Better modulation for risk decision‐making after optimized magnetic stimulation

Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision‐making abilities. We desig...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience research Vol. 99; no. 3; pp. 858 - 871
Main Authors Wang, Lu, Wu, Xingqi, Ji, Gong‐Jun, Xiao, Guixian, Xu, Feifei, Yan, Yibing, Wu, Yang, Xi, Chunhua, Chen, Xingui, Wang, Kai
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text
ISSN0360-4012
1097-4547
1097-4547
DOI10.1002/jnr.24772

Cover

Abstract Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision‐making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision‐making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision‐making functions were compared based on subjects’ performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects’ use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion. iTBS has a stronger decision promoting effect than 20 Hz, which can be used as an effective way to alter choice and presents an improvement on standard rTMS protocols.
AbstractList Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision‐making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision‐making tasks on healthy controls. Participants were randomized and assigned to the iTBS ( n  = 29), 20 Hz ( n  = 29), or sham ( n  = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision‐making functions were compared based on subjects’ performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects’ use of positive feedback in the GDT and RGT (all p  < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback ( p  < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.
Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision-making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision-making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision-making functions were compared based on subjects' performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects' use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision-making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision-making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision-making functions were compared based on subjects' performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects' use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.
Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision‐making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision‐making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision‐making functions were compared based on subjects’ performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects’ use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion. iTBS has a stronger decision promoting effect than 20 Hz, which can be used as an effective way to alter choice and presents an improvement on standard rTMS protocols.
Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision-making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision-making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision-making functions were compared based on subjects' performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects' use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.
Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision‐making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision‐making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision‐making functions were compared based on subjects’ performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects’ use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.
Author Wu, Yang
Xi, Chunhua
Xu, Feifei
Xiao, Guixian
Wang, Lu
Ji, Gong‐Jun
Yan, Yibing
Wu, Xingqi
Chen, Xingui
Wang, Kai
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0002-0184-9570
  surname: Wang
  fullname: Wang, Lu
  organization: Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health
– sequence: 2
  givenname: Xingqi
  orcidid: 0000-0003-0646-1353
  surname: Wu
  fullname: Wu, Xingqi
  organization: Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health
– sequence: 3
  givenname: Gong‐Jun
  surname: Ji
  fullname: Ji, Gong‐Jun
  organization: Anhui Medical University
– sequence: 4
  givenname: Guixian
  surname: Xiao
  fullname: Xiao, Guixian
  organization: Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health
– sequence: 5
  givenname: Feifei
  surname: Xu
  fullname: Xu, Feifei
  organization: Anhui Medical University
– sequence: 6
  givenname: Yibing
  surname: Yan
  fullname: Yan, Yibing
  organization: Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health
– sequence: 7
  givenname: Yang
  surname: Wu
  fullname: Wu, Yang
  organization: Anhui Medical University
– sequence: 8
  givenname: Chunhua
  surname: Xi
  fullname: Xi, Chunhua
  organization: The Third Affiliated Hospital of Anhui Medical University
– sequence: 9
  givenname: Xingui
  surname: Chen
  fullname: Chen, Xingui
  email: chen_xin_gui@126.com
  organization: Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health
– sequence: 10
  givenname: Kai
  orcidid: 0000-0002-6197-914X
  surname: Wang
  fullname: Wang, Kai
  email: wangkai1964@126.com
  organization: Anhui Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33617027$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9O3DAQxq0K1F2gB14AReqFHgJjO4mTY0GUP0IgED1bjj1ZeTeJt3YiBKc-Qp-RJ8HLLhdUDqORRr_v08x8O2Srdz0Ssk_hiAKw43nvj1gmBPtCphQqkWZ5JrbIFHgBaQaUTchOCHMAqKqcfyUTzgsqgIkpuTvBYUCfdM6MrRqs65PG-cTbsEgMahvi5OXvv04tbD9LVLNi3XKwnX1Gk3Rq1uNgdRLiZKPfI9uNagN-2_Rd8vvX2cPpRXp9e355-vM61TznLOVcAS15jbrOaZY3lVZFYYxR3AAyXVIsMlEL02iqdNEohYixBNQlNXUm-C45XPsuvfszYhhkZ4PGtlU9ujFIllWMlVBUZUS_f0DnbvR93C5SJS3LihYQqYMNNdYdGrn0tlP-Sb4_KwLHa0B7F4LHRmo7vN08eGVbSUGu4pAxDvkWR1T8-KB4N_0fu3F_tC0-fQ7Kq5v7teIVwfObww
CitedBy_id crossref_primary_10_24075_brsmu_2023_011
crossref_primary_10_3758_s13415_023_01148_7
crossref_primary_10_3390_brainsci13040640
crossref_primary_10_1016_j_jpsychires_2022_02_019
crossref_primary_10_1186_s40479_025_00278_3
crossref_primary_10_1016_j_brs_2021_11_007
crossref_primary_10_1038_s41398_024_03000_z
Cites_doi 10.1073/pnas.0910662107
10.3389/fnhum.2018.00325
10.1523/JNEUROSCI.4637-10.2011
10.1093/ijnp/pyx008
10.3389/fpsyg.2017.01417
10.1016/j.biopsych.2012.08.020
10.1016/j.neulet.2017.04.032
10.1093/cercor/bhy294
10.1523/JNEUROSCI.3283-07.2007
10.1016/j.neuron.2007.06.026
10.1002/eat.22709
10.1016/j.neunet.2006.03.001
10.1016/j.brs.2012.03.009
10.1038/nature10360
10.1126/science.1115327
10.1016/j.brs.2015.05.008
10.1016/j.neubiorev.2005.07.001
10.1016/j.psychres.2017.12.040
10.1080/13803395.2020.1711873
10.1080/17470919.2013.861361
10.1016/S0140-6736(18)30295-2
10.1186/s13063-016-1764-8
10.1348/174866407X220607
10.1523/JNEUROSCI.1379-10.2011
10.1016/j.neuroimage.2017.01.035
10.1016/j.brs.2017.12.003
10.1523/JNEUROSCI.4993-13.2014
10.1176/appi.ajp.2018.18091096
10.1523/JNEUROSCI.4132-08.2009
10.1016/j.neuron.2004.12.033
10.1016/S1053-8119(03)00251-9
10.1093/schbul/sby054
10.1016/j.schres.2019.12.008
10.3390/ijerph13010119
10.1523/JNEUROSCI.23-35-11167.2003
10.7554/eLife.28040
10.1212/01.wnl.0000250268.13789.b2
10.1016/j.bbr.2014.11.035
10.1097/01.yct.0000235924.60364.27
10.1037/emo0000116
10.1037/0894-4105.19.3.267
10.3389/fnhum.2013.00602
10.1038/s41386-020-0632-0
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
2021 Wiley Periodicals, Inc.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QG
7QP
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
DOI 10.1002/jnr.24772
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1097-4547
EndPage 871
ExternalDocumentID 33617027
10_1002_jnr_24772
JNR24772
Genre article
Journal Article
GrantInformation_xml – fundername: National key research and development program of China
  funderid: 2016YFC1300604
– fundername: National Natural Science Foundation of China
  funderid: 31571149; 31970979; 81803103
– fundername: National Natural Science Foundation of China
  grantid: 31571149
– fundername: National key research and development program of China
  grantid: 2016YFC1300604
– fundername: National Natural Science Foundation of China
  grantid: 31970979
– fundername: National Natural Science Foundation of China
  grantid: 81803103
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
YYP
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QG
7QP
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3532-33a0183becb5145f9ca66ddda3d0e2c81e647b7dfc1ac6faaeeeaee70b81db473
IEDL.DBID DR2
ISSN 0360-4012
1097-4547
IngestDate Fri Jul 11 02:14:26 EDT 2025
Fri Jul 25 12:14:10 EDT 2025
Wed Feb 19 02:29:33 EST 2025
Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 02:28:24 EDT 2025
Wed Jan 22 16:31:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Game of Dice Task
risk decision‐making
decision‐making
Risk Gains Task
intermittent theta burst stimulation
repetitive transcranial magnetic stimulation
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-33a0183becb5145f9ca66ddda3d0e2c81e647b7dfc1ac6faaeeeaee70b81db473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0646-1353
0000-0002-6197-914X
0000-0002-0184-9570
PMID 33617027
PQID 2481889160
PQPubID 1006396
PageCount 15
ParticipantIDs proquest_miscellaneous_2492280698
proquest_journals_2481889160
pubmed_primary_33617027
crossref_citationtrail_10_1002_jnr_24772
crossref_primary_10_1002_jnr_24772
wiley_primary_10_1002_jnr_24772_JNR24772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-Mar
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of neuroscience research
PublicationTitleAlternate J Neurosci Res
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2018; 262
2017; 20
2011; 477
2017; 8
2006; 30
2020; 42
2010; 107
2005; 310
2011; 31
2006; 19
2003; 19
2013; 7
2017; 650
2008; 2
2007; 55
2016; 16
2015; 8
2005; 45
2016; 13
2009; 29
2017; 50
2018; 391
2005; 19
2015; 279
2006; 22
2013; 73
2019; 45
1979; 6
2019; 29
2020; 216
2020; 45
2017; 18
2014; 9
2018; 12
2018; 11
2012; 5
2014; 34
2007; 68
2017; 149
2003; 23
2007; 27
2019; 176
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
Holm S. (e_1_2_12_19_1) 1979; 6
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 477
  start-page: 171
  issue: 7363
  year: 2011
  end-page: 178
  article-title: Neocortical excitation/inhibition balance in information processing and social dysfunction
  publication-title: Nature
– volume: 176
  start-page: 367
  issue: 5
  year: 2019
  end-page: 375
  article-title: Trajectories of response to dorsolateral prefrontal rTMS in major depression: A THREE‐D study
  publication-title: American Journal of Psychiatry
– volume: 42
  start-page: 298
  issue: 3
  year: 2020
  end-page: 306
  article-title: Reduced delayed reward selection by Alzheimer's disease and mild cognitive impairment patients during intertemporal decision‐making
  publication-title: Journal of Clinical and Experimental Neuropsychology
– volume: 6
  year: 2017
  article-title: Causal evidence for lateral prefrontal cortex dynamics supporting cognitive control
  publication-title: eLife
– volume: 310
  start-page: 1680
  issue: 5754
  year: 2005
  end-page: 1683
  article-title: Neural systems responding to degrees of uncertainty in human decision‐making
  publication-title: Science
– volume: 107
  start-page: 7922
  issue: 17
  year: 2010
  end-page: 7926
  article-title: Prefrontal cortex, cognitive control, and the registration of decision costs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 19
  start-page: 1266
  issue: 8
  year: 2006
  end-page: 1276
  article-title: Neuropsychological correlates of decision‐making in ambiguous and risky situations
  publication-title: Neural Networks
– volume: 30
  start-page: 239
  issue: 2
  year: 2006
  end-page: 271
  article-title: The somatic marker hypothesis: A critical evaluation
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 18
  issue: 1
  year: 2017
  article-title: Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10‐Hz high‐frequency repetitive transcranial magnetic stimulation (rTMS) in treatment‐resistant unipolar depression: Study protocol for a randomised controlled trial
  publication-title: Trials
– volume: 650
  start-page: 109
  year: 2017
  end-page: 113
  article-title: Current direction‐dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS)
  publication-title: Neuroscience Letters
– volume: 262
  start-page: 246
  year: 2018
  end-page: 253
  article-title: Increased delayed reward during intertemporal decision‐making in schizophrenic patients and their unaffected siblings
  publication-title: Psychiatry Research
– volume: 7
  year: 2013
  article-title: The effect of transcranial direct current stimulation: A role for cortical excitation/inhibition balance?
  publication-title: Frontiers in Human Neuroscience
– volume: 11
  start-page: 400
  issue: 2
  year: 2018
  end-page: 410
  article-title: The intensity of continuous theta burst stimulation, but not the waveform used to elicit motor evoked potentials, influences its outcome in the human motor cortex
  publication-title: Brain Stimulation
– volume: 13
  issue: 1
  year: 2016
  article-title: The effects of age, priming, and working memory on decision‐making
  publication-title: International Journal of Environmental Research and Public Health
– volume: 279
  start-page: 226
  year: 2015
  end-page: 233
  article-title: Theory of mind and decision‐making processes are impaired in Parkinson's disease
  publication-title: Behavioral Brain Research
– volume: 19
  start-page: 267
  issue: 3
  year: 2005
  end-page: 277
  article-title: Decision‐making deficits of korsakoff patients in a new gambling task with explicit rules: Associations with executive functions
  publication-title: Neuropsychology
– volume: 22
  start-page: 176
  issue: 3
  year: 2006
  end-page: 178
  article-title: A standardized motor threshold estimation procedure for transcranial magnetic stimulation research
  publication-title: Journal of ECT
– volume: 73
  start-page: 510
  issue: 6
  year: 2013
  end-page: 517
  article-title: Can repetitive magnetic stimulation improve cognition in schizophrenia? Pilot data from a randomized controlled trial
  publication-title: Biological Psychiatry
– volume: 45
  start-page: 1034
  issue: 6
  year: 2020
  end-page: 1041
  article-title: Ventromedial prefrontal value signals and functional connectivity during decision‐making in suicidal behavior and impulsivity
  publication-title: Neuropsychopharmacology
– volume: 5
  start-page: 77
  issue: 2
  year: 2012
  end-page: 83
  article-title: Translational application of neuromodulation of decision‐making
  publication-title: Brain Stimulation
– volume: 8
  year: 2017
  article-title: Modulating the activity of the DLPFC and OFC has distinct effects on risk and ambiguity decision‐making: A tDCS study
  publication-title: Frontiers in Psychology
– volume: 16
  start-page: 101
  issue: 1
  year: 2016
  end-page: 109
  article-title: Risky decision making from childhood through adulthood: Contributions of learning and sensitivity to negative feedback
  publication-title: Emotion
– volume: 45
  start-page: 474
  issue: 2
  year: 2019
  end-page: 483
  article-title: Neural correlates of auditory verbal hallucinations in schizophrenia and the therapeutic response to theta‐burst transcranial magnetic stimulation
  publication-title: Schizophrenia Bulletin
– volume: 31
  start-page: 1193
  issue: 4
  year: 2011
  end-page: 1203
  article-title: Theta‐burst transcranial magnetic stimulation alters cortical inhibition
  publication-title: Journal of Neuroscience
– volume: 27
  start-page: 12500
  issue: 46
  year: 2007
  end-page: 12505
  article-title: Diminishing risk‐taking behavior by modulating activity in the prefrontal cortex: A direct current stimulation study
  publication-title: Journal of Neuroscience
– volume: 31
  start-page: 55
  issue: 1
  year: 2011
  end-page: 63
  article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
  publication-title: Journal of Neuroscience
– volume: 391
  start-page: 1683
  issue: 10131
  year: 2018
  end-page: 1692
  article-title: Effectiveness of theta burst versus high‐frequency repetitive transcranial magnetic stimulation in patients with depression (THREE‐D): A randomised non‐inferiority trial
  publication-title: Lancet
– volume: 29
  start-page: 4119
  issue: 10
  year: 2019
  end-page: 4129
  article-title: Different decision‐making responses occupy different brain networks for information processing: A study based on EEG and TMS
  publication-title: Cerebral Cortex
– volume: 34
  start-page: 6849
  issue: 20
  year: 2014
  end-page: 6859
  article-title: Dose‐dependent effects of theta burst rTMS on cortical excitability and resting‐state connectivity of the human motor system
  publication-title: Journal of Neuroscience
– volume: 9
  start-page: 82
  issue: 1
  year: 2014
  end-page: 93
  article-title: High‐frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people
  publication-title: Social Neuroscience
– volume: 50
  start-page: 415
  issue: 4
  year: 2017
  end-page: 423
  article-title: Decreased feedback learning in anorexia nervosa persists after weight restoration
  publication-title: International Journal of Eating Disorders
– volume: 55
  start-page: 187
  issue: 2
  year: 2007
  end-page: 199
  article-title: Transcranial magnetic stimulation: A primer
  publication-title: Neuron
– volume: 23
  start-page: 11167
  issue: 35
  year: 2003
  end-page: 11177
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: Journal of Neuroscience
– volume: 12
  year: 2018
  article-title: Effect of modulating activity of DLPFC and gender on search behavior: A tDCS experiment
  publication-title: Frontiers in Human Neuroscience
– volume: 216
  start-page: 550
  year: 2020
  end-page: 553
  article-title: Intermittent theta burst stimulation (iTBS) adjustment effects of schizophrenia: Results from an exploratory outcome of a randomized double‐blind controlled study
  publication-title: Schizophrenia Research
– volume: 149
  start-page: 285
  year: 2017
  end-page: 294
  article-title: Dynamic aftereffects in supplementary motor network following inhibitory transcranial magnetic stimulation protocols
  publication-title: Neuroimage
– volume: 68
  start-page: 484
  issue: 7
  year: 2007
  end-page: 488
  article-title: Transcranial magnetic stimulation: Diagnostic, therapeutic, and research potential
  publication-title: Neurology
– volume: 8
  start-page: 965
  issue: 5
  year: 2015
  end-page: 973
  article-title: Concordance between BeamF3 and MRI‐neuronavigated target sites for repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex
  publication-title: Brain Stimulation
– volume: 19
  start-page: 1439
  issue: 4
  year: 2003
  end-page: 1448
  article-title: Increased activation in the right insula during risk‐taking decision making is related to harm avoidance and neuroticism
  publication-title: Neuroimage
– volume: 29
  start-page: 436
  issue: 2
  year: 2009
  end-page: 443
  article-title: Differential effect of reward and punishment on procedural learning
  publication-title: Journal of Neuroscience
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  end-page: 70
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 2
  start-page: 431
  issue: 2
  year: 2008
  end-page: 443
  article-title: Does the feedback from previous trials influence current decisions? A study on the role of feedback processing in making decisions under explicit risk conditions
  publication-title: Journal of Neuropsychology
– volume: 20
  start-page: 374
  issue: 5
  year: 2017
  end-page: 382
  article-title: The working memory and dorsolateral prefrontal‐hippocampal functional connectivity changes in long‐term survival breast cancer patients treated with tamoxifen
  publication-title: International Journal of Neuropsychopharmacology
– volume: 45
  start-page: 201
  issue: 2
  year: 2005
  end-page: 206
  article-title: Theta burst stimulation of the human motor cortex
  publication-title: Neuron
– ident: e_1_2_12_27_1
  doi: 10.1073/pnas.0910662107
– ident: e_1_2_12_44_1
  doi: 10.3389/fnhum.2018.00325
– ident: e_1_2_12_35_1
  doi: 10.1523/JNEUROSCI.4637-10.2011
– ident: e_1_2_12_12_1
  doi: 10.1093/ijnp/pyx008
– ident: e_1_2_12_43_1
  doi: 10.3389/fpsyg.2017.01417
– ident: e_1_2_12_3_1
  doi: 10.1016/j.biopsych.2012.08.020
– ident: e_1_2_12_36_1
  doi: 10.1016/j.neulet.2017.04.032
– ident: e_1_2_12_37_1
  doi: 10.1093/cercor/bhy294
– ident: e_1_2_12_15_1
  doi: 10.1523/JNEUROSCI.3283-07.2007
– ident: e_1_2_12_18_1
  doi: 10.1016/j.neuron.2007.06.026
– ident: e_1_2_12_16_1
  doi: 10.1002/eat.22709
– ident: e_1_2_12_9_1
  doi: 10.1016/j.neunet.2006.03.001
– volume: 6
  start-page: 65
  issue: 2
  year: 1979
  ident: e_1_2_12_19_1
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– ident: e_1_2_12_26_1
  doi: 10.1016/j.brs.2012.03.009
– ident: e_1_2_12_45_1
  doi: 10.1038/nature10360
– ident: e_1_2_12_20_1
  doi: 10.1126/science.1115327
– ident: e_1_2_12_28_1
  doi: 10.1016/j.brs.2015.05.008
– ident: e_1_2_12_14_1
  doi: 10.1016/j.neubiorev.2005.07.001
– ident: e_1_2_12_40_1
  doi: 10.1016/j.psychres.2017.12.040
– ident: e_1_2_12_17_1
  doi: 10.1080/13803395.2020.1711873
– ident: e_1_2_12_2_1
  doi: 10.1080/17470919.2013.861361
– ident: e_1_2_12_6_1
  doi: 10.1016/S0140-6736(18)30295-2
– ident: e_1_2_12_11_1
  doi: 10.1186/s13063-016-1764-8
– ident: e_1_2_12_7_1
  doi: 10.1348/174866407X220607
– ident: e_1_2_12_5_1
  doi: 10.1523/JNEUROSCI.1379-10.2011
– ident: e_1_2_12_23_1
  doi: 10.1016/j.neuroimage.2017.01.035
– ident: e_1_2_12_33_1
  doi: 10.1016/j.brs.2017.12.003
– ident: e_1_2_12_30_1
  doi: 10.1523/JNEUROSCI.4993-13.2014
– ident: e_1_2_12_24_1
  doi: 10.1176/appi.ajp.2018.18091096
– ident: e_1_2_12_38_1
  doi: 10.1523/JNEUROSCI.4132-08.2009
– ident: e_1_2_12_21_1
  doi: 10.1016/j.neuron.2004.12.033
– ident: e_1_2_12_31_1
  doi: 10.1016/S1053-8119(03)00251-9
– ident: e_1_2_12_13_1
  doi: 10.1093/schbul/sby054
– ident: e_1_2_12_39_1
  doi: 10.1016/j.schres.2019.12.008
– ident: e_1_2_12_41_1
  doi: 10.3390/ijerph13010119
– ident: e_1_2_12_4_1
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
– ident: e_1_2_12_29_1
  doi: 10.7554/eLife.28040
– ident: e_1_2_12_32_1
  doi: 10.1212/01.wnl.0000250268.13789.b2
– ident: e_1_2_12_42_1
  doi: 10.1016/j.bbr.2014.11.035
– ident: e_1_2_12_34_1
  doi: 10.1097/01.yct.0000235924.60364.27
– ident: e_1_2_12_22_1
  doi: 10.1037/emo0000116
– ident: e_1_2_12_8_1
  doi: 10.1037/0894-4105.19.3.267
– ident: e_1_2_12_25_1
  doi: 10.3389/fnhum.2013.00602
– ident: e_1_2_12_10_1
  doi: 10.1038/s41386-020-0632-0
SSID ssj0009953
Score 2.3818045
Snippet Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 858
SubjectTerms Decision making
Feedback
Game of Dice Task
Information processing
intermittent theta burst stimulation
Magnetic fields
Negative feedback
Positive feedback
Prefrontal cortex
repetitive transcranial magnetic stimulation
risk decision‐making
Risk Gains Task
Risk management
Risk reduction
Transcranial magnetic stimulation
Title Better modulation for risk decision‐making after optimized magnetic stimulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.24772
https://www.ncbi.nlm.nih.gov/pubmed/33617027
https://www.proquest.com/docview/2481889160
https://www.proquest.com/docview/2492280698
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hTlwKZVtYXjIVqrhkSezEScSJFhBCAgkEEgekyE_UQrLVsnsop_4EfiO_hLHzWAGthHqIFMlj2fF4xp-d8TcAW4iQLcL8NLAIx4NYZiyQLJdoV2GSKK5F5C8Kn5zyo8v4-Cq5moHd9i5MzQ_RHbg5y_D-2hm4kPc7U9LQn9VoQGMEh-h_I8Ydb_7--ZQ6Ks9rBkrGQ9wjRbRlFQrpTlfz5Vr0BmC-xKt-wTmch-u2q3Wcye1gMpYD9fCKxfE_v2UBPjRAlOzVM-cjzJhqEXp7FW7Cy9_kK_Ghof7MvQdn3_ylH1IOdZPtiyDWJS4snegmSc_Tn8fSZ7YiPu04GaIvKn88GE1KcVO5q5IEvUnZ1P8El4cHF9-PgiYXQ6BYwmjAmAjR-lHjEiFWYnMlONdaC6ZDQ1UWGR6nMtVWRUJxK4QxBp80lAiIZZyyzzBbDSuzDERRGjKRWisjFes4QeCc2dSiqBCZyWwftlutFKohKnf5Mu6KmmKZFjhchR-uPnzpRH_V7Bx_E1prVVs0BnqPJYhUMsTGYR82u2I0Lfe_RFRmOHEyuSML4nnWh6V6SnStMOaY7GmKnfWK_XfzxfHpuX9Zeb_oKsxRFzvjY93WYHY8mph1BD9jueFn-TOKTwLg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JThwxEC0ROIRLCFsyBIiJEMqlh267V4kLq4ZtpCCQuEQtrxFL9yCYOYRTPiHfmC-h7F4QJEgoh5Zacll2u1zlZ3f5FcAqImSDMD_xDMJxLxQp8wTLBNqVH0UyVjxwF4WP-3HvLDw4j87HYKO5C1PxQ7QHbtYynL-2Bm4PpNcfWUMvy9suDREdvoGJEIGG3XrtnDySR2VZxUHJYh93SQFteIV8ut5Wfboa_QUxnyJWt-TsTcH3prNVpMlVdzQUXXn_jMfxf7_mPbyrsSjZrCbPNIzpcgZmN0vchxc_yRpx0aHu2H0Wvm25ez-kGKg64RdBuEtsZDpRdZ6eP79-Fy65FXGZx8kA3VFxca8VKfiP0t6WJOhQirr-HJzt7Z5u97w6HYMnWcSoxxj30QGg0gWirMhkksexUooz5Wsq00DHYSISZWTAZWw411rjk_gCMbEIEzYP4-Wg1B-BSEp9xhNjRCBDFUaInVOTGBTlPNWp6cDXRi25rLnKbcqM67xiWaY5DlfuhqsDX1rRm4qg419Ci41u89pG77AEwUqK8NjvwEpbjNZlf5nwUg9GViazfEFxlnbgQzUn2lYYs2T2NMHOOs2-3Hx-0D9xLwuvF_0Mb3unx0f50X7_8BNMUhtK40LfFmF8eDvSS4iFhmLZTfkHq2UG_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wEB5RKqFeurC-Aq2LUMUlj8ROnEQ90eWJsjy1CCQOSJHXiiV5CN47lFN_Qn9jfwljZ0G0Rap6iBTJY9nxeOzPzsw3AOuIkC3C_DSwCMeDWGYskCyXaFdhkiiuReQDhfeHfPso3jlOjqfgXRsLU_NDdBduzjL8eu0M_FLbzTvS0LPqqk9jBIeP4HHMEUk4RHRwxx2V5zUFJeMhHpIi2tIKhXSzq3p_M_oDYd4HrH7HGTyDk7avtaPJeX8yln118xuN439-zHN42iBRslVPnRcwZapZmNuq8BRefidvifcN9Zfuc_D1vY_6IeVIN-m-CIJd4vzSiW6y9Pz68bP0qa2IzztORrgYlac3RpNSfKtcrCTB5aRs6s_D0eDT4YftoEnGECiWMBowJkI0f1S5RIyV2FwJzrXWgunQUJVFhsepTLVVkVDcCmGMwScNJSJiGadsAaarUWWWgChKQyZSa2WkYh0niJwzm1oUFSIzme3BRquVQjVM5S5hxkVRcyzTAoer8MPVg7VO9LKm5_ib0Eqr2qKx0GssQaiSITgOe_CmK0bbcj9MRGVGEyeTO7Ygnmc9WKynRNcKY47KnqbYWa_Yh5svdoYH_uXlv4u-hpkvHwfF3ufh7jI8oc6Pxvu9rcD0-GpiVhEIjeUrP-FvAZ_6Ba4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Better+modulation+for+risk+decision%E2%80%90making+after+optimized+magnetic+stimulation&rft.jtitle=Journal+of+neuroscience+research&rft.au=Wang%2C+Lu&rft.au=Wu%2C+Xingqi&rft.au=Ji%2C+Gong%E2%80%90Jun&rft.au=Xiao%2C+Guixian&rft.date=2021-03-01&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=99&rft.issue=3&rft.spage=858&rft.epage=871&rft_id=info:doi/10.1002%2Fjnr.24772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jnr_24772
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon