The Neuroprotective Role of MiR‐124‐3p in a 6‐Hydroxydopamine‐Induced Cell Model of Parkinson's Disease via the Regulation of ANAX5

ABSTRACT Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unf...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular biochemistry Vol. 119; no. 1; pp. 269 - 277
Main Authors Dong, Rui‐Fang, Zhang, Bing, Tai, Li‐Wen, Liu, Hong‐Mei, Shi, Fang‐Kun, Liu, Ning‐Ning
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Ample evidence indicates that miRNAs could regulate post‐transcriptional gene expression and neuronal disease. In this study, we evaluated the effects and mechanism of miR‐124‐3p on 6‐hydroxydopamine (6‐OHDA)‐induced neurotoxicity in PC12 cells and SH‐SY5Y cells. qRT‐PCR results showed that the level of miR‐124‐3p was downregulated in 6‐OHDA‐treated PC12 and SH‐SY5Y cells, and overexpression of miR‐124‐3p significantly promoted the cell viability of 6‐OHDA‐treated PC12 and SH‐SY5Y cells, whereas miR‐124‐3p inhibitor reversed these effects. In addition, PC12 or SH‐SY5Y cells were treated with miR‐124‐3p mimics or inhibitors following 6‐OHDA administration, which mediated cell apoptosis and downregulation or upregulation of Caspase‐3 activity, respectively. A luciferase reporter assay revealed that annexinA5 (ANXA5) is a direct target gene of miR‐124‐3p, and miR‐124‐3p overexpression markedly downregulated the level of ANXA5. Strikingly, further analysis showed that miR‐124‐3p enhanced the viability of 6‐OHDA‐treated PC12 or SH‐SY5Y cells by targeting ANXA5, which was associated with the stimulation of the ERK pathway. This study revealed that miR‐124‐3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD. J. Cell. Biochem. 119: 269–277, 2018. © 2017 Wiley Periodicals, Inc. This study revealed that miR‐124‐3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD.
AbstractList Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Ample evidence indicates that miRNAs could regulate post-transcriptional gene expression and neuronal disease. In this study, we evaluated the effects and mechanism of miR-124-3p on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells and SH-SY5Y cells. qRT-PCR results showed that the level of miR-124-3p was downregulated in 6-OHDA-treated PC12 and SH-SY5Y cells, and overexpression of miR-124-3p significantly promoted the cell viability of 6-OHDA-treated PC12 and SH-SY5Y cells, whereas miR-124-3p inhibitor reversed these effects. In addition, PC12 or SH-SY5Y cells were treated with miR-124-3p mimics or inhibitors following 6-OHDA administration, which mediated cell apoptosis and downregulation or upregulation of Caspase-3 activity, respectively. A luciferase reporter assay revealed that annexinA5 (ANXA5) is a direct target gene of miR-124-3p, and miR-124-3p overexpression markedly downregulated the level of ANXA5. Strikingly, further analysis showed that miR-124-3p enhanced the viability of 6-OHDA-treated PC12 or SH-SY5Y cells by targeting ANXA5, which was associated with the stimulation of the ERK pathway. This study revealed that miR-124-3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD. J. Cell. Biochem. 119: 269-277, 2018. © 2017 Wiley Periodicals, Inc.
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Ample evidence indicates that miRNAs could regulate post-transcriptional gene expression and neuronal disease. In this study, we evaluated the effects and mechanism of miR-124-3p on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells and SH-SY5Y cells. qRT-PCR results showed that the level of miR-124-3p was downregulated in 6-OHDA-treated PC12 and SH-SY5Y cells, and overexpression of miR-124-3p significantly promoted the cell viability of 6-OHDA-treated PC12 and SH-SY5Y cells, whereas miR-124-3p inhibitor reversed these effects. In addition, PC12 or SH-SY5Y cells were treated with miR-124-3p mimics or inhibitors following 6-OHDA administration, which mediated cell apoptosis and downregulation or upregulation of Caspase-3 activity, respectively. A luciferase reporter assay revealed that annexinA5 (ANXA5) is a direct target gene of miR-124-3p, and miR-124-3p overexpression markedly downregulated the level of ANXA5. Strikingly, further analysis showed that miR-124-3p enhanced the viability of 6-OHDA-treated PC12 or SH-SY5Y cells by targeting ANXA5, which was associated with the stimulation of the ERK pathway. This study revealed that miR-124-3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD. J. Cell. Biochem. 119: 269-277, 2018. © 2017 Wiley Periodicals, Inc.Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Ample evidence indicates that miRNAs could regulate post-transcriptional gene expression and neuronal disease. In this study, we evaluated the effects and mechanism of miR-124-3p on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in PC12 cells and SH-SY5Y cells. qRT-PCR results showed that the level of miR-124-3p was downregulated in 6-OHDA-treated PC12 and SH-SY5Y cells, and overexpression of miR-124-3p significantly promoted the cell viability of 6-OHDA-treated PC12 and SH-SY5Y cells, whereas miR-124-3p inhibitor reversed these effects. In addition, PC12 or SH-SY5Y cells were treated with miR-124-3p mimics or inhibitors following 6-OHDA administration, which mediated cell apoptosis and downregulation or upregulation of Caspase-3 activity, respectively. A luciferase reporter assay revealed that annexinA5 (ANXA5) is a direct target gene of miR-124-3p, and miR-124-3p overexpression markedly downregulated the level of ANXA5. Strikingly, further analysis showed that miR-124-3p enhanced the viability of 6-OHDA-treated PC12 or SH-SY5Y cells by targeting ANXA5, which was associated with the stimulation of the ERK pathway. This study revealed that miR-124-3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD. J. Cell. Biochem. 119: 269-277, 2018. © 2017 Wiley Periodicals, Inc.
ABSTRACT Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Several pathogenetic factors have been involved in the onset and progression of PD, including inflammation, oxidative stress, unfolded protein accumulation, and apoptosis. Ample evidence indicates that miRNAs could regulate post‐transcriptional gene expression and neuronal disease. In this study, we evaluated the effects and mechanism of miR‐124‐3p on 6‐hydroxydopamine (6‐OHDA)‐induced neurotoxicity in PC12 cells and SH‐SY5Y cells. qRT‐PCR results showed that the level of miR‐124‐3p was downregulated in 6‐OHDA‐treated PC12 and SH‐SY5Y cells, and overexpression of miR‐124‐3p significantly promoted the cell viability of 6‐OHDA‐treated PC12 and SH‐SY5Y cells, whereas miR‐124‐3p inhibitor reversed these effects. In addition, PC12 or SH‐SY5Y cells were treated with miR‐124‐3p mimics or inhibitors following 6‐OHDA administration, which mediated cell apoptosis and downregulation or upregulation of Caspase‐3 activity, respectively. A luciferase reporter assay revealed that annexinA5 (ANXA5) is a direct target gene of miR‐124‐3p, and miR‐124‐3p overexpression markedly downregulated the level of ANXA5. Strikingly, further analysis showed that miR‐124‐3p enhanced the viability of 6‐OHDA‐treated PC12 or SH‐SY5Y cells by targeting ANXA5, which was associated with the stimulation of the ERK pathway. This study revealed that miR‐124‐3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD. J. Cell. Biochem. 119: 269–277, 2018. © 2017 Wiley Periodicals, Inc. This study revealed that miR‐124‐3p may play a neuroprotective role in PD; this observation may provide new ideas and therapeutic targets for PD.
Author Tai, Li‐Wen
Liu, Ning‐Ning
Shi, Fang‐Kun
Zhang, Bing
Dong, Rui‐Fang
Liu, Hong‐Mei
Author_xml – sequence: 1
  givenname: Rui‐Fang
  orcidid: 0000-0002-8861-559X
  surname: Dong
  fullname: Dong, Rui‐Fang
  email: dongrf061@163.com
  organization: Cangzhou Central Hospital
– sequence: 2
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
  organization: The First Hospital of Shijiazhuang
– sequence: 3
  givenname: Li‐Wen
  surname: Tai
  fullname: Tai, Li‐Wen
  organization: The Second Hospital of Hebei Medical University
– sequence: 4
  givenname: Hong‐Mei
  surname: Liu
  fullname: Liu, Hong‐Mei
  organization: Cangzhou Central Hospital
– sequence: 5
  givenname: Fang‐Kun
  surname: Shi
  fullname: Shi, Fang‐Kun
  organization: Cangzhou Central Hospital
– sequence: 6
  givenname: Ning‐Ning
  surname: Liu
  fullname: Liu, Ning‐Ning
  organization: Cangzhou Central Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28543594$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OGzEUhS1EBYGy6AtUlrpoWQT8PzPLNC2Fij9FIHU3csbXrdOJndoztNl1z4Zn7JPUIZQFUtnYlvWde--5Zwdt-uABoVeUHFBC2OGsmR4wRQuygQaUVMVQKCE20YAUnAwZp2wb7aQ0I4RUFWdbaJuVUnBZiQG6vfoG-Bz6GBYxdNB07gbwJLSAg8VnbvLn9x1lIp98gZ3HGqv8Pl6aGH4tTVjoufOQf0686RsweAxti8-CgXalv9Txu_Mp-LcJf3AJdAJ84zTucs8JfO1b3bngV-TofPRFvkQvrG4T7D3cu-j66OPV-Hh4evHpZDw6HTZcrgwxECUooAVIm-3qyk5VqSWnRQWWcEOgALBTzUtLqJVWiIZxYaQgsjLW8F30bl03W_7RQ-rquUtNnlx7CH2qaUU4VYqrIqNvnqCz0Eefp8uUUmWpSqoy9fqB6qdzMPUiurmOy_rfmjOwvwaaGFKKYB8RSupVhHWOsL6PMLOHT9jGdfeL6qJ27XOKn66F5f9L15_H79eKv-bVrlw
CitedBy_id crossref_primary_10_3389_fphar_2019_01555
crossref_primary_10_1016_j_bcp_2017_07_008
crossref_primary_10_18632_aging_202837
crossref_primary_10_1007_s11064_019_02825_1
crossref_primary_10_1159_000515661
crossref_primary_10_1007_s11481_019_09842_5
crossref_primary_10_3892_mmr_2019_10565
crossref_primary_10_3390_ijms21010120
crossref_primary_10_1007_s10811_018_1713_x
crossref_primary_10_1016_j_lfs_2020_118019
crossref_primary_10_1111_jnc_15299
crossref_primary_10_1016_j_yexmp_2019_05_002
crossref_primary_10_1016_j_npep_2022_102283
crossref_primary_10_1002_iub_2171
crossref_primary_10_3390_jpm12050770
crossref_primary_10_1080_15384101_2020_1749447
crossref_primary_10_1186_s13046_020_01567_1
crossref_primary_10_1007_s10571_021_01091_6
crossref_primary_10_1016_j_phrs_2019_104515
crossref_primary_10_3390_ijms232315017
crossref_primary_10_1016_j_bbrc_2019_10_157
crossref_primary_10_3390_ijms21072418
crossref_primary_10_1016_j_ejphar_2021_174136
crossref_primary_10_1016_j_lfs_2021_119143
crossref_primary_10_3390_ijms21186513
crossref_primary_10_1007_s11033_021_06347_4
crossref_primary_10_3892_ijmm_2019_4080
crossref_primary_10_1002_jcp_30932
crossref_primary_10_1002_jcb_27861
crossref_primary_10_3390_ijms241813849
crossref_primary_10_1016_j_mcp_2019_101470
crossref_primary_10_3389_fcell_2020_00573
crossref_primary_10_1186_s13578_017_0194_y
crossref_primary_10_1007_s12035_024_04111_w
crossref_primary_10_3389_fncel_2021_771898
crossref_primary_10_1139_bcb_2019_0188
crossref_primary_10_1002_mds_27928
crossref_primary_10_1007_s11064_024_04130_y
crossref_primary_10_1016_j_nantod_2021_101328
crossref_primary_10_3389_fnmol_2021_631553
crossref_primary_10_1007_s11064_019_02849_7
crossref_primary_10_1007_s00018_022_04398_9
crossref_primary_10_1016_j_arr_2020_101023
crossref_primary_10_1016_j_cbi_2019_108908
crossref_primary_10_1016_j_expneurol_2022_114154
crossref_primary_10_1007_s11011_023_01180_z
crossref_primary_10_1002_jcla_23266
crossref_primary_10_3390_ijms21249582
crossref_primary_10_1186_s13075_020_2146_x
crossref_primary_10_1016_j_neuro_2022_09_002
crossref_primary_10_15311_selcukdentj_800489
crossref_primary_10_1007_s12035_023_03849_z
crossref_primary_10_1080_13102818_2020_1724829
crossref_primary_10_3390_cells12010075
crossref_primary_10_1016_j_ymthe_2022_06_003
crossref_primary_10_3389_fnins_2021_649982
crossref_primary_10_1177_17534259211068744
crossref_primary_10_1016_j_jksus_2020_04_012
crossref_primary_10_1166_jbt_2022_3116
Cites_doi 10.1521/bumc.2017.81.1.53
10.1016/j.nucmedbio.2010.09.008
10.3233/CBM-160427
10.1016/j.bbamcr.2014.12.038
10.2174/1566524016666151123114608
10.1007/s11064-016-2148-x
10.5483/BMBRep.2002.35.1.024
10.2967/jnumed.107.045898
10.1080/23262133.2016.1256855
10.1007/s12035-016-0253-0
10.4062/biomolther.2013.026
10.1074/jbc.M004583200
10.1007/s10565-011-9209-3
10.3892/mmr.2016.5759
10.1016/j.toxlet.2011.11.032
10.1089/jmf.2016.3851
10.1186/1471-2407-8-294
10.1007/s12640-016-9699-0
10.1016/j.neuron.2007.11.018
10.3389/fnins.2016.00298
10.1016/S0301-0082(01)00003-X
10.18632/oncotarget.15149
10.1074/jbc.M113.450163
10.1038/cddis.2013.73
10.1159/000452521
10.1159/000430271
10.1007/s10072-017-2841-9
10.1186/s12885-016-2862-4
10.1111/j.1756-185X.2012.01759.x
10.1073/pnas.0906277106
10.4062/biomolther.2014.112
10.1126/science.1140481
10.1111/j.1471-4159.2010.07097.x
10.1038/sj.onc.1204062
10.1016/j.neulet.2013.02.069
10.1111/j.1742-4658.2009.07366.x
10.1016/j.compbiolchem.2014.10.005
10.1002/jnr.22427
10.1111/cas.12946
10.4062/biomolther.2016.223
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1002/jcb.26170
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1097-4644
EndPage 277
ExternalDocumentID 28543594
10_1002_jcb_26170
JCB26170
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V8K
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c3530-22e48e6e17e5f109a9fb68a53179ef03d0e7eefba38f01f5f44c234d54059dfd3
IEDL.DBID DR2
ISSN 0730-2312
1097-4644
IngestDate Fri Jul 11 10:03:12 EDT 2025
Fri Jul 25 12:11:55 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 05:02:42 EDT 2025
Wed Aug 20 07:26:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 6-OHDA
miR-124-3p
PARKINSON'S DISEASE
ANXA5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-22e48e6e17e5f109a9fb68a53179ef03d0e7eefba38f01f5f44c234d54059dfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8861-559X
PMID 28543594
PQID 1966886816
PQPubID 1006368
PageCount 9
ParticipantIDs proquest_miscellaneous_1903166367
proquest_journals_1966886816
pubmed_primary_28543594
crossref_primary_10_1002_jcb_26170
crossref_citationtrail_10_1002_jcb_26170
wiley_primary_10_1002_jcb_26170_JCB26170
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular biochemistry
PublicationTitleAlternate J Cell Biochem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 116
2015; 15
2017; 20
2017; 8
2015; 36
2013; 4
2017; 81
2013; 21
2017; 69
2017; 25
2016; 107
2002; 35
2017; S0888–S7543
2016; 10
2013; 543
2008; 57
2008; 8
2015; 1853
2016; 2016
2000; 275
2012; 15
2011; 38
2016; 16
2016; 14
2014; 22
2001; 20
2005; 46
2001; 65
2012; 209
2010; 88
2017; 31
2014; 53PB
2017; 30
2007; 317
2016; 3
2017; 38
2008; 49
2010; 277
2016; 42
2016; 40
2016
2017; 19
2012; 28
2014; 289
2009; 106
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Boersma HH (e_1_2_6_7_1) 2005; 46
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_40_1
Matsumoto H (e_1_2_6_33_1) 2017; 69
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Song Z (e_1_2_6_41_1) 2016; 2016
Mortezaei Z (e_1_2_6_34_1) 2017; 0888
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
Huang LH (e_1_2_6_20_1) 2017; 30
e_1_2_6_26_1
References_xml – volume: 275
  start-page: 39435
  year: 2000
  end-page: 39443
  article-title: Requirement for erk activation in cisplatin‐induced apoptosis
  publication-title: J Biol Chem
– volume: 69
  start-page: 219
  year: 2017
  end-page: 225
  article-title: Repetitive transcranial magnetic stimulation for Parkinson's disease: A review
  publication-title: Brain Nerve
– volume: 31
  start-page: 545
  year: 2017
  end-page: 559
  article-title: Ra differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6‐hydroxydopamine‐induced neurotoxicity in sh‐sy5y cells
  publication-title: Neurotox Res
– volume: 277
  start-page: 2
  year: 2010
  end-page: 21
  article-title: Erk and cell death: Mechanisms of erk‐induced cell death‐apoptosis, autophagy and senescence
  publication-title: FEBS J
– volume: 2016
  start-page: 1922
  year: 2016
  end-page: 1925
  article-title: An implantable microelectrode array for dopamine and electrophysiological recordings in response to l‐dopa therapy for Parkinson's disease
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 543
  start-page: 121
  year: 2013
  end-page: 125
  article-title: Danshensu protects against 6‐hydroxydopamine‐induced damage of pc12 cells in vitro and dopaminergic neurons in zebrafish
  publication-title: Neurosci Lett
– volume: 16
  start-page: 826
  year: 2016
  article-title: Mir‐124‐3p functions as a tumor suppressor in breast cancer by targeting cbl
  publication-title: BMC Cancer
– volume: 42
  start-page: 1141
  year: 2016
  end-page: 1150
  article-title: Tetramethylpyrazine analogue cxc195 protects against dopaminergic neuronal apoptosis via activation of pi3k/akt/gsk3beta signaling pathway in 6‐ohda‐induced Parkinson's disease mice
  publication-title: Neurochem Res
– volume: 8
  start-page: 24314
  year: 2017
  end-page: 24316
  article-title: Mir‐124‐3p attenuates hyperphosphorylation of tau protein‐induced apoptosis via caveolin‐1‐pi3k/akt/gsk3beta pathway in n2a/app695swe cells
  publication-title: Oncotarget
– volume: 81
  start-page: 53
  year: 2017
  end-page: 105
  article-title: A comprehensive overview of the neuropsychiatry of Parkinson's disease: A review
  publication-title: Bull Menninger Clin
– volume: 88
  start-page: 2682
  year: 2010
  end-page: 2692
  article-title: Investigation of annexin a5 as a biomarker for Alzheimer's disease using neuronal cell culture and mouse model
  publication-title: J Neurosci Res
– volume: S0888–S7543
  start-page: 30010
  year: 2017
  end-page: 30011
  article-title: Candidate novel long noncoding rnas, micrornas and putative drugs for Parkinson's disease using a robust and efficient genome‐wide association study
  publication-title: Genomics
– volume: 3
  start-page: e1256855
  year: 2016
  article-title: Traceable microrna‐124 loaded nanoparticles as a new promising therapeutic tool for Parkinson's disease
  publication-title: Neurogenesis (Austin)
– volume: 38
  start-page: 761
  year: 2017
  end-page: 767
  article-title: Plasma levels of mir‐137 and mir‐124 are associated with Parkinson's disease but not with Parkinson's disease with depression
  publication-title: Neurol Sci
– volume: 22
  start-page: 519
  year: 2014
  end-page: 524
  article-title: Role of annexin a5 on mitochondria‐dependent apoptosis induced by tetramethoxystilbene in human breast cancer cells
  publication-title: Biomol Ther (Seoul)
– year: 2016
  article-title: Micrornas in cerebrospinal fluid as potential biomarkers for Parkinson's disease and multiple system atrophy
  publication-title: Mol Neurobiol
– volume: 35
  start-page: 24
  year: 2002
  end-page: 27
  article-title: Apoptotic signaling pathways: Caspases and stress‐activated protein kinases
  publication-title: J Biochem Mol Biol
– volume: 30
  start-page: 75
  year: 2017
  end-page: 78
  article-title: Neodymium oxide induces cytotoxicity and activates nf‐kappab and caspase‐3 in nr8383 cells
  publication-title: Biomed Environ Sci
– volume: 8
  start-page: 294
  year: 2008
  article-title: Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis
  publication-title: BMC Cancer
– volume: 49
  start-page: 81S
  issue: Suppl 2
  year: 2008
  end-page: 95S
  article-title: In vivo detection of apoptosis
  publication-title: J Nucl Med
– volume: 21
  start-page: 190
  year: 2013
  end-page: 195
  article-title: Annexin a5 as a new potential biomarker for cisplatin‐induced toxicity in human kidney epithelial cells
  publication-title: Biomol Ther (Seoul)
– volume: 53PB
  start-page: 214
  year: 2014
  end-page: 225
  article-title: Disruption of murine tcte3‐3 induces tissue specific apoptosis via co‐expression of anxa5 and pebp1
  publication-title: Comput Biol Chem
– volume: 14
  start-page: 4015
  year: 2016
  end-page: 4022
  article-title: Micrornas involved in Parkinson's disease: A systematic review
  publication-title: Mol Med Rep
– volume: 106
  start-page: 13052
  year: 2009
  end-page: 13057
  article-title: Repression of alpha‐synuclein expression and toxicity by microrna‐7
  publication-title: Proc Natl Acad Sci USA
– volume: 36
  start-page: 966
  year: 2015
  end-page: 979
  article-title: Allicin protects pc12 cells against 6‐ohda‐induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics
  publication-title: Cell Physiol Biochem
– volume: 65
  start-page: 135
  year: 2001
  end-page: 172
  article-title: Molecular pathways involved in the neurotoxicity of 6‐ohda, dopamine and mptp: Contribution to the apoptotic theory in Parkinson's disease
  publication-title: Prog Neurobiol
– volume: 15
  start-page: 980
  year: 2015
  end-page: 989
  article-title: The role of mir‐124 in Alzheimer's disease model by targeting delta in notch signaling pathway
  publication-title: Curr Mol Med
– volume: 116
  start-page: 240
  year: 2011
  end-page: 247
  article-title: In vivo regulation of amyloid precursor protein neuronal splicing by micrornas
  publication-title: J Neurochem
– volume: 25
  start-page: 177
  year: 2017
  end-page: 185
  article-title: Auranofin suppresses plasminogen activator inhibitor‐2 expression through annexin a5 induction in human prostate cancer cells
  publication-title: Biomol Ther (Seoul)
– volume: 15
  start-page: e124
  year: 2012
  end-page: e126
  article-title: Anti‐annexin v antibodies in neuro‐behcet patients: Clinical significance and relation to disease activity
  publication-title: Int J Rheum Dis
– volume: 20
  start-page: 116
  year: 2017
  end-page: 123
  article-title: Humulus japonicus prevents dopaminergic neuron death in 6‐hydroxydopamine‐induced models of Parkinson's disease
  publication-title: J Med Food
– volume: 107
  start-page: 899
  year: 2016
  end-page: 907
  article-title: Microrna‐124‐3p regulates cell proliferation, invasion, apoptosis, and bioenergetics by targeting pim1 in astrocytoma
  publication-title: Cancer Sci
– volume: 4
  start-page: e545
  year: 2013
  article-title: Influence of microrna deregulation on chaperone‐mediated autophagy and alpha‐synuclein pathology in Parkinson's disease
  publication-title: Cell Death Dis
– volume: 57
  start-page: 41
  year: 2008
  end-page: 55
  article-title: Members of the mirna‐200 family regulate olfactory neurogenesis
  publication-title: Neuron
– volume: 28
  start-page: 89
  year: 2012
  end-page: 101
  article-title: Toxicity of 6‐hydroxydopamine: Live cell imaging of cytoplasmic redox flux
  publication-title: Cell Biol Toxicol
– volume: 46
  start-page: 2035
  year: 2005
  end-page: 2050
  article-title: Past, present, and future of annexin a5: From protein discovery to clinical applications
  publication-title: J Nucl Med
– volume: 19
  start-page: 93
  year: 2017
  end-page: 101
  article-title: Microrna‐124‐3p affects proliferation, migration and apoptosis of bladder cancer cells through targeting aurka
  publication-title: Cancer Biomark
– volume: 20
  start-page: 147
  year: 2001
  end-page: 155
  article-title: Taxol‐induced apoptosis depends on map kinase pathways (erk and p38) and is independent of p53
  publication-title: Oncogene
– volume: 209
  start-page: 94
  year: 2012
  end-page: 105
  article-title: The mir‐124 regulates the expression of bace1/beta‐secretase correlated with cell death in Alzheimer's disease
  publication-title: Toxicol Lett
– volume: 317
  start-page: 1220
  year: 2007
  end-page: 1224
  article-title: A microrna feedback circuit in midbrain dopamine neurons
  publication-title: Science
– volume: 289
  start-page: 2469
  year: 2014
  end-page: 2481
  article-title: Role of annexin a5 in cisplatin‐induced toxicity in renal cells: Molecular mechanism of apoptosis
  publication-title: J Biol Chem
– volume: 1853
  start-page: 2033
  year: 2015
  end-page: 2044
  article-title: Annexin‐a5 promotes membrane resealing in human trophoblasts
  publication-title: Biochim Biophys Acta
– volume: 10
  start-page: 298
  year: 2016
  article-title: Micrornas: Emerging targets regulating oxidative stress in the models of Parkinson's disease
  publication-title: Front Neurosci
– volume: 38
  start-page: 381
  year: 2011
  end-page: 392
  article-title: Site‐specific 68ga‐labeled annexin a5 as a pet imaging agent for apoptosis
  publication-title: Nucl Med Biol
– volume: 40
  start-page: 18
  year: 2016
  end-page: 26
  article-title: Involvement of microrna‐135a‐5p in the protective effects of hydrogen sulfide against Parkinson's disease
  publication-title: Cell Physiol Biochem
– ident: e_1_2_6_24_1
  doi: 10.1521/bumc.2017.81.1.53
– ident: e_1_2_6_4_1
  doi: 10.1016/j.nucmedbio.2010.09.008
– ident: e_1_2_6_46_1
  doi: 10.3233/CBM-160427
– ident: e_1_2_6_9_1
  doi: 10.1016/j.bbamcr.2014.12.038
– ident: e_1_2_6_26_1
  doi: 10.2174/1566524016666151123114608
– ident: e_1_2_6_10_1
  doi: 10.1007/s11064-016-2148-x
– ident: e_1_2_6_11_1
  doi: 10.5483/BMBRep.2002.35.1.024
– ident: e_1_2_6_5_1
  doi: 10.2967/jnumed.107.045898
– ident: e_1_2_6_37_1
  doi: 10.1080/23262133.2016.1256855
– ident: e_1_2_6_32_1
  doi: 10.1007/s12035-016-0253-0
– ident: e_1_2_6_27_1
  doi: 10.4062/biomolther.2013.026
– ident: e_1_2_6_42_1
  doi: 10.1074/jbc.M004583200
– volume: 46
  start-page: 2035
  year: 2005
  ident: e_1_2_6_7_1
  article-title: Past, present, and future of annexin a5: From protein discovery to clinical applications
  publication-title: J Nucl Med
– ident: e_1_2_6_16_1
  doi: 10.1007/s10565-011-9209-3
– ident: e_1_2_6_14_1
  doi: 10.3892/mmr.2016.5759
– ident: e_1_2_6_17_1
  doi: 10.1016/j.toxlet.2011.11.032
– ident: e_1_2_6_36_1
  doi: 10.1089/jmf.2016.3851
– volume: 0888
  start-page: 30010
  year: 2017
  ident: e_1_2_6_34_1
  article-title: Candidate novel long noncoding rnas, micrornas and putative drugs for Parkinson's disease using a robust and efficient genome‐wide association study
  publication-title: Genomics
– ident: e_1_2_6_38_1
  doi: 10.1186/1471-2407-8-294
– ident: e_1_2_6_31_1
  doi: 10.1007/s12640-016-9699-0
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuron.2007.11.018
– ident: e_1_2_6_44_1
  doi: 10.3389/fnins.2016.00298
– ident: e_1_2_6_6_1
  doi: 10.1016/S0301-0082(01)00003-X
– ident: e_1_2_6_23_1
  doi: 10.18632/oncotarget.15149
– ident: e_1_2_6_21_1
  doi: 10.1074/jbc.M113.450163
– ident: e_1_2_6_2_1
  doi: 10.1038/cddis.2013.73
– volume: 69
  start-page: 219
  year: 2017
  ident: e_1_2_6_33_1
  article-title: Repetitive transcranial magnetic stimulation for Parkinson's disease: A review
  publication-title: Brain Nerve
– ident: e_1_2_6_30_1
  doi: 10.1159/000452521
– ident: e_1_2_6_29_1
  doi: 10.1159/000430271
– ident: e_1_2_6_28_1
  doi: 10.1007/s10072-017-2841-9
– volume: 2016
  start-page: 1922
  year: 2016
  ident: e_1_2_6_41_1
  article-title: An implantable microelectrode array for dopamine and electrophysiological recordings in response to l‐dopa therapy for Parkinson's disease
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: e_1_2_6_43_1
  doi: 10.1186/s12885-016-2862-4
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1756-185X.2012.01759.x
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0906277106
– ident: e_1_2_6_19_1
  doi: 10.4062/biomolther.2014.112
– ident: e_1_2_6_25_1
  doi: 10.1126/science.1140481
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1471-4159.2010.07097.x
– ident: e_1_2_6_3_1
  doi: 10.1038/sj.onc.1204062
– ident: e_1_2_6_13_1
  doi: 10.1016/j.neulet.2013.02.069
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1742-4658.2009.07366.x
– volume: 30
  start-page: 75
  year: 2017
  ident: e_1_2_6_20_1
  article-title: Neodymium oxide induces cytotoxicity and activates nf‐kappab and caspase‐3 in nr8383 cells
  publication-title: Biomed Environ Sci
– ident: e_1_2_6_35_1
  doi: 10.1016/j.compbiolchem.2014.10.005
– ident: e_1_2_6_45_1
  doi: 10.1002/jnr.22427
– ident: e_1_2_6_15_1
  doi: 10.1111/cas.12946
– ident: e_1_2_6_39_1
  doi: 10.4062/biomolther.2016.223
SSID ssj0009932
Score 2.4824266
Snippet ABSTRACT Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the...
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by a progressive loss of dopaminergic neurons in the midbrain....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms 6-Hydroxydopamine
6‐OHDA
Animals
Annexin A5 - biosynthesis
Annexin A5 - genetics
ANXA5
Apoptosis
Caspase
Caspase-3
Chromosome 3
Dopamine receptors
Gene expression
Gene Expression Regulation - drug effects
Mesencephalon
Metabolic pathways
MicroRNAs - biosynthesis
MicroRNAs - genetics
miR‐124‐3p
Models, Biological
Movement disorders
Neurodegenerative diseases
Neuroprotection
Neurotoxicity
Oxidative stress
Oxidopamine - adverse effects
Oxidopamine - pharmacology
Parkinson Disease, Secondary - chemically induced
Parkinson Disease, Secondary - genetics
Parkinson Disease, Secondary - metabolism
Parkinson Disease, Secondary - pathology
PARKINSON'S DISEASE
PC12 Cells
Pheochromocytoma cells
Post-transcription
Protein folding
Rats
Title The Neuroprotective Role of MiR‐124‐3p in a 6‐Hydroxydopamine‐Induced Cell Model of Parkinson's Disease via the Regulation of ANAX5
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcb.26170
https://www.ncbi.nlm.nih.gov/pubmed/28543594
https://www.proquest.com/docview/1966886816
https://www.proquest.com/docview/1903166367
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqShVcKJTXQkEGIcEl28SxnVicloVqVak9rKi0B6QojsfVQshW3V2k9tR7L_xGfgljO0lVHhLiEjnJRHbsmfHn1zeEvFJag86EirjJZMQtDndKmySRBoXoVTEWGzehf3gkJ8f8YCZmG-RtdxYm8EP0E27OMry_dgZe6uXeNWno50oPPZ04-l-3V8sBouk1dRT2u34FATU4QgzDOlahmO31X97si34DmDfxqu9w9rfJp66oYZ_Jl-F6pYfVxS8sjv_5L3fJnRaI0lHQnHtkA5odshVCU57vkFvjLhLcfXKFukQ9i0fL6oAekk4XNdCFpYfz6Y_L79h_4zU9pfOGllRienJuXMkNDsq_YvnwiYsSUoGhY6hr6mKw1e57d-zan0B7vaTvw2oR_TYvKQJTOoWTNrqYkxwdjWbiATne__BxPInaIA5RlQpX9wx4DhKSDIRNYlUqq2VeoulnCmycmhgyAKvLNLdxYoXlvGIpNw5JKmNN-pBsNosGHhOKtywTCNi4jLlRUhubVBloYazlecwG5E3XnEXVMpy7QBt1EbiZWYH1XPh6HpCXvehpoPX4k9BupxNFa9nLAj2WzHOZJ3JAXvSvsUHcQkvZwGLtZNBVIpST2YA8CrrU5-JOrKZCcSys14i_Z18cjN_5xJN_F31KbiOiy8Mc0S7ZXJ2t4RmippV-7s3jJ3NDFAc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQuPAqlCwUMQoJLtnk4TixxWbZUS-nuYdVKe0FRHI_R0pCt6C5SOXHnwm_klzB2HlV5SIhL5CRj2bFnPJ_t-BuAZ1IpVEksPa4T4XFD053cBIGnUBJ6lWHoa7ugP56I0TE_mMWzNXjZnoWp-SG6BTdrGW68tgZuF6R3L1hDPxSq7_jEr8BVG9HbMufvTS_Io8jzuj0E0mGPUEzY8gr54W6X9bI3-g1iXkaszuXs34R3bWXrP01O-qul6hdffuFx_N-vuQU3GizKBrXy3IY1rDbhWh2d8nwTNoZtMLg78I3UiTkij4bYgQZJNl2UyBaGjefTH1-_kwuna3TK5hXLmaD06Fzbqmual3-kCtITGyikQM2GWJbMhmErbX578todQnt-xvbqDSP2eZ4zwqZsiu-bAGNWcjAZzOK7cLz_-mg48po4Dl4RxbbxQ-QpCgwSjE3gy1waJdKcrD-RaPxI-5ggGpVHqfEDExvOizDi2oJJqY2OtmC9WlS4DYxuwyQmzMaFz7UUSpugSFDF2hie-mEPXrT9mRUNybmNtVFmNT1zmFE7Z66de_C0Ez2tmT3-JLTTKkXWGPdZRoOWSFORBqIHT7rX1CF2ryWvcLGyMjRaEpoTSQ_u1crUlWIPrUax5FRZpxJ_Lz47GL5yifv_LvoYNkZH48Ps8M3k7QO4TgAvrZeMdmB9-WmFDwlELdUjZys_AZ4xGCM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4ti3hceCyvwgIGIcEl3TwcJxan0lKVha1QxUo9IEVxPEaFkFZsi7ScuHPhN_JLGDuP1fKQEJfIScayY894PtvxNwCPpFKoklh6XCfC44amO7kJAk-hJPQqw9DXdkH_YComh3x_Hs-34Gl7Fqbmh-gW3KxluPHaGvhKm70T0tD3heo7OvEzcJYLX9q4DaPZCXcUOV63hUAq7BGICVtaIT_c67Kedka_IczTgNV5nPFleNvWtf7R5EN_s1b94ssvNI7_-TFX4FKDRNmgVp2rsIXVDpyrY1Me78CFYRsK7hp8I2VijsajoXWgIZLNliWypWEHi9mPr9_JgdM1WrFFxXImKD051rbmmmblH6l-9MSGCSlQsyGWJbNB2Eqb3567dkfQHh-xUb1dxD4vckbIlM3wXRNezEoOpoN5fB0Ox8_fDCdeE8XBK6LYtn2IPEWBQYKxCXyZS6NEmpPtJxKNH2kfE0Sj8ig1fmBiw3kRRlxbKCm10dEN2K6WFd4CRrdhEhNio_7mWgqlTVAkqGJtDE_9sAdP2u7Miobi3EbaKLOanDnMqJ0z1849eNiJrmpejz8J7bY6kTWmfZTRkCXSVKSB6MGD7jV1iN1pyStcbqwMjZWE5UTSg5u1LnWl2COrUSw5VdZpxN-Lz_aHz1zi9r-L3ofzr0fj7NWL6cs7cJHQXVqvF-3C9vrTBu8Sglqre85SfgJKfBbS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Neuroprotective+Role+of+MiR%E2%80%90124%E2%80%903p+in+a+6%E2%80%90Hydroxydopamine%E2%80%90Induced+Cell+Model+of+Parkinson%27s+Disease+via+the+Regulation+of+ANAX5&rft.jtitle=Journal+of+cellular+biochemistry&rft.au=Dong%2C+Rui%E2%80%90Fang&rft.au=Zhang%2C+Bing&rft.au=Tai%2C+Li%E2%80%90Wen&rft.au=Liu%2C+Hong%E2%80%90Mei&rft.date=2018-01-01&rft.issn=0730-2312&rft.eissn=1097-4644&rft.volume=119&rft.issue=1&rft.spage=269&rft.epage=277&rft_id=info:doi/10.1002%2Fjcb.26170&rft.externalDBID=10.1002%252Fjcb.26170&rft.externalDocID=JCB26170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-2312&client=summon