RNA‐binding protein, human antigen R regulates hypoxia‐induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation

Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 5; pp. 7448 - 7458
Main Authors Palanisamy, Kalaiselvi, Tsai, Tsung‐Hsun, Yu, Tung‐Min, Sun, Kuo‐Ting, Yu, Shao‐Hua, Lin, Feng‐Yen, Wang, I‐Kuan, Li, Chi‐Yuan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text
ISSN0021-9541
1097-4652
1097-4652
DOI10.1002/jcp.27502

Cover

Loading…
Abstract Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin‐RNA‐mediated loss of HuR function in HK‐2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU‐rich element at 3′UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK‐2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells. Under hypoxic stress in renal tubular cells, HuR translocate into the cytosol and regulates autophagy related 7/autophagy related 16 like 1 expressions and autophagosome formation. HuR promotes autophagy and suppresses apoptosis during cellular adaption to hypoxic stress.
AbstractList Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia‐induced autophagy in renal proximal tubular cells‐2 (HK‐2). HK‐2 cells showed upregulated expressions of HuR and autophagy‐related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin‐RNA‐mediated loss of HuR function in HK‐2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU‐rich element at 3′UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK‐2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells. Under hypoxic stress in renal tubular cells, HuR translocate into the cytosol and regulates autophagy related 7/autophagy related 16 like 1 expressions and autophagosome formation. HuR promotes autophagy and suppresses apoptosis during cellular adaption to hypoxic stress.
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Author Li, Chi‐Yuan
Yu, Shao‐Hua
Wang, I‐Kuan
Tsai, Tsung‐Hsun
Palanisamy, Kalaiselvi
Yu, Tung‐Min
Sun, Kuo‐Ting
Lin, Feng‐Yen
Author_xml – sequence: 1
  givenname: Kalaiselvi
  surname: Palanisamy
  fullname: Palanisamy, Kalaiselvi
  organization: Graduate Institute of Clinical Medical Science, China Medical University
– sequence: 2
  givenname: Tsung‐Hsun
  surname: Tsai
  fullname: Tsai, Tsung‐Hsun
  organization: Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
– sequence: 3
  givenname: Tung‐Min
  surname: Yu
  fullname: Yu, Tung‐Min
  organization: Taichung Veterans General Hospital
– sequence: 4
  givenname: Kuo‐Ting
  surname: Sun
  fullname: Sun, Kuo‐Ting
  organization: School of Dentistry, College of Dentistry, China Medical University
– sequence: 5
  givenname: Shao‐Hua
  surname: Yu
  fullname: Yu, Shao‐Hua
  organization: China Medical University Hospital
– sequence: 6
  givenname: Feng‐Yen
  surname: Lin
  fullname: Lin, Feng‐Yen
  organization: Taipei Medical University Hospital
– sequence: 7
  givenname: I‐Kuan
  surname: Wang
  fullname: Wang, I‐Kuan
  email: ikwang@seed.net.tw
  organization: China Medical University College of Medicine
– sequence: 8
  givenname: Chi‐Yuan
  orcidid: 0000-0003-3390-7568
  surname: Li
  fullname: Li, Chi‐Yuan
  email: cyli168@gmail.com
  organization: China Medical University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30317574$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAURi1URKeFBS-ALLGhEun4J47r5WhEC2gEqCpry4mdjEeJHWxHNDueAPGMPAluZyqkCjb24p7zydffCThy3hkAXmJ0jhEiy10znhPOEHkCFhgJXpQVI0dgkWe4EKzEx-Akxh1CSAhKn4FjiijmjJcL8PP60-r3j1-1ddq6Do7BJ2PdW7idBuWgcsl2xsFrGEw39SqZCLfz6G-tylJ2psZoqKbkx63qZljPMKnQmXSXtbq54st84GqDobkdg4nRehdz6l_HRz8Y2PowqJSHz8HTVvXRvDjcp-Dr5bub9fti8_nqw3q1KRrKKCkIZXV7QZkWjJuKcqww1UohRnCN61qISmtuVNVqohVviG5EpbgmuMJMK8HpKXizz80Lf5tMTHKwsTF9r5zxU5QEE0RQeUHLjL5-hO78FFx-XaYqQThiFcvUqwM11YPRcgx2UGGWDz-dgeUeaIKPMZhWNjbd75yCsr3ESN51KXOX8r7LbJw9Mh5C_8Ue0r_b3sz_B-XH9Ze98QcNdLAV
CitedBy_id crossref_primary_10_3390_ph13070156
crossref_primary_10_1038_s41581_021_00497_1
crossref_primary_10_2298_ABS211104047H
crossref_primary_10_3390_cancers12103069
crossref_primary_10_1096_fj_202200832R
crossref_primary_10_1111_jcmm_70246
crossref_primary_10_3390_cells11030441
crossref_primary_10_1038_s42003_024_06080_1
crossref_primary_10_1111_jcmm_16301
crossref_primary_10_1016_j_biomaterials_2022_121698
crossref_primary_10_1080_15548627_2022_2059744
crossref_primary_10_1016_j_bbrc_2019_03_179
crossref_primary_10_1002_jcb_29669
crossref_primary_10_1111_febs_15833
crossref_primary_10_1128_MCB_00492_19
crossref_primary_10_1242_jcs_260631
crossref_primary_10_1080_15548627_2021_1872227
crossref_primary_10_3389_fonc_2020_00322
Cites_doi 10.1074/jbc.M113.474700
10.4161/auto.19419
10.1038/cddis.2014.279
10.1016/j.ceb.2009.11.014
10.1016/j.molcel.2014.04.033
10.1074/jbc.M308889200
10.1016/j.molcel.2011.06.007
10.1371/journal.pone.0069563
10.1007/s00018-008-8252-6
10.3389/fmolb.2017.00071
10.1038/ki.2009.224
10.1016/j.molcel.2011.06.008
10.1681/ASN.2010070705
10.2174/138161209789649376
10.1146/annurev-cellbio-092910-154005
10.1074/jbc.M208439200
10.1016/j.febslet.2008.03.004
10.1038/ki.2011.120
10.1111/j.1582-4934.2009.00842.x
10.1074/jbc.M510306200
10.1093/nar/gkp1114
10.1146/annurev.physiol.64.081501.155819
10.1016/j.ajpath.2011.11.001
10.1126/science.1064693
10.1093/emboj/19.10.2340
10.1101/gad.1599207
10.1093/nar/gkt017
10.1002/j.2040-4603.2012.tb00431.x
10.1038/ki.2012.261
10.1515/BC.2008.022
10.1074/jbc.M111.255927
10.1074/jbc.275.16.11846
10.4161/auto.6477
10.1038/ki.2008.214
10.1038/nrm4024
10.1016/j.lfs.2015.07.002
10.1016/j.bbagrm.2014.10.001
10.1242/jcs.00381
10.1002/wrna.4
10.1016/j.molcel.2010.09.023
10.1016/j.bbrc.2004.07.173
10.1155/2018/4956080
10.1074/jbc.M110.216184
10.1128/MCB.01530-07
10.1007/s10495-014-0967-2
10.1038/nrg3813
10.1042/BST20160364
10.1152/jappl.2000.88.4.1474
10.1038/emboj.2012.278
10.4161/cc.8.7.8093
10.1038/ki.2012.337
10.2353/ajpath.2010.090594
10.1074/jbc.M502011200
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.27502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 7458
ExternalDocumentID 30317574
10_1002_jcp_27502
JCP27502
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: MOST 106–2811‐B‐039–040; MOST 105–2314‐B‐039‐016; MOST 104–2314‐B‐039‐018‐MY2
– fundername: China Medical University Hospital
  funderid: DMR‐107‐198
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3532-235bf835d957e6371a13daa0521b1bb996dd7ea6fd2da7c2dc96a7d21615da973
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 01:23:54 EDT 2025
Sat Jul 12 04:28:54 EDT 2025
Thu Apr 03 07:08:06 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Tue Jul 01 04:44:09 EDT 2025
Wed Jan 22 17:09:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords acute kidney injury (AKI)
autophagy
HuR
ATG (autophagy-related) proteins
autophagosome
RNA binding protein (RBP)
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-235bf835d957e6371a13daa0521b1bb996dd7ea6fd2da7c2dc96a7d21615da973
Notes Kalaiselvi Palanisamy, Tsung‐Hsun Tsai and Tung‐Min Yu contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3390-7568
PMID 30317574
PQID 2169270565
PQPubID 1006363
PageCount 11
ParticipantIDs proquest_miscellaneous_2120204834
proquest_journals_2169270565
pubmed_primary_30317574
crossref_citationtrail_10_1002_jcp_27502
crossref_primary_10_1002_jcp_27502
wiley_primary_10_1002_jcp_27502_JCP27502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
e_1_2_9_1_6_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_19_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_22_1
  doi: 10.1074/jbc.M113.474700
– ident: e_1_2_9_1_27_1
  doi: 10.4161/auto.19419
– ident: e_1_2_9_1_51_1
  doi: 10.1038/cddis.2014.279
– ident: e_1_2_9_1_53_1
  doi: 10.1016/j.ceb.2009.11.014
– ident: e_1_2_9_1_30_1
  doi: 10.1016/j.molcel.2014.04.033
– ident: e_1_2_9_1_47_1
  doi: 10.1074/jbc.M308889200
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.molcel.2011.06.007
– ident: e_1_2_9_1_48_1
  doi: 10.1371/journal.pone.0069563
– ident: e_1_2_9_1_17_1
  doi: 10.1007/s00018-008-8252-6
– ident: e_1_2_9_1_11_1
  doi: 10.3389/fmolb.2017.00071
– ident: e_1_2_9_1_39_1
  doi: 10.1038/ki.2009.224
– ident: e_1_2_9_1_25_1
  doi: 10.1016/j.molcel.2011.06.008
– ident: e_1_2_9_1_23_1
  doi: 10.1681/ASN.2010070705
– ident: e_1_2_9_1_8_1
  doi: 10.2174/138161209789649376
– ident: e_1_2_9_1_32_1
  doi: 10.1146/annurev-cellbio-092910-154005
– ident: e_1_2_9_1_13_1
  doi: 10.1074/jbc.M208439200
– ident: e_1_2_9_1_14_1
  doi: 10.1016/j.febslet.2008.03.004
– ident: e_1_2_9_1_16_1
  doi: 10.1038/ki.2011.120
– ident: e_1_2_9_1_29_1
  doi: 10.1111/j.1582-4934.2009.00842.x
– ident: e_1_2_9_1_38_1
  doi: 10.1074/jbc.M510306200
– ident: e_1_2_9_1_54_1
  doi: 10.1093/nar/gkp1114
– ident: e_1_2_9_1_5_1
  doi: 10.1146/annurev.physiol.64.081501.155819
– ident: e_1_2_9_1_44_1
  doi: 10.1016/j.ajpath.2011.11.001
– ident: e_1_2_9_1_9_1
  doi: 10.1126/science.1064693
– ident: e_1_2_9_1_50_1
  doi: 10.1093/emboj/19.10.2340
– ident: e_1_2_9_1_31_1
  doi: 10.1101/gad.1599207
– ident: e_1_2_9_1_6_1
  doi: 10.1093/nar/gkt017
– ident: e_1_2_9_1_4_1
  doi: 10.1002/j.2040-4603.2012.tb00431.x
– ident: e_1_2_9_1_19_1
  doi: 10.1038/ki.2012.261
– ident: e_1_2_9_1_3_1
  doi: 10.1515/BC.2008.022
– ident: e_1_2_9_1_45_1
  doi: 10.1074/jbc.M111.255927
– ident: e_1_2_9_1_26_1
  doi: 10.1074/jbc.275.16.11846
– ident: e_1_2_9_1_36_1
  doi: 10.4161/auto.6477
– ident: e_1_2_9_1_37_1
  doi: 10.1038/ki.2008.214
– ident: e_1_2_9_1_20_1
  doi: 10.1038/nrm4024
– ident: e_1_2_9_1_49_1
  doi: 10.1016/j.lfs.2015.07.002
– ident: e_1_2_9_1_52_1
  doi: 10.1016/j.bbagrm.2014.10.001
– ident: e_1_2_9_1_33_1
  doi: 10.1242/jcs.00381
– ident: e_1_2_9_1_2_1
  doi: 10.1002/wrna.4
– ident: e_1_2_9_1_24_1
  doi: 10.1016/j.molcel.2010.09.023
– ident: e_1_2_9_1_43_1
  doi: 10.1016/j.bbrc.2004.07.173
– ident: e_1_2_9_1_28_1
  doi: 10.1155/2018/4956080
– ident: e_1_2_9_1_41_1
  doi: 10.1074/jbc.M110.216184
– ident: e_1_2_9_1_7_1
  doi: 10.1128/MCB.01530-07
– ident: e_1_2_9_1_35_1
  doi: 10.1007/s10495-014-0967-2
– ident: e_1_2_9_1_12_1
  doi: 10.1038/nrg3813
– ident: e_1_2_9_1_15_1
  doi: 10.1042/BST20160364
– ident: e_1_2_9_1_42_1
  doi: 10.1152/jappl.2000.88.4.1474
– ident: e_1_2_9_1_40_1
  doi: 10.1038/emboj.2012.278
– ident: e_1_2_9_1_46_1
  doi: 10.4161/cc.8.7.8093
– ident: e_1_2_9_1_21_1
  doi: 10.1038/ki.2012.337
– ident: e_1_2_9_1_18_1
  doi: 10.2353/ajpath.2010.090594
– ident: e_1_2_9_1_10_1
  doi: 10.1074/jbc.M502011200
SSID ssj0009933
Score 2.4075644
Snippet Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7448
SubjectTerms 3' Untranslated regions
3' Untranslated Regions - physiology
acute kidney injury (AKI)
Acute Kidney Injury - metabolism
Apoptosis
Apoptosis - physiology
ATG (autophagy‐related) proteins
autophagosome
Autophagosomes - metabolism
Autophagy
Autophagy - physiology
Autophagy-Related Protein 7 - metabolism
Autophagy-Related Proteins - metabolism
Bioinformatics
Cell Line
DNA nucleotidylexotransferase
HEK293 Cells
Humans
HuR
HuR protein
Hypoxia
Hypoxia - metabolism
Immunoprecipitation
Kidney - metabolism
Kidney Tubules, Proximal - metabolism
Microtubule-Associated Proteins - metabolism
mRNA
Phagocytosis
Proteins
Ribonucleic acid
RNA
RNA binding protein (RBP)
RNA, Messenger - metabolism
RNA, Small Interfering - metabolism
RNA-binding protein
RNA-Binding Proteins - metabolism
Title RNA‐binding protein, human antigen R regulates hypoxia‐induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.27502
https://www.ncbi.nlm.nih.gov/pubmed/30317574
https://www.proquest.com/docview/2169270565
https://www.proquest.com/docview/2120204834
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1faxQxEB9KQfBFa1v1ai1RRPrg3rnJJuni01GspWgpRwt9EJZkk9NTu3t076Drk5-g9DP6STpJdvdorSC-LAv5u8lM8kt25jcAr7SMbZIkKsoR20cJlTRKrUHFE0kulGU8pc7f-dOh2D9JDk756RK8a31hAj9Ed-HmNMOv107Bla4GC9LQb_m078jJ3frrbLUcIBotqKPSJoy8N0HgSdyyCr2lg67kzb3oD4B5E6_6DWfvIXxuuxrsTL735zPdz3_eYnH8z29ZgQcNECXDIDmPYMkWq7A2LPAQflaT18Sbhvo791W4FyJW1mtwOToc_v51pSfeGYZ4lodJ8Yb4UH8EZ8mRe5IROQ8h7m1FvtbT8mKisBCWQTkyRM0dmYH6UhNdk2CJ7uoaHn-QA3zE4mNM7EVjoFtUWOuiTFmVZ5Z0HpfrcLL3_nh3P2pCOkQ544xGlHE9RtBnUi6tYDJWMTNKOQ9iHWuNhy9jpFVibKhRMqcmT4WShjpcalQq2WNYLsrCPgWid8Yxtbi5MosQRVCt8WyEaFJxTBBc9WC7ndwsb_jOXdiNH1lgaqYZjnrmR70HL7us00DycVemzVZCskbPqww7llKJIJL34EWXjBrqfruowpZzl4c6D-QdlvTgSZCsrhUEEIjfJKZse_n4e_PZwe6Rf9n496zP4D7iuzTYZ27C8ux8bp8jhprpLa8s19QCGQY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFD6ahhDcwNhgFAYYhNAuSEvsxF4kbqqJUUZXoaqTdoMiO3ahwJJqbaVlV3uCac-4J-HYTlKNHwlxE0Xyb-xz7M_OOd8BeKlEaKIokkGG2D6IqKBBYjQqHo8yLg2LE2r9nQ8GvHcY7R_FRyvwtvaF8fwQzYWb1Qy3XlsFtxfSnSVr6Lds2rbs5LgA37ARvd2Bargkj0qqQPLOCCGOwppX6A3tNEWv70a_QczriNVtOXt34XPdWW9p8r29mKt2dvYLj-P_fs0a3KmwKOl64bkHKyZfh41ujufw45K8Is461F27r8NNH7Sy3ICL4aB7dX6pJs4fhjiih0n-mrhofwQnyvJ7kiE58VHuzYx8LafF6URiISyDoqSJXFg-A_mlJKok3hjd1tUdvRcdfIS8HxJzWtno5jOsdVmmmBXHhjROl_fhcO_daLcXVFEdgozFjAaUxWqMuE8nsTCciVCGTEtpnYhVqBSev7QWRvKxplqKjOos4VJoaqGplolgD2A1L3LzEIjaGYfU4P7KDKIUTpXC4xECShljAo9lC7br2U2zivLcRt74kXqyZpriqKdu1Fvwosk69Twff8q0VYtIWqn6LMWOJVQgjoxb8LxJRiW1f15kboqFzUOtE_IOi1qw6UWraQUxBEI4gSnbTkD-3ny6v_vJvTz696zP4FZvdNBP-x8GHx_DbYR7iTfX3ILV-cnCPEFINVdPneb8BEfIHSE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahkC8wNi4dBtgEEJ7IO3ixHYjnqqNMsaopmqT9oAU2bG7FbakWltp4YlfgPiN_BKO7STVuEiIlyiSr7HPsT8753wH4IUSoYnjWAYZYvsgpoIGidGoeDzOuDQRS6j1d_4w4HvH8f4JO1mC17UvjOeHaC7crGa49doq-ESPOgvS0E_ZpG3JyXH9vRHz7a4V6d3hgjsqqeLIOxsEFoc1rdA27TRFr29GvyHM64DV7Tj9u_Cx7qs3NPncns9UO_vyC43jf37MCtypkCjpedG5B0smX4W1Xo6n8IuSvCTONtRduq_CTR-yslyDb8NB78fX72rsvGGIo3kY56-Ii_VHcJosuycZkksf495MyVk5Ka7GEgthGRQkTeTcshnI05KoknhTdFtX7-it6OAj5AchMVeVhW4-xVoXZYppcWFI43J5H477b4529oIqpkOQRSyiAY2YGiHq0wkThkcilGGkpbQuxCpUCk9fWgsj-UhTLUVGdZZwKTS1wFTLREQPYDkvcvMIiOqOQmpwd40MYhROlcLDEcJJyTCBM9mCrXpy06wiPLdxN85TT9VMUxz11I16C543WSee5eNPmTZrCUkrRZ-m2LGECkSRrAXPmmRUUfvfReammNs81Logd6O4BQ-9ZDWtIIJAACcwZcvJx9-bT_d3Dt3L-r9nfQq3Dnf76cG7wfsNuI1YL_G2mpuwPLucm8eIp2bqidObn_8hG9k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA%E2%80%90binding+protein%2C+human+antigen+R+regulates+hypoxia%E2%80%90induced+autophagy+by+targeting+ATG7%2FATG16L1+expressions+and+autophagosome+formation&rft.jtitle=Journal+of+cellular+physiology&rft.au=Palanisamy%2C+Kalaiselvi&rft.au=Tsai%2C+Tsung%E2%80%90Hsun&rft.au=Yu%2C+Tung%E2%80%90Min&rft.au=Sun%2C+Kuo%E2%80%90Ting&rft.date=2019-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=5&rft.spage=7448&rft.epage=7458&rft_id=info:doi/10.1002%2Fjcp.27502&rft.externalDBID=10.1002%252Fjcp.27502&rft.externalDocID=JCP27502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon