Cardiac‐triggered pseudo‐continuous arterial‐spin‐labeling: A cost‐effective scheme to further enhance the reliability of arterial‐spin‐labeling MRI

Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL,...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 80; no. 3; pp. 969 - 975
Main Authors Li, Yang, Mao, Deng, Li, Zhiqiang, Schär, Michael, Pillai, Jay J., Pipe, James G., Lu, Hanzhang
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise. Methods A total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes. Results In regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms. Conclusion Cardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
AbstractList PurposeArterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise.MethodsA total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes.ResultsIn regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms.ConclusionCardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise. Methods A total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes. Results In regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms. Conclusion Cardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Author Pipe, James G.
Schär, Michael
Li, Zhiqiang
Pillai, Jay J.
Mao, Deng
Lu, Hanzhang
Li, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: University of Texas Southwestern Medical Center
– sequence: 2
  givenname: Deng
  surname: Mao
  fullname: Mao, Deng
  organization: University of Texas Southwestern Medical Center
– sequence: 3
  givenname: Zhiqiang
  orcidid: 0000-0003-1085-5734
  surname: Li
  fullname: Li, Zhiqiang
  organization: Imaging Research, Barrow Neurological Institute
– sequence: 4
  givenname: Michael
  surname: Schär
  fullname: Schär, Michael
  organization: Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Jay J.
  surname: Pillai
  fullname: Pillai, Jay J.
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: James G.
  surname: Pipe
  fullname: Pipe, James G.
  organization: Imaging Research, Barrow Neurological Institute
– sequence: 7
  givenname: Hanzhang
  surname: Lu
  fullname: Lu, Hanzhang
  email: hanzhang.lu@jhu.edu
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29369422$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9qFTEYxYNU7G114QtIwI0ups2fmcnEXblUW-hFKLoeMpkv96ZkkmuSqdxdH8Fn8NF8EmNvdVGwqw8Ov3P4OOcIHfjgAaHXlJxQQtjpFKcTJogkz9CCNoxVrJH1AVoQUZOKU1kfoqOUbgghUor6BTpkkreyZmyBfi5VHK3Sv-5-5GjXa4gw4m2CeQxF0sFn6-cwJ6xihmiVK2raWl-OUwM469cf8BnWIeUigTGgs70FnPQGJsA5YDPHvIGIwW-U10XaAI7FqAbrbN7hYJ7Ixqvry5fouVEuwauHe4y-fjz_sryorj5_ulyeXVWaN5xUTW2GcWxagE6yemhG0nAGdFC05W0jupFr0RolOmEEMdCZZmipZoTSTmpiBD9G7_a52xi-zZByP9mkwTnloTTQUykLW8JYQd8-Qm_CHH35rmekFjXnlPJCvXmg5mGCsd9GO6m46_-2X4D3e0DHkFIE8w-hpP-zbF-W7e-XLezpI1bbrLItC0Vl3VOO79bB7v_R_ep6tXf8BvEbvac
CitedBy_id crossref_primary_10_1016_j_ncl_2019_08_002
crossref_primary_10_1002_mrm_29381
crossref_primary_10_1002_mrm_30370
crossref_primary_10_3389_fneur_2022_698200
crossref_primary_10_1002_mrm_27973
crossref_primary_10_1016_j_neuroimage_2020_117031
crossref_primary_10_1002_mrm_27936
crossref_primary_10_1007_s42058_021_00085_z
crossref_primary_10_1002_mrm_30439
crossref_primary_10_1016_j_mri_2020_07_010
Cites_doi 10.1038/jcbfm.2010.126
10.1002/mrm.1910370215
10.1007/s10334-017-0611-6
10.1002/mrm.25197
10.1002/mrm.20556
10.1002/mrm.24475
10.1002/nbm.2986
10.1109/TMI.2008.2012020
10.1073/pnas.89.1.212
10.1002/mrm.21960
10.1002/mrm.20674
10.1002/mrm.25645
10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
10.1002/mrm.21403
10.1111/j.1476-5381.2010.01161.x
10.1016/j.neuroimage.2007.04.042
10.1002/mrm.21790
10.1002/mrm.21633
10.1088/0031-9155/55/3/017
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1002/mrm.20580
10.1038/jcbfm.2010.153
10.1016/j.neuroimage.2006.01.026
10.1097/00004647-199611000-00019
10.1002/mrm.26587
10.1002/mrm.22245
10.1002/nbm.1675
10.1002/mrm.1910230106
10.1038/jcbfm.2014.81
10.1109/TMI.2006.886807
10.1038/clpt.2010.296
10.1002/mrm.25528
10.1002/mrm.22611
10.1016/j.neuroimage.2008.06.006
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.27090
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 975
ExternalDocumentID 29369422
10_1002_mrm_27090
MRM27090
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 MH084021 ; R01 NS067015 ; R01 AG042753 ; R01 AG047972 ; R21 NS095342 ; R21 NS085634 ; P41 EB015909
– fundername: NIA NIH HHS
  grantid: R01 AG042753
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NINDS NIH HHS
  grantid: R21 NS085634
– fundername: NIMH NIH HHS
  grantid: R01 MH084021
– fundername: NIA NIH HHS
  grantid: R01 AG047972
– fundername: NINDS NIH HHS
  grantid: R01 NS067015
– fundername: NINDS NIH HHS
  grantid: R21 NS095342
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3530-54fbdd56ee8924b5d0532e1ba1636578d3c76fa787f70fe8f5b61c201189c0f73
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 02:15:25 EDT 2025
Fri Jul 25 12:13:02 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 01:21:05 EDT 2025
Wed Jan 22 17:04:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords cardiac phase
pulsation
arterial spin labeling
cardiac-triggered
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-54fbdd56ee8924b5d0532e1ba1636578d3c76fa787f70fe8f5b61c201189c0f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1085-5734
PMID 29369422
PQID 2047433113
PQPubID 1016391
PageCount 7
ParticipantIDs proquest_miscellaneous_1991186362
proquest_journals_2047433113
pubmed_primary_29369422
crossref_primary_10_1002_mrm_27090
crossref_citationtrail_10_1002_mrm_27090
wiley_primary_10_1002_mrm_27090_MRM27090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 55
2013; 26
2006; 31
2009; 61
2015; 73
2000; 44
2015; 74
2011; 31
2016; 75
2008; 59
2013; 70
1996; 16
2010; 63
2007; 58
2007; 37
2009; 28
1997; 37
2017; 78
2005; 54
2017
2011; 65
2011; 24
2011; 89
2008; 42
2011; 163
1992; 89
1992; 23
2008; 60
2014; 34
2007; 26
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 42
  start-page: 1267
  year: 2008
  end-page: 1274
  article-title: Hippocampal hyperperfusion in Alzheimer's disease
  publication-title: Neuroimage
– volume: 59
  start-page: 1467
  year: 2008
  end-page: 1471
  article-title: Minimizing acquisition time of arterial spin labeling at 3T
  publication-title: Magn Reson Med
– volume: 16
  start-page: 1236
  year: 1996
  end-page: 1249
  article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow
  publication-title: J Cereb Blood Flow Metab
– volume: 70
  start-page: 413
  year: 2013
  end-page: 419
  article-title: Distributed spirals: a new class of three‐dimensional k‐space trajectories
  publication-title: Magn Reson Med
– volume: 54
  start-page: 491
  year: 2005
  end-page: 498
  article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements
  publication-title: Magn Reson Med
– volume: 74
  start-page: 1449
  year: 2015
  end-page: 1460
  article-title: Graphical programming interface: a development environment for MRI methods
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1527
  year: 2013
  end-page: 1533
  article-title: Timing dependence of peripheral pulse‐wave‐triggered pulsed arterial spin labeling
  publication-title: NMR Biomed
– volume: 26
  start-page: 84
  year: 2007
  end-page: 92
  article-title: The effects of flow dispersion and cardiac pulsation in arterial spin labeling
  publication-title: IEEE Trans Med Imaging
– volume: 163
  start-page: 1639
  year: 2011
  end-page: 1652
  article-title: Effects on resting cerebral blood flow and functional connectivity induced by metoclopramide: a perfusion MRI study in healthy volunteers
  publication-title: Br J Pharmacol
– volume: 31
  start-page: 58
  year: 2011
  end-page: 67
  article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans
  publication-title: J Cereb Blood Flow Metab
– volume: 31
  start-page: 1104
  year: 2006
  end-page: 1115
  article-title: Physiological noise reduction for arterial spin labeling functional MRI
  publication-title: Neuroimage
– volume: 23
  start-page: 37
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 44
  start-page: 92
  year: 2000
  end-page: 100
  article-title: Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST)
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1243
  year: 2014
  end-page: 1252
  article-title: Bolus arrival time and cerebral blood flow responses to hypercarbia
  publication-title: J Cereb Blood Flow Metab
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 63
  start-page: 765
  year: 2010
  end-page: 771
  article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1812
  year: 2017
  end-page: 1823
  article-title: Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL
  publication-title: Magn Reson Med
– volume: 55
  start-page: 799
  year: 2010
  end-page: 816
  article-title: Modelling the effects of cardiac pulsations in arterial spin labelling
  publication-title: Phys Med Biol
– volume: 37
  start-page: 90
  year: 2007
  end-page: 101
  article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
  publication-title: Neuroimage
– volume: 24
  start-page: 1202
  year: 2011
  end-page: 1209
  article-title: B0 field inhomogeneity considerations in pseudo‐continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy
  publication-title: NMR Biomed
– volume: 58
  start-page: 1020
  year: 2007
  end-page: 1027
  article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– year: 2017
  article-title: Influence of the cardiac cycle on pCASL: cardiac triggering of the end‐of‐labeling
  publication-title: MAGMA
– volume: 28
  start-page: 703
  year: 2009
  end-page: 709
  article-title: Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 560
  year: 2011
  end-page: 571
  article-title: Similarities and differences in arterial responses to hypercapnia and visual stimulation
  publication-title: J Cereb Blood Flow Metab
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
– volume: 89
  start-page: 212
  year: 1992
  end-page: 216
  article-title: Magnetic‐resonance‐imaging of perfusion using spin inversion of arterial water
  publication-title: Proc Natl Acad Sci U S A
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 37
  start-page: 226
  year: 1997
  end-page: 235
  article-title: Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1241
  year: 2005
  end-page: 1247
  article-title: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T
  publication-title: Magn Reson Med
– volume: 75
  start-page: 266
  year: 2016
  end-page: 273
  article-title: Arterial spin labeled perfusion imaging using three‐dimensional turbo spin echo with a distributed spiral‐in/out trajectory
  publication-title: Magn Reson Med
– volume: 89
  start-page: 251
  year: 2011
  end-page: 258
  article-title: Quantification of cerebral blood flow as biomarker of drug effect: arterial spin labeling phMRI after a single dose of oral citalopram
  publication-title: Clin Pharmacol Ther
– volume: 61
  start-page: 1374
  year: 2009
  end-page: 1387
  article-title: Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling
  publication-title: Magn Reson Med
– volume: 54
  start-page: 366
  year: 2005
  end-page: 372
  article-title: Efficiency of inversion pulses for background suppressed arterial spin labeling
  publication-title: Magn Reson Med
– volume: 65
  start-page: 128
  year: 2011
  end-page: 137
  article-title: Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T
  publication-title: Magn Reson Med
– ident: e_1_2_6_23_1
  doi: 10.1038/jcbfm.2010.126
– ident: e_1_2_6_34_1
– ident: e_1_2_6_11_1
  doi: 10.1002/mrm.1910370215
– ident: e_1_2_6_15_1
  doi: 10.1007/s10334-017-0611-6
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_6_5_1
  doi: 10.1002/mrm.20556
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.24475
– ident: e_1_2_6_36_1
  doi: 10.1002/nbm.2986
– ident: e_1_2_6_25_1
  doi: 10.1109/TMI.2008.2012020
– ident: e_1_2_6_2_1
  doi: 10.1073/pnas.89.1.212
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.21960
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.20674
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.25645
– ident: e_1_2_6_4_1
  doi: 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.21403
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1476-5381.2010.01161.x
– ident: e_1_2_6_26_1
  doi: 10.1016/j.neuroimage.2007.04.042
– ident: e_1_2_6_8_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.21633
– ident: e_1_2_6_16_1
  doi: 10.1088/0031-9155/55/3/017
– ident: e_1_2_6_27_1
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.20580
– ident: e_1_2_6_29_1
  doi: 10.1038/jcbfm.2010.153
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroimage.2006.01.026
– ident: e_1_2_6_13_1
  doi: 10.1097/00004647-199611000-00019
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.26587
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.22245
– ident: e_1_2_6_14_1
  doi: 10.1002/nbm.1675
– ident: e_1_2_6_3_1
  doi: 10.1002/mrm.1910230106
– ident: e_1_2_6_22_1
  doi: 10.1038/jcbfm.2014.81
– ident: e_1_2_6_35_1
  doi: 10.1109/TMI.2006.886807
– ident: e_1_2_6_33_1
  doi: 10.1038/clpt.2010.296
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.25528
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.22611
– ident: e_1_2_6_31_1
  doi: 10.1016/j.neuroimage.2008.06.006
SSID ssj0009974
Score 2.3351922
Snippet Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance...
PurposeArterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 969
SubjectTerms arterial spin labeling
Blood flow
Blood vessels
Brain
cardiac phase
cardiac‐triggered
Cerebral blood flow
Change detection
Ghosting
Heart
Heart diseases
Histograms
Hypercapnia
Image acquisition
Image processing
Image segmentation
Labeling
Magnetic resonance imaging
Medical imaging
Neuroimaging
NMR
Noise
Noise sensitivity
Nuclear magnetic resonance
Pulsation
Reliability
Sensitivity enhancement
Shot
Spin labeling
Stability
Title Cardiac‐triggered pseudo‐continuous arterial‐spin‐labeling: A cost‐effective scheme to further enhance the reliability of arterial‐spin‐labeling MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27090
https://www.ncbi.nlm.nih.gov/pubmed/29369422
https://www.proquest.com/docview/2047433113
https://www.proquest.com/docview/1991186362
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkVcoJS_hYIM4tBLtontOAmcqoqqIIXDiko9IEWxY5cKNlltkgOceIQ-Qx-NJ2HGTlKVPyEuuxvHTjbON-PPyfgbQl5YpStech0IlVj4SDX4wSwOZCYMM8wq655D5u_k8Yl4exqfbpBX41oYrw8xPXBDy3D-Gg28VO3-lWjocr2csyTMcL6OsVpIiBZX0lFZ5hWYE4F-JhOjqlDI9qeW18eiXwjmdb7qBpyj2-TD-Fd9nMmned-puf76k4rjf17LNrk1EFF64JFzh2yYeofcyIdX7Ttky8WG6vYuuTx0KNLfv110MJc_w-yedNWavmqgCGPdz-u-6VvqwkMBz1Dars5r-AKIufXuL-kB1U3bQZEPIAEfS2FebZaGdg21_Rp5KDX1RwQhhQ26hoZeQ_wLbexfjk3zxZt75OTo9fvD42BI7RBoHvMwiIVVVRVLY1KYAKq4wgQVJlIl0EMJTqTiOpG2BG9ik9Ca1MZKRhrJSprp0Cb8Ptmsm9o8JLRkkkfCArKQntq4VJlUvKy0gKFW8mRG9sabXOhB9xzTb3wuvGIzK6D3C9f7M_J8qrryYh-_q7Q7IqUY7L0tWCgSXHsW8Rl5Nu0GS8XXL2Vt4CYUGGQWpXB9bEYeeIRNZ2GYV1Ew2LPncPLn0xf5Inc_Hv171cfkJnRd6kPjdslmt-7NE-BSnXrqjOYHe7wjxA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUAvPMproYBBHHrJNrGdF-JSVVRbaHpYtVIvKIodG6qyyWqTHODET-A38NP4JYztJFV5CXHJw3FezjfjGWf8DcALLWTJCiY9LmKNi0SiHkxDL0q5oopqoe04ZHYUzU74m9PwdA1eDXNhHD_EOOBmJMPqayPgZkB654I1dLFaTGnsp-iwXzEZva1DNb8gj0pTx8Ecc6NpUj7wCvl0Zzz1cm_0i4l52WK1Xc7-TXg3PKyLNDmfdq2Yys8_8Tj-79vcghu9LUp2HXhuw5qqNuFa1v9t34SrNjxUNnfg254Fkvz-5WuL7vx7k-CTLBvVlTUWmXD3s6qru4bYCFGENJY2y7MKV4gyO-X9Jdklsm5aLHIxJKhmCbrWaqFIWxPdrYwpSlT1weCQ4A5Z4YmORvwTqfVfrk2y-cFdONl_fbw38_rsDp5kIfO9kGtRlmGkVII-oAhLk6NCBaJACzFCPVIyGUe6QIWiY1-rRIciCqSxV5JU-jpm92C9qiv1AEhBIxZwjeAyFqoOC5FGghWl5NjbRiyewPbwlXPZU5-bDBwfc0faTHNs_dy2_gSej1WXju_jd5W2Bqjkvcg3OfV5bKafBWwCz8bDKKzmD0xRKfwIuYkzCxJ8PzqB-w5i412oSa3IKR7ZtkD58-3zbJ7ZjYf_XvUpXJ8dZ4f54cHR20ewgc2YuEi5LVhvV516jKZVK55YCfoBfNMn3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiou_BQoCwUM4tBLtontOAmcqpZVC6RCKyr1gGTFjg0VbLLaJAc48Qg8A4_GkzC2k1TlT4hLfhw7iZ1vxuN4_A1CT4xUJS2oCphMDGxSBXowiwOeMU00MdK4_5D5MT88YS9O49M19GxYC-P5IcYfblYynL62Ar4sze45aehitZiSJMxgvH6J8TC1kD6Yn3NHZZmnYE6YVTQZG2iFQrI7Fr3YGf1iYV40WF2PM7uG3g7v6h1NPky7Vk7V559oHP-zMtfR1d4SxXseOjfQmq420Ubez7VvosvOOVQ1N9G3fQcj9f3L1xYG8-9seE-8bHRX1pBknd3Pqq7uGuz8QwHQkNoszyrYAcbcgveneA-rumkhyXuQgJLFMLDWC43bGptuZQ1RrKv3FoUYTvAKCnoS8U-4Nn-5N87nR7fQyez5m_3DoI_tECga0zCImZFlGXOtUxgByri0ESp0JAuwDzlokZKqhJsC1IlJQqNTE0seKWutpJkKTUJvo_WqrvQdhAvCacQMQMvapyYuZMYlLUrFoK_lNJmgneEjC9UTn9v4Gx-Fp2wmAlpfuNafoMdj1qVn-_hdpu0BKaIX-EaQkCV28VlEJ-jReBlE1c6_FJWGjyCsl1mUQv3IBG15hI1PITawIiNwZcfh5M-PF_k8dwd3_z3rQ7Tx-mAmXh0dv7yHrkArpt5Nbhutt6tO3we7qpUPnPz8ACAZJpc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac%E2%80%90triggered+pseudo%E2%80%90continuous+arterial%E2%80%90spin%E2%80%90labeling%3A+A+cost%E2%80%90effective+scheme+to+further+enhance+the+reliability+of+arterial%E2%80%90spin%E2%80%90labeling+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Li%2C+Yang&rft.au=Mao%2C+Deng&rft.au=Li%2C+Zhiqiang&rft.au=Sch%C3%A4r%2C+Michael&rft.date=2018-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=3&rft.spage=969&rft.epage=975&rft_id=info:doi/10.1002%2Fmrm.27090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon