals&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=D%C3%B6ring%2C+Andr%C3%A9&rft.au=Adalid%2C+Victor&rft.au=Boesch%2C+Chris&rft.au=Kreis%2C+Roland&rft.date=2018-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=80&rft.issue=6&rft.spage=2326&rft_id=info:doi/10.1002%2Fmrm.27222&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon