Towards Enabling Binary Decomposition for Partial Multi-Label Learning

Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by iden...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. PP; no. 11; pp. 1 - 16
Main Authors Liu, Bing-Qing, Jia, Bin-Bin, Zhang, Min-Ling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.
AbstractList Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.
Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.
Author Jia, Bin-Bin
Zhang, Min-Ling
Liu, Bing-Qing
Author_xml – sequence: 1
  givenname: Bing-Qing
  surname: Liu
  fullname: Liu, Bing-Qing
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Bin-Bin
  orcidid: 0000-0003-3302-9398
  surname: Jia
  fullname: Jia, Bin-Bin
  organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China
– sequence: 3
  givenname: Min-Ling
  orcidid: 0000-0003-1880-5918
  surname: Zhang
  fullname: Zhang, Min-Ling
  organization: School of Computer Science and Engineering, Southeast University, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37384465$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PwjAYhxuDEVC_gDFmiRcvw_Zt13VHRVATjB7wvHSlMyWjxXaL8dtbBI3h4Om9PM_77zdEPeusRuiM4BEhuLiev9w8PY4AAx1RKHBe5AdoAITjtIACemiACYdUCBB9NAxhiTFhGaZHqE9zKhjj2QBN5-5D-kVIJlZWjbFvya2x0n8md1q51doF0xpnk9r55EX61sgmeeqa1qQzWekmmWnpbbRO0GEtm6BPd_UYvU4n8_FDOnu-fxzfzFJFM2jTupBxW6C1wCTjdY5VzqEQivCKVVwpXglRVQupakYEl0LHYyImdM4WhICkx-hq23ft3XunQ1uuTFC6aaTVrgslCApZzghARC_30KXrvI3bRSoHxjADHqmLHdVVK70o196s4vnlz4ciAFtAeReC1_UvQnC5iaH8jqHcxFDuYoiS2JOUaeXmk62XpvlfPd-qRmv9ZxbhAoqMfgH8Q5Mx
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1145_3700879
crossref_primary_10_1007_s10115_023_01988_2
crossref_primary_10_1109_TMM_2024_3402534
crossref_primary_10_1007_s00521_024_10822_x
Cites_doi 10.1613/jair.105
10.1109/TIP.2014.2298978
10.1007/978-3-319-42911-3_57
10.1016/j.patcog.2004.03.009
10.1007/978-3-030-59410-7_41
10.1109/TKDE.2013.39
10.1007/s11432-020-3117-3
10.1109/ICDM50108.2020.00085
10.1016/j.patcog.2006.12.019
10.1109/TPAMI.2020.2985210
10.24963/ijcai.2018/398
10.1145/3394486.3403053
10.1007/978-1-4899-7687-1_910
10.1145/2647868.2654904
10.1109/TPAMI.2006.116
10.1145/3132847.3133084
10.1109/ICDM.2019.00038
10.1007/s11704-020-9294-7
10.1016/j.ins.2020.09.019
10.1007/s10115-020-01527-3
10.2478/v10006-012-0061-2
10.1109/TMM.2021.3055959
10.1007/s00500-020-05203-0
10.1145/2716262
10.1007/978-3-319-97304-3_35
10.24963/ijcai.2020/362
10.1007/s10994-008-5064-8
10.1109/TKDE.2017.2721942
10.1016/j.knosys.2020.106624
10.1145/1835449.1835503
10.1609/aaai.v35i12.17264
10.1109/TPAMI.2014.2339815
10.1145/1557019.1557119
10.1609/aaai.v32i1.11644
10.24963/ijcai.2019/512
10.1109/ICDM.2018.00192
10.1016/j.patcog.2007.04.008
10.1145/3447548.3467259
10.1609/aaai.v33i01.33015016
10.1109/TPAMI.2008.266
10.1007/s11704-017-7031-7
10.1109/TPAMI.2008.38
10.1007/s11432-020-3132-4
10.1145/1961189.1961199
10.1609/aaai.v34i04.6124
10.24963/ijcai.2021/303
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3290797
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 16
ExternalDocumentID 37384465
10_1109_TPAMI_2023_3290797
10168295
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RIG
RNI
RZB
VH1
XJT
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-f9a02323f80156f70c76298c16b4b6cc6b88bbdacf4186a8e1606f78e74d112a3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 11:43:29 EDT 2025
Sun Jun 29 12:46:41 EDT 2025
Wed Feb 19 02:22:52 EST 2025
Tue Jul 01 01:43:07 EDT 2025
Thu Apr 24 23:11:53 EDT 2025
Wed Aug 27 02:56:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f9a02323f80156f70c76298c16b4b6cc6b88bbdacf4186a8e1606f78e74d112a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1880-5918
0000-0003-3302-9398
PMID 37384465
PQID 2872440426
PQPubID 85458
PageCount 16
ParticipantIDs proquest_journals_2872440426
proquest_miscellaneous_2832574122
crossref_primary_10_1109_TPAMI_2023_3290797
crossref_citationtrail_10_1109_TPAMI_2023_3290797
ieee_primary_10168295
pubmed_primary_37384465
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
demšar (ref7) 2006; 7
ref10
ref17
ref16
ref19
ref18
liu (ref21) 2012
ref51
ref50
ref46
ref45
ref48
armano (ref2) 0
ref47
ref42
ref41
ref44
ref43
ref49
ref8
xie (ref36) 2022; 44
ref9
ref4
ref3
ref5
nam (ref24) 0
ref40
ref35
allwein (ref1) 2000; 1
ref34
ref37
ref31
ref30
ref33
cour (ref6) 2011; 12
ref32
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
References_xml – start-page: 26
  year: 0
  ident: ref2
  article-title: Error-correcting output codes for multi-label text categorization
  publication-title: Proc 3rd Ital Inf Retrieval Workshop
– ident: ref8
  doi: 10.1613/jair.105
– volume: 1
  start-page: 113
  year: 2000
  ident: ref1
  article-title: Reducing multiclass to binary: A unifying approach for margin classifiers
  publication-title: J Mach Learn Res
– ident: ref27
  doi: 10.1109/TIP.2014.2298978
– ident: ref52
  doi: 10.1007/978-3-319-42911-3_57
– ident: ref3
  doi: 10.1016/j.patcog.2004.03.009
– start-page: 548
  year: 2012
  ident: ref21
  article-title: A conditional multinomial mixture model for superset label learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref45
  doi: 10.1007/978-3-030-59410-7_41
– volume: 12
  start-page: 1501
  year: 2011
  ident: ref6
  article-title: Learning from partial labels
  publication-title: J Mach Learn Res
– ident: ref50
  doi: 10.1109/TKDE.2013.39
– ident: ref18
  doi: 10.1007/s11432-020-3117-3
– ident: ref44
  doi: 10.1109/ICDM50108.2020.00085
– ident: ref49
  doi: 10.1016/j.patcog.2006.12.019
– ident: ref11
  doi: 10.1109/TPAMI.2020.2985210
– volume: 7
  start-page: 1
  year: 2006
  ident: ref7
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref34
  doi: 10.24963/ijcai.2018/398
– ident: ref22
  doi: 10.1145/3394486.3403053
– ident: ref53
  doi: 10.1007/978-1-4899-7687-1_910
– ident: ref33
  doi: 10.1145/2647868.2654904
– ident: ref26
  doi: 10.1109/TPAMI.2006.116
– ident: ref17
  doi: 10.1145/3132847.3133084
– ident: ref15
  doi: 10.1109/ICDM.2019.00038
– ident: ref31
  doi: 10.1007/s11704-020-9294-7
– ident: ref23
  doi: 10.1016/j.ins.2020.09.019
– ident: ref29
  doi: 10.1007/s10115-020-01527-3
– ident: ref16
  doi: 10.2478/v10006-012-0061-2
– ident: ref28
  doi: 10.1109/TMM.2021.3055959
– ident: ref20
  doi: 10.1007/s00500-020-05203-0
– ident: ref13
  doi: 10.1145/2716262
– ident: ref51
  doi: 10.1007/978-3-319-97304-3_35
– ident: ref19
  doi: 10.24963/ijcai.2020/362
– ident: ref12
  doi: 10.1007/s10994-008-5064-8
– ident: ref48
  doi: 10.1109/TKDE.2017.2721942
– ident: ref41
  doi: 10.1016/j.knosys.2020.106624
– ident: ref14
  doi: 10.1145/1835449.1835503
– ident: ref40
  doi: 10.1609/aaai.v35i12.17264
– ident: ref47
  doi: 10.1109/TPAMI.2014.2339815
– ident: ref42
  doi: 10.1145/1557019.1557119
– ident: ref35
  doi: 10.1609/aaai.v32i1.11644
– ident: ref32
  doi: 10.24963/ijcai.2019/512
– ident: ref43
  doi: 10.1109/ICDM.2018.00192
– ident: ref25
  doi: 10.1016/j.patcog.2007.04.008
– ident: ref37
  doi: 10.1145/3447548.3467259
– ident: ref30
  doi: 10.1609/aaai.v33i01.33015016
– ident: ref9
  doi: 10.1109/TPAMI.2008.266
– ident: ref46
  doi: 10.1007/s11704-017-7031-7
– ident: ref10
  doi: 10.1109/TPAMI.2008.38
– ident: ref38
  doi: 10.1007/s11432-020-3132-4
– start-page: 4733
  year: 0
  ident: ref24
  article-title: Learning context-dependent label permutations for multi-label classification
  publication-title: Proc 36th Int Conf Mach Learn
– ident: ref5
  doi: 10.1145/1961189.1961199
– volume: 44
  start-page: 3676
  year: 2022
  ident: ref36
  article-title: Partial multi-label learning with noisy label identification
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref39
  doi: 10.1609/aaai.v34i04.6124
– ident: ref4
  doi: 10.24963/ijcai.2021/303
SSID ssj0014503
Score 2.5677106
Snippet Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adequacy
binary decomposition
Codes
Coding
Comparative studies
Decoding
Decomposition
Encoding
Error correction
error-correcting output codes
Estimation
Iterative methods
Labeling
Labels
Machine learning
partial multi-label learning
Performance prediction
Phase locked loops
Prediction models
State-of-the-art reviews
Supervised learning
Training
Title Towards Enabling Binary Decomposition for Partial Multi-Label Learning
URI https://ieeexplore.ieee.org/document/10168295
https://www.ncbi.nlm.nih.gov/pubmed/37384465
https://www.proquest.com/docview/2872440426
https://www.proquest.com/docview/2832574122
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ6oJz34ftRXMPFmWvugLRx9bdSo8bAm3hpgwYNm1-juxV_vDKWbjYnGW9NSoMwAM2W-bwCOS1ejkSDILZF1zLWQsapMGpelqXitC9VS5t8_VNdP_Pa5fA5gdY-Fsdb64DOb0KU_yx-MzIR-lZ2SpylyWc7DPHpuLVhremTAS58GGYvgFEc_okPIpPK0_3h2f5NQovCkyNEbJIanmV3Ip1X53cL0O01vBR66PrYBJq_JZKwT8_WDvvHfH7EKy8HmZGetkqzBnB2uw0qXz4GF6b0OSzPkhBvQ6_uI2k92RfAqvMXOPXaXXVqKQw_BXgyNXvZI-octeDRvfKe0fWOBuPVlE556V_2L6zhkXYgNGmPj2EmFA5UXThDK2tWpwfVSCpNVmuvKmEoLofVAGcczUSlhM_SBXC1szQdovKliCxaGo6HdAWY4rp5cuZrbknOHNRa1M6mz0snc8CyCrJNCYwIlOWXGeGu8a5LKxkuuIck1QXIRnEzfeW8JOf4svUkSmCnZDn4E-520mzBpPxt0HnOiS8yrCI6mj3G60RmKGtrRhMoUuMjxLM8j2G61ZFo5kUQR_9zuL43uwSL1rUUy7sPC-GNiD9CkGetDr8rfU9LvHw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeigcSsszLS2uxA0l5OEk9pFSVgvdXXFYJG6R7bU5gHYR7F749Z1xnNWqEohblExsx-PHTDzfNwDHpavRSBDklsg65lrIWFUmjcvSVLzWhWop84ejqn_Dr27L2wBW91gYa60PPrMJXfqz_MnMLOhX2Sl5miKX5Rp8xI2_zFq41vLQgJc-ETIK4SRHT6LDyKTydHx9NrxMKFV4UuToDxLH08o-5BOrvG5j-r2mtwWjrpVtiMl9spjrxLz8R-D47s_4Ap-D1cnO2mHyFT7Y6TZsdRkdWJjg27C5Qk-4A72xj6l9ZhcEsMJb7LdH77I_liLRQ7gXQ7OXXdMIxBo8njceKG0fWKBuvduFm97F-Lwfh7wLsUFzbB47qbCj8sIJwlm7OjW4YkphskpzXRlTaSG0nijjeCYqJWyGXpCrha35BM03VezB-nQ2tQfADMf1kytXc1ty7rDEonYmdVY6mRueRZB1WmhMICWn3BgPjXdOUtl4zTWkuSZoLoKT5TuPLSXHm9K7pIEVybbzIzjstN2EafvcoPuYE2FiXkXwa_kYJxydoqipnS1IpsBljmd5HsF-O0qWhRNNFDHQfXul0iP41B8PB83gcvT3O2xQO1tc4yGsz58W9gcaOHP90w_rf_Pp8mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Enabling+Binary+Decomposition+for+Partial+Multi-Label+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Bing-Qing&rft.au=Jia%2C+Bin-Bin&rft.au=Zhang%2C+Min-Ling&rft.date=2023-11-01&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2023.3290797&rft_id=info%3Apmid%2F37384465&rft.externalDocID=37384465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon