Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their a...
Saved in:
Published in | Biotechnology and bioengineering Vol. 118; no. 12; pp. 4760 - 4770 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants were revealed in this study. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. This work provided new insights into the roles of the genus Aeromonas in biological wastewater treatment. |
---|---|
AbstractList | Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. Multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants were revealed in this study. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. This work provided new insights into the roles of the genus Aeromonas in biological wastewater treatment. Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila , a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. |
Author | Min, Di Wu, Jie Cheng, Zhou‐Hua Cheng, Lei Li, Wen‐Wei Liu, Dong‐Feng Zhang, Feng Yu, Han‐Qing |
Author_xml | – sequence: 1 givenname: Di surname: Min fullname: Min, Di organization: University of Science and Technology of China – sequence: 2 givenname: Dong‐Feng orcidid: 0000-0003-4782-0033 surname: Liu fullname: Liu, Dong‐Feng email: dfl@ustc.edu.cn organization: University of Science and Technology of China – sequence: 3 givenname: Jie surname: Wu fullname: Wu, Jie organization: University of Science and Technology of China – sequence: 4 givenname: Lei orcidid: 0000-0002-1382-520X surname: Cheng fullname: Cheng, Lei organization: University of Science and Technology of China – sequence: 5 givenname: Feng orcidid: 0000-0002-8809-6910 surname: Zhang fullname: Zhang, Feng organization: University of Science and Technology of China – sequence: 6 givenname: Zhou‐Hua surname: Cheng fullname: Cheng, Zhou‐Hua organization: University of Science and Technology of China – sequence: 7 givenname: Wen‐Wei orcidid: 0000-0001-9280-0045 surname: Li fullname: Li, Wen‐Wei organization: University of Science and Technology of China – sequence: 8 givenname: Han‐Qing orcidid: 0000-0001-5247-6244 surname: Yu fullname: Yu, Han‐Qing email: hqyu@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34546573$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9PXCEUxUljU0ftol-gIemmXTy98B7vz9IaW01MutE1YZhLBsODV-BVZ9ePXqYzxsToinD5nQOcc0QOfPBIyCcGpwyAny1tPuXd0MA7smAwdBXwAQ7IAgDaqhYDPyRHKd2Xbde37QdyWDeiaUVXL8jfy8cclUbnZqciRYc6x-BpGfpkMNI_VtFxdtlODp-P03rO2WGi1tMHlTEuQ_RIzzGGMXiV6HqzimFaW6eoCZEubYi4mnW2RRwMnUK5MCuf0wl5b5RL-HG_HpO7H5e3F1fVza-f1xfnN5WuRQ1V3SpTgxa85wZQgxmg345axdSgFBrDOl53pjMMFOtbFJw1hqMwWmiBpj4mX3e-Uwy_Z0xZjjZt_608hjlJLjoBHQPWFPTLC_Q-zNGX1xVqECU80fSF-ryn5uWIKzlFO6q4kU_ZFuBsB-gYUopopLZZbRMo4VonGchte7K0J_-3VxTfXiieTF9j9-4P1uHmbVB-v77dKf4BX1ar9g |
CitedBy_id | crossref_primary_10_1038_s41545_024_00352_3 crossref_primary_10_1016_j_jwpe_2024_105920 crossref_primary_10_1016_j_watres_2022_118982 crossref_primary_10_1016_j_envres_2023_117712 crossref_primary_10_1039_D3CS00537B crossref_primary_10_1002_bit_28811 crossref_primary_10_1016_j_watres_2024_122739 crossref_primary_10_1016_j_scitotenv_2022_158172 crossref_primary_10_1016_j_jhazmat_2024_135348 crossref_primary_10_1039_D2EN00156J crossref_primary_10_1016_j_efmat_2025_01_001 crossref_primary_10_1063_5_0192571 crossref_primary_10_1360_SSC_2024_0203 crossref_primary_10_1016_j_chemosphere_2024_143439 crossref_primary_10_1016_j_biotechadv_2023_108175 |
Cites_doi | 10.1016/B978-0-12-387661-4.00004-5 10.1046/j.1462-2920.2002.00264.x 10.1007/978-3-642-38922-1_282 10.1016/j.jpowsour.2017.03.147 10.1016/j.watres.2020.116612 10.1042/BST20120098 10.1038/35011098 10.1111/1751-7915.12797 10.1271/bbb.66.2100 10.1128/AEM.02134-18 10.1038/nprot.2013.173 10.1111/j.1365-2958.2007.05783.x 10.1021/acs.est.6b04640 10.1038/nrmicro.2016.93 10.3389/fmicb.2017.00127 10.1128/AEM.01387-07 10.7554/eLife.48054 10.1021/acs.est.5b04087 10.1021/acs.est.9b07191 10.1021/acs.est.9b05890 10.1016/j.biotechadv.2009.01.004 10.1002/bit.26212 10.1021/es8006468 10.1111/j.1462-2920.2012.02757.x 10.1002/bit.22453 10.1073/pnas.0710525105 10.1021/es5017312 10.1021/acs.est.8b02599 10.1038/s42004-020-0316-z 10.1021/jf102902f 10.1146/annurev-micro-090816-093913 10.1021/jf303610w 10.1128/CMR.00039-09 10.1016/j.watres.2018.01.062 10.1039/C3RA45458D 10.1016/j.envint.2019.05.016 10.1016/j.watres.2011.02.004 10.1016/S0043-1354(99)00298-5 10.1016/j.watres.2019.115193 10.3389/fmicb.2012.00050 10.1038/srep01315 10.2136/sssaj2014.04.0164 10.1042/BJ20120197 10.1021/ac60289a016 10.1007/s00253-002-0982-z 10.1007/s002030050567 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.27940 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 4770 |
ExternalDocumentID | 34546573 10_1002_bit_27940 BIT27940 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51878638; 21607146 and 51821006 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c3530-36af30c5282f0ec0f9086af36a1a9aaeff17237f7f10a186e5214f2e5fc5c5ef3 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 18:12:10 EDT 2025 Fri Jul 25 18:55:20 EDT 2025 Wed Feb 19 02:26:43 EST 2025 Tue Jul 01 01:09:07 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Wed Jan 22 16:27:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | 2-amino-3-carboxy-1,4-naphthoquinone electron shuttles extracellular electron transfer bioreduction of pollutants Aeromonas flavins |
Language | English |
License | 2021 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3530-36af30c5282f0ec0f9086af36a1a9aaeff17237f7f10a186e5214f2e5fc5c5ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9280-0045 0000-0003-4782-0033 0000-0002-8809-6910 0000-0002-1382-520X 0000-0001-5247-6244 |
PMID | 34546573 |
PQID | 2595345548 |
PQPubID | 48814 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2575071014 proquest_journals_2595345548 pubmed_primary_34546573 crossref_citationtrail_10_1002_bit_27940 crossref_primary_10_1002_bit_27940 wiley_primary_10_1002_bit_27940_BIT27940 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol Bioeng |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2012; 60 2017; 8 2013; 3 2010; 58 2019; 53 2021; 189 2014; 48 2002; 4 2008; 105 2018; 84 2011; 59 2008; 74 2019; 129 2020; 54 2020; 169 2012; 444 2012; 14 2002b; 59 2017; 356 2017; 114 2016; 14 2009; 27 2010; 23 2017; 51 2002a; 66 2014; 4 2012; 3 2020; 3 2015; 49 2017; 71 2000; 34 2018; 134 2000; 405 1970; 42 2018; 52 2011; 45 1998; 169 2014 2008; 42 2014; 9 2018; 11 2007; 65 2014; 78 2009; 104 2012; 40 Huys G. (e_1_2_9_11_1) 2014 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 71 start-page: 731 year: 2017 end-page: 751 article-title: The colorful world of extracellular electron shuttles publication-title: Annual Review of Microbiology – volume: 48 start-page: 9306 issue: 16 year: 2014 end-page: 9314 article-title: Exogenous electron shuttle‐mediated extracellular electron transfer of 200: Electrochemical parameters and thermodynamics publication-title: Environmental Science & Technology – volume: 49 start-page: 13360 issue: 22 year: 2015 end-page: 13368 article-title: Effect of iron(II) on arsenic sequestration by delta‐MnO2: Desorption studies using stirred‐flow experiments and X‐Ray absorption fine‐structure spectroscopy publication-title: Environmental Science & Technology – volume: 104 start-page: 901 issue: 5 year: 2009 end-page: 910 article-title: Characterization of electrochemical activity of a strain IS02‐3 phylogenetically related to sp isolated from a glucose‐fed microbial fuel cell publication-title: Biotechnology and Bioengineering – volume: 42 start-page: 779 issue: 7 year: 1970 end-page: 781 article-title: Ferrozine—A new spectrophotometric reagent for iron publication-title: Analytical Chemistry – volume: 40 start-page: 1261 year: 2012 end-page: 1267 article-title: Mtr extracellular electron‐transfer pathways in Fe(III)‐reducing or Fe(II)‐oxidizing bacteria: A genomic perspective publication-title: Biochemical Society Transactions – volume: 60 start-page: 11238 issue: 45 year: 2012 end-page: 11244 article-title: Enhanced biotransformation of DDTs by an iron‐ and humic‐reducing bacteria HS01 upon addition of goethite and anthraquinone‐2,6‐disulphonic disodium salt (AQDS) publication-title: Journal of Agricultural and Food Chemistry – volume: 129 start-page: 86 year: 2019 end-page: 94 article-title: Formation mechanism of organo‐chromium (III) complexes from bioreduction of chromium (VI) by publication-title: Environment International – volume: 14 start-page: 651 issue: 10 year: 2016 end-page: 662 article-title: Extracellular electron transfer mechanisms between microorganisms and minerals publication-title: Nature Reviews Microbiology – volume: 42 start-page: 6243 issue: 16 year: 2008 end-page: 6249 article-title: Bacterial communities on electron‐beam Pt‐deposited electrodes in a mediator‐less microbial fuel cell publication-title: Environmental Science & Technology – volume: 105 start-page: 3968 issue: 10 year: 2008 end-page: 3973 article-title: Secretes flavins that mediate extracellular electron transfer publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 27 year: 2014 end-page: 57 – volume: 52 start-page: 11285 issue: 19 year: 2018 end-page: 11296 article-title: Genome‐centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross‐feed with Anammox bacteria in Anammox Consortia publication-title: Environmental Science & Technology – volume: 3 start-page: 50 year: 2012 article-title: Molecular underpinnings of Fe(III) oxide reduction by MR‐1 publication-title: Frontiers in Microbiology – volume: 14 start-page: 2538 issue: 9 year: 2012 end-page: 2552 article-title: and populations dominate the microbial community within urban sewer infrastructure publication-title: Environmental Microbiology – volume: 169 start-page: 239 issue: 3 year: 1998 end-page: 248 article-title: Reduction of diverse electron acceptors by publication-title: Archives of Microbiology – volume: 23 start-page: 35 issue: 1 year: 2010 end-page: 73 article-title: The genus : Taxonomy, pathogenicity, and infection publication-title: Clinical Microbiology Reviews – volume: 59 start-page: 1 year: 2011 end-page: 100 article-title: Geobacter: The microbe electric's physiology, ecology, and practical applications publication-title: Advances in Microbial Physiology – volume: 34 start-page: 1696 issue: 5 year: 2000 end-page: 1704 article-title: Analysis at the genomospecies level of microbial populations changes in activated sludge: The case of publication-title: Water Research – volume: 3 start-page: 1315 year: 2013 article-title: A photometric high‐throughput method for identification of electrochemically active bacteria using a WO nanocluster probe publication-title: Scientific Reports – volume: 27 start-page: 256 issue: 3 year: 2009 end-page: 277 article-title: Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review publication-title: Biotechnology Advances – volume: 54 start-page: 3306 issue: 6 year: 2020 end-page: 3315 article-title: CRISPRi system as an efficient, simple platform for rapid identification of genes involved in pollutant transformation by publication-title: Environmental Science & Technology – volume: 169 year: 2020 article-title: A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL‐producing strains publication-title: Water Research – volume: 8 year: 2019 article-title: An elusive electron shuttle from a facultative anaerobe publication-title: eLife – volume: 3 start-page: 68 issue: 1 year: 2020 article-title: Nitrogen doping to atomically match reaction sites in microbial fuel cells publication-title: Communications Chemistry – volume: 53 start-page: 14604 issue: 24 year: 2019 end-page: 14611 article-title: Sensing and approaching toxic arsenate by CN‐32 publication-title: Environmental Science & Technology – volume: 9 start-page: 112 issue: 1 year: 2014 end-page: 119 article-title: A plate‐based electrochromic approach for the high‐throughput detection of electrochemically active bacteria publication-title: Nature Protocols – volume: 66 start-page: 2100 issue: 10 year: 2002a end-page: 2106 article-title: Glucose metabolism of lactic acid bacteria changed by quinone‐mediated extracellular electron transfer publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 405 start-page: 94 issue: 6782 year: 2000 end-page: 97 article-title: A role for excreted quinones in extracellular electron transfer publication-title: Nature – volume: 78 start-page: 1903 issue: 6 year: 2014 end-page: 1912 article-title: Kinetics of competitive reduction of nitrate and iron oxides by HS01 publication-title: Soil Science Society of America Journal – volume: 444 start-page: 465 year: 2012 end-page: 474 article-title: A functional description of CymA, an electron‐transfer hub supporting anaerobic respiratory flexibility in publication-title: Biochemical Journal – volume: 59 start-page: 72 issue: 1 year: 2002b end-page: 78 article-title: 2‐amino‐3‐carboxy‐1,4‐naphthoquinone affects the end‐product profile of bifidobacteria through the mediated oxidation of NAD(P)H publication-title: Applied Microbiology and Biotechnology – volume: 189 year: 2021 article-title: Intra/extracellular electron transfer for aerobic denitrification mediated by in‐situ biosynthesis palladium nanoparticles publication-title: Water Research – volume: 74 start-page: 615 issue: 3 year: 2008 end-page: 623 article-title: Secretion of flavins by species and their role in extracellular electron transfer publication-title: Applied and Environmental Microbiology – volume: 45 start-page: 2539 issue: 8 year: 2011 end-page: 2549 article-title: Common key acidogen populations in anaerobic reactors treating different wastewaters: Molecular identification and quantitative monitoring publication-title: Water Research – volume: 134 start-page: 54 year: 2018 end-page: 62 article-title: Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud publication-title: Water Research – volume: 4 start-page: 18 issue: 1 year: 2002 end-page: 28 article-title: The regulation of biofilm development by quorum sensing in publication-title: Environmental Microbiology – volume: 8 start-page: 127 year: 2017 article-title: Evolutionary roots and diversification of the genus publication-title: Frontiers in Microbiology – volume: 11 start-page: 136 issue: 1 year: 2018 end-page: 140 article-title: Quorum sensing improves current output with publication-title: Microbial Biotechnology – volume: 84 issue: 23 year: 2018 article-title: Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in publication-title: Applied and Environmental Microbiology – volume: 4 start-page: 2284 issue: 5 year: 2014 end-page: 2290 article-title: Dependence of the electron transfer capacity on the kinetics of quinone‐mediated Fe(III) reduction by two iron/humic reducing bacteria publication-title: RSC Advances – volume: 114 start-page: 761 issue: 4 year: 2017 end-page: 768 article-title: Anaerobic reduction of 2,6‐dinitrotoluene by S MR‐1: Roles of Mtr respiratory pathway and NfnB publication-title: Biotechnology and Bioengineering – volume: 51 start-page: 5082 issue: 9 year: 2017 end-page: 5089 article-title: Enhancing extracellular electron transfer of MR‐1 through coupling improved flavin synthesis and metal‐reducing conduit for pollutant degradation publication-title: Environmental Science & Technology – volume: 58 start-page: 12366 issue: 23 year: 2010 end-page: 12372 article-title: Effect of on reductive dechlorination of DDTs by zero‐valent iron publication-title: Journal of Agricultural and Food Chemistry – volume: 356 start-page: 539 year: 2017 end-page: 548 article-title: Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment publication-title: Journal of Power Sources – volume: 65 start-page: 12 issue: 1 year: 2007 end-page: 20 article-title: Respiration of metal (hydr)oxides by and : A key role for multihaem ‐type cytochromes publication-title: Molecular Microbiology – ident: e_1_2_9_19_1 doi: 10.1016/B978-0-12-387661-4.00004-5 – ident: e_1_2_9_20_1 doi: 10.1046/j.1462-2920.2002.00264.x – start-page: 27 volume-title: The Prokaryotes: Gammaproteobacteria year: 2014 ident: e_1_2_9_11_1 doi: 10.1007/978-3-642-38922-1_282 – ident: e_1_2_9_8_1 doi: 10.1016/j.jpowsour.2017.03.147 – ident: e_1_2_9_13_1 doi: 10.1016/j.watres.2020.116612 – ident: e_1_2_9_31_1 doi: 10.1042/BST20120098 – ident: e_1_2_9_25_1 doi: 10.1038/35011098 – ident: e_1_2_9_4_1 doi: 10.1111/1751-7915.12797 – ident: e_1_2_9_41_1 doi: 10.1271/bbb.66.2100 – ident: e_1_2_9_7_1 doi: 10.1128/AEM.02134-18 – ident: e_1_2_9_45_1 doi: 10.1038/nprot.2013.173 – ident: e_1_2_9_32_1 doi: 10.1111/j.1365-2958.2007.05783.x – ident: e_1_2_9_24_1 doi: 10.1021/acs.est.6b04640 – ident: e_1_2_9_29_1 doi: 10.1038/nrmicro.2016.93 – ident: e_1_2_9_28_1 doi: 10.3389/fmicb.2017.00127 – ident: e_1_2_9_36_1 doi: 10.1128/AEM.01387-07 – ident: e_1_2_9_23_1 doi: 10.7554/eLife.48054 – ident: e_1_2_9_39_1 doi: 10.1021/acs.est.5b04087 – ident: e_1_2_9_37_1 doi: 10.1021/acs.est.9b07191 – ident: e_1_2_9_5_1 doi: 10.1021/acs.est.9b05890 – ident: e_1_2_9_34_1 doi: 10.1016/j.biotechadv.2009.01.004 – ident: e_1_2_9_17_1 doi: 10.1002/bit.26212 – ident: e_1_2_9_27_1 doi: 10.1021/es8006468 – ident: e_1_2_9_35_1 doi: 10.1111/j.1462-2920.2012.02757.x – ident: e_1_2_9_6_1 doi: 10.1002/bit.22453 – ident: e_1_2_9_22_1 doi: 10.1073/pnas.0710525105 – ident: e_1_2_9_40_1 doi: 10.1021/es5017312 – ident: e_1_2_9_47_1 doi: 10.1021/acs.est.8b02599 – ident: e_1_2_9_38_1 doi: 10.1038/s42004-020-0316-z – ident: e_1_2_9_2_1 doi: 10.1021/jf102902f – ident: e_1_2_9_9_1 doi: 10.1146/annurev-micro-090816-093913 – ident: e_1_2_9_3_1 doi: 10.1021/jf303610w – ident: e_1_2_9_12_1 doi: 10.1128/CMR.00039-09 – ident: e_1_2_9_43_1 doi: 10.1016/j.watres.2018.01.062 – ident: e_1_2_9_16_1 doi: 10.1039/C3RA45458D – ident: e_1_2_9_10_1 doi: 10.1016/j.envint.2019.05.016 – ident: e_1_2_9_14_1 doi: 10.1016/j.watres.2011.02.004 – ident: e_1_2_9_26_1 doi: 10.1016/S0043-1354(99)00298-5 – ident: e_1_2_9_46_1 doi: 10.1016/j.watres.2019.115193 – ident: e_1_2_9_30_1 doi: 10.3389/fmicb.2012.00050 – ident: e_1_2_9_44_1 doi: 10.1038/srep01315 – ident: e_1_2_9_18_1 doi: 10.2136/sssaj2014.04.0164 – ident: e_1_2_9_21_1 doi: 10.1042/BJ20120197 – ident: e_1_2_9_33_1 doi: 10.1021/ac60289a016 – ident: e_1_2_9_42_1 doi: 10.1007/s00253-002-0982-z – ident: e_1_2_9_15_1 doi: 10.1007/s002030050567 |
SSID | ssj0007866 |
Score | 2.4648392 |
Snippet | Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular... Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4760 |
SubjectTerms | 2‐amino‐3‐carboxy‐1,4‐naphthoquinone Aeromonas Aeromonas hydrophila Aeromonas hydrophila - chemistry Aeromonas hydrophila - metabolism Aquatic environment Aquatic habitats Biodegradation, Environmental Biological activity Biological wastewater treatment bioreduction of pollutants electron shuttles Electron transfer Electrons extracellular electron transfer flavins Flavins - metabolism Naphthoquinones - metabolism Pollutants Redox reactions Shuttles Wastewater treatment Wastewater treatment plants Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - metabolism Water Purification Water treatment |
Title | Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27940 https://www.ncbi.nlm.nih.gov/pubmed/34546573 https://www.proquest.com/docview/2595345548 https://www.proquest.com/docview/2575071014 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlRBwKLDlsVCQQQhxyTYvx4k4batWhQMH1Eo9IEWOY2sjSrJKsoVy4qcz46yzlIeEuEWxIzuZmfgb58s3AC9FUESI21PPL4PSIwEvL0tEgIGXlWmsQyUHlu_75OQsfnfOz7fgjfsXZtCHGDfcKDLs-5oCXBbd_kY0tKj6WYjeRPk6cbUIEH3YSEeJdPhOSRlzxLPQqQr54f545fW16DeAeR2v2gXn-A58dFMdeCafZqu-mKlvv6g4_ue93IWdNRBl88Fz7sGWriewO68xCf98xV4xSw21e-4TuHHgjm4eugJxE7j9k5bhLnw_-tq3kr4DELGVufI6rLfIWLfsspLM0Rc3zd1iRSrKHatq9kWSkZu21myuiSZYy44trsq2WS6qC8kQX7OialpSmyV_Yo1hSyrVTJWQu_twdnx0enjircs7eCriEb79E2kiX3FM-oyvlW8yTK_wVCIDmUmpjUFwFQkjTODLIE00Io3YhJobxRXXJnoA23VT60fAEuELIU3qh1kcxyYrMC8ri1KFIvUTk_IpvHaGztVa-5xKcFzkg2pzmKMFcmuBKbwYuy4HwY8_ddpz3pKvY77LMZHkUYzwLJ3C87EZbUKPXta6WVEfQQAc89IpPBy8bBwFr8VYERFO1vrK34fPD96e2oPH_971CdwKiY5jmTh7sN23K_0U8VRfPLOB8wNrfhzV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRahwoLClsLSAQQhxyTbfTiQu26rVFkoPaCv1giLHsbURJVklWaCc-tM742yylA8JcYsSW04yM_F79uQNwCvupB7i9siyMyezSMDLikPuYODFWeQrV4o2y_c0nJz5786D8zV42_0L0-pD9AtuFBnme00BTgvSeyvV0DRvRi66ExL2W1TR2xCqjyvxKB61O5XEmb0gdjtdIdvd67venI1-g5g3EauZco424VN3s22myefRoklH8scvOo7_-zT34d4Si7Jx6zwPYE0VA9gaF8jDv1yy18xkh5pl9wHc3u-ONg66GnEDuPuTnOEWXB1-bypBWwGU28q6CjusMeBYVexrLliXwbi6XM8WJKRcs7xg3wTZuawKxcaKMgULUbPZZVaV81l-IRhCbJbmZUWCs-RSrNRsTtWaqRhy_RDOjg6nBxNrWeHBkl7g4QQQCu3ZMkDep20lbR0jw8JToXBELITSGvGVxzXXji2cKFQINnztqkDLQAZKe9uwXpSFegws5DbnQke2G_u-r-MUqVmWZtLlkR3qKBjCm87SiVzKn1MVjoukFW52E7RAYiwwhJd903mr-fGnRruduyTLsK8T5JKB5yNCi4bwor-MNqFXLwpVLqgNJwyO1HQIj1o360fBvujJ3MObNc7y9-GT_eOpOXjy702fw8Zk-uEkOTk-fb8Dd1zKzjGJObuw3lQL9RThVZM-M1F0DRoPIPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTx64LGFdqGAQQhxydZ5OhGn7WPVAqoQaqUekCInsbURbbJKsrTlxE9nxtlkKQ8JcbNiW3YyM_Y39uQbgFfCTlzE7aHFMzuziMDLigJho-FFWegpJ5VtlO9RcHDivTv1T1fgbfcvTMsP0R-4kWWY9ZoMfJbp7SVpaJI3Iwe1Cf31G17AQ1LpvU9L7igRtheV5DK7fuR0tELc2e67Xt-MfkOY1wGr2XEm9-BzN9c20OTLaN4ko_TbLzSO__ky9-HuAomycas6D2BFFQNYHxfohZ9fsdfMxIaaQ_cB3NzpSrd3uwxxA1j7icxwHb7vXzaVpIsAimxlXX4d1hhorCr2NZesi19cVtfTOdEo1ywv2IUkKZdVodhYUZxgIWs2vcqqcjbNzyRDgM2SvKyIbpYUipWazShXM6VCrh_CyWT_ePfAWuR3sFLXd3H5D6R2eeqj16e5SrmO0L_CR4G0ZSSl0hrRlSu00DaXdhgohBqedpSvUz_1lXYfwWpRFmoTWCC4EFKH3Ik8z9NRgo5ZlmSpI0Ie6NAfwptO0HG6ID-nHBxncUvb7MQogdhIYAgv-6azlvHjT422Om2JF0Zfx-hJ-q6H-Cwcwou-GmVCn14WqpxTG0EIHB3TIWy0WtaPgn3RWISLkzW68vfh453DY1N4_O9Nn8Otj3uT-MPh0fsncMeh0BwTlbMFq001V08RWzXJM2NDPwDDlB-o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+electron+transfer+via+multiple+electron+shuttles+in+waterborne+Aeromonas+hydrophila+for+bioreduction+of+pollutants&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Min%2C+Di&rft.au=Liu%2C+Dong-Feng&rft.au=Wu%2C+Jie&rft.au=Cheng%2C+Lei&rft.date=2021-12-01&rft.issn=1097-0290&rft.eissn=1097-0290&rft.volume=118&rft.issue=12&rft.spage=4760&rft_id=info:doi/10.1002%2Fbit.27940&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |