Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3‐dependent cytoskeleton remodeling

The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 235; no. 1; pp. 221 - 231
Main Authors Chen, Xi, Hu, Jun‐Gen, Huang, Yi‐Zhou, Li, Shun, Li, Sheng‐Fu, Wang, Min, Xia, Hong‐Wei, Li‐Ling, Jesse, Xie, Hui‐Qi
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia‐inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu‐induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu‐induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α‐dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. Cu could enhance the migration of bone marrow mesenchymal stem cells in vitro, involving at least in part, upregulation of rho family GTPase 3 (Rnd3) expression via stabilizing hypoxia‐inducible factor 1α (Hif1α) to promote actin cytoskeleton remodeling under normoxic conditions.
AbstractList The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia‐inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu‐induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu‐induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α‐dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. Cu could enhance the migration of bone marrow mesenchymal stem cells in vitro, involving at least in part, upregulation of rho family GTPase 3 (Rnd3) expression via stabilizing hypoxia‐inducible factor 1α (Hif1α) to promote actin cytoskeleton remodeling under normoxic conditions.
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.
Author Hu, Jun‐Gen
Chen, Xi
Xia, Hong‐Wei
Li, Sheng‐Fu
Li, Shun
Xie, Hui‐Qi
Wang, Min
Huang, Yi‐Zhou
Li‐Ling, Jesse
Author_xml – sequence: 1
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 2
  givenname: Jun‐Gen
  surname: Hu
  fullname: Hu, Jun‐Gen
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 3
  givenname: Yi‐Zhou
  surname: Huang
  fullname: Huang, Yi‐Zhou
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 4
  givenname: Shun
  surname: Li
  fullname: Li, Shun
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 5
  givenname: Sheng‐Fu
  surname: Li
  fullname: Li, Sheng‐Fu
  organization: Sichuan University
– sequence: 6
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 7
  givenname: Hong‐Wei
  surname: Xia
  fullname: Xia, Hong‐Wei
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 8
  givenname: Jesse
  surname: Li‐Ling
  fullname: Li‐Ling, Jesse
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
– sequence: 9
  givenname: Hui‐Qi
  orcidid: 0000-0003-0760-0853
  surname: Xie
  fullname: Xie, Hui‐Qi
  email: xiehuiqi@scu.edu.cn
  organization: Sichuan University and Collaborative Innovation Center of Biotherapy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31187497$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFuFCEcxompsdvVgy9gSLzoYVoYmGHmaDZqNU1sjJ4JA_9pWQcYgW2zNx_BZ_RJSne3l8ZygAO_7-PP952gIx88IPSaklNKSH221vNp3fUtfYYWlPSi4m1TH6FFuaNV33B6jE5SWhNC-p6xF-iYUdoJ3osFmldhniHiOQYXMiScrwE7exVVtsHjMOKhvIWdijHcYgcJvL7eOjXhlMFhDdOU8I1V-Ls37N-fvwZm8AZ8xnqbQ_oFE-TiE8EFA5P1Vy_R81FNCV4dziX6-enjj9V5dfHt85fVh4tKs4bRihkDmvfd0DMhOB37RtNWCFabQYmxhm5UpKWmHQVTfOyMYaQQQ1t2Lng7sCV6t_ctP_u9gZSls-l-XOUhbJKsGaFdR1lZS_T2EboOm-jLdDuKNFzQplBvDtRmcGDkHG1JZSsfsizA2R7QMaQUYZTa5l2MOSo7SUrkfVuytCV3bRXF-0eKB9P_sQf3WzvB9mlQfl1d7hV3BMelMg
CitedBy_id crossref_primary_10_1002_jbm_a_37790
crossref_primary_10_3389_fbioe_2020_620629
crossref_primary_10_1007_s12011_024_04197_2
crossref_primary_10_1007_s10565_024_09847_8
crossref_primary_10_3389_fbioe_2020_00359
crossref_primary_10_1016_j_yexcr_2020_111859
crossref_primary_10_1038_s41536_023_00305_3
crossref_primary_10_1016_j_ijbiomac_2024_134389
crossref_primary_10_1021_acsami_1c19633
crossref_primary_10_3389_fbioe_2022_916562
crossref_primary_10_21518_ms2024_118
crossref_primary_10_1039_D0BM01591A
crossref_primary_10_1242_jcs_240523
crossref_primary_10_1021_jacs_3c09091
crossref_primary_10_1155_2020_9123281
crossref_primary_10_1016_j_molmet_2024_101872
crossref_primary_10_3390_jfb15110352
crossref_primary_10_3389_fmed_2021_771297
crossref_primary_10_1152_physrev_00011_2024
crossref_primary_10_1021_acsnano_3c10376
crossref_primary_10_1016_j_bioactmat_2022_04_021
crossref_primary_10_1111_wrr_13122
crossref_primary_10_3390_polym15204194
crossref_primary_10_1016_j_cej_2024_153662
crossref_primary_10_3390_nu16132083
crossref_primary_10_1016_j_jot_2021_03_003
crossref_primary_10_3390_coatings11030300
crossref_primary_10_1016_j_msec_2020_111741
Cites_doi 10.1002/cphy.c150018
10.1038/emm.2013.118
10.1258/ebm.2011.011267
10.1634/stemcells.2007-1104
10.1038/nrm1788
10.1128/MCB.18.8.4761
10.1126/science.284.5411.143
10.1016/j.yjmcc.2008.03.010
10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A
10.1007/s12015-017-9753-1
10.1159/000047856
10.1016/j.bbamcr.2016.11.011
10.1242/jcs.01488
10.1016/j.jnutbio.2013.08.013
10.1016/j.bbrc.2011.10.065
10.1016/j.bbrc.2010.09.076
10.1517/14712598.2013.782390
10.1038/s41598-017-01809-x
10.1161/01.CIR.0000084828.50310.6A
10.1158/1541-7786.MCR-10-0454
10.1182/blood-2004-10-3980
10.4161/org.7.2.15781
10.1146/annurev.ph.53.030191.003101
10.1124/mol.108.051516
10.1155/2013/132642
10.1111/cpr.12083
10.1016/j.mehy.2011.12.021
10.1113/expphysiol.2006.033498
10.1002/jgm.452
10.1016/j.biomaterials.2010.12.032
10.1038/cr.2010.44
10.1016/j.jss.2012.07.054
10.1016/j.jcyt.2012.11.002
10.1158/0008-5472.CAN-08-3201
10.1006/meth.2001.1262
10.1016/j.yjmcc.2008.01.004
10.1016/j.jcyt.2012.11.011
10.1016/0014-4827(80)90051-8
10.1186/1476-4598-9-133
10.1007/s11427-013-4603-0
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.28961
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 231
ExternalDocumentID 31187497
10_1002_jcp_28961
JCP28961
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31771065; 31600792
– fundername: Sichuan Science and Technology Program
  funderid: 2019JDRC0020
– fundername: National Key R&D Program of China
  funderid: 2017YFC1104702
– fundername: 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University
  funderid: ZYJC18002
– fundername: Sichuan Science and Technology Program
  grantid: 2019JDRC0020
– fundername: National Key R&D Program of China
  grantid: 2017YFC1104702
– fundername: National Natural Science Foundation of China
  grantid: 31771065
– fundername: National Natural Science Foundation of China
  grantid: 31600792
– fundername: 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University
  grantid: ZYJC18002
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
PKN
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3531-3ddec498b937741f95c167732dba7f2e8fa061d6f73a4f8dd305c1b605c4746b3
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 16:54:26 EDT 2025
Sat Jul 26 00:55:34 EDT 2025
Wed Feb 19 02:31:33 EST 2025
Tue Jul 01 01:32:04 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Wed Jan 22 16:37:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords cell migration
copper
cytoskeleton
Rnd3
mesenchymal stem cells
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3531-3ddec498b937741f95c167732dba7f2e8fa061d6f73a4f8dd305c1b605c4746b3
Notes Xi Chen and Jun‐Gen Hu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0760-0853
PMID 31187497
PQID 2301054715
PQPubID 1006363
PageCount 11
ParticipantIDs proquest_miscellaneous_2301881333
proquest_journals_2301054715
pubmed_primary_31187497
crossref_citationtrail_10_1002_jcp_28961
crossref_primary_10_1002_jcp_28961
wiley_primary_10_1002_jcp_28961_JCP28961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
2020-Jan
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_31_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_3_1
e_1_2_9_1_4_1
e_1_2_9_1_5_1
e_1_2_9_1_6_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_28_1
e_1_2_9_1_25_1
e_1_2_9_1_26_1
e_1_2_9_1_23_1
e_1_2_9_1_24_1
e_1_2_9_1_21_1
e_1_2_9_1_22_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_40_1
e_1_2_9_1_7_1
e_1_2_9_1_8_1
e_1_2_9_1_9_1
e_1_2_9_1_18_1
e_1_2_9_1_19_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_15_1
  doi: 10.1002/cphy.c150018
– ident: e_1_2_9_1_18_1
  doi: 10.1038/emm.2013.118
– ident: e_1_2_9_1_22_1
  doi: 10.1258/ebm.2011.011267
– ident: e_1_2_9_1_31_1
  doi: 10.1634/stemcells.2007-1104
– ident: e_1_2_9_1_5_1
  doi: 10.1038/nrm1788
– ident: e_1_2_9_1_11_1
  doi: 10.1128/MCB.18.8.4761
– ident: e_1_2_9_1_30_1
  doi: 10.1126/science.284.5411.143
– ident: e_1_2_9_1_36_1
  doi: 10.1016/j.yjmcc.2008.03.010
– ident: e_1_2_9_1_12_1
  doi: 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A
– ident: e_1_2_9_1_14_1
  doi: 10.1007/s12015-017-9753-1
– ident: e_1_2_9_1_10_1
  doi: 10.1159/000047856
– ident: e_1_2_9_1_41_1
  doi: 10.1016/j.bbamcr.2016.11.011
– ident: e_1_2_9_1_2_1
  doi: 10.1242/jcs.01488
– ident: e_1_2_9_1_20_1
  doi: 10.1016/j.jnutbio.2013.08.013
– ident: e_1_2_9_1_40_1
  doi: 10.1016/j.bbrc.2011.10.065
– ident: e_1_2_9_1_23_1
  doi: 10.1016/j.bbrc.2010.09.076
– ident: e_1_2_9_1_29_1
  doi: 10.1517/14712598.2013.782390
– ident: e_1_2_9_1_35_1
  doi: 10.1038/s41598-017-01809-x
– ident: e_1_2_9_1_3_1
  doi: 10.1161/01.CIR.0000084828.50310.6A
– ident: e_1_2_9_1_16_1
  doi: 10.1158/1541-7786.MCR-10-0454
– ident: e_1_2_9_1_25_1
  doi: 10.1182/blood-2004-10-3980
– ident: e_1_2_9_1_39_1
  doi: 10.4161/org.7.2.15781
– ident: e_1_2_9_1_8_1
  doi: 10.1146/annurev.ph.53.030191.003101
– ident: e_1_2_9_1_9_1
  doi: 10.1124/mol.108.051516
– ident: e_1_2_9_1_19_1
  doi: 10.1155/2013/132642
– ident: e_1_2_9_1_21_1
  doi: 10.1111/cpr.12083
– ident: e_1_2_9_1_33_1
  doi: 10.1016/j.mehy.2011.12.021
– ident: e_1_2_9_1_32_1
  doi: 10.1113/expphysiol.2006.033498
– ident: e_1_2_9_1_4_1
  doi: 10.1002/jgm.452
– ident: e_1_2_9_1_7_1
  doi: 10.1016/j.biomaterials.2010.12.032
– ident: e_1_2_9_1_34_1
  doi: 10.1038/cr.2010.44
– ident: e_1_2_9_1_38_1
  doi: 10.1016/j.jss.2012.07.054
– ident: e_1_2_9_1_27_1
  doi: 10.1016/j.jcyt.2012.11.002
– ident: e_1_2_9_1_17_1
  doi: 10.1158/0008-5472.CAN-08-3201
– ident: e_1_2_9_1_24_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_9_1_6_1
  doi: 10.1016/j.yjmcc.2008.01.004
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.jcyt.2012.11.011
– ident: e_1_2_9_1_26_1
  doi: 10.1016/0014-4827(80)90051-8
– ident: e_1_2_9_1_28_1
  doi: 10.1186/1476-4598-9-133
– ident: e_1_2_9_1_37_1
  doi: 10.1007/s11427-013-4603-0
SSID ssj0009933
Score 2.4455676
Snippet The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 221
SubjectTerms Bone marrow
cell migration
Copper
Cytoskeleton
Esophagus
Gene expression
Guanosine triphosphatases
Homing
Hypoxia
In vivo methods and tests
Mesenchymal stem cells
Mesenchyme
Motility
mRNA
Proteins
Recruitment
Regenerative medicine
Rnd3
siRNA
Stem cells
Tissue engineering
Title Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3‐dependent cytoskeleton remodeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.28961
https://www.ncbi.nlm.nih.gov/pubmed/31187497
https://www.proquest.com/docview/2301054715
https://www.proquest.com/docview/2301881333
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS90wFD-IIPiy-WduV53EMYYvvdombVr2JBdFBMeQCT4MSpMmzulty22vcH3yI_gZ90l2krQV_8HYW2lTkibn5PzO6cnvAHyWSaQ1F8Jjfm4cFO17gkbKQ-sQKppxHdvQxcm36OiMHZ-H53PwtTsL4_gh-oCb0Qy7XxsFz0S9-0Aa-ltWQ_QWrOtjcrUMIDp9oI5K2jLyNgUhZH7HKrQX7PZvPrZFzwDmY7xqDc7hW_jZDdXlmVwNp40YytsnLI7_-S1L8KYFomTfSc4yzKliBVb3C3TCxzPyhdjUUBtzX4EFV7FytgrVqKwqNSGVzeJTNUH8SMaXF06OSKmJKAu8Y6kdydgcbZK_ZmPsyBBGE_OboCY3lxk5LXL65-6-q8HbEDlryvoKjSCCUTJRtkIPmtV3cHZ48GN05LVFGzxJUZ89ivulZEksEPcgWtFJKP2IcxrkAlc-ULHOEELkkeY0YzrOc9xwpC_Qq5KMs0jQNZgvcKQfgOSMiz0dSKpUyHQWobjlQvhKxD5XjCcD2OmWL5Uto7kprHGdOi7mIMV5Te28DuBT37RyNB4vNdrsZCBtNblO0UVDCIomPBzAdv8YddDMWFaocuraxDF6-3QA753s9L1QU8-dJRwHayXg9e7T49F3e7H-7003YDEwAQAbE9qE-WYyVR8RJTViy6rDXwj7EBM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hUNVegEJbtgXqVlXVSxYSO3EicUEr0JYCqhBIXKooduzy002i3Wyl5cQj8Ix9ko7tJIj-SFVvUTKRHXvG883E_gbgnUwirbkQHvNzE6Bo3xM0Uh56h1DRjOvYpi6OjqPhGTs4D8_nYKc9C-P4IbqEm7EMu14bAzcJ6a171tArWfUxXDCxz4Kp6G0DqpN78qikKSRvNyGEzG95hbaDre7Vh97oN4j5ELFal7O_BF_azrqdJtf9aS368uYXHsf__ZplWGywKNl1yvMU5lSxAqu7Bcbhoxl5T-zuUJt2X4FHrmjlbBWqQVlVakwqu5FPTQhCSDK6_OpUiZSaiLLAO5bdkYzM6SZ5MRthQ4Yzmpg_BRPy_TIjJ0VOf9zetWV4ayJndTm5Rj-IeJSMlS3Sg571GZzt750Ohl5Tt8GTFE3ao7hkSpbEAqEPAhadhNKPOKdBLnDyAxXrDFFEHmlOM6bjPMc1R_oCAyvJOIsEfQ7zBfZ0DUjOuNjWgaRKhUxnEWpcLoSvROxzxXjSgw_t_KWyITU3tTW-pY6OOUhxXFM7rj1424lWjsnjT0LrrRKkjTFPUozSEIWiFw978KZ7jGZoRiwrVDl1MnGMAT_twQunPF0r1JR0ZwnHzloV-Hvz6cHgs714-e-ir-Hx8PToMD38ePzpFTwJTD7ApojWYb4eT9UGgqZabFrb-AnvWxQu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuUFqgCwUMQohLtpvYiRNxqrasSoGqqqjUA1IU_9FSNol2s0jLiUfoM_IkjO0kVfmRELcomciOPeP5ZmJ_A_BcZokxXIiAhcoGKCYMBE10gN4h1rTgJnWpi_cHyd4x2z-JT1bgVXcWxvND9Ak3axluvbYGXiuzfUka-lnWQ4wWbOhzjSWj1Kr07tEld1TW1pF3exBiFna0QqNou3_1qjP6DWFeBazO40xuw8eur36jyflw0Yih_PYLjeN_fswa3GqRKNnxqnMHVnS5Dhs7JUbh0yV5QdzeUJd0X4frvmTlcgPqcVXXekZqt41PzwkCSDI9--QViVSGiKrEO47bkUzt2SZ5upxiQ5Yxmtj_BHPy9awgR6WiP75fdEV4GyKXTTU_Ry-IaJTMtCvRg371LhxPXn8Y7wVt1YZAUjTogOKCKVmWCgQ-CFdMFssw4ZxGSuDURzo1BWIIlRhOC2ZSpXDFkaHAsEoyzhJB78FqiT3dBKIYFyMTSap1zEyRoL4pIUIt0pBrxrMBvOymL5ctpbmtrPEl92TMUY7jmrtxHcCzXrT2PB5_EtrqdCBvTXmeY4yGGBR9eDyAp_1jNEI7YkWpq4WXSVMM9-kA7nvd6VuhtqA7yzh21mnA35vP98eH7uLBv4s-gRuHu5P83ZuDtw_hZmSTAS4_tAWrzWyhHyFiasRjZxk_Acp2EuY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+promotes+the+migration+of+bone+marrow+mesenchymal+stem+cells+via+Rnd3-dependent+cytoskeleton+remodeling&rft.jtitle=Journal+of+cellular+physiology&rft.au=Chen%2C+Xi&rft.au=Hu%2C+Jun-Gen&rft.au=Huang%2C+Yi-Zhou&rft.au=Li%2C+Shun&rft.date=2020-01-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=235&rft.issue=1&rft.spage=221&rft_id=info:doi/10.1002%2Fjcp.28961&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon