Cardiac‐triggered pseudo‐continuous arterial‐spin‐labeling: A cost‐effective scheme to further enhance the reliability of arterial‐spin‐labeling MRI
Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL,...
Saved in:
Published in | Magnetic resonance in medicine Vol. 80; no. 3; pp. 969 - 975 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise.
Methods
A total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes.
Results
In regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms.
Conclusion
Cardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | PurposeArterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise.MethodsA total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes.ResultsIn regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms.ConclusionCardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine. Purpose Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance its sensitivity by quantifying physiological noise attributed to cardiac pulsation and devising an improved sequence, cardiac‐triggered ASL, to minimize this noise. Methods A total of 16 healthy subjects were studied on a 3 Tesla MRI system. The influence of cardiac pulsation on pseudo‐continuous ASL (pCASL) signal was first investigated by performing a regular pCASL sequence while the cardiac phase of the image acquisition was recorded by a pulse oximeter. We then designed a new sequence, cardiac‐triggered pCASL, to align the cardiac phases of the control and labeled scans. The performance of the new sequence was evaluated in the context of single‐shot 3D gradient‐and‐spin‐echo acquisition, multishot 3D spiral acquisition, and hypercapnia‐induced cerebral blood flow (CBF) changes. Results In regular pCASL, the signal intensities of both control and labeled images were strongly modulated by the cardiac phase. In single‐shot acquisitions, this results in signal instability in regions near large vessels. In segmented acquisitions, it results in ghosting artifacts in the image and, furthermore, the signal fluctuation is smeared along the segmentation direction to affect more brain regions. Cardiac‐triggered pCASL enhanced the temporal SNR by 94% and 28% in single‐shot and segmented 3D acquisition, respectively. When applied to detect CBF changes, the triggered sequence revealed a greater statistical power in terms of both the number of significant voxels and t‐score histograms. Conclusion Cardiac‐triggered pCASL represents a potential scheme to enhance the reliability of ASL signal. Magn Reson Med 80:969–975, 2018. © 2018 International Society for Magnetic Resonance in Medicine. |
Author | Pipe, James G. Schär, Michael Li, Zhiqiang Pillai, Jay J. Mao, Deng Lu, Hanzhang Li, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: Li fullname: Li, Yang organization: University of Texas Southwestern Medical Center – sequence: 2 givenname: Deng surname: Mao fullname: Mao, Deng organization: University of Texas Southwestern Medical Center – sequence: 3 givenname: Zhiqiang orcidid: 0000-0003-1085-5734 surname: Li fullname: Li, Zhiqiang organization: Imaging Research, Barrow Neurological Institute – sequence: 4 givenname: Michael surname: Schär fullname: Schär, Michael organization: Johns Hopkins University School of Medicine – sequence: 5 givenname: Jay J. surname: Pillai fullname: Pillai, Jay J. organization: Johns Hopkins University School of Medicine – sequence: 6 givenname: James G. surname: Pipe fullname: Pipe, James G. organization: Imaging Research, Barrow Neurological Institute – sequence: 7 givenname: Hanzhang surname: Lu fullname: Lu, Hanzhang email: hanzhang.lu@jhu.edu organization: Johns Hopkins University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29369422$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9qFTEYxYNU7G114QtIwI0ups2fmcnEXblUW-hFKLoeMpkv96ZkkmuSqdxdH8Fn8NF8EmNvdVGwqw8Ov3P4OOcIHfjgAaHXlJxQQtjpFKcTJogkz9CCNoxVrJH1AVoQUZOKU1kfoqOUbgghUor6BTpkkreyZmyBfi5VHK3Sv-5-5GjXa4gw4m2CeQxF0sFn6-cwJ6xihmiVK2raWl-OUwM469cf8BnWIeUigTGgs70FnPQGJsA5YDPHvIGIwW-U10XaAI7FqAbrbN7hYJ7Ixqvry5fouVEuwauHe4y-fjz_sryorj5_ulyeXVWaN5xUTW2GcWxagE6yemhG0nAGdFC05W0jupFr0RolOmEEMdCZZmipZoTSTmpiBD9G7_a52xi-zZByP9mkwTnloTTQUykLW8JYQd8-Qm_CHH35rmekFjXnlPJCvXmg5mGCsd9GO6m46_-2X4D3e0DHkFIE8w-hpP-zbF-W7e-XLezpI1bbrLItC0Vl3VOO79bB7v_R_ep6tXf8BvEbvac |
CitedBy_id | crossref_primary_10_1016_j_ncl_2019_08_002 crossref_primary_10_1002_mrm_29381 crossref_primary_10_1002_mrm_30370 crossref_primary_10_3389_fneur_2022_698200 crossref_primary_10_1002_mrm_27973 crossref_primary_10_1016_j_neuroimage_2020_117031 crossref_primary_10_1002_mrm_27936 crossref_primary_10_1007_s42058_021_00085_z crossref_primary_10_1002_mrm_30439 crossref_primary_10_1016_j_mri_2020_07_010 |
Cites_doi | 10.1038/jcbfm.2010.126 10.1002/mrm.1910370215 10.1007/s10334-017-0611-6 10.1002/mrm.25197 10.1002/mrm.20556 10.1002/mrm.24475 10.1002/nbm.2986 10.1109/TMI.2008.2012020 10.1073/pnas.89.1.212 10.1002/mrm.21960 10.1002/mrm.20674 10.1002/mrm.25645 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M 10.1002/mrm.21403 10.1111/j.1476-5381.2010.01161.x 10.1016/j.neuroimage.2007.04.042 10.1002/mrm.21790 10.1002/mrm.21633 10.1088/0031-9155/55/3/017 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1002/mrm.20580 10.1038/jcbfm.2010.153 10.1016/j.neuroimage.2006.01.026 10.1097/00004647-199611000-00019 10.1002/mrm.26587 10.1002/mrm.22245 10.1002/nbm.1675 10.1002/mrm.1910230106 10.1038/jcbfm.2014.81 10.1109/TMI.2006.886807 10.1038/clpt.2010.296 10.1002/mrm.25528 10.1002/mrm.22611 10.1016/j.neuroimage.2008.06.006 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.27090 |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 975 |
ExternalDocumentID | 29369422 10_1002_mrm_27090 MRM27090 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: R01 MH084021 ; R01 NS067015 ; R01 AG042753 ; R01 AG047972 ; R21 NS095342 ; R21 NS085634 ; P41 EB015909 – fundername: NIA NIH HHS grantid: R01 AG042753 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NINDS NIH HHS grantid: R21 NS085634 – fundername: NIMH NIH HHS grantid: R01 MH084021 – fundername: NIA NIH HHS grantid: R01 AG047972 – fundername: NINDS NIH HHS grantid: R01 NS067015 – fundername: NINDS NIH HHS grantid: R21 NS095342 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3530-54fbdd56ee8924b5d0532e1ba1636578d3c76fa787f70fe8f5b61c201189c0f73 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 02:15:25 EDT 2025 Fri Jul 25 12:13:02 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 01:21:05 EDT 2025 Wed Jan 22 17:04:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cardiac phase pulsation arterial spin labeling cardiac-triggered |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3530-54fbdd56ee8924b5d0532e1ba1636578d3c76fa787f70fe8f5b61c201189c0f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1085-5734 |
PMID | 29369422 |
PQID | 2047433113 |
PQPubID | 1016391 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1991186362 proquest_journals_2047433113 pubmed_primary_29369422 crossref_primary_10_1002_mrm_27090 crossref_citationtrail_10_1002_mrm_27090 wiley_primary_10_1002_mrm_27090_MRM27090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 55 2013; 26 2006; 31 2009; 61 2015; 73 2000; 44 2015; 74 2011; 31 2016; 75 2008; 59 2013; 70 1996; 16 2010; 63 2007; 58 2007; 37 2009; 28 1997; 37 2017; 78 2005; 54 2017 2011; 65 2011; 24 2011; 89 2008; 42 2011; 163 1992; 89 1992; 23 2008; 60 2014; 34 2007; 26 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 42 start-page: 1267 year: 2008 end-page: 1274 article-title: Hippocampal hyperperfusion in Alzheimer's disease publication-title: Neuroimage – volume: 59 start-page: 1467 year: 2008 end-page: 1471 article-title: Minimizing acquisition time of arterial spin labeling at 3T publication-title: Magn Reson Med – volume: 16 start-page: 1236 year: 1996 end-page: 1249 article-title: Reduced transit‐time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow publication-title: J Cereb Blood Flow Metab – volume: 70 start-page: 413 year: 2013 end-page: 419 article-title: Distributed spirals: a new class of three‐dimensional k‐space trajectories publication-title: Magn Reson Med – volume: 54 start-page: 491 year: 2005 end-page: 498 article-title: Single‐shot 3D imaging techniques improve arterial spin labeling perfusion measurements publication-title: Magn Reson Med – volume: 74 start-page: 1449 year: 2015 end-page: 1460 article-title: Graphical programming interface: a development environment for MRI methods publication-title: Magn Reson Med – volume: 26 start-page: 1527 year: 2013 end-page: 1533 article-title: Timing dependence of peripheral pulse‐wave‐triggered pulsed arterial spin labeling publication-title: NMR Biomed – volume: 26 start-page: 84 year: 2007 end-page: 92 article-title: The effects of flow dispersion and cardiac pulsation in arterial spin labeling publication-title: IEEE Trans Med Imaging – volume: 163 start-page: 1639 year: 2011 end-page: 1652 article-title: Effects on resting cerebral blood flow and functional connectivity induced by metoclopramide: a perfusion MRI study in healthy volunteers publication-title: Br J Pharmacol – volume: 31 start-page: 58 year: 2011 end-page: 67 article-title: The influence of carbon dioxide on brain activity and metabolism in conscious humans publication-title: J Cereb Blood Flow Metab – volume: 31 start-page: 1104 year: 2006 end-page: 1115 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: Neuroimage – volume: 23 start-page: 37 year: 1992 end-page: 45 article-title: Perfusion imaging publication-title: Magn Reson Med – volume: 44 start-page: 92 year: 2000 end-page: 100 article-title: Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST) publication-title: Magn Reson Med – volume: 34 start-page: 1243 year: 2014 end-page: 1252 article-title: Bolus arrival time and cerebral blood flow responses to hypercarbia publication-title: J Cereb Blood Flow Metab – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 63 start-page: 765 year: 2010 end-page: 771 article-title: Estimation of labeling efficiency in pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – volume: 78 start-page: 1812 year: 2017 end-page: 1823 article-title: Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL publication-title: Magn Reson Med – volume: 55 start-page: 799 year: 2010 end-page: 816 article-title: Modelling the effects of cardiac pulsations in arterial spin labelling publication-title: Phys Med Biol – volume: 37 start-page: 90 year: 2007 end-page: 101 article-title: A component based noise correction method (CompCor) for BOLD and perfusion based fMRI publication-title: Neuroimage – volume: 24 start-page: 1202 year: 2011 end-page: 1209 article-title: B0 field inhomogeneity considerations in pseudo‐continuous arterial spin labeling (pCASL): effects on tagging efficiency and correction strategy publication-title: NMR Biomed – volume: 58 start-page: 1020 year: 2007 end-page: 1027 article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling publication-title: Magn Reson Med – year: 2017 article-title: Influence of the cardiac cycle on pCASL: cardiac triggering of the end‐of‐labeling publication-title: MAGMA – volume: 28 start-page: 703 year: 2009 end-page: 709 article-title: Physiological modulations in arterial spin labeling perfusion magnetic resonance imaging publication-title: IEEE Trans Med Imaging – volume: 31 start-page: 560 year: 2011 end-page: 571 article-title: Similarities and differences in arterial responses to hypercapnia and visual stimulation publication-title: J Cereb Blood Flow Metab – volume: 44 start-page: 162 year: 2000 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn Reson Med – volume: 89 start-page: 212 year: 1992 end-page: 216 article-title: Magnetic‐resonance‐imaging of perfusion using spin inversion of arterial water publication-title: Proc Natl Acad Sci U S A – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 37 start-page: 226 year: 1997 end-page: 235 article-title: Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques publication-title: Magn Reson Med – volume: 54 start-page: 1241 year: 2005 end-page: 1247 article-title: Continuous arterial spin labeling perfusion measurements using single shot 3D GRASE at 3 T publication-title: Magn Reson Med – volume: 75 start-page: 266 year: 2016 end-page: 273 article-title: Arterial spin labeled perfusion imaging using three‐dimensional turbo spin echo with a distributed spiral‐in/out trajectory publication-title: Magn Reson Med – volume: 89 start-page: 251 year: 2011 end-page: 258 article-title: Quantification of cerebral blood flow as biomarker of drug effect: arterial spin labeling phMRI after a single dose of oral citalopram publication-title: Clin Pharmacol Ther – volume: 61 start-page: 1374 year: 2009 end-page: 1387 article-title: Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling publication-title: Magn Reson Med – volume: 54 start-page: 366 year: 2005 end-page: 372 article-title: Efficiency of inversion pulses for background suppressed arterial spin labeling publication-title: Magn Reson Med – volume: 65 start-page: 128 year: 2011 end-page: 137 article-title: Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T publication-title: Magn Reson Med – ident: e_1_2_6_23_1 doi: 10.1038/jcbfm.2010.126 – ident: e_1_2_6_34_1 – ident: e_1_2_6_11_1 doi: 10.1002/mrm.1910370215 – ident: e_1_2_6_15_1 doi: 10.1007/s10334-017-0611-6 – ident: e_1_2_6_10_1 doi: 10.1002/mrm.25197 – ident: e_1_2_6_5_1 doi: 10.1002/mrm.20556 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.24475 – ident: e_1_2_6_36_1 doi: 10.1002/nbm.2986 – ident: e_1_2_6_25_1 doi: 10.1109/TMI.2008.2012020 – ident: e_1_2_6_2_1 doi: 10.1073/pnas.89.1.212 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.21960 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.20674 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.25645 – ident: e_1_2_6_4_1 doi: 10.1002/1522-2594(200007)44:1<92::AID-MRM14>3.0.CO;2-M – ident: e_1_2_6_12_1 doi: 10.1002/mrm.21403 – ident: e_1_2_6_32_1 doi: 10.1111/j.1476-5381.2010.01161.x – ident: e_1_2_6_26_1 doi: 10.1016/j.neuroimage.2007.04.042 – ident: e_1_2_6_8_1 doi: 10.1002/mrm.21790 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.21633 – ident: e_1_2_6_16_1 doi: 10.1088/0031-9155/55/3/017 – ident: e_1_2_6_27_1 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: e_1_2_6_6_1 doi: 10.1002/mrm.20580 – ident: e_1_2_6_29_1 doi: 10.1038/jcbfm.2010.153 – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroimage.2006.01.026 – ident: e_1_2_6_13_1 doi: 10.1097/00004647-199611000-00019 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.26587 – ident: e_1_2_6_21_1 doi: 10.1002/mrm.22245 – ident: e_1_2_6_14_1 doi: 10.1002/nbm.1675 – ident: e_1_2_6_3_1 doi: 10.1002/mrm.1910230106 – ident: e_1_2_6_22_1 doi: 10.1038/jcbfm.2014.81 – ident: e_1_2_6_35_1 doi: 10.1109/TMI.2006.886807 – ident: e_1_2_6_33_1 doi: 10.1038/clpt.2010.296 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.25528 – ident: e_1_2_6_30_1 doi: 10.1002/mrm.22611 – ident: e_1_2_6_31_1 doi: 10.1016/j.neuroimage.2008.06.006 |
SSID | ssj0009974 |
Score | 2.3351922 |
Snippet | Purpose
Arterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance... PurposeArterial‐spin‐labeling (ASL) magnetic resonance imaging (MRI) is intrinsically a low signal‐to‐noise ratio (SNR) technique. This study aims to enhance... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 969 |
SubjectTerms | arterial spin labeling Blood flow Blood vessels Brain cardiac phase cardiac‐triggered Cerebral blood flow Change detection Ghosting Heart Heart diseases Histograms Hypercapnia Image acquisition Image processing Image segmentation Labeling Magnetic resonance imaging Medical imaging Neuroimaging NMR Noise Noise sensitivity Nuclear magnetic resonance Pulsation Reliability Sensitivity enhancement Shot Spin labeling Stability |
Title | Cardiac‐triggered pseudo‐continuous arterial‐spin‐labeling: A cost‐effective scheme to further enhance the reliability of arterial‐spin‐labeling MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.27090 https://www.ncbi.nlm.nih.gov/pubmed/29369422 https://www.proquest.com/docview/2047433113 https://www.proquest.com/docview/1991186362 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkVcoJS_hYIM4tBLtontOAmcqoqqIIXDiko9IEWxY5cKNlltkgOceIQ-Qx-NJ2HGTlKVPyEuuxvHTjbON-PPyfgbQl5YpStech0IlVj4SDX4wSwOZCYMM8wq655D5u_k8Yl4exqfbpBX41oYrw8xPXBDy3D-Gg28VO3-lWjocr2csyTMcL6OsVpIiBZX0lFZ5hWYE4F-JhOjqlDI9qeW18eiXwjmdb7qBpyj2-TD-Fd9nMmned-puf76k4rjf17LNrk1EFF64JFzh2yYeofcyIdX7Ttky8WG6vYuuTx0KNLfv110MJc_w-yedNWavmqgCGPdz-u-6VvqwkMBz1Dars5r-AKIufXuL-kB1U3bQZEPIAEfS2FebZaGdg21_Rp5KDX1RwQhhQ26hoZeQ_wLbexfjk3zxZt75OTo9fvD42BI7RBoHvMwiIVVVRVLY1KYAKq4wgQVJlIl0EMJTqTiOpG2BG9ik9Ca1MZKRhrJSprp0Cb8Ptmsm9o8JLRkkkfCArKQntq4VJlUvKy0gKFW8mRG9sabXOhB9xzTb3wuvGIzK6D3C9f7M_J8qrryYh-_q7Q7IqUY7L0tWCgSXHsW8Rl5Nu0GS8XXL2Vt4CYUGGQWpXB9bEYeeIRNZ2GYV1Ew2LPncPLn0xf5Inc_Hv171cfkJnRd6kPjdslmt-7NE-BSnXrqjOYHe7wjxA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUAvPMproYBBHHrJNrGdF-JSVVRbaHpYtVIvKIodG6qyyWqTHODET-A38NP4JYztJFV5CXHJw3FezjfjGWf8DcALLWTJCiY9LmKNi0SiHkxDL0q5oopqoe04ZHYUzU74m9PwdA1eDXNhHD_EOOBmJMPqayPgZkB654I1dLFaTGnsp-iwXzEZva1DNb8gj0pTx8Ecc6NpUj7wCvl0Zzz1cm_0i4l52WK1Xc7-TXg3PKyLNDmfdq2Yys8_8Tj-79vcghu9LUp2HXhuw5qqNuFa1v9t34SrNjxUNnfg254Fkvz-5WuL7vx7k-CTLBvVlTUWmXD3s6qru4bYCFGENJY2y7MKV4gyO-X9Jdklsm5aLHIxJKhmCbrWaqFIWxPdrYwpSlT1weCQ4A5Z4YmORvwTqfVfrk2y-cFdONl_fbw38_rsDp5kIfO9kGtRlmGkVII-oAhLk6NCBaJACzFCPVIyGUe6QIWiY1-rRIciCqSxV5JU-jpm92C9qiv1AEhBIxZwjeAyFqoOC5FGghWl5NjbRiyewPbwlXPZU5-bDBwfc0faTHNs_dy2_gSej1WXju_jd5W2Bqjkvcg3OfV5bKafBWwCz8bDKKzmD0xRKfwIuYkzCxJ8PzqB-w5i412oSa3IKR7ZtkD58-3zbJ7ZjYf_XvUpXJ8dZ4f54cHR20ewgc2YuEi5LVhvV516jKZVK55YCfoBfNMn3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiou_BQoCwUM4tBLtontOAmcqpZVC6RCKyr1gGTFjg0VbLLaJAc48Qg8A4_GkzC2k1TlT4hLfhw7iZ1vxuN4_A1CT4xUJS2oCphMDGxSBXowiwOeMU00MdK4_5D5MT88YS9O49M19GxYC-P5IcYfblYynL62Ar4sze45aehitZiSJMxgvH6J8TC1kD6Yn3NHZZmnYE6YVTQZG2iFQrI7Fr3YGf1iYV40WF2PM7uG3g7v6h1NPky7Vk7V559oHP-zMtfR1d4SxXseOjfQmq420Ubez7VvosvOOVQ1N9G3fQcj9f3L1xYG8-9seE-8bHRX1pBknd3Pqq7uGuz8QwHQkNoszyrYAcbcgveneA-rumkhyXuQgJLFMLDWC43bGptuZQ1RrKv3FoUYTvAKCnoS8U-4Nn-5N87nR7fQyez5m_3DoI_tECga0zCImZFlGXOtUxgByri0ESp0JAuwDzlokZKqhJsC1IlJQqNTE0seKWutpJkKTUJvo_WqrvQdhAvCacQMQMvapyYuZMYlLUrFoK_lNJmgneEjC9UTn9v4Gx-Fp2wmAlpfuNafoMdj1qVn-_hdpu0BKaIX-EaQkCV28VlEJ-jReBlE1c6_FJWGjyCsl1mUQv3IBG15hI1PITawIiNwZcfh5M-PF_k8dwd3_z3rQ7Tx-mAmXh0dv7yHrkArpt5Nbhutt6tO3we7qpUPnPz8ACAZJpc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac%E2%80%90triggered+pseudo%E2%80%90continuous+arterial%E2%80%90spin%E2%80%90labeling%3A+A+cost%E2%80%90effective+scheme+to+further+enhance+the+reliability+of+arterial%E2%80%90spin%E2%80%90labeling+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Li%2C+Yang&rft.au=Mao%2C+Deng&rft.au=Li%2C+Zhiqiang&rft.au=Sch%C3%A4r%2C+Michael&rft.date=2018-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=80&rft.issue=3&rft.spage=969&rft.epage=975&rft_id=info:doi/10.1002%2Fmrm.27090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_27090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |