Diffusion‐weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals
Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Methods Diffusion‐weighted spectra of wa...
Saved in:
Published in | Magnetic resonance in medicine Vol. 80; no. 6; pp. 2326 - 2338 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).
Methods
Diffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.
Results
Metabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).
Conclusion
Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort. |
---|---|
AbstractList | PurposeTo combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).MethodsDiffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.ResultsMetabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).ConclusionUsing the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort. Purpose To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of motion‐related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Methods Diffusion‐weighted spectra of water and metabolites were acquired simultaneously using metabolite‐cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion‐induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter. Results Metabolite‐cycled diffusion 1H‐MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion‐related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal‐to‐noise metabolites. Use of the motion‐compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average). Conclusion Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal‐to‐noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort. To combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).PURPOSETo combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs).Diffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.METHODSDiffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter.Metabolite-cycled diffusion 1 H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).RESULTSMetabolite-cycled diffusion 1 H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average).Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort.CONCLUSIONUsing the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort. To combine the metabolite-cycling technique with diffusion-weighted H-MR spectroscopy and to use the inherent water reference for compensation of motion-related signal loss for improved estimation of metabolite apparent diffusion coefficients (ADCs). Diffusion-weighted spectra of water and metabolites were acquired simultaneously using metabolite-cycling at 3 T. The water information was used for signal correction of phase, frequency, and eddy currents, as well as for compensation of motion-induced signal loss. ADCs were estimated by 2D simultaneous fitting. The quality of ADC restoration was investigated in vitro. Subsequently, the new approach was applied in 13 subjects for enhanced metabolite ADC estimation in gray matter. Metabolite-cycled diffusion H-MRS is suitable to measure metabolite and water ADCs simultaneously. The water reference facilitates signal amplitude restoration, compensating for motion-related artefacts. 2D fitting stabilizes the fitting procedure and allows the estimation of ADCs even for low signal-to-noise metabolites. Use of the motion-compensation scheme leads to estimation of smaller ADCs for virtually all metabolites (44% smaller ADC on average), to a reduction of fitting uncertainties for metabolite ADCs in individual subjects and reduced variance over the cohort (45% smaller SD on average). Using the simultaneously acquired water signal as internal reference allows not only for compensation of phase and frequency fluctuations but also for signal amplitude restoration, and thus improved metabolite ADC estimation. Combination with 2D simultaneous fitting promises access to the diffusion properties even for low signal-to-noise metabolites. The combination of both techniques increases the specificity and sensitivity of estimated metabolite ADC values in the cohort. |
Author | Kreis, Roland Adalid, Victor Boesch, Chris Döring, André |
Author_xml | – sequence: 1 givenname: André surname: Döring fullname: Döring, André organization: University of Bern – sequence: 2 givenname: Victor surname: Adalid fullname: Adalid, Victor organization: University of Bern – sequence: 3 givenname: Chris surname: Boesch fullname: Boesch, Chris organization: University of Bern – sequence: 4 givenname: Roland orcidid: 0000-0002-8618-6875 surname: Kreis fullname: Kreis, Roland email: roland.kreis@insel.ch organization: University of Bern |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29687927$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URKeFBS-AIrGBRVr72onHS1R-pVZICNaW47keXCXx1HY0yo5H4Bl5EpzOdFPB6i7ud47uPeeMnIxhREJeMnrBKIXLIQ4XIAHgCVmxBqCGRokTsqJS0JozJU7JWUq3lFKlpHhGTkG1a6lArkh4752bkg_jn1-_9-i3PzNuqsFsR8zeVhFTGM1osUo7tDmGZMNurroQ0sJ1c5X8MPXZjBim1M-VsXeTj2W1Nxlj0TuMeK_329H06Tl56srAF8d5Tn58_PD96nN9_fXTl6t317XlDYdaSCpRuVYypzjytcOGCwmu7SjvWqGo6TYWWuAb4Tq1Zp1Eg7i8BSDWrePn5M3BdxfD3YQp68Eni31_uFQD5YxCq4Qs6OtH6G2Y4nKsBgat5A3IhXp1pKZuwI3eRT-YOOuHKAtweQBsSSmVx7X12eSSbI7G95pRvZSlS1n6vqyiePtI8WD6L_bovvc9zv8H9c23m4PiL0BDpd8 |
CitedBy_id | crossref_primary_10_1002_nbm_4270 crossref_primary_10_3389_fneur_2023_1120227 crossref_primary_10_1002_mrm_30141 crossref_primary_10_1002_mrm_29267 crossref_primary_10_3389_fnins_2023_1258408 crossref_primary_10_1002_mrm_29367 crossref_primary_10_1002_nbm_4347 crossref_primary_10_1002_mrm_28322 crossref_primary_10_1002_nbm_5123 crossref_primary_10_1002_jmri_26979 crossref_primary_10_1002_jmri_26846 crossref_primary_10_1002_mrm_28500 crossref_primary_10_1016_j_neuroimage_2021_118424 crossref_primary_10_1002_mrm_29877 crossref_primary_10_1002_nbm_5318 crossref_primary_10_1002_nbm_4206 crossref_primary_10_1002_nbm_4459 crossref_primary_10_1016_j_neuroimage_2019_116075 crossref_primary_10_1111_acel_14477 crossref_primary_10_1002_mrm_27605 |
Cites_doi | 10.1002/nbm.686 10.1016/0022-4073(77)90161-3 10.1002/mrm.26518 10.1016/j.mri.2007.01.005 10.1002/mrm.25568 10.1002/mrm.20427 10.1002/nbm.3481 10.1007/s10334-011-0246-y 10.1007/s10334-017-0618-z 10.1002/nbm.1586 10.1080/00031305.1994.10476090 10.1002/nbm.1940080711 10.1159/000111347 10.1148/radiology.188.3.8351339 10.1016/j.neuroimage.2013.12.045 10.1002/mrm.23129 10.1063/1.1695690 10.1002/mrm.26969 10.1016/j.neuroimage.2013.04.077 10.1002/mrm.21372 10.1002/mrm.20549 10.1007/s00429-013-0691-7 10.1007/s00429-014-0968-5 10.1002/nbm.1026 10.1002/mrm.25139 10.1002/nbm.3671 10.1002/mrm.1203 10.1002/nbm.1940050408 10.1351/pac199264060815 10.1006/jmre.1999.1713 10.1148/radiology.177.2.2217776 10.1002/9780470034590.emrstm1471 10.1002/nbm.759 10.1002/mrm.1910140104 10.1002/mrm.26615 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.27222 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2338 |
ExternalDocumentID | 29687927 10_1002_mrm_27222 MRM27222 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 320030‐156952 ; 320030‐175984 – fundername: Swiss National Science Foundation grantid: 320030-156952 – fundername: Swiss National Science Foundation grantid: 320030-175984 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3532-4707e9f671f93e38fe53472f6b03b6490abdc2623d4fb981b7eaee296822486f3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 03:50:54 EDT 2025 Fri Jul 25 12:14:21 EDT 2025 Wed Feb 19 02:35:39 EST 2025 Tue Jul 01 01:21:05 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Wed Jan 22 16:56:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | signal correction diffusion quantification motion artefact magnetic resonance spectroscopy brain metabolites |
Language | English |
License | 2018 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-4707e9f671f93e38fe53472f6b03b6490abdc2623d4fb981b7eaee296822486f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8618-6875 |
PMID | 29687927 |
PQID | 2126735277 |
PQPubID | 1016391 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2031026947 proquest_journals_2126735277 pubmed_primary_29687927 crossref_citationtrail_10_1002_mrm_27222 crossref_primary_10_1002_mrm_27222 wiley_primary_10_1002_mrm_27222_MRM27222 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 2018-Dec 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 15 2015; 4 2014; 90 1990; 14 2011 2015; 220 2016; 75 2016; 221 2006; 19 1994; 48 2001; 46 2007; 58 1995; 8 1993; 188 2014; 86 1993; 15 1965; 42 2017; 30 1990; 88 1977; 17 2017; 78 2005; 53 2005; 54 2017 2011; 24 1992; 64 2014; 73 2012; 67 2001; 14 1999; 138 1990; 177 2007; 25 1992; 5 2018; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Ormondt D (e_1_2_7_31_1) 1990; 88 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 14 start-page: 26 year: 1990 end-page: 30 article-title: In vivo proton spectroscopy in presence of eddy currents publication-title: Magn Reson Med – volume: 86 start-page: 35 year: 2014 end-page: 42 article-title: Methodology for improved detection of low concentration metabolites in MRS: optimised combination of signals from multi‐element coil arrays publication-title: Neuroimage – volume: 30 start-page: e3671 year: 2017 article-title: Probing metabolite diffusion at ultra‐short time scales in the mouse brain using optimized oscillating gradients and “short”‐echo‐time diffusion‐weighted MRS publication-title: NMR Biomed – volume: 138 start-page: 173 year: 1999 end-page: 177 article-title: Asymmetric adiabatic pulses for NH selection publication-title: J Magn Reson – volume: 17 start-page: 233 year: 1977 end-page: 236 article-title: Empirical fits to the Voigt line width: a brief review publication-title: J Quant Spectrosc Radiat Transf – volume: 42 start-page: 288 year: 1965 end-page: 292 article-title: Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient publication-title: J Chem Phys – volume: 58 start-page: 1045 year: 2007 end-page: 1053 article-title: Diffusion properties of NAA in human corpus callosum as studied with diffusion tensor spectroscopy publication-title: Magn Reson Med – start-page: 1410 year: 2011 – volume: 75 start-page: 15 year: 2016 end-page: 18 article-title: The trouble with quality filtering based on relative Cramér‐Rao lower bounds publication-title: Magn Reson Med – volume: 177 start-page: 401 year: 1990 end-page: 405 article-title: Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo publication-title: Radiology – volume: 8 start-page: 375 year: 1995 end-page: 386 article-title: Molecular diffusion, tissue microdynamics and microstructure publication-title: NMR Biomed – volume: 15 start-page: 289 year: 1993 end-page: 298 article-title: Multinuclear NMR studies on the energy metabolism of glial and neuronal cells publication-title: Dev Neurosci – volume: 73 start-page: 481 year: 2014 end-page: 487 article-title: Proton diffusion tensor spectroscopy of metabolites in human muscle in vivo publication-title: Magn Reson Med – volume: 24 start-page: 147 year: 2011 end-page: 164 article-title: Two‐dimensional linear‐combination model fitting of magnetic resonance spectra to define the macromolecule baseline using FiTAID, a Fitting Tool for Arrays of Interrelated Datasets publication-title: MAGMA – volume: 25 start-page: 1148 year: 2007 end-page: 1154 article-title: The rapid and automatic combination of proton MRSI data using multi‐channel coils without water suppression publication-title: Magn Reson Imaging – volume: 221 start-page: 1245 year: 2016 end-page: 1254 article-title: Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion‐weighted MR spectroscopy in the human brain at 7 T publication-title: Brain Struct Funct – volume: 46 start-page: 395 year: 2001 end-page: 400 article-title: Restoration of motion‐related signal loss and line‐shape deterioration of proton MR spectra using the residual water as intrinsic reference publication-title: Magn Reson Med – volume: 19 start-page: 255 year: 2006 end-page: 263 article-title: ProFit: two‐dimensional prior‐knowledge fitting of J‐resolved spectra publication-title: NMR Biomed – volume: 15 start-page: 69 year: 2002 end-page: 74 article-title: Diffusion‐weighted in vivo localized proton MR spectroscopy of human cerebral ischemia and tumor publication-title: NMR Biomed – volume: 54 start-page: 190 year: 2005 end-page: 195 article-title: New method for the simultaneous detection of metabolites and water in localized in vivo 1H nuclear magnetic resonance spectroscopy publication-title: Magn Reson Med – volume: 188 start-page: 719 year: 1993 end-page: 725 article-title: Human brain: proton diffusion MR spectroscopy publication-title: Radiology – volume: 90 start-page: 374 year: 2014 end-page: 380 article-title: Intracellular metabolites in the primate brain are primarily localized in long fibers rather than in cell bodies, as shown by diffusion‐weighted magnetic resonance spectroscopy publication-title: Neuroimage – volume: 88 start-page: 652 year: 1990 end-page: 659 article-title: 2D approach to quantitation of inversion‐recovery data publication-title: J Magn Reson – volume: 48 start-page: 315 year: 1994 end-page: 321 article-title: Simultaneous confidence intervals in multiple regression publication-title: Am Stat – volume: 30 start-page: e3481 year: 2017 article-title: In vivo diffusion MRS investigation of non‐water molecules in biological tissues publication-title: NMR Biomed – volume: 64 start-page: 815 year: 1992 end-page: 823 article-title: Quantification of 1‐D and 2‐D magnetic resonance time domain signals publication-title: Pure Appl Chem – volume: 79 start-page: 2896 year: 2018 end-page: 2901 article-title: Apparent diffusion coefficients of the five major metabolites measured in the human brain in vivo at 3T publication-title: Magn Reson Med – start-page: 2996 year: 2011 – volume: 220 start-page: 899 year: 2015 end-page: 917 article-title: Localisation of N‐acetylaspartate in oligodendrocytes/myelin publication-title: Brain Struct Funct – start-page: 1412 year: 2011 – volume: 67 start-page: 1203 year: 2012 end-page: 1209 article-title: Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T publication-title: Magn Reson Med – volume: 14 start-page: 94 year: 2001 end-page: 111 article-title: Diffusion NMR spectroscopy publication-title: NMR Biomed – volume: 78 start-page: 1246 year: 2017 end-page: 1256 article-title: Diffusion tensor spectroscopic imaging of the human brain in children and adults publication-title: Magn Reson Med – volume: 24 start-page: 270 year: 2011 end-page: 280 article-title: Considerations for measuring the fractional anisotropy of metabolites with diffusion tensor spectroscopy publication-title: NMR Biomed – volume: 5 start-page: 209 year: 1992 end-page: 211 article-title: Motional degradation of metabolite signal strengths when using STEAM: a correction method publication-title: NMR Biomed – volume: 30 start-page: 429 year: 2017 end-page: 448 article-title: Fitting interrelated datasets: metabolite diffusion and general lineshapes publication-title: MAGMA – year: 2017 – volume: 53 start-page: 1025 year: 2005 end-page: 1032 article-title: Trace apparent diffusion coefficients of metabolites in human brain using diffusion weighted magnetic resonance spectroscopy publication-title: Magn Reson Med – volume: 78 start-page: 2082 year: 2017 end-page: 2094 article-title: Weighted averaging in spectroscopic studies improves statistical power publication-title: Magn Reson Med – volume: 4 start-page: 733 year: 2015 end-page: 750 article-title: Diffusion‐weighted magnetic resonance spectroscopy publication-title: eMagRes – ident: e_1_2_7_3_1 doi: 10.1002/nbm.686 – ident: e_1_2_7_22_1 doi: 10.1016/0022-4073(77)90161-3 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.26518 – ident: e_1_2_7_23_1 doi: 10.1016/j.mri.2007.01.005 – ident: e_1_2_7_29_1 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.25568 – volume: 88 start-page: 652 year: 1990 ident: e_1_2_7_31_1 article-title: 2D approach to quantitation of inversion‐recovery data publication-title: J Magn Reson – ident: e_1_2_7_39_1 doi: 10.1002/mrm.20427 – ident: e_1_2_7_5_1 doi: 10.1002/nbm.3481 – ident: e_1_2_7_16_1 doi: 10.1007/s10334-011-0246-y – ident: e_1_2_7_17_1 doi: 10.1007/s10334-017-0618-z – ident: e_1_2_7_40_1 doi: 10.1002/nbm.1586 – ident: e_1_2_7_21_1 doi: 10.1080/00031305.1994.10476090 – ident: e_1_2_7_6_1 doi: 10.1002/nbm.1940080711 – ident: e_1_2_7_8_1 doi: 10.1159/000111347 – ident: e_1_2_7_12_1 doi: 10.1148/radiology.188.3.8351339 – ident: e_1_2_7_37_1 doi: 10.1016/j.neuroimage.2013.12.045 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.23129 – ident: e_1_2_7_2_1 doi: 10.1063/1.1695690 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.26969 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2013.04.077 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.21372 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.20549 – ident: e_1_2_7_7_1 doi: 10.1007/s00429-013-0691-7 – ident: e_1_2_7_9_1 doi: 10.1007/s00429-014-0968-5 – ident: e_1_2_7_33_1 doi: 10.1002/nbm.1026 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.25139 – ident: e_1_2_7_27_1 – ident: e_1_2_7_35_1 doi: 10.1002/nbm.3671 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.1203 – ident: e_1_2_7_11_1 doi: 10.1002/nbm.1940050408 – ident: e_1_2_7_18_1 – ident: e_1_2_7_32_1 doi: 10.1351/pac199264060815 – ident: e_1_2_7_15_1 doi: 10.1006/jmre.1999.1713 – ident: e_1_2_7_26_1 – ident: e_1_2_7_30_1 doi: 10.1148/radiology.177.2.2217776 – ident: e_1_2_7_4_1 doi: 10.1002/9780470034590.emrstm1471 – ident: e_1_2_7_41_1 doi: 10.1002/nbm.759 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.1910140104 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.26615 |
SSID | ssj0009974 |
Score | 2.394628 |
Snippet | Purpose
To combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of... To combine the metabolite-cycling technique with diffusion-weighted H-MR spectroscopy and to use the inherent water reference for compensation of... PurposeTo combine the metabolite‐cycling technique with diffusion‐weighted 1H‐MR spectroscopy and to use the inherent water reference for compensation of... To combine the metabolite-cycling technique with diffusion-weighted 1 H-MR spectroscopy and to use the inherent water reference for compensation of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2326 |
SubjectTerms | Amplitudes artefact Artefacts brain Compensation Cycles Diffusion Eddy currents Magnetic resonance spectroscopy Metabolites motion quantification Reference signals Restoration signal correction Spectrum analysis Substantia grisea Three dimensional motion Variation |
Title | Diffusion‐weighted magnetic resonance spectroscopy boosted by simultaneously acquired water reference signals |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27222 https://www.ncbi.nlm.nih.gov/pubmed/29687927 https://www.proquest.com/docview/2126735277 https://www.proquest.com/docview/2031026947 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5CoKWXtkn_tk2KWnrIxRuvLEsrciptQyhsD6GBHArGkqUSkrXDepewPfUR-ox9ksxItkP6A6U3g8bI1mhGn0YznwDeVCr30guR8NzJREjvEu2MTWxm3WRilcwNVSPPPsmjE_HxND_dgIO-FibyQwwBN7KM4K_JwEvT7t-Qhs4X8zFXuLyh_6VcLQJExzfUUVpHBmYlyM9o0bMKpXx_ePP2WvQbwLyNV8OCc_gAvvSfGvNMzserpRnbb7-wOP7nvzyE-x0QZW_jzNmCDVdvw91Zd9S-DXdCbqhtH0Hz_sz7FUXVfn7_cRVCqa5i8_JrTQWQDPfrDbF2OBaqNokds7lcM0TvFEllZs3aM0pbLGvXrNqLNSstZR9j0xXi3AUbLjphlEuC1vAYTg4_fH53lHT3NKBG84wnQqXKaS_VxOvMZVPv8kwo7qVJMyOFTktTWY44qxLeaMTJypXOcS0pg3UqffYENuumds-AUZ2vV1OUM7TzdCbH7VFlrEk9Oo7KjGCv11hhOxJzukvjooj0y7zAoSzCUI7g9SB6GZk7_iS006u96Iy3LXA1lwqBqVIjeDU0o9nRWUocrIITpSpVAaPM0zhdhl7oz5Tm2LIXlP737ovZ8Sw8PP930RdwD0HbNKbU7MDmcrFyuwiMluZlsIBrRY0MXw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh4XHqXAQgGDOPSSbdZx7LXEBQHVAk0PVSv1gqLYsVFFN6n2oWo58RP4jfwSZpxHVR4S4hbJEznxeDyfxzOfAV6WKvXSCxHx1MlISO8i7YyNbGLdaGSVTA1VI2f7cnIkPhynx2vwqquFafgh-oAbWUZYr8nAKSC9c8EaOp1Nh1yhf7sCV-lG77ChOrggj9K64WBWglYaLTpeoZjv9K9e9ka_QczLiDW4nN3b8Kn72CbT5MtwuTBD-_UXHsf__Zs7cKvFoux1M3nuwpqrNuB61p62b8C1kB5q5_egfnvi_ZICaz--fT8P0VRXsmnxuaIaSIZb9pqIOxwLhZtEkFmfrRgCeAqmMrNi8xPKXCwqVy_npytWWEpAxqZzhLoz1t91wiidBA1iE4523x2-mUTtVQ2o1DThkVCxctpLNfI6ccnYuzQRintp4sRIoePClJYj1CqFNxqhsnKFc1xLSmIdS5_ch_WqrtxDYFTq69UY5QxtPp1JcYdUGmtij2tHaQaw3aksty2POV2ncZo3DMw8x6HMw1AO4EUvetaQd_xJaKvTe97a7zxHhy4VYlOlBvC8b0bLo-OUZrByTqyqVAiMMg-a-dL3Qn-mNMeW7aD1v3efZwdZeHj076LP4MbkMNvL997vf3wMNxHDjZsMmy1YX8yW7gnipIV5GszhJ_FbEHo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouFAqFhQIGcegl26zj2LF6qlhW5bEVqqjUA1IUOzaq6CarfahaTvwEfiO_pDN5VeUhIW6RPJETj8fzeTzzGeBVrmIvvRABj50MhPQu0M7YwEbWDQZWydhQNfL4SB6eiHen8eka7Le1MDU_RBdwI8uo1msy8Gnu965IQyezSZ8rdG834KaQYUJTenh8xR2ldU3BrAQtNFq0tEIh3-teve6MfkOY1wFr5XFGm_C5_dY60eRrf7kwffvtFxrH__yZu3CnQaLsoJ4692DNFVuwMW7O2rfgVpUcauf3oRyeeb-ksNrP7z8uqliqy9kk-1JQBSTDDXtJtB2OVWWbRI9ZTlcM4TuFUplZsfkZ5S1mhSuX8_MVyyylH2PTBQLdGetuOmGUTILm8ABORm8-vT4MmosaUKVxxAOhQuW0l2rgdeSixLs4Eop7acLISKHDzOSWI9DKhTcagbJymXNcS0phTaSPtmG9KAv3CBgV-nqVoJyhraczMe6PcmNN6HHlyE0PdluNpbZhMafLNM7Tmn-ZpziUaTWUPXjZiU5r6o4_Ce20ak8b652n6M6lQmSqVA9edM1od3SYUg9WyolTlcqAUeZhPV26XujPlObYslsp_e_dp-PjcfXw-N9Fn8PGx-Eo_fD26P0TuI0ALqnTa3ZgfTFbuqcIkhbmWWUMl9r8DzI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion-weighted+magnetic+resonance+spectroscopy+boosted+by+simultaneously+acquired+water+reference+signals&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=D%C3%B6ring%2C+Andr%C3%A9&rft.au=Adalid%2C+Victor&rft.au=Boesch%2C+Chris&rft.au=Kreis%2C+Roland&rft.date=2018-12-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=80&rft.issue=6&rft.spage=2326&rft_id=info:doi/10.1002%2Fmrm.27222&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |