The DUF1996 and WSC domain‐containing protein Wsc1I acts as a novel sensor of multiple stress cues in Beauveria bassiana
Wsc1I homologues featuring both an N‐terminal DUF1996 (domain of unknown function 1996) and a C‐terminal WSC (cell wall stress‐responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membra...
Saved in:
Published in | Cellular microbiology Vol. 21; no. 12; pp. e13100 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wsc1I homologues featuring both an N‐terminal DUF1996 (domain of unknown function 1996) and a C‐terminal WSC (cell wall stress‐responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane‐ and vacuole‐related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+, Zn2+, Fe2+, and Mg2+) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle‐bypassing infection. Importantly, phosphorylation of the mitogen‐activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I‐free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana. |
---|---|
AbstractList | Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana.Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+ , Zn2+ , Fe2+ , and Mg2+ ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana. Wsc1I homologues featuring both an N‐terminal DUF1996 (domain of unknown function 1996) and a C‐terminal WSC (cell wall stress‐responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane‐ and vacuole‐related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu2+, Zn2+, Fe2+, and Mg2+) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle‐bypassing infection. Importantly, phosphorylation of the mitogen‐activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I‐free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana. Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain exist in filamentous fungi but have never been functionally characterized. Here, Wsc1I is shown to localize in the vacuoles and cell wall/membrane of the insect mycopathogen Beauveria bassiana and hence linked to cell membrane- and vacuole-related cellular events. In B. bassiana, deletion of Wsc1I resulted in marked increases of hyphal and conidial sensitivities to hyperosmotic agents, oxidants, cell wall perturbing chemicals, and metal cations (Cu , Zn , Fe , and Mg ) despite slight impact on normal growth and conidiation. Conidia produced by the deletion mutant showed not only reduced tolerance to both 45°C heat and UVB irradiation but also attenuated virulence to a susceptible insect through normal cuticle infection or cuticle-bypassing infection. Importantly, phosphorylation of the mitogen-activated protein kinase Hog1 was largely attenuated or nearly abolished in the Wsc1I-free cells triggered with hyperosmotic, oxidative, or cell wall perturbing stress. All changes were well restored by targeted gene complementation. Our findings highlight a novel role of Wsc1I in sensing multiple stress cues upstream of the Hog1 signalling pathway and its pleiotropic effects in B. bassiana. |
Author | Tong, Sen‐Miao Wang, Ding‐Yi Gao, Ben‐Jie Ying, Sheng‐Hua Feng, Ming‐Guang |
Author_xml | – sequence: 1 givenname: Sen‐Miao surname: Tong fullname: Tong, Sen‐Miao email: tongsm@zafu.edu.cn organization: Zhejiang University – sequence: 2 givenname: Ding‐Yi surname: Wang fullname: Wang, Ding‐Yi organization: Zhejiang University – sequence: 3 givenname: Ben‐Jie surname: Gao fullname: Gao, Ben‐Jie organization: Zhejiang University – sequence: 4 givenname: Sheng‐Hua surname: Ying fullname: Ying, Sheng‐Hua organization: Zhejiang University – sequence: 5 givenname: Ming‐Guang orcidid: 0000-0002-2657-0293 surname: Feng fullname: Feng, Ming‐Guang email: mgfeng@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31418513$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URH9gwQtUlropi2l94ziZLOlAYaQiFrTq0nLsm9ZVYk99k1ZlxSPwjDwJhpmyqKhlyXfxnaPrc3bZVogBGXsL4gjyObaDPwIJQrxgO1BWxUzNi2Lr3wzlNtsluhECqhrgFduWUMJcgdxh38-vkX-4OIWmqbgJjl9-W3AXB-PDrx8_bQxjnny44qsUR_SBX5KFJTd2JG7y5SHeYc8JA8XEY8eHqR_9qkdOY0IibicknnUnaKY7TN7w1hB5E8xr9rIzPeGbzbvHLk4_ni8-z86-flou3p_NrFRSzFC2aGQDlZmDVQZqYWVRlbZ1SsrOoWuhUqpxshaidF3dOqHqLJBNLbBtlNxjh2vf_IXbvM2oB08W-94EjBPpoqhVNhSyyOjBE_QmTink7XSRM2tUWYPI1P6GmtoBnV4lP5j0oB9TzcDxGrApEiXstPWjGX1OMxnfaxD6T28696b_9pYV754oHk3_x27c732PD8-DevFluVb8Bj5ppWE |
CitedBy_id | crossref_primary_10_1080_21505594_2020_1836903 crossref_primary_10_3389_fcimb_2021_644372 crossref_primary_10_1111_1462_2920_15381 crossref_primary_10_17221_52_2023_PPS crossref_primary_10_3389_fmicb_2023_1259101 crossref_primary_10_1094_MPMI_09_23_0142_FI crossref_primary_10_3390_ijms25126410 crossref_primary_10_3390_cells9030626 crossref_primary_10_3390_jof8050435 crossref_primary_10_1016_j_ijbiomac_2022_03_037 crossref_primary_10_1007_s00253_021_11222_0 crossref_primary_10_1128_AEM_02545_20 crossref_primary_10_3389_fevo_2021_808430 crossref_primary_10_1016_j_postharvbio_2024_112982 crossref_primary_10_1002_ps_6600 crossref_primary_10_1016_j_procbio_2023_03_001 crossref_primary_10_1007_s00248_024_02387_y crossref_primary_10_3390_jof8060646 crossref_primary_10_1080_21505594_2020_1749487 crossref_primary_10_1016_j_postharvbio_2024_113305 crossref_primary_10_1111_1462_2920_14940 |
Cites_doi | 10.1002/yea.1792 10.1107/S1744309110001685 10.1038/srep00483 10.1111/j.1365-2958.2011.07946.x 10.1371/journal.pone.0042374 10.1038/srep20566 10.1111/1462-2920.13197 10.1016/S0168-9525(02)02723-3 10.1111/1462-2920.13359 10.1016/j.mib.2008.09.017 10.1371/journal.pone.0080881 10.1111/1462-2920.13727 10.1126/science.276.5319.1702 10.1016/j.fgb.2012.02.008 10.1074/jbc.M808693200 10.1128/EC.00323-08 10.1128/EC.00193-09 10.1111/1758-2229.12380 10.1016/j.fgb.2009.08.005 10.1073/pnas.94.25.13804 10.1111/1462-2920.13951 10.3390/insects4030357 10.1007/s00253-018-9516-1 10.1093/nar/gkp985 10.1007/s00253-006-0447-x 10.1111/mmi.13631 10.1111/1462-2920.13851 10.1099/mic.0.029165-0 10.1016/j.fgb.2010.12.004 10.1007/s00253-018-9033-2 10.1002/ps.302 10.1016/j.fgb.2010.06.009 10.1371/journal.pone.0038262 10.1371/journal.pone.0087948 10.1016/S0076-6879(07)28002-4 10.1111/mmi.12911 10.1007/s00438-010-0563-2 10.1093/emboj/16.16.4924 10.1016/j.fgb.2008.04.003 10.1093/emboj/19.17.4623 10.1111/1462-2920.13671 10.1128/EC.2.6.1151-1161.2003 10.1128/EC.05080-11 10.1038/sj.emboj.7601192 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons Ltd 2019 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons Ltd – notice: 2019 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.1111/cmi.13100 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-5822 |
EndPage | n/a |
ExternalDocumentID | 31418513 10_1111_cmi_13100 CMI13100 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Zhejiang Postdoctoral Research Fund funderid: zj20180122 – fundername: National Natural Science Foundation of China funderid: 31772218; 31801795 – fundername: Zhejiang A & F University Research Fund funderid: 2018FR018 – fundername: Fundamental Research Funds for the Central Universities of the Ministry of Education of the People's Republic of China funderid: 2018FZA6003 – fundername: Zhejiang A & F University Research Fund grantid: 2018FR018 – fundername: National Natural Science Foundation of China grantid: 31801795 – fundername: Fundamental Research Funds for the Central Universities of the Ministry of Education of the People's Republic of China grantid: 2018FZA6003 – fundername: Zhejiang Postdoctoral Research Fund grantid: zj20180122 – fundername: National Natural Science Foundation of China grantid: 31772218 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AAJEY AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABPVW ACAHQ ACCFJ ACCMX ACFBH ACGFS ACMXC ACPOU ACPRK ACSCC ACUHS ACXQS ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFRAH AFZJQ AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EBD EBS EDH EJD EMB EMK EMOBN ESX F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MM. MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WQJ WRC WXI WYISQ XG1 ZZTAW ~IA ~KM ~WT AAYXX ABUWG AEUYN AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT NPM 7QL 7T7 7U9 8FD C1K FR3 H94 M7N P64 7X8 |
ID | FETCH-LOGICAL-c3530-e3bea3916a81c5a170c3264cbd533fdedb16559d37004df7bd057a393970eb953 |
IEDL.DBID | DR2 |
ISSN | 1462-5814 1462-5822 |
IngestDate | Fri Jul 11 08:51:52 EDT 2025 Fri Jul 25 10:39:59 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Thu Apr 24 22:54:29 EDT 2025 Tue Jul 01 00:57:20 EDT 2025 Wed Jan 22 17:23:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | cell injury/sublethal injury filamentous fungi stress response molecular genetic genotyping |
Language | English |
License | 2019 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3530-e3bea3916a81c5a170c3264cbd533fdedb16559d37004df7bd057a393970eb953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2657-0293 |
PMID | 31418513 |
PQID | 2314954710 |
PQPubID | 46747 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2275264032 proquest_journals_2314954710 pubmed_primary_31418513 crossref_citationtrail_10_1111_cmi_13100 crossref_primary_10_1111_cmi_13100 wiley_primary_10_1111_cmi_13100_CMI13100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Cellular microbiology |
PublicationTitleAlternate | Cell Microbiol |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 83 2009; 46 2010; 38 2013; 4 2002; 18 2006; 72 2015; 95 2018; 102 1997; 276 2009; 155 2008; 7 2010; 284 2011; 10 2019; 103 2008; 11 2016; 18 2013; 8 2007; 428 2018; 20 2010; 66 2016; 6 2010; 27 2012; 2 2000; 19 1997; 94 2010; 47 2006; 25 2003; 2 2008; 45 2009; 8 1997; 16 2017; 19 2009; 284 2011; 48 2012; 49 2014; 9 2012; 7 2001; 57 2017; 104 2016; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 428 start-page: 29 year: 2007 end-page: 45 article-title: Yeast osmoregulation publication-title: Methods in Enzymology – volume: 16 start-page: 4924 year: 1997 end-page: 4937 article-title: A role for the Pkc1 MAP kinase pathway of in bud emergence and identification of a putative upstream regulator publication-title: EMBO Journal – volume: 104 start-page: 349 year: 2017 end-page: 363 article-title: Novel function of Wsc proteins as a methanol‐sensing machinery in the yeast publication-title: Molecular Microbiology – volume: 19 start-page: 4623 year: 2000 end-page: 4631 article-title: Yeast Cdc42 GTPase and Ste20 PAK‐like kinase regulate Sho1‐dependent activation of the Hog1 MAPK pathway publication-title: EMBO Journal – volume: 19 start-page: 1808 year: 2017 end-page: 1821 article-title: Characterization of the Hog1 MAPK pathway in the entomopathogenic fungus publication-title: Environmental Microbiology – volume: 95 start-page: 914 year: 2015 end-page: 924 article-title: Hybrid histidine kinases in pathogenic fungi publication-title: Molecular Microbiology – volume: 2 start-page: 483 year: 2012 article-title: Genomic perspectives on the evolution of fungal entomopathogenicity in publication-title: Scientific Reports – volume: 66 start-page: 1148 year: 2010 end-page: 1152 article-title: DUFs: Families in search of function publication-title: Acta Crystallographica Section F ‐ Structural Biology and Crystalllliztion Communications – volume: 45 start-page: 1062 year: 2008 end-page: 1074 article-title: The HOG1‐like MAP kinase Sak1 of is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide‐ and phenylpyrrole‐resistance publication-title: Fungal Genetics and Biology – volume: 83 start-page: 506 year: 2012 end-page: 519 article-title: Deciphering cell wall integrity signaling in : Identification and functional characterization of cell wall stress sensors and relevant Rho GTPases publication-title: Molecular Microbiology – volume: 72 start-page: 206 year: 2006 end-page: 210 article-title: Novel blastospore‐based transformation system for easy integration of phosphinothricin resistance and green fluorescence protein genes into publication-title: Applied Microbiology and Biotechnology – volume: 49 start-page: 347 year: 2012 end-page: 357 article-title: A fungal cell wall integrity‐associated MAP kinase cascade in is required for conidiation and mycoparasitism publication-title: Fungal Genetics and Biology – volume: 18 start-page: 3884 year: 2016 end-page: 3895 article-title: The Na /H antiporter Nhx1 controls vacuolar fusion indispensible for the life cycle and of a fungal insect pathogen publication-title: Environmental Microbiology – volume: 8 year: 2013 article-title: NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in publication-title: PLoS One – volume: 18 start-page: 1037 year: 2016 end-page: 1047 article-title: Mas5, a homologue of bacterial DnaJ, is indispensable for the host infection and environmental adaptation of a filamentous fungal insect pathogen publication-title: Environmental Microbiology – volume: 4 start-page: 357 year: 2013 end-page: 374 article-title: Action on the surface: Entomopathogenic fungi versus the insect cuticle publication-title: Insects – volume: 102 start-page: 4995 year: 2018 end-page: 5004 article-title: Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens publication-title: Applied Microbiology and Biotechnology – volume: 9 year: 2014 article-title: Three mitogen‐activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen publication-title: PLoS One – volume: 19 start-page: 4091 year: 2017 end-page: 4102 article-title: Two histidine kinases can sense different stress cues for activation of the MAPK Hog1 cascade in a fungal insect pathogen publication-title: Environmental Microbiology – volume: 38 start-page: D211 year: 2010 end-page: D222 article-title: The Pfam protein families database publication-title: Nucleic Acids Research – volume: 284 start-page: 217 year: 2010 end-page: 219 article-title: A block of endocytosis of the yeast cell wall integrity sensors Wsc1 and Wsc2 results in reduced fitness publication-title: Molecular Genetics and Genomics – volume: 2 start-page: 1151 year: 2003 end-page: 1161 article-title: Whole‐genome analysis of two‐component signal transduction genes in fungal pathogens publication-title: Eukaryotic Cell – volume: 19 start-page: 2037 year: 2017 end-page: 2052 article-title: Two eisosome proteins play opposite roles in autophagic control and sustain cell integrity, function and pathogenicity in publication-title: Environmental Microbiology – volume: 25 start-page: 3033 year: 2006 end-page: 3044 article-title: Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway publication-title: EMBO Journal – volume: 10 start-page: 1504 year: 2011 end-page: 1015 article-title: Putative stress sensors WscA and WscB are involved in hypo‐osmotic and acidic pH stress tolerance in publication-title: Eukaryotic Cell – volume: 11 start-page: 503 year: 2008 end-page: 510 article-title: Vacuoles and fungal biology publication-title: Current Opinion in Microbiology – volume: 8 start-page: 295 year: 2016 end-page: 304 article-title: Subcellular localization of five singular WSC domain‐containing proteins and their roles in responses to stress cues and metal ions publication-title: Environmental Microbiology Reports – volume: 7 year: 2012 article-title: WSC1‐1 and HAM‐7 are MAPK‐1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in publication-title: PLoS One – volume: 57 start-page: 437 year: 2001 end-page: 442 article-title: Characterization of mutations in the twe‐component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the mutants of publication-title: Pest Management Science – volume: 6 start-page: 20566 year: 2016 article-title: Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions publication-title: Scientific Reports – volume: 7 start-page: 2017 year: 2008 end-page: 2036 article-title: Master and commander in fungal pathogens: The two‐component system and the HOG signaling pathway publication-title: Eukaryotic Cell – volume: 284 start-page: 10901 year: 2009 end-page: 10911 article-title: The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase‐induced cell wall stress in publication-title: Journal of Biological Chemistry – volume: 20 start-page: 169 year: 2018 end-page: 185 publication-title: Environmental Microbiology – volume: 27 start-page: 495 year: 2010 end-page: 502 article-title: The high‐osmolarity glycerol (HOG) and cell wall integrity (CWI) signaling pathways interplay: A yeast dialogue between MAPK route publication-title: Yeast – volume: 48 start-page: 377 year: 2011 end-page: 387 article-title: The osmosensing signal transduction pathway from regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light publication-title: Fungal Genetics and Biology – volume: 103 start-page: 577 year: 2019 end-page: 587 article-title: Insights into regulatory roles of MAPK‐cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens publication-title: Applied Microbiology and Biotechnology – volume: 8 start-page: 1616 year: 2009 end-page: 1625 article-title: Our paths might cross: The role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways publication-title: Eukaryotic Cell – volume: 47 start-page: 818 year: 2010 end-page: 827 article-title: Specialized and shared functions of the histidine kinase‐ and HOG1 MAP kinase‐mediated signaling pathways in , a filamentous fungal pathogen of citrus publication-title: Fungal Genetics and Biology – volume: 7 year: 2012 article-title: The two‐component sensor kinase TcsC and its role in stress resistance of the human‐pathogenic mold publication-title: PLoS One – volume: 155 start-page: 3110 year: 2009 end-page: 3120 article-title: Uptake of the fluorescent probe FM4‐64 by hyphae and haemolymph‐derived in vivo hyphal bodies of the entomopathogenic fungus publication-title: Microbiology‐SGM – volume: 46 start-page: 909 year: 2009 end-page: 918 article-title: The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in publication-title: Fungal Genetics and Biology – volume: 276 start-page: 1702 year: 1997 end-page: 1705 article-title: Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK publication-title: Science – volume: 94 start-page: 13804 year: 1997 end-page: 13809 article-title: A family of genes required for maintenance of cell wall integrity and for the stress response in publication-title: Proceedings of the National Academy of Sciences of the Unitated States of America – volume: 18 start-page: 405 year: 2002 end-page: 412 article-title: Yeast go the whole HOG for the hyperosmotic response publication-title: Trends in Genetics – ident: e_1_2_7_29_1 doi: 10.1002/yea.1792 – ident: e_1_2_7_3_1 doi: 10.1107/S1744309110001685 – ident: e_1_2_7_40_1 doi: 10.1038/srep00483 – ident: e_1_2_7_7_1 doi: 10.1111/j.1365-2958.2011.07946.x – ident: e_1_2_7_21_1 doi: 10.1371/journal.pone.0042374 – ident: e_1_2_7_31_1 doi: 10.1038/srep20566 – ident: e_1_2_7_38_1 doi: 10.1111/1462-2920.13197 – ident: e_1_2_7_25_1 doi: 10.1016/S0168-9525(02)02723-3 – ident: e_1_2_7_45_1 doi: 10.1111/1462-2920.13359 – ident: e_1_2_7_37_1 doi: 10.1016/j.mib.2008.09.017 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0080881 – ident: e_1_2_7_44_1 doi: 10.1111/1462-2920.13727 – ident: e_1_2_7_27_1 doi: 10.1126/science.276.5319.1702 – ident: e_1_2_7_42_1 doi: 10.1016/j.fgb.2012.02.008 – ident: e_1_2_7_11_1 doi: 10.1074/jbc.M808693200 – ident: e_1_2_7_2_1 doi: 10.1128/EC.00323-08 – ident: e_1_2_7_9_1 doi: 10.1128/EC.00193-09 – ident: e_1_2_7_32_1 doi: 10.1111/1758-2229.12380 – ident: e_1_2_7_35_1 doi: 10.1016/j.fgb.2009.08.005 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.94.25.13804 – ident: e_1_2_7_33_1 doi: 10.1111/1462-2920.13951 – ident: e_1_2_7_26_1 doi: 10.3390/insects4030357 – ident: e_1_2_7_34_1 doi: 10.1007/s00253-018-9516-1 – ident: e_1_2_7_8_1 doi: 10.1093/nar/gkp985 – ident: e_1_2_7_41_1 doi: 10.1007/s00253-006-0447-x – ident: e_1_2_7_24_1 doi: 10.1111/mmi.13631 – ident: e_1_2_7_17_1 doi: 10.1111/1462-2920.13851 – ident: e_1_2_7_15_1 doi: 10.1099/mic.0.029165-0 – ident: e_1_2_7_20_1 doi: 10.1016/j.fgb.2010.12.004 – ident: e_1_2_7_43_1 doi: 10.1007/s00253-018-9033-2 – ident: e_1_2_7_23_1 doi: 10.1002/ps.302 – ident: e_1_2_7_16_1 doi: 10.1016/j.fgb.2010.06.009 – ident: e_1_2_7_22_1 doi: 10.1371/journal.pone.0038262 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0087948 – ident: e_1_2_7_14_1 doi: 10.1016/S0076-6879(07)28002-4 – ident: e_1_2_7_6_1 doi: 10.1111/mmi.12911 – ident: e_1_2_7_39_1 doi: 10.1007/s00438-010-0563-2 – ident: e_1_2_7_12_1 doi: 10.1093/emboj/16.16.4924 – ident: e_1_2_7_19_1 doi: 10.1016/j.fgb.2008.04.003 – ident: e_1_2_7_28_1 doi: 10.1093/emboj/19.17.4623 – ident: e_1_2_7_18_1 doi: 10.1111/1462-2920.13671 – ident: e_1_2_7_4_1 doi: 10.1128/EC.2.6.1151-1161.2003 – ident: e_1_2_7_10_1 doi: 10.1128/EC.05080-11 – ident: e_1_2_7_30_1 doi: 10.1038/sj.emboj.7601192 |
SSID | ssj0016711 |
Score | 2.4151943 |
Snippet | Wsc1I homologues featuring both an N‐terminal DUF1996 (domain of unknown function 1996) and a C‐terminal WSC (cell wall stress‐responsive component) domain... Wsc1I homologues featuring both an N-terminal DUF1996 (domain of unknown function 1996) and a C-terminal WSC (cell wall stress-responsive component) domain... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13100 |
SubjectTerms | Beauveria bassiana Cations cell injury/sublethal injury Cell membranes Cell walls Clonal deletion Complementation Conidia Copper Deletion mutant filamentous fungi Fungi genotyping Hog1 protein Homology Insects Iron Irradiation Kinases Magnesium Metal ions molecular genetic Organic chemistry Oxidants Oxidizing agents Phosphorylation Protein kinase Proteins Signal transduction stress response Ultraviolet radiation Vacuoles Virulence Zinc |
Title | The DUF1996 and WSC domain‐containing protein Wsc1I acts as a novel sensor of multiple stress cues in Beauveria bassiana |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcmi.13100 https://www.ncbi.nlm.nih.gov/pubmed/31418513 https://www.proquest.com/docview/2314954710 https://www.proquest.com/docview/2275264032 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UiuCL98tqLUfxwZcsmZ1kssGn7talFeqDurQPQjhzCSy2iTS7BfvkT_A3-ks8k0mC9QIihBCYM8z1zPnO5FwAXrCM1zbLKTJK5VGibBxpyy-ntFEU5yVl3sH56K06WCZvTtKTLXjV-8KE-BDDhZvnjPa89gxOuvmJyc3Zaiz89TSfv95WywOid0PoKKGyNvcuHwSsbE1F0kUV8lY8Q82rsug3gHkVr7YCZ3ELPvZdDXYmn8abtR6by1-iOP7nWG7DzQ6I4l7YOXdgy1V34XpITfnlHlzy_sH95cKbDyNVFo_fz9HWZ7Sqvn_95g3cQ2oJbAM9rCo8bow4RDLrBokfrOoLd4oNa8n1OdYl9paLGLxT0PAkINebOdpceDZAFqjeo5Puw3Lx-sP8IOryNERGppLXVWpH3oGXpsKkJLLYMChMjLaMJUvrrBaKFRcrfSh9W2baMkjkCgyFYqfzVD6A7aqu3CPAXGqREZlJWpqE8ph0aklOrTFqqp1zI3jZr1hhuiDmPpfGadErMzyVRTuVI3g-kH4OkTv-RLTTL3vRMW9TMORltZGlNhc_G4qZ7fy_FKpcvWGaSZbyGGM5GcHDsF2GVrg6oyAhubPtov-9-WJ-dNh-PP530idwg0FbHkxqdmB7fb5xTxkYrfUuXNub7c8Wuy0n_ABJhgqD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIkQv5Q2BAgviwMWRN2uvY4kLBKIEmh6gUXtB1uzDUtTWRk1SqT3xE_iN_BJmd22L8pAQkmVZ2lntc3a-Wc8D4AXJeGWyHCMtZR4l0sSRMvSyUmmJcV5i5hycZ3tyMk_eH6aHG_Cq9YUJ8SG6CzfHGf68dgzuLqR_4nJ9suhzdz99Ba66jN5eofrYBY_iMvPZd-koIHVryJMmrpCz4-mqXpZGv0HMy4jVi5zxDfjcdjZYmhz11yvV1xe_xHH839HchO0Gi7LXYfPcgg1b3YZrITvl-R24oC3E3s7HzoKYYWXYwacRM_UJLqrvX785G_eQXYL5WA-Lih0sNZ8y1KslQ3pYVZ_ZY7YkRbk-ZXXJWuNFFhxUmKZZYFTvjcX1meMERjLVOXXiXZiP3-2PJlGTqiHSIhW0tEJZdD68OOQ6RZ7FmnBhopUhOFkaaxSXpLsY4aLpmzJThnAiVSA0FFuVp-IebFZ1ZR8Ay4XiGaIepKVOMI9RpQbF0Ggth8pa24OX7ZIVuolj7tJpHBetPkNTWfip7MHzjvRLCN7xJ6Kddt2Lhn-XBaFe0hxJcFPxs66YOM_9TsHK1muiGWQpjTEWgx7cD_ula4WqExDigjrrV_3vzRej2dR_PPx30qdwfbI_2y12p3sfHsEWYbg8WNjswObqdG0fE05aqSeeHX4AflANLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9RAEC7WFcUX72N01VJ88CVDejrpJPikMw476i6iDrsPC6H6CAzuJsvOzIL75E_wN_pLrM6F6wEihBDoavqsrq86dQA8YxmvbZJRYJTKgkjZMNCWX05poyjMCkq8g_POrtqeR2_24_0NeNH5wjTxIfoLN88Z9XntGfzYFj8xuTlaDIW_nr4AFyMVpn5LTz70saOESurku3wSsLaViqgNK-TNePqq54XRbwjzPGCtJc70Ghx0fW0MTT4P1ys9NGe_hHH8z8Fch6stEsWXzda5ARuuvAmXmtyUX27BGW8gnMyn3n4YqbS493GMtjqiRfn96zdv4d7klsA60sOixL2lETMks1oi8YNldeoOcclqcnWCVYGd6SI27iloeBKQ671ytD71fIAsUb1LJ92G-fT1p_F20CZqCIyMJS-s1I68By-lwsQkktAwKoyMtgwmC-usFoo1Fyt9LH1bJNoySuQKjIVCp7NY3oHNsirdPcBMapEQmVFcmIiykHRsSabWGJVq59wAnncrlps2irlPpnGYd9oMT2VeT-UAnvakx03ojj8RbXXLnrfcu8wZ87LeyGKbi5_0xcx3_mcKla5aM80oiXmMoRwN4G6zXfpWuDrDICG5s_Wi_735fLwzqz_u_zvpY7j8fjLN38123z6AKwzgssa8Zgs2Vydr95BB0ko_qpnhB2uQC-Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+DUF1996+and+WSC+domain%E2%80%90containing+protein+Wsc1I+acts+as+a+novel+sensor+of+multiple+stress+cues+in+Beauveria+bassiana&rft.jtitle=Cellular+microbiology&rft.au=Tong%2C+Sen%E2%80%90Miao&rft.au=Wang%2C+Ding%E2%80%90Yi&rft.au=Gao%2C+Ben%E2%80%90Jie&rft.au=Ying%2C+Sheng%E2%80%90Hua&rft.date=2019-12-01&rft.issn=1462-5814&rft.eissn=1462-5822&rft.volume=21&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fcmi.13100&rft.externalDBID=10.1111%252Fcmi.13100&rft.externalDocID=CMI13100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-5814&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-5814&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-5814&client=summon |