Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants

Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their a...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 118; no. 12; pp. 4760 - 4770
Main Authors Min, Di, Liu, Dong‐Feng, Wu, Jie, Cheng, Lei, Zhang, Feng, Cheng, Zhou‐Hua, Li, Wen‐Wei, Yu, Han‐Qing
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. Multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants were revealed in this study. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. This work provided new insights into the roles of the genus Aeromonas in biological wastewater treatment.
AbstractList Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment. Multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants were revealed in this study. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. This work provided new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila , a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2‐amino‐3‐carboxy‐1,4‐naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr‐like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular electron transfer (EET) capabilities. However, the mediated EET mechanisms of Aeromonas have not been fully understood yet, hindering their applications in biological wastewater treatment processes. In this study, the electron shuttles in Aeromonas hydrophila, a model and widespread strain in aquatic environments and wastewater treatment plants, were explored. A. hydrophila was found to produce both flavins and 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ) as electron shuttles and utilize them to accelerate its EET for the bioreduction of various pollutants. The Mtr-like respiratory pathway was essential for the reduction of flavins, but not involved in the ACNQ reduction. The electron shuttle activity of ACNQ for pollutant bioreduction involved the redox reactions that occurred inside the cell. These findings deepen our understanding about the underlying EET mechanisms in dissimilatory metal reducing bacteria and provide new insights into the roles of the genus Aeromonas in biological wastewater treatment.
Author Min, Di
Wu, Jie
Cheng, Zhou‐Hua
Cheng, Lei
Li, Wen‐Wei
Liu, Dong‐Feng
Zhang, Feng
Yu, Han‐Qing
Author_xml – sequence: 1
  givenname: Di
  surname: Min
  fullname: Min, Di
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Dong‐Feng
  orcidid: 0000-0003-4782-0033
  surname: Liu
  fullname: Liu, Dong‐Feng
  email: dfl@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Jie
  surname: Wu
  fullname: Wu, Jie
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Lei
  orcidid: 0000-0002-1382-520X
  surname: Cheng
  fullname: Cheng, Lei
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0002-8809-6910
  surname: Zhang
  fullname: Zhang, Feng
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Zhou‐Hua
  surname: Cheng
  fullname: Cheng, Zhou‐Hua
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Wen‐Wei
  orcidid: 0000-0001-9280-0045
  surname: Li
  fullname: Li, Wen‐Wei
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Han‐Qing
  orcidid: 0000-0001-5247-6244
  surname: Yu
  fullname: Yu, Han‐Qing
  email: hqyu@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34546573$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9PXCEUxUljU0ftol-gIemmXTy98B7vz9IaW01MutE1YZhLBsODV-BVZ9ePXqYzxsToinD5nQOcc0QOfPBIyCcGpwyAny1tPuXd0MA7smAwdBXwAQ7IAgDaqhYDPyRHKd2Xbde37QdyWDeiaUVXL8jfy8cclUbnZqciRYc6x-BpGfpkMNI_VtFxdtlODp-P03rO2WGi1tMHlTEuQ_RIzzGGMXiV6HqzimFaW6eoCZEubYi4mnW2RRwMnUK5MCuf0wl5b5RL-HG_HpO7H5e3F1fVza-f1xfnN5WuRQ1V3SpTgxa85wZQgxmg345axdSgFBrDOl53pjMMFOtbFJw1hqMwWmiBpj4mX3e-Uwy_Z0xZjjZt_608hjlJLjoBHQPWFPTLC_Q-zNGX1xVqECU80fSF-ryn5uWIKzlFO6q4kU_ZFuBsB-gYUopopLZZbRMo4VonGchte7K0J_-3VxTfXiieTF9j9-4P1uHmbVB-v77dKf4BX1ar9g
CitedBy_id crossref_primary_10_1038_s41545_024_00352_3
crossref_primary_10_1016_j_jwpe_2024_105920
crossref_primary_10_1016_j_watres_2022_118982
crossref_primary_10_1016_j_envres_2023_117712
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1002_bit_28811
crossref_primary_10_1016_j_watres_2024_122739
crossref_primary_10_1016_j_scitotenv_2022_158172
crossref_primary_10_1016_j_jhazmat_2024_135348
crossref_primary_10_1039_D2EN00156J
crossref_primary_10_1016_j_efmat_2025_01_001
crossref_primary_10_1063_5_0192571
crossref_primary_10_1360_SSC_2024_0203
crossref_primary_10_1016_j_chemosphere_2024_143439
crossref_primary_10_1016_j_biotechadv_2023_108175
Cites_doi 10.1016/B978-0-12-387661-4.00004-5
10.1046/j.1462-2920.2002.00264.x
10.1007/978-3-642-38922-1_282
10.1016/j.jpowsour.2017.03.147
10.1016/j.watres.2020.116612
10.1042/BST20120098
10.1038/35011098
10.1111/1751-7915.12797
10.1271/bbb.66.2100
10.1128/AEM.02134-18
10.1038/nprot.2013.173
10.1111/j.1365-2958.2007.05783.x
10.1021/acs.est.6b04640
10.1038/nrmicro.2016.93
10.3389/fmicb.2017.00127
10.1128/AEM.01387-07
10.7554/eLife.48054
10.1021/acs.est.5b04087
10.1021/acs.est.9b07191
10.1021/acs.est.9b05890
10.1016/j.biotechadv.2009.01.004
10.1002/bit.26212
10.1021/es8006468
10.1111/j.1462-2920.2012.02757.x
10.1002/bit.22453
10.1073/pnas.0710525105
10.1021/es5017312
10.1021/acs.est.8b02599
10.1038/s42004-020-0316-z
10.1021/jf102902f
10.1146/annurev-micro-090816-093913
10.1021/jf303610w
10.1128/CMR.00039-09
10.1016/j.watres.2018.01.062
10.1039/C3RA45458D
10.1016/j.envint.2019.05.016
10.1016/j.watres.2011.02.004
10.1016/S0043-1354(99)00298-5
10.1016/j.watres.2019.115193
10.3389/fmicb.2012.00050
10.1038/srep01315
10.2136/sssaj2014.04.0164
10.1042/BJ20120197
10.1021/ac60289a016
10.1007/s00253-002-0982-z
10.1007/s002030050567
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.27940
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 4770
ExternalDocumentID 34546573
10_1002_bit_27940
BIT27940
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51878638; 21607146 and 51821006
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c3530-36af30c5282f0ec0f9086af36a1a9aaeff17237f7f10a186e5214f2e5fc5c5ef3
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 18:12:10 EDT 2025
Fri Jul 25 18:55:20 EDT 2025
Wed Feb 19 02:26:43 EST 2025
Tue Jul 01 01:09:07 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Wed Jan 22 16:27:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 2-amino-3-carboxy-1,4-naphthoquinone
electron shuttles
extracellular electron transfer
bioreduction of pollutants
Aeromonas
flavins
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-36af30c5282f0ec0f9086af36a1a9aaeff17237f7f10a186e5214f2e5fc5c5ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9280-0045
0000-0003-4782-0033
0000-0002-8809-6910
0000-0002-1382-520X
0000-0001-5247-6244
PMID 34546573
PQID 2595345548
PQPubID 48814
PageCount 11
ParticipantIDs proquest_miscellaneous_2575071014
proquest_journals_2595345548
pubmed_primary_34546573
crossref_citationtrail_10_1002_bit_27940
crossref_primary_10_1002_bit_27940
wiley_primary_10_1002_bit_27940_BIT27940
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2012; 60
2017; 8
2013; 3
2010; 58
2019; 53
2021; 189
2014; 48
2002; 4
2008; 105
2018; 84
2011; 59
2008; 74
2019; 129
2020; 54
2020; 169
2012; 444
2012; 14
2002b; 59
2017; 356
2017; 114
2016; 14
2009; 27
2010; 23
2017; 51
2002a; 66
2014; 4
2012; 3
2020; 3
2015; 49
2017; 71
2000; 34
2018; 134
2000; 405
1970; 42
2018; 52
2011; 45
1998; 169
2014
2008; 42
2014; 9
2018; 11
2007; 65
2014; 78
2009; 104
2012; 40
Huys G. (e_1_2_9_11_1) 2014
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 71
  start-page: 731
  year: 2017
  end-page: 751
  article-title: The colorful world of extracellular electron shuttles
  publication-title: Annual Review of Microbiology
– volume: 48
  start-page: 9306
  issue: 16
  year: 2014
  end-page: 9314
  article-title: Exogenous electron shuttle‐mediated extracellular electron transfer of 200: Electrochemical parameters and thermodynamics
  publication-title: Environmental Science & Technology
– volume: 49
  start-page: 13360
  issue: 22
  year: 2015
  end-page: 13368
  article-title: Effect of iron(II) on arsenic sequestration by delta‐MnO2: Desorption studies using stirred‐flow experiments and X‐Ray absorption fine‐structure spectroscopy
  publication-title: Environmental Science & Technology
– volume: 104
  start-page: 901
  issue: 5
  year: 2009
  end-page: 910
  article-title: Characterization of electrochemical activity of a strain IS02‐3 phylogenetically related to sp isolated from a glucose‐fed microbial fuel cell
  publication-title: Biotechnology and Bioengineering
– volume: 42
  start-page: 779
  issue: 7
  year: 1970
  end-page: 781
  article-title: Ferrozine—A new spectrophotometric reagent for iron
  publication-title: Analytical Chemistry
– volume: 40
  start-page: 1261
  year: 2012
  end-page: 1267
  article-title: Mtr extracellular electron‐transfer pathways in Fe(III)‐reducing or Fe(II)‐oxidizing bacteria: A genomic perspective
  publication-title: Biochemical Society Transactions
– volume: 60
  start-page: 11238
  issue: 45
  year: 2012
  end-page: 11244
  article-title: Enhanced biotransformation of DDTs by an iron‐ and humic‐reducing bacteria HS01 upon addition of goethite and anthraquinone‐2,6‐disulphonic disodium salt (AQDS)
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 129
  start-page: 86
  year: 2019
  end-page: 94
  article-title: Formation mechanism of organo‐chromium (III) complexes from bioreduction of chromium (VI) by
  publication-title: Environment International
– volume: 14
  start-page: 651
  issue: 10
  year: 2016
  end-page: 662
  article-title: Extracellular electron transfer mechanisms between microorganisms and minerals
  publication-title: Nature Reviews Microbiology
– volume: 42
  start-page: 6243
  issue: 16
  year: 2008
  end-page: 6249
  article-title: Bacterial communities on electron‐beam Pt‐deposited electrodes in a mediator‐less microbial fuel cell
  publication-title: Environmental Science & Technology
– volume: 105
  start-page: 3968
  issue: 10
  year: 2008
  end-page: 3973
  article-title: Secretes flavins that mediate extracellular electron transfer
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 27
  year: 2014
  end-page: 57
– volume: 52
  start-page: 11285
  issue: 19
  year: 2018
  end-page: 11296
  article-title: Genome‐centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross‐feed with Anammox bacteria in Anammox Consortia
  publication-title: Environmental Science & Technology
– volume: 3
  start-page: 50
  year: 2012
  article-title: Molecular underpinnings of Fe(III) oxide reduction by MR‐1
  publication-title: Frontiers in Microbiology
– volume: 14
  start-page: 2538
  issue: 9
  year: 2012
  end-page: 2552
  article-title: and populations dominate the microbial community within urban sewer infrastructure
  publication-title: Environmental Microbiology
– volume: 169
  start-page: 239
  issue: 3
  year: 1998
  end-page: 248
  article-title: Reduction of diverse electron acceptors by
  publication-title: Archives of Microbiology
– volume: 23
  start-page: 35
  issue: 1
  year: 2010
  end-page: 73
  article-title: The genus : Taxonomy, pathogenicity, and infection
  publication-title: Clinical Microbiology Reviews
– volume: 59
  start-page: 1
  year: 2011
  end-page: 100
  article-title: Geobacter: The microbe electric's physiology, ecology, and practical applications
  publication-title: Advances in Microbial Physiology
– volume: 34
  start-page: 1696
  issue: 5
  year: 2000
  end-page: 1704
  article-title: Analysis at the genomospecies level of microbial populations changes in activated sludge: The case of
  publication-title: Water Research
– volume: 3
  start-page: 1315
  year: 2013
  article-title: A photometric high‐throughput method for identification of electrochemically active bacteria using a WO nanocluster probe
  publication-title: Scientific Reports
– volume: 27
  start-page: 256
  issue: 3
  year: 2009
  end-page: 277
  article-title: Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review
  publication-title: Biotechnology Advances
– volume: 54
  start-page: 3306
  issue: 6
  year: 2020
  end-page: 3315
  article-title: CRISPRi system as an efficient, simple platform for rapid identification of genes involved in pollutant transformation by
  publication-title: Environmental Science & Technology
– volume: 169
  year: 2020
  article-title: A sustainable strategy for effective regulation of aerobic granulation: Augmentation of the signaling molecule content by cultivating AHL‐producing strains
  publication-title: Water Research
– volume: 8
  year: 2019
  article-title: An elusive electron shuttle from a facultative anaerobe
  publication-title: eLife
– volume: 3
  start-page: 68
  issue: 1
  year: 2020
  article-title: Nitrogen doping to atomically match reaction sites in microbial fuel cells
  publication-title: Communications Chemistry
– volume: 53
  start-page: 14604
  issue: 24
  year: 2019
  end-page: 14611
  article-title: Sensing and approaching toxic arsenate by CN‐32
  publication-title: Environmental Science & Technology
– volume: 9
  start-page: 112
  issue: 1
  year: 2014
  end-page: 119
  article-title: A plate‐based electrochromic approach for the high‐throughput detection of electrochemically active bacteria
  publication-title: Nature Protocols
– volume: 66
  start-page: 2100
  issue: 10
  year: 2002a
  end-page: 2106
  article-title: Glucose metabolism of lactic acid bacteria changed by quinone‐mediated extracellular electron transfer
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 405
  start-page: 94
  issue: 6782
  year: 2000
  end-page: 97
  article-title: A role for excreted quinones in extracellular electron transfer
  publication-title: Nature
– volume: 78
  start-page: 1903
  issue: 6
  year: 2014
  end-page: 1912
  article-title: Kinetics of competitive reduction of nitrate and iron oxides by HS01
  publication-title: Soil Science Society of America Journal
– volume: 444
  start-page: 465
  year: 2012
  end-page: 474
  article-title: A functional description of CymA, an electron‐transfer hub supporting anaerobic respiratory flexibility in
  publication-title: Biochemical Journal
– volume: 59
  start-page: 72
  issue: 1
  year: 2002b
  end-page: 78
  article-title: 2‐amino‐3‐carboxy‐1,4‐naphthoquinone affects the end‐product profile of bifidobacteria through the mediated oxidation of NAD(P)H
  publication-title: Applied Microbiology and Biotechnology
– volume: 189
  year: 2021
  article-title: Intra/extracellular electron transfer for aerobic denitrification mediated by in‐situ biosynthesis palladium nanoparticles
  publication-title: Water Research
– volume: 74
  start-page: 615
  issue: 3
  year: 2008
  end-page: 623
  article-title: Secretion of flavins by species and their role in extracellular electron transfer
  publication-title: Applied and Environmental Microbiology
– volume: 45
  start-page: 2539
  issue: 8
  year: 2011
  end-page: 2549
  article-title: Common key acidogen populations in anaerobic reactors treating different wastewaters: Molecular identification and quantitative monitoring
  publication-title: Water Research
– volume: 134
  start-page: 54
  year: 2018
  end-page: 62
  article-title: Enhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mud
  publication-title: Water Research
– volume: 4
  start-page: 18
  issue: 1
  year: 2002
  end-page: 28
  article-title: The regulation of biofilm development by quorum sensing in
  publication-title: Environmental Microbiology
– volume: 8
  start-page: 127
  year: 2017
  article-title: Evolutionary roots and diversification of the genus
  publication-title: Frontiers in Microbiology
– volume: 11
  start-page: 136
  issue: 1
  year: 2018
  end-page: 140
  article-title: Quorum sensing improves current output with
  publication-title: Microbial Biotechnology
– volume: 84
  issue: 23
  year: 2018
  article-title: Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in
  publication-title: Applied and Environmental Microbiology
– volume: 4
  start-page: 2284
  issue: 5
  year: 2014
  end-page: 2290
  article-title: Dependence of the electron transfer capacity on the kinetics of quinone‐mediated Fe(III) reduction by two iron/humic reducing bacteria
  publication-title: RSC Advances
– volume: 114
  start-page: 761
  issue: 4
  year: 2017
  end-page: 768
  article-title: Anaerobic reduction of 2,6‐dinitrotoluene by S MR‐1: Roles of Mtr respiratory pathway and NfnB
  publication-title: Biotechnology and Bioengineering
– volume: 51
  start-page: 5082
  issue: 9
  year: 2017
  end-page: 5089
  article-title: Enhancing extracellular electron transfer of MR‐1 through coupling improved flavin synthesis and metal‐reducing conduit for pollutant degradation
  publication-title: Environmental Science & Technology
– volume: 58
  start-page: 12366
  issue: 23
  year: 2010
  end-page: 12372
  article-title: Effect of on reductive dechlorination of DDTs by zero‐valent iron
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 356
  start-page: 539
  year: 2017
  end-page: 548
  article-title: Electrochemical and genomic analysis of novel electroactive isolates obtained via potentiostatic enrichment from tropical sediment
  publication-title: Journal of Power Sources
– volume: 65
  start-page: 12
  issue: 1
  year: 2007
  end-page: 20
  article-title: Respiration of metal (hydr)oxides by and : A key role for multihaem ‐type cytochromes
  publication-title: Molecular Microbiology
– ident: e_1_2_9_19_1
  doi: 10.1016/B978-0-12-387661-4.00004-5
– ident: e_1_2_9_20_1
  doi: 10.1046/j.1462-2920.2002.00264.x
– start-page: 27
  volume-title: The Prokaryotes: Gammaproteobacteria
  year: 2014
  ident: e_1_2_9_11_1
  doi: 10.1007/978-3-642-38922-1_282
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jpowsour.2017.03.147
– ident: e_1_2_9_13_1
  doi: 10.1016/j.watres.2020.116612
– ident: e_1_2_9_31_1
  doi: 10.1042/BST20120098
– ident: e_1_2_9_25_1
  doi: 10.1038/35011098
– ident: e_1_2_9_4_1
  doi: 10.1111/1751-7915.12797
– ident: e_1_2_9_41_1
  doi: 10.1271/bbb.66.2100
– ident: e_1_2_9_7_1
  doi: 10.1128/AEM.02134-18
– ident: e_1_2_9_45_1
  doi: 10.1038/nprot.2013.173
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1365-2958.2007.05783.x
– ident: e_1_2_9_24_1
  doi: 10.1021/acs.est.6b04640
– ident: e_1_2_9_29_1
  doi: 10.1038/nrmicro.2016.93
– ident: e_1_2_9_28_1
  doi: 10.3389/fmicb.2017.00127
– ident: e_1_2_9_36_1
  doi: 10.1128/AEM.01387-07
– ident: e_1_2_9_23_1
  doi: 10.7554/eLife.48054
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.est.5b04087
– ident: e_1_2_9_37_1
  doi: 10.1021/acs.est.9b07191
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.est.9b05890
– ident: e_1_2_9_34_1
  doi: 10.1016/j.biotechadv.2009.01.004
– ident: e_1_2_9_17_1
  doi: 10.1002/bit.26212
– ident: e_1_2_9_27_1
  doi: 10.1021/es8006468
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1462-2920.2012.02757.x
– ident: e_1_2_9_6_1
  doi: 10.1002/bit.22453
– ident: e_1_2_9_22_1
  doi: 10.1073/pnas.0710525105
– ident: e_1_2_9_40_1
  doi: 10.1021/es5017312
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.est.8b02599
– ident: e_1_2_9_38_1
  doi: 10.1038/s42004-020-0316-z
– ident: e_1_2_9_2_1
  doi: 10.1021/jf102902f
– ident: e_1_2_9_9_1
  doi: 10.1146/annurev-micro-090816-093913
– ident: e_1_2_9_3_1
  doi: 10.1021/jf303610w
– ident: e_1_2_9_12_1
  doi: 10.1128/CMR.00039-09
– ident: e_1_2_9_43_1
  doi: 10.1016/j.watres.2018.01.062
– ident: e_1_2_9_16_1
  doi: 10.1039/C3RA45458D
– ident: e_1_2_9_10_1
  doi: 10.1016/j.envint.2019.05.016
– ident: e_1_2_9_14_1
  doi: 10.1016/j.watres.2011.02.004
– ident: e_1_2_9_26_1
  doi: 10.1016/S0043-1354(99)00298-5
– ident: e_1_2_9_46_1
  doi: 10.1016/j.watres.2019.115193
– ident: e_1_2_9_30_1
  doi: 10.3389/fmicb.2012.00050
– ident: e_1_2_9_44_1
  doi: 10.1038/srep01315
– ident: e_1_2_9_18_1
  doi: 10.2136/sssaj2014.04.0164
– ident: e_1_2_9_21_1
  doi: 10.1042/BJ20120197
– ident: e_1_2_9_33_1
  doi: 10.1021/ac60289a016
– ident: e_1_2_9_42_1
  doi: 10.1007/s00253-002-0982-z
– ident: e_1_2_9_15_1
  doi: 10.1007/s002030050567
SSID ssj0007866
Score 2.4648392
Snippet Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular...
Members of the genus Aeromonas prevail in aquatic habitats and have a great potential in biological wastewater treatment because of their unique extracellular...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4760
SubjectTerms 2‐amino‐3‐carboxy‐1,4‐naphthoquinone
Aeromonas
Aeromonas hydrophila
Aeromonas hydrophila - chemistry
Aeromonas hydrophila - metabolism
Aquatic environment
Aquatic habitats
Biodegradation, Environmental
Biological activity
Biological wastewater treatment
bioreduction of pollutants
electron shuttles
Electron transfer
Electrons
extracellular electron transfer
flavins
Flavins - metabolism
Naphthoquinones - metabolism
Pollutants
Redox reactions
Shuttles
Wastewater treatment
Wastewater treatment plants
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - metabolism
Water Purification
Water treatment
Title Extracellular electron transfer via multiple electron shuttles in waterborne Aeromonas hydrophila for bioreduction of pollutants
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.27940
https://www.ncbi.nlm.nih.gov/pubmed/34546573
https://www.proquest.com/docview/2595345548
https://www.proquest.com/docview/2575071014
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlRBwKLDlsVCQQQhxyTYvx4k4batWhQMH1Eo9IEWOY2sjSrJKsoVy4qcz46yzlIeEuEWxIzuZmfgb58s3AC9FUESI21PPL4PSIwEvL0tEgIGXlWmsQyUHlu_75OQsfnfOz7fgjfsXZtCHGDfcKDLs-5oCXBbd_kY0tKj6WYjeRPk6cbUIEH3YSEeJdPhOSRlzxLPQqQr54f545fW16DeAeR2v2gXn-A58dFMdeCafZqu-mKlvv6g4_ue93IWdNRBl88Fz7sGWriewO68xCf98xV4xSw21e-4TuHHgjm4eugJxE7j9k5bhLnw_-tq3kr4DELGVufI6rLfIWLfsspLM0Rc3zd1iRSrKHatq9kWSkZu21myuiSZYy44trsq2WS6qC8kQX7OialpSmyV_Yo1hSyrVTJWQu_twdnx0enjircs7eCriEb79E2kiX3FM-oyvlW8yTK_wVCIDmUmpjUFwFQkjTODLIE00Io3YhJobxRXXJnoA23VT60fAEuELIU3qh1kcxyYrMC8ri1KFIvUTk_IpvHaGztVa-5xKcFzkg2pzmKMFcmuBKbwYuy4HwY8_ddpz3pKvY77LMZHkUYzwLJ3C87EZbUKPXta6WVEfQQAc89IpPBy8bBwFr8VYERFO1vrK34fPD96e2oPH_971CdwKiY5jmTh7sN23K_0U8VRfPLOB8wNrfhzV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRahwoLClsLSAQQhxyTbfTiQu26rVFkoPaCv1giLHsbURJVklWaCc-tM742yylA8JcYsSW04yM_F79uQNwCvupB7i9siyMyezSMDLikPuYODFWeQrV4o2y_c0nJz5786D8zV42_0L0-pD9AtuFBnme00BTgvSeyvV0DRvRi66ExL2W1TR2xCqjyvxKB61O5XEmb0gdjtdIdvd67venI1-g5g3EauZco424VN3s22myefRoklH8scvOo7_-zT34d4Si7Jx6zwPYE0VA9gaF8jDv1yy18xkh5pl9wHc3u-ONg66GnEDuPuTnOEWXB1-bypBWwGU28q6CjusMeBYVexrLliXwbi6XM8WJKRcs7xg3wTZuawKxcaKMgULUbPZZVaV81l-IRhCbJbmZUWCs-RSrNRsTtWaqRhy_RDOjg6nBxNrWeHBkl7g4QQQCu3ZMkDep20lbR0jw8JToXBELITSGvGVxzXXji2cKFQINnztqkDLQAZKe9uwXpSFegws5DbnQke2G_u-r-MUqVmWZtLlkR3qKBjCm87SiVzKn1MVjoukFW52E7RAYiwwhJd903mr-fGnRruduyTLsK8T5JKB5yNCi4bwor-MNqFXLwpVLqgNJwyO1HQIj1o360fBvujJ3MObNc7y9-GT_eOpOXjy702fw8Zk-uEkOTk-fb8Dd1zKzjGJObuw3lQL9RThVZM-M1F0DRoPIPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTx64LGFdqGAQQhxydZ5OhGn7WPVAqoQaqUekCInsbURbbJKsrTlxE9nxtlkKQ8JcbNiW3YyM_Y39uQbgFfCTlzE7aHFMzuziMDLigJho-FFWegpJ5VtlO9RcHDivTv1T1fgbfcvTMsP0R-4kWWY9ZoMfJbp7SVpaJI3Iwe1Cf31G17AQ1LpvU9L7igRtheV5DK7fuR0tELc2e67Xt-MfkOY1wGr2XEm9-BzN9c20OTLaN4ko_TbLzSO__ky9-HuAomycas6D2BFFQNYHxfohZ9fsdfMxIaaQ_cB3NzpSrd3uwxxA1j7icxwHb7vXzaVpIsAimxlXX4d1hhorCr2NZesi19cVtfTOdEo1ywv2IUkKZdVodhYUZxgIWs2vcqqcjbNzyRDgM2SvKyIbpYUipWazShXM6VCrh_CyWT_ePfAWuR3sFLXd3H5D6R2eeqj16e5SrmO0L_CR4G0ZSSl0hrRlSu00DaXdhgohBqedpSvUz_1lXYfwWpRFmoTWCC4EFKH3Ik8z9NRgo5ZlmSpI0Ie6NAfwptO0HG6ID-nHBxncUvb7MQogdhIYAgv-6azlvHjT422Om2JF0Zfx-hJ-q6H-Cwcwou-GmVCn14WqpxTG0EIHB3TIWy0WtaPgn3RWISLkzW68vfh453DY1N4_O9Nn8Otj3uT-MPh0fsncMeh0BwTlbMFq001V08RWzXJM2NDPwDDlB-o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+electron+transfer+via+multiple+electron+shuttles+in+waterborne+Aeromonas+hydrophila+for+bioreduction+of+pollutants&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Min%2C+Di&rft.au=Liu%2C+Dong-Feng&rft.au=Wu%2C+Jie&rft.au=Cheng%2C+Lei&rft.date=2021-12-01&rft.issn=1097-0290&rft.eissn=1097-0290&rft.volume=118&rft.issue=12&rft.spage=4760&rft_id=info:doi/10.1002%2Fbit.27940&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon