Robust RF shimming and small‐tip‐angle multispoke pulse design with finite‐difference regularization

Purpose A new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle multispoke pulse designs for ultrahigh‐field MRI. Methods A finite‐difference regularization term is activated as an additional regularizer...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 3; pp. 1472 - 1481
Main Authors Paez, Adrian, Gu, Chunming, Cao, Zhipeng
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28820

Cover

Loading…
Abstract Purpose A new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle multispoke pulse designs for ultrahigh‐field MRI. Methods A finite‐difference regularization term is activated as an additional regularizer in the iterative magnitude‐least‐squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B1+ maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single‐shot gradient‐echo EPI for human functional MRI at 7 T. Results The proposed finite‐difference regularizer effectively prevented excitation null to be formed for RF shimming and small‐tip‐angle multispoke pulses, and improved the latter with a monotonic trade‐off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head‐array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near‐complete local signal loss by the conventional magnitude‐least‐squares algorithm. Conclusion Using finite‐difference regularization to avoid unwanted solutions, the robustness of RF shimming and small‐tip‐angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade‐off relationship between flip angle error and RF power.
AbstractList A new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle multispoke pulse designs for ultrahigh-field MRI. A finite-difference regularization term is activated as an additional regularizer in the iterative magnitude-least-squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single-shot gradient-echo EPI for human functional MRI at 7 T. The proposed finite-difference regularizer effectively prevented excitation null to be formed for RF shimming and small-tip-angle multispoke pulses, and improved the latter with a monotonic trade-off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head-array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near-complete local signal loss by the conventional magnitude-least-squares algorithm. Using finite-difference regularization to avoid unwanted solutions, the robustness of RF shimming and small-tip-angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade-off relationship between flip angle error and RF power.
PurposeA new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle multispoke pulse designs for ultrahigh‐field MRI.MethodsA finite‐difference regularization term is activated as an additional regularizer in the iterative magnitude‐least‐squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B1+ maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single‐shot gradient‐echo EPI for human functional MRI at 7 T.ResultsThe proposed finite‐difference regularizer effectively prevented excitation null to be formed for RF shimming and small‐tip‐angle multispoke pulses, and improved the latter with a monotonic trade‐off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head‐array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near‐complete local signal loss by the conventional magnitude‐least‐squares algorithm.ConclusionUsing finite‐difference regularization to avoid unwanted solutions, the robustness of RF shimming and small‐tip‐angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade‐off relationship between flip angle error and RF power.
A new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle multispoke pulse designs for ultrahigh-field MRI.PURPOSEA new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle multispoke pulse designs for ultrahigh-field MRI.A finite-difference regularization term is activated as an additional regularizer in the iterative magnitude-least-squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B1+ maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single-shot gradient-echo EPI for human functional MRI at 7 T.METHODSA finite-difference regularization term is activated as an additional regularizer in the iterative magnitude-least-squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B1+ maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single-shot gradient-echo EPI for human functional MRI at 7 T.The proposed finite-difference regularizer effectively prevented excitation null to be formed for RF shimming and small-tip-angle multispoke pulses, and improved the latter with a monotonic trade-off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head-array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near-complete local signal loss by the conventional magnitude-least-squares algorithm.RESULTSThe proposed finite-difference regularizer effectively prevented excitation null to be formed for RF shimming and small-tip-angle multispoke pulses, and improved the latter with a monotonic trade-off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head-array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near-complete local signal loss by the conventional magnitude-least-squares algorithm.Using finite-difference regularization to avoid unwanted solutions, the robustness of RF shimming and small-tip-angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade-off relationship between flip angle error and RF power.CONCLUSIONUsing finite-difference regularization to avoid unwanted solutions, the robustness of RF shimming and small-tip-angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade-off relationship between flip angle error and RF power.
Purpose A new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle multispoke pulse designs for ultrahigh‐field MRI. Methods A finite‐difference regularization term is activated as an additional regularizer in the iterative magnitude‐least‐squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B1+ maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single‐shot gradient‐echo EPI for human functional MRI at 7 T. Results The proposed finite‐difference regularizer effectively prevented excitation null to be formed for RF shimming and small‐tip‐angle multispoke pulses, and improved the latter with a monotonic trade‐off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head‐array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near‐complete local signal loss by the conventional magnitude‐least‐squares algorithm. Conclusion Using finite‐difference regularization to avoid unwanted solutions, the robustness of RF shimming and small‐tip‐angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade‐off relationship between flip angle error and RF power.
Author Gu, Chunming
Paez, Adrian
Cao, Zhipeng
Author_xml – sequence: 1
  givenname: Adrian
  surname: Paez
  fullname: Paez, Adrian
  organization: Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Chunming
  surname: Gu
  fullname: Gu, Chunming
  organization: Johns Hopkins University
– sequence: 3
  givenname: Zhipeng
  orcidid: 0000-0002-6999-4889
  surname: Cao
  fullname: Cao, Zhipeng
  email: zhipeng.cao.1@vumc.org
  organization: Vanderbilt University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33934406$$D View this record in MEDLINE/PubMed
BookMark eNp1kb1uFDEUhS0URDYLBS-ALNFAMYn_ZmdcoogQpERIK6gtr-d648X2DLZHUah4BJ6RJ4nJbpoImnub75z7c07QURwjIPSaklNKCDsLKZyyvmfkGVrQlrGGtVIcoQXpBGk4leIYneS8I4RI2YkX6JhzyYUgqwXarcfNnAteX-B840JwcYt1HHAO2vs_v34XN9Wq49YDDrMvLk_jd8DT7DPgAbLbRnzryg22LroClR2ctZAgGsAJtrPXyf3UxY3xJXpudZW9OvQl-nbx8ev5ZXP15dPn8w9XjeEtJw0VQFbSAm_1SnYDl5RTYTrLjWaEr4hgVEtLrek1gO03THLQtjeWSylIu-FL9G7vO6Xxxwy5qOCyAe91hHHOirWMCil7QSv69gm6G-cU63aV4p2gfVdnLtGbAzVvAgxqSi7odKcev1iBsz1g0phzAquMKw83l6SdV5SovzmpmpN6yKkq3j9RPJr-iz243zoPd_8H1fX6eq-4B9YPpSY
CitedBy_id crossref_primary_10_1109_RBME_2023_3244132
crossref_primary_10_1109_TMI_2024_3515035
crossref_primary_10_1002_mrm_29569
crossref_primary_10_1002_mrm_30014
crossref_primary_10_1002_mrm_29199
crossref_primary_10_1088_1361_6560_aca4b7
crossref_primary_10_1016_j_zemedi_2021_12_003
Cites_doi 10.1002/mrm.26491
10.1002/mrm.21476
10.1002/mrm.27189
10.1002/mrm.25739
10.1109/TMI.2013.2295465
10.1016/j.mri.2019.05.018
10.1109/TMI.2020.3013982
10.1002/mrm.10353
10.1002/mrm.26501
10.1088/0031-9155/55/2/N01
10.1016/0022-2364(89)90265-5
10.1002/mrm.24828
10.1002/mrm.23319
10.1002/mrm.20840
10.1002/mrm.20978
10.1002/mrm.1156
10.1002/mrm.20011
10.1002/jmri.24689
10.1002/mrm.24165
10.1002/mrm.22182
10.1016/j.neuroimage.2018.09.038
10.1002/mrm.25455
10.1002/mrm.24158
10.1002/mrm.21513
10.1007/s00330-010-1962-9
10.1002/mrm.24800
10.1002/mrm.26804
10.1002/mrm.28068
10.1002/mrm.27192
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28820
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Biochemistry Abstracts 1
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1481
ExternalDocumentID 33934406
10_1002_mrm_28820
MRM28820
Genre technicalNote
Journal Article
GrantInformation_xml – fundername: National Eye Institute
  funderid: P30 EY008126
– fundername: National Institutes of Health
  funderid: R01 NS108452
– fundername: NEI NIH HHS
  grantid: P30 EY008126
– fundername: NIH HHS
  grantid: R01 NS108452
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3530-14e069fe35a697d391314c7f3ca20360421a9f1fc8aeef8b293eaf8cf399405b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 01:28:08 EDT 2025
Fri Jul 25 12:16:47 EDT 2025
Thu Apr 03 07:08:14 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Tue Jul 01 04:27:00 EDT 2025
Wed Jan 22 16:28:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords functional MRI
ultrahigh-field MRI
parallel transmit
small-tip-angle approximation
spokes pulses
dynamic multislice shimming
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-14e069fe35a697d391314c7f3ca20360421a9f1fc8aeef8b293eaf8cf399405b3
Notes Funding information
National Institutes of Health, Grant/Award Nos. R01 NS108452; National Eye Institute, Grant/Award Nos. P30 EY008126.
Correction added after online publication on 27, May 2021. Due to a publisher’s error, equation brackets have been re‐inserted to equations 1, 2, 4, 5, 6, 7, 9, and 11. The author has corrected minor text errors in the main paper and in the Supporting Information figure captions
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6999-4889
PMID 33934406
PQID 2537418720
PQPubID 1016391
PageCount 10
ParticipantIDs proquest_miscellaneous_2521499841
proquest_journals_2537418720
pubmed_primary_33934406
crossref_citationtrail_10_1002_mrm_28820
crossref_primary_10_1002_mrm_28820
wiley_primary_10_1002_mrm_28820_MRM28820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 55
2004; 51
2019; 61
2006; 56
2006; 55
2020; 83
2015; 41
1989; 81
2015; 74
2017; 78
2020; 39
2008; 59
2018; 80
2016; 75
2003; 49
2011; 21
2013; 70
2019; 184
2012; 68
2001; 46
2014; 71
2010; 63
2014; 33
2018; 79
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 68
  start-page: 1517
  year: 2012
  end-page: 1526
  article-title: DREAM—a novel approach for robust, ultrafast, multislice mapping
  publication-title: Magn Reson Med
– volume: 21
  start-page: 841
  year: 2011
  end-page: 849
  article-title: Renal imaging at 7 Tesla: preliminary results
  publication-title: Eur Radiol
– volume: 56
  start-page: 620
  year: 2006
  end-page: 629
  article-title: Spatial domain method for the design of RF pulses in multicoil parallel excitation
  publication-title: Magn Reson Med
– volume: 83
  start-page: 2331
  year: 2020
  end-page: 2342
  article-title: Designing parallel transmit head coil arrays based on radiofrequency pulse performance
  publication-title: Magn Reson Med
– volume: 70
  start-page: 630
  year: 2013
  end-page: 638
  article-title: Simultaneous multislice multiband parallel radiofrequency excitation with independent slice‐specific transmit B1 homogenization
  publication-title: Magn Reson Med
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  article-title: 7 T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images
  publication-title: Magn Reson Med
– volume: 39
  start-page: 4225
  year: 2020
  end-page: 4236
  article-title: Application of evolution strategies to the design of SAR efficient parallel transmit multi‐spoke pulses for ultra‐high field MRI
  publication-title: IEEE Trans Med Imaging
– volume: 55
  start-page: N23
  year: 2010
  end-page: N38
  article-title: The virtual family development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 81
  start-page: 43
  year: 1989
  end-page: 56
  article-title: A k‐space analysis of small‐tip‐angle excitation
  publication-title: J Magn Reson
– volume: 59
  start-page: 396
  year: 2008
  end-page: 409
  article-title: Local shimming for prostate imaging with transceiver arrays at 7 T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1050
  year: 2017
  end-page: 1058
  article-title: High‐resolution gradient‐recalled echo imaging at 9.4T using 16‐channel parallel transmit simultaneous multislice spokes excitations with slice‐by‐slice flip angle homogenization
  publication-title: Magn Reson Med
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 63
  start-page: 9
  year: 2010
  end-page: 19
  article-title: RF shimming for spectroscopic localization in the human brain at 7 T
  publication-title: Magn Reson Med
– volume: 59
  start-page: 908
  year: 2008
  end-page: 915
  article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels
  publication-title: Magn Reson Med
– volume: 74
  start-page: 747
  year: 2015
  end-page: 755
  article-title: Low peak power multiband spokes pulses for B inhomogeneity‐compensated simultaneous multislice excitation in high field MRI
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1446
  year: 2014
  end-page: 1457
  article-title: Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade‐offs in low flip‐angle parallel transmit pulse design
  publication-title: Magn Reson Med
– volume: 61
  start-page: 104
  year: 2019
  end-page: 115
  article-title: Time‐of‐flight angiography at 7 T using TONE double spokes with parallel transmission
  publication-title: Magn Reson Imaging
– volume: 80
  start-page: 1857
  year: 2018
  end-page: 1870
  article-title: High‐resolution whole‐brain diffusion MRI at 7 T using radiofrequency parallel transmission
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1553
  year: 2012
  end-page: 1562
  article-title: Small‐tip‐angle spokes pulse design using interleaved greedy and local optimization methods
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1198
  year: 2016
  end-page: 1208
  article-title: Joint design of large‐tip‐angle parallel RF pulses and blipped gradient trajectories
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1109
  year: 2012
  end-page: 1116
  article-title: Slice‐by‐slice B1+ shimming at 7 T
  publication-title: Magn Reson Med
– volume: 184
  start-page: 396
  year: 2019
  end-page: 408
  article-title: Human Connectome Project‐style resting‐state functional MRI at 7 Tesla using radiofrequency parallel transmission
  publication-title: Neuroimage
– volume: 79
  start-page: 1804
  year: 2018
  end-page: 1816
  article-title: An open 8‐channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1009
  year: 2017
  end-page: 1019
  article-title: In vivo demonstration of whole‐brain multislice multispoke parallel transmit radiofrequency pulse design in the small and large flip angle regimes at 7 Tesla
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1871
  year: 2018
  end-page: 1881
  article-title: Machine learning RF shimming: prediction by iteratively projected ridge regression
  publication-title: Magn Reson Med
– volume: 55
  start-page: 719
  year: 2006
  end-page: 724
  article-title: Fast‐ three‐dimensional tailored radiofrequency pulse for reduced inhomogeneity
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 51
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 41
  start-page: 1432
  year: 2015
  end-page: 1439
  article-title: Numerical evaluation of image homogeneity, signal‐to‐noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14T in an 8‐channel transmit/receive array
  publication-title: J Magn Reson Imaging
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.26491
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.21476
– ident: e_1_2_9_10_1
  doi: 10.1002/mrm.27189
– ident: e_1_2_9_15_1
  doi: 10.1002/mrm.25739
– ident: e_1_2_9_19_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_9_18_1
  doi: 10.1016/j.mri.2019.05.018
– ident: e_1_2_9_23_1
  doi: 10.1109/TMI.2020.3013982
– ident: e_1_2_9_4_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.26501
– ident: e_1_2_9_25_1
  doi: 10.1088/0031-9155/55/2/N01
– ident: e_1_2_9_12_1
  doi: 10.1016/0022-2364(89)90265-5
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.24828
– ident: e_1_2_9_6_1
  doi: 10.1002/mrm.23319
– ident: e_1_2_9_16_1
  doi: 10.1002/mrm.20840
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.20978
– ident: e_1_2_9_2_1
  doi: 10.1002/mrm.1156
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_9_3_1
  doi: 10.1002/jmri.24689
– ident: e_1_2_9_14_1
  doi: 10.1002/mrm.24165
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.22182
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2018.09.038
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.25455
– ident: e_1_2_9_24_1
  doi: 10.1002/mrm.24158
– ident: e_1_2_9_17_1
  doi: 10.1002/mrm.21513
– ident: e_1_2_9_9_1
  doi: 10.1007/s00330-010-1962-9
– ident: e_1_2_9_22_1
  doi: 10.1002/mrm.24800
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.26804
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.28068
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.27192
SSID ssj0009974
Score 2.409411
Snippet Purpose A new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and...
A new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle...
PurposeA new regularizer is proposed for the magnitude least‐squares optimization algorithm, to ensure robust parallel transmit RF shimming and small‐tip‐angle...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1472
SubjectTerms Algorithms
Arrays
dynamic multislice shimming
Functional magnetic resonance imaging
functional MRI
Homogeneity
Human subjects
Optimization
parallel transmit
Regularization
Robustness
small‐tip‐angle approximation
spokes pulses
ultrahigh‐field MRI
Title Robust RF shimming and small‐tip‐angle multispoke pulse design with finite‐difference regularization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28820
https://www.ncbi.nlm.nih.gov/pubmed/33934406
https://www.proquest.com/docview/2537418720
https://www.proquest.com/docview/2521499841
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBUh0NBN06SPpE2KUrroxhNbkh8iq1I6hMBkMTSQRcFIGimdZOwZxvamq35Cv7FfknvlR0gfELIxBl0jWa97rnR0RMgHPYudzZgLDLNJAB5CByqBKEULl2qI5KJU43rH5Dw5vRBnl_HlBjnpz8K0-hDDghuODD9f4wBXujq-Ew0t1sWIAT7EeB25WgiIpnfSUVK2CsypwHlGil5VKGTHw5f3fdFfAPM-XvUOZ7xNvvVFbXkmN6Om1iPz4w8Vx0f-y3PyrAOi9FPbc3bIhi13ydak22rfJU88N9RUL8j1dKmbqqbTMa2-z4sCnB1V5YxWhVosfv_8Vc9X8FTl1cJSz0-ESPnG0lUDXpfOPEOE4nIvdXMEuGDb38piLF3bKyTCdqdBX5KL8Zevn0-D7oqGwPCYh0EkbJhIZ3msEpnOuIx4JEzquFG4wwkzQqSki5zJlLUu0wAurHKZcYCLACpq_opslsvS7hEquFMssVlqBISokVGofBbGWegS41QW7ZOPfWPlptMvx2s0FnmrvMxyqMXc1-I-eT-YrlrRjn8ZHfQtnnfjtspZzFHOJ8XkoyEZRhxuo6jSLhu0YRBWykxAkV63PWXIhXPJBWAkKKxv7_9nn0-mE__y5uGmb8lThpQaT3E7IJv1urGHgIlq_c53_ltWHQsW
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqokIvtJRHn2AQBy7ZJrbzsMQFVV0t0PSwaqVeUGR77bJ0k11tkktP_Qn9jfwSxs6jKgUJcYkieSI7tsfzzXj8GaH3chIanRDjKaIjDyyE9EQEXopkJpbgyQWxtPGO9DQanbMvF-HFCvrYnYVp-CH6gJvVDLdeWwW3AenDO9bQfJkPCABEcNgf2Ru9nUM1viOP4rzhYI6ZXWk463iFfHLYf3rfGj2AmPcRqzM5ww30rWtsk2lyNagrOVDXv_E4_u_fbKKnLRbFn5rJ8wyt6GILPU7b3fYttObSQ1X5HP0Yz2VdVng8xOX3aZ6DvcOimOAyF7PZz5vbarqApyguZxq7FEVwlq80XtRgePHEJYlgG_HFZmoxLsh2F7MojZf60ubCtgdCX6Dz4fHZ0chrb2nwFA2p7wVM-xE3moYi4vGE8oAGTMWGKmE3OWFRCAQ3gVGJ0NokEvCFFiZRBqARoEVJX6LVYl7obYQZNYJEOokVAy81UMKSn_lh4ptIGZEEO-hDN1qZainM7U0as6whXyYZ9GLmenEHvetFFw1vx5-E9rshz1rVLTMSUsvoE9vit30xKJ3dSRGFntdWhoBnyRMGTXrVTJW-Fko5ZQCToLFuwP9efZaOU_ey---ib9CT0Vl6kp18Pv26h9aJzbBxGW_7aLVa1voAIFIlXztN-AXsYA8x
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiouFAqUPgCDOHDJNrGdxFZPiLIqj63Qiko9IEW2Y5elm-xqk1w49SfwG_klHTuPqjwkxCWK5Ins2B7PN-PxZ4Reqjy2hhMbaGKSACyECmQCXopiNlXgyUWpcvGOyUlyfMren8Vna-iwPwvT8kMMATenGX69dgq-zO3BNWlosSpGBPAh-Ou3WBJyN6WPptfcUUK0FMwpcwuNYD2tUEgOhk9vGqPfEOZNwOotzngTfenb2iaaXIyaWo30919oHP_zZ-6hux0Sxa_bqXMfrZlyC21Mur32LXTbJ4fq6gH6Nl2opqrxdIyrr7OiAGuHZZnjqpDz-c_LH_VsCU9Zns8N9gmK4CpfGLxswOzi3KeIYBfvxXbmEC7I9teyaINX5txlwnbHQR-i0_Hbz2-Og-6OhkDTmIZBxEyYCGtoLBOR5lRENGI6tVRLt8UJS0IkhY2s5tIYyxWgCyMt1xaAEWBFRR-h9XJRmscIM2olSQxPNQMfNdLSUZ-FMQ9toq3k0Q561Q9WpjsCc3ePxjxrqZdJBr2Y-V7cQS8G0WXL2vEnof1-xLNOcauMxNTx-aSu-PlQDCrn9lFkaRaNkyHgVwrOoEnb7UwZaqFUUAYgCRrrx_vv1WeT6cS_7P676DO08elonH18d_JhD90hLr3Gp7vto_V61ZgngI9q9dTrwRXcAg3p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+RF+shimming+and+small-tip-angle+multispoke+pulse+design+with+finite-difference+regularization&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Paez%2C+Adrian&rft.au=Gu%2C+Chunming&rft.au=Cao%2C+Zhipeng&rft.date=2021-09-01&rft.issn=1522-2594&rft.eissn=1522-2594&rft.volume=86&rft.issue=3&rft.spage=1472&rft_id=info:doi/10.1002%2Fmrm.28820&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon