RNA‐binding protein, human antigen R regulates hypoxia‐induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐...
Saved in:
Published in | Journal of cellular physiology Vol. 234; no. 5; pp. 7448 - 7458 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9541 1097-4652 1097-4652 |
DOI | 10.1002/jcp.27502 |
Cover
Loading…
Abstract | Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin‐RNA‐mediated loss of HuR function in HK‐2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU‐rich element at 3′UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK‐2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Under hypoxic stress in renal tubular cells, HuR translocate into the cytosol and regulates autophagy related 7/autophagy related 16 like 1 expressions and autophagosome formation. HuR promotes autophagy and suppresses apoptosis during cellular adaption to hypoxic stress. |
---|---|
AbstractList | Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells. Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin‐RNA‐mediated loss of HuR function in HK‐2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU‐rich element at 3′UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK‐2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells. Under hypoxic stress in renal tubular cells, HuR translocate into the cytosol and regulates autophagy related 7/autophagy related 16 like 1 expressions and autophagosome formation. HuR promotes autophagy and suppresses apoptosis during cellular adaption to hypoxic stress. Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells. |
Author | Li, Chi‐Yuan Yu, Shao‐Hua Wang, I‐Kuan Tsai, Tsung‐Hsun Palanisamy, Kalaiselvi Yu, Tung‐Min Sun, Kuo‐Ting Lin, Feng‐Yen |
Author_xml | – sequence: 1 givenname: Kalaiselvi surname: Palanisamy fullname: Palanisamy, Kalaiselvi organization: Graduate Institute of Clinical Medical Science, China Medical University – sequence: 2 givenname: Tsung‐Hsun surname: Tsai fullname: Tsai, Tsung‐Hsun organization: Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation – sequence: 3 givenname: Tung‐Min surname: Yu fullname: Yu, Tung‐Min organization: Taichung Veterans General Hospital – sequence: 4 givenname: Kuo‐Ting surname: Sun fullname: Sun, Kuo‐Ting organization: School of Dentistry, College of Dentistry, China Medical University – sequence: 5 givenname: Shao‐Hua surname: Yu fullname: Yu, Shao‐Hua organization: China Medical University Hospital – sequence: 6 givenname: Feng‐Yen surname: Lin fullname: Lin, Feng‐Yen organization: Taipei Medical University Hospital – sequence: 7 givenname: I‐Kuan surname: Wang fullname: Wang, I‐Kuan email: ikwang@seed.net.tw organization: China Medical University College of Medicine – sequence: 8 givenname: Chi‐Yuan orcidid: 0000-0003-3390-7568 surname: Li fullname: Li, Chi‐Yuan email: cyli168@gmail.com organization: China Medical University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30317574$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAURi1URKeFBS-ALLGhEun4J47r5WhEC2gEqCpry4mdjEeJHWxHNDueAPGMPAluZyqkCjb24p7zydffCThy3hkAXmJ0jhEiy10znhPOEHkCFhgJXpQVI0dgkWe4EKzEx-Akxh1CSAhKn4FjiijmjJcL8PP60-r3j1-1ddq6Do7BJ2PdW7idBuWgcsl2xsFrGEw39SqZCLfz6G-tylJ2psZoqKbkx63qZljPMKnQmXSXtbq54st84GqDobkdg4nRehdz6l_HRz8Y2PowqJSHz8HTVvXRvDjcp-Dr5bub9fti8_nqw3q1KRrKKCkIZXV7QZkWjJuKcqww1UohRnCN61qISmtuVNVqohVviG5EpbgmuMJMK8HpKXizz80Lf5tMTHKwsTF9r5zxU5QEE0RQeUHLjL5-hO78FFx-XaYqQThiFcvUqwM11YPRcgx2UGGWDz-dgeUeaIKPMZhWNjbd75yCsr3ESN51KXOX8r7LbJw9Mh5C_8Ue0r_b3sz_B-XH9Ze98QcNdLAV |
CitedBy_id | crossref_primary_10_3390_ph13070156 crossref_primary_10_1038_s41581_021_00497_1 crossref_primary_10_2298_ABS211104047H crossref_primary_10_3390_cancers12103069 crossref_primary_10_1096_fj_202200832R crossref_primary_10_1111_jcmm_70246 crossref_primary_10_3390_cells11030441 crossref_primary_10_1038_s42003_024_06080_1 crossref_primary_10_1111_jcmm_16301 crossref_primary_10_1016_j_biomaterials_2022_121698 crossref_primary_10_1080_15548627_2022_2059744 crossref_primary_10_1016_j_bbrc_2019_03_179 crossref_primary_10_1002_jcb_29669 crossref_primary_10_1111_febs_15833 crossref_primary_10_1128_MCB_00492_19 crossref_primary_10_1242_jcs_260631 crossref_primary_10_1080_15548627_2021_1872227 crossref_primary_10_3389_fonc_2020_00322 |
Cites_doi | 10.1074/jbc.M113.474700 10.4161/auto.19419 10.1038/cddis.2014.279 10.1016/j.ceb.2009.11.014 10.1016/j.molcel.2014.04.033 10.1074/jbc.M308889200 10.1016/j.molcel.2011.06.007 10.1371/journal.pone.0069563 10.1007/s00018-008-8252-6 10.3389/fmolb.2017.00071 10.1038/ki.2009.224 10.1016/j.molcel.2011.06.008 10.1681/ASN.2010070705 10.2174/138161209789649376 10.1146/annurev-cellbio-092910-154005 10.1074/jbc.M208439200 10.1016/j.febslet.2008.03.004 10.1038/ki.2011.120 10.1111/j.1582-4934.2009.00842.x 10.1074/jbc.M510306200 10.1093/nar/gkp1114 10.1146/annurev.physiol.64.081501.155819 10.1016/j.ajpath.2011.11.001 10.1126/science.1064693 10.1093/emboj/19.10.2340 10.1101/gad.1599207 10.1093/nar/gkt017 10.1002/j.2040-4603.2012.tb00431.x 10.1038/ki.2012.261 10.1515/BC.2008.022 10.1074/jbc.M111.255927 10.1074/jbc.275.16.11846 10.4161/auto.6477 10.1038/ki.2008.214 10.1038/nrm4024 10.1016/j.lfs.2015.07.002 10.1016/j.bbagrm.2014.10.001 10.1242/jcs.00381 10.1002/wrna.4 10.1016/j.molcel.2010.09.023 10.1016/j.bbrc.2004.07.173 10.1155/2018/4956080 10.1074/jbc.M110.216184 10.1128/MCB.01530-07 10.1007/s10495-014-0967-2 10.1038/nrg3813 10.1042/BST20160364 10.1152/jappl.2000.88.4.1474 10.1038/emboj.2012.278 10.4161/cc.8.7.8093 10.1038/ki.2012.337 10.2353/ajpath.2010.090594 10.1074/jbc.M502011200 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.27502 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 7458 |
ExternalDocumentID | 30317574 10_1002_jcp_27502 JCP27502 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: MOST 106–2811‐B‐039–040; MOST 105–2314‐B‐039‐016; MOST 104–2314‐B‐039‐018‐MY2 – fundername: China Medical University Hospital funderid: DMR‐107‐198 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3532-235bf835d957e6371a13daa0521b1bb996dd7ea6fd2da7c2dc96a7d21615da973 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 01:23:54 EDT 2025 Sat Jul 12 04:28:54 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 Tue Jul 01 04:44:09 EDT 2025 Wed Jan 22 17:09:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | acute kidney injury (AKI) autophagy HuR ATG (autophagy-related) proteins autophagosome RNA binding protein (RBP) |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3532-235bf835d957e6371a13daa0521b1bb996dd7ea6fd2da7c2dc96a7d21615da973 |
Notes | Kalaiselvi Palanisamy, Tsung‐Hsun Tsai and Tung‐Min Yu contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3390-7568 |
PMID | 30317574 |
PQID | 2169270565 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2120204834 proquest_journals_2169270565 pubmed_primary_30317574 crossref_citationtrail_10_1002_jcp_27502 crossref_primary_10_1002_jcp_27502 wiley_primary_10_1002_jcp_27502_JCP27502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_1_15_1 e_1_2_9_1_36_1 e_1_2_9_1_13_1 e_1_2_9_1_34_1 e_1_2_9_1_11_1 e_1_2_9_1_32_1 e_1_2_9_1_30_1 e_1_2_9_1_2_1 e_1_2_9_1_4_1 e_1_2_9_1_6_1 e_1_2_9_1_29_1 e_1_2_9_1_27_1 e_1_2_9_1_25_1 e_1_2_9_1_48_1 e_1_2_9_1_23_1 e_1_2_9_1_46_1 e_1_2_9_1_21_1 e_1_2_9_1_44_1 e_1_2_9_1_42_1 e_1_2_9_1_40_1 e_1_2_9_1_8_1 e_1_2_9_1_50_1 e_1_2_9_1_52_1 e_1_2_9_1_54_1 e_1_2_9_1_18_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_31_1 e_1_2_9_1_3_1 e_1_2_9_1_5_1 e_1_2_9_1_28_1 e_1_2_9_1_49_1 e_1_2_9_1_26_1 e_1_2_9_1_47_1 e_1_2_9_1_24_1 e_1_2_9_1_45_1 e_1_2_9_1_22_1 e_1_2_9_1_43_1 e_1_2_9_1_20_1 e_1_2_9_1_41_1 e_1_2_9_1_7_1 e_1_2_9_1_9_1 e_1_2_9_1_51_1 e_1_2_9_1_53_1 e_1_2_9_1_19_1 e_1_2_9_1_17_1 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_1_22_1 doi: 10.1074/jbc.M113.474700 – ident: e_1_2_9_1_27_1 doi: 10.4161/auto.19419 – ident: e_1_2_9_1_51_1 doi: 10.1038/cddis.2014.279 – ident: e_1_2_9_1_53_1 doi: 10.1016/j.ceb.2009.11.014 – ident: e_1_2_9_1_30_1 doi: 10.1016/j.molcel.2014.04.033 – ident: e_1_2_9_1_47_1 doi: 10.1074/jbc.M308889200 – ident: e_1_2_9_1_34_1 doi: 10.1016/j.molcel.2011.06.007 – ident: e_1_2_9_1_48_1 doi: 10.1371/journal.pone.0069563 – ident: e_1_2_9_1_17_1 doi: 10.1007/s00018-008-8252-6 – ident: e_1_2_9_1_11_1 doi: 10.3389/fmolb.2017.00071 – ident: e_1_2_9_1_39_1 doi: 10.1038/ki.2009.224 – ident: e_1_2_9_1_25_1 doi: 10.1016/j.molcel.2011.06.008 – ident: e_1_2_9_1_23_1 doi: 10.1681/ASN.2010070705 – ident: e_1_2_9_1_8_1 doi: 10.2174/138161209789649376 – ident: e_1_2_9_1_32_1 doi: 10.1146/annurev-cellbio-092910-154005 – ident: e_1_2_9_1_13_1 doi: 10.1074/jbc.M208439200 – ident: e_1_2_9_1_14_1 doi: 10.1016/j.febslet.2008.03.004 – ident: e_1_2_9_1_16_1 doi: 10.1038/ki.2011.120 – ident: e_1_2_9_1_29_1 doi: 10.1111/j.1582-4934.2009.00842.x – ident: e_1_2_9_1_38_1 doi: 10.1074/jbc.M510306200 – ident: e_1_2_9_1_54_1 doi: 10.1093/nar/gkp1114 – ident: e_1_2_9_1_5_1 doi: 10.1146/annurev.physiol.64.081501.155819 – ident: e_1_2_9_1_44_1 doi: 10.1016/j.ajpath.2011.11.001 – ident: e_1_2_9_1_9_1 doi: 10.1126/science.1064693 – ident: e_1_2_9_1_50_1 doi: 10.1093/emboj/19.10.2340 – ident: e_1_2_9_1_31_1 doi: 10.1101/gad.1599207 – ident: e_1_2_9_1_6_1 doi: 10.1093/nar/gkt017 – ident: e_1_2_9_1_4_1 doi: 10.1002/j.2040-4603.2012.tb00431.x – ident: e_1_2_9_1_19_1 doi: 10.1038/ki.2012.261 – ident: e_1_2_9_1_3_1 doi: 10.1515/BC.2008.022 – ident: e_1_2_9_1_45_1 doi: 10.1074/jbc.M111.255927 – ident: e_1_2_9_1_26_1 doi: 10.1074/jbc.275.16.11846 – ident: e_1_2_9_1_36_1 doi: 10.4161/auto.6477 – ident: e_1_2_9_1_37_1 doi: 10.1038/ki.2008.214 – ident: e_1_2_9_1_20_1 doi: 10.1038/nrm4024 – ident: e_1_2_9_1_49_1 doi: 10.1016/j.lfs.2015.07.002 – ident: e_1_2_9_1_52_1 doi: 10.1016/j.bbagrm.2014.10.001 – ident: e_1_2_9_1_33_1 doi: 10.1242/jcs.00381 – ident: e_1_2_9_1_2_1 doi: 10.1002/wrna.4 – ident: e_1_2_9_1_24_1 doi: 10.1016/j.molcel.2010.09.023 – ident: e_1_2_9_1_43_1 doi: 10.1016/j.bbrc.2004.07.173 – ident: e_1_2_9_1_28_1 doi: 10.1155/2018/4956080 – ident: e_1_2_9_1_41_1 doi: 10.1074/jbc.M110.216184 – ident: e_1_2_9_1_7_1 doi: 10.1128/MCB.01530-07 – ident: e_1_2_9_1_35_1 doi: 10.1007/s10495-014-0967-2 – ident: e_1_2_9_1_12_1 doi: 10.1038/nrg3813 – ident: e_1_2_9_1_15_1 doi: 10.1042/BST20160364 – ident: e_1_2_9_1_42_1 doi: 10.1152/jappl.2000.88.4.1474 – ident: e_1_2_9_1_40_1 doi: 10.1038/emboj.2012.278 – ident: e_1_2_9_1_46_1 doi: 10.4161/cc.8.7.8093 – ident: e_1_2_9_1_21_1 doi: 10.1038/ki.2012.337 – ident: e_1_2_9_1_18_1 doi: 10.2353/ajpath.2010.090594 – ident: e_1_2_9_1_10_1 doi: 10.1074/jbc.M502011200 |
SSID | ssj0009933 |
Score | 2.4075644 |
Snippet | Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7448 |
SubjectTerms | 3' Untranslated regions 3' Untranslated Regions - physiology acute kidney injury (AKI) Acute Kidney Injury - metabolism Apoptosis Apoptosis - physiology ATG (autophagy‐related) proteins autophagosome Autophagosomes - metabolism Autophagy Autophagy - physiology Autophagy-Related Protein 7 - metabolism Autophagy-Related Proteins - metabolism Bioinformatics Cell Line DNA nucleotidylexotransferase HEK293 Cells Humans HuR HuR protein Hypoxia Hypoxia - metabolism Immunoprecipitation Kidney - metabolism Kidney Tubules, Proximal - metabolism Microtubule-Associated Proteins - metabolism mRNA Phagocytosis Proteins Ribonucleic acid RNA RNA binding protein (RBP) RNA, Messenger - metabolism RNA, Small Interfering - metabolism RNA-binding protein RNA-Binding Proteins - metabolism |
Title | RNA‐binding protein, human antigen R regulates hypoxia‐induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27502 https://www.ncbi.nlm.nih.gov/pubmed/30317574 https://www.proquest.com/docview/2169270565 https://www.proquest.com/docview/2120204834 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KQfBFa1v1ai1RRPrg3rnJJuni01GspWgpRwt9EJZkk9NTu3t076Drk5-g9DP6STpJdvdorSC-LAv5u8lM8kt25jcAr7SMbZIkKsoR20cJlTRKrUHFE0kulGU8pc7f-dOh2D9JDk756RK8a31hAj9Ed-HmNMOv107Bla4GC9LQb_m078jJ3frrbLUcIBotqKPSJoy8N0HgSdyyCr2lg67kzb3oD4B5E6_6DWfvIXxuuxrsTL735zPdz3_eYnH8z29ZgQcNECXDIDmPYMkWq7A2LPAQflaT18Sbhvo791W4FyJW1mtwOToc_v51pSfeGYZ4lodJ8Yb4UH8EZ8mRe5IROQ8h7m1FvtbT8mKisBCWQTkyRM0dmYH6UhNdk2CJ7uoaHn-QA3zE4mNM7EVjoFtUWOuiTFmVZ5Z0HpfrcLL3_nh3P2pCOkQ544xGlHE9RtBnUi6tYDJWMTNKOQ9iHWuNhy9jpFVibKhRMqcmT4WShjpcalQq2WNYLsrCPgWid8Yxtbi5MosQRVCt8WyEaFJxTBBc9WC7ndwsb_jOXdiNH1lgaqYZjnrmR70HL7us00DycVemzVZCskbPqww7llKJIJL34EWXjBrqfruowpZzl4c6D-QdlvTgSZCsrhUEEIjfJKZse_n4e_PZwe6Rf9n496zP4D7iuzTYZ27C8ux8bp8jhprpLa8s19QCGQY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD6ahhDcwNhgFAYYhNAuSEvsxF4kbqqJUUZXoaqTdoMiO3ahwJJqbaVlV3uCac-4J-HYTlKNHwlxE0Xyb-xz7M_OOd8BeKlEaKIokkGG2D6IqKBBYjQqHo8yLg2LE2r9nQ8GvHcY7R_FRyvwtvaF8fwQzYWb1Qy3XlsFtxfSnSVr6Lds2rbs5LgA37ARvd2Bargkj0qqQPLOCCGOwppX6A3tNEWv70a_QczriNVtOXt34XPdWW9p8r29mKt2dvYLj-P_fs0a3KmwKOl64bkHKyZfh41ujufw45K8Is461F27r8NNH7Sy3ICL4aB7dX6pJs4fhjiih0n-mrhofwQnyvJ7kiE58VHuzYx8LafF6URiISyDoqSJXFg-A_mlJKok3hjd1tUdvRcdfIS8HxJzWtno5jOsdVmmmBXHhjROl_fhcO_daLcXVFEdgozFjAaUxWqMuE8nsTCciVCGTEtpnYhVqBSev7QWRvKxplqKjOos4VJoaqGplolgD2A1L3LzEIjaGYfU4P7KDKIUTpXC4xECShljAo9lC7br2U2zivLcRt74kXqyZpriqKdu1Fvwosk69Twff8q0VYtIWqn6LMWOJVQgjoxb8LxJRiW1f15kboqFzUOtE_IOi1qw6UWraQUxBEI4gSnbTkD-3ny6v_vJvTz696zP4FZvdNBP-x8GHx_DbYR7iTfX3ILV-cnCPEFINVdPneb8BEfIHSE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahkC8wNi4dBtgEEJ7IO3ixHYjnqqNMsaopmqT9oAU2bG7FbakWltp4YlfgPiN_BKO7STVuEiIlyiSr7HPsT8753wH4IUSoYnjWAYZYvsgpoIGidGoeDzOuDQRS6j1d_4w4HvH8f4JO1mC17UvjOeHaC7crGa49doq-ESPOgvS0E_ZpG3JyXH9vRHz7a4V6d3hgjsqqeLIOxsEFoc1rdA27TRFr29GvyHM64DV7Tj9u_Cx7qs3NPncns9UO_vyC43jf37MCtypkCjpedG5B0smX4W1Xo6n8IuSvCTONtRduq_CTR-yslyDb8NB78fX72rsvGGIo3kY56-Ii_VHcJosuycZkksf495MyVk5Ka7GEgthGRQkTeTcshnI05KoknhTdFtX7-it6OAj5AchMVeVhW4-xVoXZYppcWFI43J5H477b4529oIqpkOQRSyiAY2YGiHq0wkThkcilGGkpbQuxCpUCk9fWgsj-UhTLUVGdZZwKTS1wFTLREQPYDkvcvMIiOqOQmpwd40MYhROlcLDEcJJyTCBM9mCrXpy06wiPLdxN85TT9VMUxz11I16C543WSee5eNPmTZrCUkrRZ-m2LGECkSRrAXPmmRUUfvfReammNs81Logd6O4BQ-9ZDWtIIJAACcwZcvJx9-bT_d3Dt3L-r9nfQq3Dnf76cG7wfsNuI1YL_G2mpuwPLucm8eIp2bqidObn_8hG9k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA%E2%80%90binding+protein%2C+human+antigen+R+regulates+hypoxia%E2%80%90induced+autophagy+by+targeting+ATG7%2FATG16L1+expressions+and+autophagosome+formation&rft.jtitle=Journal+of+cellular+physiology&rft.au=Palanisamy%2C+Kalaiselvi&rft.au=Tsai%2C+Tsung%E2%80%90Hsun&rft.au=Yu%2C+Tung%E2%80%90Min&rft.au=Sun%2C+Kuo%E2%80%90Ting&rft.date=2019-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=5&rft.spage=7448&rft.epage=7458&rft_id=info:doi/10.1002%2Fjcp.27502&rft.externalDBID=10.1002%252Fjcp.27502&rft.externalDocID=JCP27502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |