Towards Enabling Binary Decomposition for Partial Multi-Label Learning
Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by iden...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. PP; no. 11; pp. 1 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning. |
---|---|
AbstractList | Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning. Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning. |
Author | Jia, Bin-Bin Zhang, Min-Ling Liu, Bing-Qing |
Author_xml | – sequence: 1 givenname: Bing-Qing surname: Liu fullname: Liu, Bing-Qing organization: School of Computer Science and Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Bin-Bin orcidid: 0000-0003-3302-9398 surname: Jia fullname: Jia, Bin-Bin organization: College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou, China – sequence: 3 givenname: Min-Ling orcidid: 0000-0003-1880-5918 surname: Zhang fullname: Zhang, Min-Ling organization: School of Computer Science and Engineering, Southeast University, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37384465$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9PwjAYhxuDEVC_gDFmiRcvw_Zt13VHRVATjB7wvHSlMyWjxXaL8dtbBI3h4Om9PM_77zdEPeusRuiM4BEhuLiev9w8PY4AAx1RKHBe5AdoAITjtIACemiACYdUCBB9NAxhiTFhGaZHqE9zKhjj2QBN5-5D-kVIJlZWjbFvya2x0n8md1q51doF0xpnk9r55EX61sgmeeqa1qQzWekmmWnpbbRO0GEtm6BPd_UYvU4n8_FDOnu-fxzfzFJFM2jTupBxW6C1wCTjdY5VzqEQivCKVVwpXglRVQupakYEl0LHYyImdM4WhICkx-hq23ft3XunQ1uuTFC6aaTVrgslCApZzghARC_30KXrvI3bRSoHxjADHqmLHdVVK70o196s4vnlz4ciAFtAeReC1_UvQnC5iaH8jqHcxFDuYoiS2JOUaeXmk62XpvlfPd-qRmv9ZxbhAoqMfgH8Q5Mx |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1145_3700879 crossref_primary_10_1007_s10115_023_01988_2 crossref_primary_10_1109_TMM_2024_3402534 crossref_primary_10_1007_s00521_024_10822_x |
Cites_doi | 10.1613/jair.105 10.1109/TIP.2014.2298978 10.1007/978-3-319-42911-3_57 10.1016/j.patcog.2004.03.009 10.1007/978-3-030-59410-7_41 10.1109/TKDE.2013.39 10.1007/s11432-020-3117-3 10.1109/ICDM50108.2020.00085 10.1016/j.patcog.2006.12.019 10.1109/TPAMI.2020.2985210 10.24963/ijcai.2018/398 10.1145/3394486.3403053 10.1007/978-1-4899-7687-1_910 10.1145/2647868.2654904 10.1109/TPAMI.2006.116 10.1145/3132847.3133084 10.1109/ICDM.2019.00038 10.1007/s11704-020-9294-7 10.1016/j.ins.2020.09.019 10.1007/s10115-020-01527-3 10.2478/v10006-012-0061-2 10.1109/TMM.2021.3055959 10.1007/s00500-020-05203-0 10.1145/2716262 10.1007/978-3-319-97304-3_35 10.24963/ijcai.2020/362 10.1007/s10994-008-5064-8 10.1109/TKDE.2017.2721942 10.1016/j.knosys.2020.106624 10.1145/1835449.1835503 10.1609/aaai.v35i12.17264 10.1109/TPAMI.2014.2339815 10.1145/1557019.1557119 10.1609/aaai.v32i1.11644 10.24963/ijcai.2019/512 10.1109/ICDM.2018.00192 10.1016/j.patcog.2007.04.008 10.1145/3447548.3467259 10.1609/aaai.v33i01.33015016 10.1109/TPAMI.2008.266 10.1007/s11704-017-7031-7 10.1109/TPAMI.2008.38 10.1007/s11432-020-3132-4 10.1145/1961189.1961199 10.1609/aaai.v34i04.6124 10.24963/ijcai.2021/303 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2023.3290797 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 16 |
ExternalDocumentID | 37384465 10_1109_TPAMI_2023_3290797 10168295 |
Genre | orig-research Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RIG RNI RZB VH1 XJT NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c352t-f9a02323f80156f70c76298c16b4b6cc6b88bbdacf4186a8e1606f78e74d112a3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 11:43:29 EDT 2025 Sun Jun 29 12:46:41 EDT 2025 Wed Feb 19 02:22:52 EST 2025 Tue Jul 01 01:43:07 EDT 2025 Thu Apr 24 23:11:53 EDT 2025 Wed Aug 27 02:56:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-f9a02323f80156f70c76298c16b4b6cc6b88bbdacf4186a8e1606f78e74d112a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1880-5918 0000-0003-3302-9398 |
PMID | 37384465 |
PQID | 2872440426 |
PQPubID | 85458 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2872440426 proquest_miscellaneous_2832574122 crossref_primary_10_1109_TPAMI_2023_3290797 crossref_citationtrail_10_1109_TPAMI_2023_3290797 ieee_primary_10168295 pubmed_primary_37384465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 demšar (ref7) 2006; 7 ref10 ref17 ref16 ref19 ref18 liu (ref21) 2012 ref51 ref50 ref46 ref45 ref48 armano (ref2) 0 ref47 ref42 ref41 ref44 ref43 ref49 ref8 xie (ref36) 2022; 44 ref9 ref4 ref3 ref5 nam (ref24) 0 ref40 ref35 allwein (ref1) 2000; 1 ref34 ref37 ref31 ref30 ref33 cour (ref6) 2011; 12 ref32 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 |
References_xml | – start-page: 26 year: 0 ident: ref2 article-title: Error-correcting output codes for multi-label text categorization publication-title: Proc 3rd Ital Inf Retrieval Workshop – ident: ref8 doi: 10.1613/jair.105 – volume: 1 start-page: 113 year: 2000 ident: ref1 article-title: Reducing multiclass to binary: A unifying approach for margin classifiers publication-title: J Mach Learn Res – ident: ref27 doi: 10.1109/TIP.2014.2298978 – ident: ref52 doi: 10.1007/978-3-319-42911-3_57 – ident: ref3 doi: 10.1016/j.patcog.2004.03.009 – start-page: 548 year: 2012 ident: ref21 article-title: A conditional multinomial mixture model for superset label learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref45 doi: 10.1007/978-3-030-59410-7_41 – volume: 12 start-page: 1501 year: 2011 ident: ref6 article-title: Learning from partial labels publication-title: J Mach Learn Res – ident: ref50 doi: 10.1109/TKDE.2013.39 – ident: ref18 doi: 10.1007/s11432-020-3117-3 – ident: ref44 doi: 10.1109/ICDM50108.2020.00085 – ident: ref49 doi: 10.1016/j.patcog.2006.12.019 – ident: ref11 doi: 10.1109/TPAMI.2020.2985210 – volume: 7 start-page: 1 year: 2006 ident: ref7 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref34 doi: 10.24963/ijcai.2018/398 – ident: ref22 doi: 10.1145/3394486.3403053 – ident: ref53 doi: 10.1007/978-1-4899-7687-1_910 – ident: ref33 doi: 10.1145/2647868.2654904 – ident: ref26 doi: 10.1109/TPAMI.2006.116 – ident: ref17 doi: 10.1145/3132847.3133084 – ident: ref15 doi: 10.1109/ICDM.2019.00038 – ident: ref31 doi: 10.1007/s11704-020-9294-7 – ident: ref23 doi: 10.1016/j.ins.2020.09.019 – ident: ref29 doi: 10.1007/s10115-020-01527-3 – ident: ref16 doi: 10.2478/v10006-012-0061-2 – ident: ref28 doi: 10.1109/TMM.2021.3055959 – ident: ref20 doi: 10.1007/s00500-020-05203-0 – ident: ref13 doi: 10.1145/2716262 – ident: ref51 doi: 10.1007/978-3-319-97304-3_35 – ident: ref19 doi: 10.24963/ijcai.2020/362 – ident: ref12 doi: 10.1007/s10994-008-5064-8 – ident: ref48 doi: 10.1109/TKDE.2017.2721942 – ident: ref41 doi: 10.1016/j.knosys.2020.106624 – ident: ref14 doi: 10.1145/1835449.1835503 – ident: ref40 doi: 10.1609/aaai.v35i12.17264 – ident: ref47 doi: 10.1109/TPAMI.2014.2339815 – ident: ref42 doi: 10.1145/1557019.1557119 – ident: ref35 doi: 10.1609/aaai.v32i1.11644 – ident: ref32 doi: 10.24963/ijcai.2019/512 – ident: ref43 doi: 10.1109/ICDM.2018.00192 – ident: ref25 doi: 10.1016/j.patcog.2007.04.008 – ident: ref37 doi: 10.1145/3447548.3467259 – ident: ref30 doi: 10.1609/aaai.v33i01.33015016 – ident: ref9 doi: 10.1109/TPAMI.2008.266 – ident: ref46 doi: 10.1007/s11704-017-7031-7 – ident: ref10 doi: 10.1109/TPAMI.2008.38 – ident: ref38 doi: 10.1007/s11432-020-3132-4 – start-page: 4733 year: 0 ident: ref24 article-title: Learning context-dependent label permutations for multi-label classification publication-title: Proc 36th Int Conf Mach Learn – ident: ref5 doi: 10.1145/1961189.1961199 – volume: 44 start-page: 3676 year: 2022 ident: ref36 article-title: Partial multi-label learning with noisy label identification publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref39 doi: 10.1609/aaai.v34i04.6124 – ident: ref4 doi: 10.24963/ijcai.2021/303 |
SSID | ssj0014503 |
Score | 2.5677106 |
Snippet | Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is associated with multiple candidate... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Adequacy binary decomposition Codes Coding Comparative studies Decoding Decomposition Encoding Error correction error-correcting output codes Estimation Iterative methods Labeling Labels Machine learning partial multi-label learning Performance prediction Phase locked loops Prediction models State-of-the-art reviews Supervised learning Training |
Title | Towards Enabling Binary Decomposition for Partial Multi-Label Learning |
URI | https://ieeexplore.ieee.org/document/10168295 https://www.ncbi.nlm.nih.gov/pubmed/37384465 https://www.proquest.com/docview/2872440426 https://www.proquest.com/docview/2832574122 |
Volume | PP |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8QgEJ6oJz34ftRXMPFmWvugLRx9bdSo8bAm3hpgwYNm1-juxV_vDKWbjYnGW9NSoMwAM2W-bwCOS1ejkSDILZF1zLWQsapMGpelqXitC9VS5t8_VNdP_Pa5fA5gdY-Fsdb64DOb0KU_yx-MzIR-lZ2SpylyWc7DPHpuLVhremTAS58GGYvgFEc_okPIpPK0_3h2f5NQovCkyNEbJIanmV3Ip1X53cL0O01vBR66PrYBJq_JZKwT8_WDvvHfH7EKy8HmZGetkqzBnB2uw0qXz4GF6b0OSzPkhBvQ6_uI2k92RfAqvMXOPXaXXVqKQw_BXgyNXvZI-octeDRvfKe0fWOBuPVlE556V_2L6zhkXYgNGmPj2EmFA5UXThDK2tWpwfVSCpNVmuvKmEoLofVAGcczUSlhM_SBXC1szQdovKliCxaGo6HdAWY4rp5cuZrbknOHNRa1M6mz0snc8CyCrJNCYwIlOWXGeGu8a5LKxkuuIck1QXIRnEzfeW8JOf4svUkSmCnZDn4E-520mzBpPxt0HnOiS8yrCI6mj3G60RmKGtrRhMoUuMjxLM8j2G61ZFo5kUQR_9zuL43uwSL1rUUy7sPC-GNiD9CkGetDr8rfU9LvHw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeigcSsszLS2uxA0l5OEk9pFSVgvdXXFYJG6R7bU5gHYR7F749Z1xnNWqEohblExsx-PHTDzfNwDHpavRSBDklsg65lrIWFUmjcvSVLzWhWop84ejqn_Dr27L2wBW91gYa60PPrMJXfqz_MnMLOhX2Sl5miKX5Rp8xI2_zFq41vLQgJc-ETIK4SRHT6LDyKTydHx9NrxMKFV4UuToDxLH08o-5BOrvG5j-r2mtwWjrpVtiMl9spjrxLz8R-D47s_4Ap-D1cnO2mHyFT7Y6TZsdRkdWJjg27C5Qk-4A72xj6l9ZhcEsMJb7LdH77I_liLRQ7gXQ7OXXdMIxBo8njceKG0fWKBuvduFm97F-Lwfh7wLsUFzbB47qbCj8sIJwlm7OjW4YkphskpzXRlTaSG0nijjeCYqJWyGXpCrha35BM03VezB-nQ2tQfADMf1kytXc1ty7rDEonYmdVY6mRueRZB1WmhMICWn3BgPjXdOUtl4zTWkuSZoLoKT5TuPLSXHm9K7pIEVybbzIzjstN2EafvcoPuYE2FiXkXwa_kYJxydoqipnS1IpsBljmd5HsF-O0qWhRNNFDHQfXul0iP41B8PB83gcvT3O2xQO1tc4yGsz58W9gcaOHP90w_rf_Pp8mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Enabling+Binary+Decomposition+for+Partial+Multi-Label+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Bing-Qing&rft.au=Jia%2C+Bin-Bin&rft.au=Zhang%2C+Min-Ling&rft.date=2023-11-01&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2023.3290797&rft_id=info%3Apmid%2F37384465&rft.externalDocID=37384465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |