Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3‐dependent cytoskeleton remodeling
The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of...
Saved in:
Published in | Journal of cellular physiology Vol. 235; no. 1; pp. 221 - 231 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia‐inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu‐induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu‐induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α‐dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.
Cu could enhance the migration of bone marrow mesenchymal stem cells in vitro, involving at least in part, upregulation of rho family GTPase 3 (Rnd3) expression via stabilizing hypoxia‐inducible factor 1α (Hif1α) to promote actin cytoskeleton remodeling under normoxic conditions. |
---|---|
AbstractList | The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia‐inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu‐induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu‐induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α‐dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. Cu could enhance the migration of bone marrow mesenchymal stem cells in vitro, involving at least in part, upregulation of rho family GTPase 3 (Rnd3) expression via stabilizing hypoxia‐inducible factor 1α (Hif1α) to promote actin cytoskeleton remodeling under normoxic conditions. The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy.The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study indicated copper (Cu) might promote the recruitment of endogenous MSCs in canine esophagus defect model. In this study, we investigated the effect of Cu on the motility of bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism in vitro. Cu supplementation could enhance the motility of BMSCs, and upregulate the expression of hypoxia-inducible factor 1α (Hif1α) at the protein level, and upregulate the expression of rho family GTPase 3 (Rnd3) at messenger RNA and protein level. When Hif1α was silenced by small interfering RNA (siRNA), Cu-induced Rnd3 upregulation was blocked. When Rnd3 was silenced by siRNA, the motility of BMSCs was decreased with or without Cu supplementation, and Cu-induced cytoskeleton remodeling was neutralized. Furthermore, overexpression of Rnd3 also increased the motility of BMSCs and induced cytoskeleton remodeling. Overall, our results demonstrated that Cu enhanced BMSCs migration through, at least in part, cytoskeleton remodeling via Hif1α-dependent upregulation of Rnd3. This study provided an insight into the mechanism of the effect of Cu on the motility of BMSCs, and a theoretical foundation of applying Cu to improve the recruitment of BMSCs in tissue engineering and cytotherapy. |
Author | Hu, Jun‐Gen Chen, Xi Xia, Hong‐Wei Li, Sheng‐Fu Li, Shun Xie, Hui‐Qi Wang, Min Huang, Yi‐Zhou Li‐Ling, Jesse |
Author_xml | – sequence: 1 givenname: Xi surname: Chen fullname: Chen, Xi organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 2 givenname: Jun‐Gen surname: Hu fullname: Hu, Jun‐Gen organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 3 givenname: Yi‐Zhou surname: Huang fullname: Huang, Yi‐Zhou organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 4 givenname: Shun surname: Li fullname: Li, Shun organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 5 givenname: Sheng‐Fu surname: Li fullname: Li, Sheng‐Fu organization: Sichuan University – sequence: 6 givenname: Min surname: Wang fullname: Wang, Min organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 7 givenname: Hong‐Wei surname: Xia fullname: Xia, Hong‐Wei organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 8 givenname: Jesse surname: Li‐Ling fullname: Li‐Ling, Jesse organization: Sichuan University and Collaborative Innovation Center of Biotherapy – sequence: 9 givenname: Hui‐Qi orcidid: 0000-0003-0760-0853 surname: Xie fullname: Xie, Hui‐Qi email: xiehuiqi@scu.edu.cn organization: Sichuan University and Collaborative Innovation Center of Biotherapy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31187497$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFuFCEcxompsdvVgy9gSLzoYVoYmGHmaDZqNU1sjJ4JA_9pWQcYgW2zNx_BZ_RJSne3l8ZygAO_7-PP952gIx88IPSaklNKSH221vNp3fUtfYYWlPSi4m1TH6FFuaNV33B6jE5SWhNC-p6xF-iYUdoJ3osFmldhniHiOQYXMiScrwE7exVVtsHjMOKhvIWdijHcYgcJvL7eOjXhlMFhDdOU8I1V-Ls37N-fvwZm8AZ8xnqbQ_oFE-TiE8EFA5P1Vy_R81FNCV4dziX6-enjj9V5dfHt85fVh4tKs4bRihkDmvfd0DMhOB37RtNWCFabQYmxhm5UpKWmHQVTfOyMYaQQQ1t2Lng7sCV6t_ctP_u9gZSls-l-XOUhbJKsGaFdR1lZS_T2EboOm-jLdDuKNFzQplBvDtRmcGDkHG1JZSsfsizA2R7QMaQUYZTa5l2MOSo7SUrkfVuytCV3bRXF-0eKB9P_sQf3WzvB9mlQfl1d7hV3BMelMg |
CitedBy_id | crossref_primary_10_1002_jbm_a_37790 crossref_primary_10_3389_fbioe_2020_620629 crossref_primary_10_1007_s12011_024_04197_2 crossref_primary_10_1007_s10565_024_09847_8 crossref_primary_10_3389_fbioe_2020_00359 crossref_primary_10_1016_j_yexcr_2020_111859 crossref_primary_10_1038_s41536_023_00305_3 crossref_primary_10_1016_j_ijbiomac_2024_134389 crossref_primary_10_1021_acsami_1c19633 crossref_primary_10_3389_fbioe_2022_916562 crossref_primary_10_21518_ms2024_118 crossref_primary_10_1039_D0BM01591A crossref_primary_10_1242_jcs_240523 crossref_primary_10_1021_jacs_3c09091 crossref_primary_10_1155_2020_9123281 crossref_primary_10_1016_j_molmet_2024_101872 crossref_primary_10_3390_jfb15110352 crossref_primary_10_3389_fmed_2021_771297 crossref_primary_10_1152_physrev_00011_2024 crossref_primary_10_1021_acsnano_3c10376 crossref_primary_10_1016_j_bioactmat_2022_04_021 crossref_primary_10_1111_wrr_13122 crossref_primary_10_3390_polym15204194 crossref_primary_10_1016_j_cej_2024_153662 crossref_primary_10_3390_nu16132083 crossref_primary_10_1016_j_jot_2021_03_003 crossref_primary_10_3390_coatings11030300 crossref_primary_10_1016_j_msec_2020_111741 |
Cites_doi | 10.1002/cphy.c150018 10.1038/emm.2013.118 10.1258/ebm.2011.011267 10.1634/stemcells.2007-1104 10.1038/nrm1788 10.1128/MCB.18.8.4761 10.1126/science.284.5411.143 10.1016/j.yjmcc.2008.03.010 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A 10.1007/s12015-017-9753-1 10.1159/000047856 10.1016/j.bbamcr.2016.11.011 10.1242/jcs.01488 10.1016/j.jnutbio.2013.08.013 10.1016/j.bbrc.2011.10.065 10.1016/j.bbrc.2010.09.076 10.1517/14712598.2013.782390 10.1038/s41598-017-01809-x 10.1161/01.CIR.0000084828.50310.6A 10.1158/1541-7786.MCR-10-0454 10.1182/blood-2004-10-3980 10.4161/org.7.2.15781 10.1146/annurev.ph.53.030191.003101 10.1124/mol.108.051516 10.1155/2013/132642 10.1111/cpr.12083 10.1016/j.mehy.2011.12.021 10.1113/expphysiol.2006.033498 10.1002/jgm.452 10.1016/j.biomaterials.2010.12.032 10.1038/cr.2010.44 10.1016/j.jss.2012.07.054 10.1016/j.jcyt.2012.11.002 10.1158/0008-5472.CAN-08-3201 10.1006/meth.2001.1262 10.1016/j.yjmcc.2008.01.004 10.1016/j.jcyt.2012.11.011 10.1016/0014-4827(80)90051-8 10.1186/1476-4598-9-133 10.1007/s11427-013-4603-0 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.28961 |
DatabaseName | CrossRef PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 231 |
ExternalDocumentID | 31187497 10_1002_jcp_28961 JCP28961 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31771065; 31600792 – fundername: Sichuan Science and Technology Program funderid: 2019JDRC0020 – fundername: National Key R&D Program of China funderid: 2017YFC1104702 – fundername: 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University funderid: ZYJC18002 – fundername: Sichuan Science and Technology Program grantid: 2019JDRC0020 – fundername: National Key R&D Program of China grantid: 2017YFC1104702 – fundername: National Natural Science Foundation of China grantid: 31771065 – fundername: National Natural Science Foundation of China grantid: 31600792 – fundername: 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University grantid: ZYJC18002 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAYXX ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM PKN 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3531-3ddec498b937741f95c167732dba7f2e8fa061d6f73a4f8dd305c1b605c4746b3 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 16:54:26 EDT 2025 Sat Jul 26 00:55:34 EDT 2025 Wed Feb 19 02:31:33 EST 2025 Tue Jul 01 01:32:04 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Wed Jan 22 16:37:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | cell migration copper cytoskeleton Rnd3 mesenchymal stem cells |
Language | English |
License | 2019 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3531-3ddec498b937741f95c167732dba7f2e8fa061d6f73a4f8dd305c1b605c4746b3 |
Notes | Xi Chen and Jun‐Gen Hu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0760-0853 |
PMID | 31187497 |
PQID | 2301054715 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2301881333 proquest_journals_2301054715 pubmed_primary_31187497 crossref_citationtrail_10_1002_jcp_28961 crossref_primary_10_1002_jcp_28961 wiley_primary_10_1002_jcp_28961_JCP28961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 2020-Jan 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_1_14_1 e_1_2_9_1_37_1 e_1_2_9_1_15_1 e_1_2_9_1_36_1 e_1_2_9_1_12_1 e_1_2_9_1_35_1 e_1_2_9_1_13_1 e_1_2_9_1_34_1 e_1_2_9_1_10_1 e_1_2_9_1_33_1 e_1_2_9_1_11_1 e_1_2_9_1_32_1 e_1_2_9_1_31_1 e_1_2_9_1_30_1 e_1_2_9_1_2_1 e_1_2_9_1_3_1 e_1_2_9_1_4_1 e_1_2_9_1_5_1 e_1_2_9_1_6_1 e_1_2_9_1_29_1 e_1_2_9_1_27_1 e_1_2_9_1_28_1 e_1_2_9_1_25_1 e_1_2_9_1_26_1 e_1_2_9_1_23_1 e_1_2_9_1_24_1 e_1_2_9_1_21_1 e_1_2_9_1_22_1 e_1_2_9_1_20_1 e_1_2_9_1_41_1 e_1_2_9_1_40_1 e_1_2_9_1_7_1 e_1_2_9_1_8_1 e_1_2_9_1_9_1 e_1_2_9_1_18_1 e_1_2_9_1_19_1 e_1_2_9_1_16_1 e_1_2_9_1_39_1 e_1_2_9_1_17_1 e_1_2_9_1_38_1 |
References_xml | – ident: e_1_2_9_1_15_1 doi: 10.1002/cphy.c150018 – ident: e_1_2_9_1_18_1 doi: 10.1038/emm.2013.118 – ident: e_1_2_9_1_22_1 doi: 10.1258/ebm.2011.011267 – ident: e_1_2_9_1_31_1 doi: 10.1634/stemcells.2007-1104 – ident: e_1_2_9_1_5_1 doi: 10.1038/nrm1788 – ident: e_1_2_9_1_11_1 doi: 10.1128/MCB.18.8.4761 – ident: e_1_2_9_1_30_1 doi: 10.1126/science.284.5411.143 – ident: e_1_2_9_1_36_1 doi: 10.1016/j.yjmcc.2008.03.010 – ident: e_1_2_9_1_12_1 doi: 10.1002/(SICI)1097-4644(19980601)69:3<326::AID-JCB10>3.0.CO;2-A – ident: e_1_2_9_1_14_1 doi: 10.1007/s12015-017-9753-1 – ident: e_1_2_9_1_10_1 doi: 10.1159/000047856 – ident: e_1_2_9_1_41_1 doi: 10.1016/j.bbamcr.2016.11.011 – ident: e_1_2_9_1_2_1 doi: 10.1242/jcs.01488 – ident: e_1_2_9_1_20_1 doi: 10.1016/j.jnutbio.2013.08.013 – ident: e_1_2_9_1_40_1 doi: 10.1016/j.bbrc.2011.10.065 – ident: e_1_2_9_1_23_1 doi: 10.1016/j.bbrc.2010.09.076 – ident: e_1_2_9_1_29_1 doi: 10.1517/14712598.2013.782390 – ident: e_1_2_9_1_35_1 doi: 10.1038/s41598-017-01809-x – ident: e_1_2_9_1_3_1 doi: 10.1161/01.CIR.0000084828.50310.6A – ident: e_1_2_9_1_16_1 doi: 10.1158/1541-7786.MCR-10-0454 – ident: e_1_2_9_1_25_1 doi: 10.1182/blood-2004-10-3980 – ident: e_1_2_9_1_39_1 doi: 10.4161/org.7.2.15781 – ident: e_1_2_9_1_8_1 doi: 10.1146/annurev.ph.53.030191.003101 – ident: e_1_2_9_1_9_1 doi: 10.1124/mol.108.051516 – ident: e_1_2_9_1_19_1 doi: 10.1155/2013/132642 – ident: e_1_2_9_1_21_1 doi: 10.1111/cpr.12083 – ident: e_1_2_9_1_33_1 doi: 10.1016/j.mehy.2011.12.021 – ident: e_1_2_9_1_32_1 doi: 10.1113/expphysiol.2006.033498 – ident: e_1_2_9_1_4_1 doi: 10.1002/jgm.452 – ident: e_1_2_9_1_7_1 doi: 10.1016/j.biomaterials.2010.12.032 – ident: e_1_2_9_1_34_1 doi: 10.1038/cr.2010.44 – ident: e_1_2_9_1_38_1 doi: 10.1016/j.jss.2012.07.054 – ident: e_1_2_9_1_27_1 doi: 10.1016/j.jcyt.2012.11.002 – ident: e_1_2_9_1_17_1 doi: 10.1158/0008-5472.CAN-08-3201 – ident: e_1_2_9_1_24_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_9_1_6_1 doi: 10.1016/j.yjmcc.2008.01.004 – ident: e_1_2_9_1_13_1 doi: 10.1016/j.jcyt.2012.11.011 – ident: e_1_2_9_1_26_1 doi: 10.1016/0014-4827(80)90051-8 – ident: e_1_2_9_1_28_1 doi: 10.1186/1476-4598-9-133 – ident: e_1_2_9_1_37_1 doi: 10.1007/s11427-013-4603-0 |
SSID | ssj0009933 |
Score | 2.4455676 |
Snippet | The motility of mesenchymal stem cells (MSCs) is highly related to their homing in vivo, a critical issue in regenerative medicine. Our previous study... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 221 |
SubjectTerms | Bone marrow cell migration Copper Cytoskeleton Esophagus Gene expression Guanosine triphosphatases Homing Hypoxia In vivo methods and tests Mesenchymal stem cells Mesenchyme Motility mRNA Proteins Recruitment Regenerative medicine Rnd3 siRNA Stem cells Tissue engineering |
Title | Copper promotes the migration of bone marrow mesenchymal stem cells via Rnd3‐dependent cytoskeleton remodeling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.28961 https://www.ncbi.nlm.nih.gov/pubmed/31187497 https://www.proquest.com/docview/2301054715 https://www.proquest.com/docview/2301881333 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS90wFD-IIPiy-WduV53EMYYvvdombVr2JBdFBMeQCT4MSpMmzulty22vcH3yI_gZ90l2krQV_8HYW2lTkibn5PzO6cnvAHyWSaQ1F8Jjfm4cFO17gkbKQ-sQKppxHdvQxcm36OiMHZ-H53PwtTsL4_gh-oCb0Qy7XxsFz0S9-0Aa-ltWQ_QWrOtjcrUMIDp9oI5K2jLyNgUhZH7HKrQX7PZvPrZFzwDmY7xqDc7hW_jZDdXlmVwNp40YytsnLI7_-S1L8KYFomTfSc4yzKliBVb3C3TCxzPyhdjUUBtzX4EFV7FytgrVqKwqNSGVzeJTNUH8SMaXF06OSKmJKAu8Y6kdydgcbZK_ZmPsyBBGE_OboCY3lxk5LXL65-6-q8HbEDlryvoKjSCCUTJRtkIPmtV3cHZ48GN05LVFGzxJUZ89ivulZEksEPcgWtFJKP2IcxrkAlc-ULHOEELkkeY0YzrOc9xwpC_Qq5KMs0jQNZgvcKQfgOSMiz0dSKpUyHQWobjlQvhKxD5XjCcD2OmWL5Uto7kprHGdOi7mIMV5Te28DuBT37RyNB4vNdrsZCBtNblO0UVDCIomPBzAdv8YddDMWFaocuraxDF6-3QA753s9L1QU8-dJRwHayXg9e7T49F3e7H-7003YDEwAQAbE9qE-WYyVR8RJTViy6rDXwj7EBM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hUNVegEJbtgXqVlXVSxYSO3EicUEr0JYCqhBIXKooduzy002i3Wyl5cQj8Ix9ko7tJIj-SFVvUTKRHXvG883E_gbgnUwirbkQHvNzE6Bo3xM0Uh56h1DRjOvYpi6OjqPhGTs4D8_nYKc9C-P4IbqEm7EMu14bAzcJ6a171tArWfUxXDCxz4Kp6G0DqpN78qikKSRvNyGEzG95hbaDre7Vh97oN4j5ELFal7O_BF_azrqdJtf9aS368uYXHsf__ZplWGywKNl1yvMU5lSxAqu7Bcbhoxl5T-zuUJt2X4FHrmjlbBWqQVlVakwqu5FPTQhCSDK6_OpUiZSaiLLAO5bdkYzM6SZ5MRthQ4Yzmpg_BRPy_TIjJ0VOf9zetWV4ayJndTm5Rj-IeJSMlS3Sg571GZzt750Ohl5Tt8GTFE3ao7hkSpbEAqEPAhadhNKPOKdBLnDyAxXrDFFEHmlOM6bjPMc1R_oCAyvJOIsEfQ7zBfZ0DUjOuNjWgaRKhUxnEWpcLoSvROxzxXjSgw_t_KWyITU3tTW-pY6OOUhxXFM7rj1424lWjsnjT0LrrRKkjTFPUozSEIWiFw978KZ7jGZoRiwrVDl1MnGMAT_twQunPF0r1JR0ZwnHzloV-Hvz6cHgs714-e-ir-Hx8PToMD38ePzpFTwJTD7ApojWYb4eT9UGgqZabFrb-AnvWxQu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuUFqgCwUMQohLtpvYiRNxqrasSoGqqqjUA1IU_9FSNol2s0jLiUfoM_IkjO0kVfmRELcomciOPeP5ZmJ_A_BcZokxXIiAhcoGKCYMBE10gN4h1rTgJnWpi_cHyd4x2z-JT1bgVXcWxvND9Ak3axluvbYGXiuzfUka-lnWQ4wWbOhzjSWj1Kr07tEld1TW1pF3exBiFna0QqNou3_1qjP6DWFeBazO40xuw8eur36jyflw0Yih_PYLjeN_fswa3GqRKNnxqnMHVnS5Dhs7JUbh0yV5QdzeUJd0X4frvmTlcgPqcVXXekZqt41PzwkCSDI9--QViVSGiKrEO47bkUzt2SZ5upxiQ5Yxmtj_BHPy9awgR6WiP75fdEV4GyKXTTU_Ry-IaJTMtCvRg371LhxPXn8Y7wVt1YZAUjTogOKCKVmWCgQ-CFdMFssw4ZxGSuDURzo1BWIIlRhOC2ZSpXDFkaHAsEoyzhJB78FqiT3dBKIYFyMTSap1zEyRoL4pIUIt0pBrxrMBvOymL5ctpbmtrPEl92TMUY7jmrtxHcCzXrT2PB5_EtrqdCBvTXmeY4yGGBR9eDyAp_1jNEI7YkWpq4WXSVMM9-kA7nvd6VuhtqA7yzh21mnA35vP98eH7uLBv4s-gRuHu5P83ZuDtw_hZmSTAS4_tAWrzWyhHyFiasRjZxk_Acp2EuY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Copper+promotes+the+migration+of+bone+marrow+mesenchymal+stem+cells+via+Rnd3-dependent+cytoskeleton+remodeling&rft.jtitle=Journal+of+cellular+physiology&rft.au=Chen%2C+Xi&rft.au=Hu%2C+Jun-Gen&rft.au=Huang%2C+Yi-Zhou&rft.au=Li%2C+Shun&rft.date=2020-01-01&rft.issn=1097-4652&rft.eissn=1097-4652&rft.volume=235&rft.issue=1&rft.spage=221&rft_id=info:doi/10.1002%2Fjcp.28961&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |