Development and progress on hydrogen metallurgy

Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO 2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H 2 reduction ironmak...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 27; no. 6; pp. 713 - 723
Main Authors Tang, Jue, Chu, Man-sheng, Li, Feng, Feng, Cong, Liu, Zheng-gen, Zhou, Yu-sheng
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.06.2020
Springer Nature B.V
School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO 2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H 2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H 2 ™ by Midrex Technologies, Inc. (United States); H 2 FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H 2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO 2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace.
AbstractList Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO 2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H 2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H 2 ™ by Midrex Technologies, Inc. (United States); H 2 FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H 2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO 2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace.
Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2TM by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been in-dustrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification–gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification–gas-based shaft furnace–electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hy-drogen shaft furnace.
Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2™ by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace.
Author Li, Feng
Feng, Cong
Tang, Jue
Chu, Man-sheng
Zhou, Yu-sheng
Liu, Zheng-gen
AuthorAffiliation School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
AuthorAffiliation_xml – name: School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Author_xml – sequence: 1
  givenname: Jue
  surname: Tang
  fullname: Tang, Jue
  email: tangj@smm.neu.edu.cn
  organization: School of Ferrous Metallurgy, Northeastern University
– sequence: 2
  givenname: Man-sheng
  surname: Chu
  fullname: Chu, Man-sheng
  email: chums@smm.neu.edu.cn
  organization: State Key Laboratory of Rolling and Automation, Northeastern University
– sequence: 3
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: School of Ferrous Metallurgy, Northeastern University
– sequence: 4
  givenname: Cong
  surname: Feng
  fullname: Feng, Cong
  organization: School of Ferrous Metallurgy, Northeastern University
– sequence: 5
  givenname: Zheng-gen
  surname: Liu
  fullname: Liu, Zheng-gen
  organization: School of Ferrous Metallurgy, Northeastern University
– sequence: 6
  givenname: Yu-sheng
  surname: Zhou
  fullname: Zhou, Yu-sheng
  organization: School of Ferrous Metallurgy, Northeastern University
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXkrcSdI2y6XMTxh4o-BdSNOktnbpTDrd_r0ZFQaCXuUEnud8vBM0cp0zCJ0TuCIAfBYIzQnDQAFToASnR2hM5rnABNjrKNY5T3HKhThBkxAagJxz4GM0uzGfpu3WK-P6RLkyWfuu8iaEpHPJ266MP-OSlelV2258tTtFx1a1wZz9vFP0cnf7vHjAy6f7x8X1EmuW0R5bQQpGhbVMzEuaAdc6LbhKWZkXOrfacstTTpnmLJuTLAUhiOaaU5GVOqeWTdHl0PdLOatcJZtu412cKIvmvSm320KaeGi8A4BE-mKg4_YfGxP6A04FETnwOaSRIgOlfReCN1aufb1SficJyH2KckhRxr5yn6LcO_yXo-te9XXneq_q9l-TDmaIU1xl_GGnv6Vvi4yGkA
CitedBy_id crossref_primary_10_1007_s12613_023_2730_6
crossref_primary_10_3390_ma16247676
crossref_primary_10_1002_ange_202014449
crossref_primary_10_1002_srin_202400659
crossref_primary_10_1016_j_cej_2023_142319
crossref_primary_10_1016_j_jcis_2023_10_104
crossref_primary_10_1007_s42461_022_00714_w
crossref_primary_10_3390_met14050589
crossref_primary_10_1016_j_ijhydene_2024_04_229
crossref_primary_10_1016_j_jes_2023_03_031
crossref_primary_10_1002_celc_202300205
crossref_primary_10_3389_fenvs_2024_1491608
crossref_primary_10_3390_met13050927
crossref_primary_10_52150_2522_9117_2023_37_4_25
crossref_primary_10_3390_ma14164433
crossref_primary_10_1016_j_energy_2025_134387
crossref_primary_10_1016_j_ijhydene_2022_10_071
crossref_primary_10_1007_s40831_023_00752_8
crossref_primary_10_1080_03019233_2021_1909992
crossref_primary_10_1016_j_ijhydene_2024_11_432
crossref_primary_10_1007_s10098_023_02686_x
crossref_primary_10_15407_steelcast2022_02_008
crossref_primary_10_1002_cssc_202401045
crossref_primary_10_1007_s11837_024_07025_z
crossref_primary_10_1016_j_ijhydene_2021_05_095
crossref_primary_10_1007_s40831_022_00555_3
crossref_primary_10_1016_j_energy_2023_130112
crossref_primary_10_1016_j_ijhydene_2024_05_175
crossref_primary_10_1016_j_fuel_2024_132715
crossref_primary_10_1016_j_isci_2021_102966
crossref_primary_10_1016_j_ijhydene_2021_01_083
crossref_primary_10_1007_s11663_021_02156_z
crossref_primary_10_1016_j_est_2023_108473
crossref_primary_10_2355_isijinternational_ISIJINT_2020_401
crossref_primary_10_1088_1742_6596_2812_1_012018
crossref_primary_10_3390_met12111864
crossref_primary_10_1016_S1003_6326_22_66006_0
crossref_primary_10_3390_pr12091829
crossref_primary_10_1007_s10098_023_02518_y
crossref_primary_10_1007_s12613_022_2494_4
crossref_primary_10_3390_molecules28248103
crossref_primary_10_1007_s12613_021_2329_8
crossref_primary_10_1016_j_egyr_2023_01_083
crossref_primary_10_1080_03019233_2022_2071093
crossref_primary_10_1016_j_jclepro_2024_141867
crossref_primary_10_1007_s40831_024_00962_8
crossref_primary_10_1016_j_enconman_2024_118843
crossref_primary_10_3390_ma17071613
crossref_primary_10_1007_s42243_023_01057_6
crossref_primary_10_1016_j_eti_2023_103420
crossref_primary_10_1007_s11356_025_36038_7
crossref_primary_10_1016_j_apenergy_2023_122452
crossref_primary_10_1016_j_eng_2023_02_014
crossref_primary_10_1007_s40831_024_00925_z
crossref_primary_10_1016_j_powtec_2021_09_080
crossref_primary_10_1016_j_eng_2024_04_025
crossref_primary_10_1016_j_ijhydene_2023_07_269
crossref_primary_10_1016_j_powtec_2022_118073
crossref_primary_10_1016_j_ijhydene_2020_12_123
crossref_primary_10_1080_03019233_2022_2128403
crossref_primary_10_2355_isijinternational_ISIJINT_2021_574
crossref_primary_10_3390_pr11051506
crossref_primary_10_1016_j_ijhydene_2022_06_170
crossref_primary_10_1007_s11663_023_02827_z
crossref_primary_10_1016_j_energy_2022_125847
crossref_primary_10_1002_srin_202400698
crossref_primary_10_1016_j_powtec_2022_117654
crossref_primary_10_1016_j_ijhydene_2024_09_373
crossref_primary_10_1016_j_hydromet_2025_106468
crossref_primary_10_1007_s42243_022_00876_3
crossref_primary_10_1016_j_ijhydene_2024_03_192
crossref_primary_10_1016_j_ijhydene_2022_12_033
crossref_primary_10_1016_j_energy_2023_127237
crossref_primary_10_3390_ma14081914
crossref_primary_10_1016_j_seppur_2023_123693
crossref_primary_10_1016_j_seppur_2023_125993
crossref_primary_10_1016_j_ijhydene_2021_12_154
crossref_primary_10_1016_j_jenvman_2024_123483
crossref_primary_10_1016_j_jaap_2024_106659
crossref_primary_10_1002_anie_202014449
crossref_primary_10_1002_srin_202300435
crossref_primary_10_1007_s12613_023_2800_9
crossref_primary_10_1016_j_fuel_2023_129432
crossref_primary_10_1007_s11663_024_03341_6
crossref_primary_10_1016_j_ijhydene_2024_09_014
crossref_primary_10_1063_5_0188819
crossref_primary_10_1016_j_ijhydene_2024_08_460
crossref_primary_10_1007_s12613_022_2443_2
crossref_primary_10_1007_s12613_024_2925_5
crossref_primary_10_1051_metal_2024043
crossref_primary_10_1007_s12613_020_2188_8
crossref_primary_10_3390_pr11092748
crossref_primary_10_1007_s12613_022_2478_4
crossref_primary_10_1016_j_ceramint_2024_07_163
crossref_primary_10_1007_s11356_024_35136_2
crossref_primary_10_1007_s40831_025_01017_2
crossref_primary_10_3390_rsee1010002
crossref_primary_10_1016_j_jclepro_2023_139585
crossref_primary_10_2298_JMMB231127011Z
crossref_primary_10_1038_s41467_021_27770_y
crossref_primary_10_1016_j_apcatb_2021_120909
crossref_primary_10_1016_j_fuel_2022_124823
crossref_primary_10_3390_su16093684
crossref_primary_10_2355_isijinternational_ISIJINT_2021_371
crossref_primary_10_1039_D3SU00201B
crossref_primary_10_1007_s12613_020_2210_1
crossref_primary_10_1007_s12613_022_2523_3
crossref_primary_10_3390_en17143565
crossref_primary_10_1002_srin_202200241
crossref_primary_10_1016_j_ijhydene_2024_08_094
crossref_primary_10_1016_j_ijhydene_2022_02_219
crossref_primary_10_1088_1742_6596_2951_1_012092
crossref_primary_10_1007_s12613_022_2475_7
crossref_primary_10_1016_j_ijhydene_2023_01_268
crossref_primary_10_1016_j_clet_2021_100345
crossref_primary_10_1002_srin_202300092
crossref_primary_10_1016_j_calphad_2023_102593
crossref_primary_10_1007_s43938_024_00067_4
crossref_primary_10_1016_j_ijhydene_2021_12_119
crossref_primary_10_1007_s12613_022_2512_6
crossref_primary_10_1007_s11837_023_05978_1
crossref_primary_10_1016_j_jclepro_2022_130805
crossref_primary_10_1007_s40831_022_00645_2
crossref_primary_10_1016_j_ijhydene_2022_06_106
crossref_primary_10_1002_srin_202400808
crossref_primary_10_1016_j_est_2024_112601
crossref_primary_10_3390_inventions7030063
crossref_primary_10_3390_cryst13020210
crossref_primary_10_1007_s11837_022_05301_4
crossref_primary_10_1016_j_fuel_2022_124368
crossref_primary_10_1080_03019233_2023_2204267
crossref_primary_10_1016_j_jclepro_2023_135874
crossref_primary_10_1007_s12613_021_2408_x
crossref_primary_10_1007_s42243_023_00951_3
crossref_primary_10_1016_j_powtec_2024_119462
crossref_primary_10_1007_s11663_023_02980_5
crossref_primary_10_1016_j_cherd_2022_10_007
crossref_primary_10_1002_srin_202100730
crossref_primary_10_2355_isijinternational_ISIJINT_2023_213
crossref_primary_10_3390_ma17174362
crossref_primary_10_1016_j_ijhydene_2021_09_195
crossref_primary_10_1002_srin_202300425
crossref_primary_10_1007_s11015_024_01656_y
crossref_primary_10_1007_s12613_021_2385_0
crossref_primary_10_1016_j_ijhydene_2022_07_258
crossref_primary_10_1007_s11015_024_01632_6
crossref_primary_10_1002_srin_202400480
crossref_primary_10_1007_s10668_022_02234_5
crossref_primary_10_1021_acssuschemeng_4c08451
crossref_primary_10_1016_j_jallcom_2024_174279
crossref_primary_10_1007_s40831_025_01011_8
crossref_primary_10_3390_hydrogen6020019
crossref_primary_10_1016_j_energy_2024_131094
crossref_primary_10_3390_su15129159
crossref_primary_10_3390_pr12020340
crossref_primary_10_1007_s40831_023_00772_4
crossref_primary_10_2355_isijinternational_ISIJINT_2023_448
crossref_primary_10_1016_j_jclepro_2023_136391
crossref_primary_10_1016_j_fuel_2021_121465
crossref_primary_10_3390_ma17163896
crossref_primary_10_1002_srin_202100749
crossref_primary_10_1002_srin_202300411
crossref_primary_10_1021_acssuschemeng_2c07136
crossref_primary_10_1021_acsengineeringau_3c00033
crossref_primary_10_3390_ma15197022
crossref_primary_10_1016_j_ijhydene_2023_07_307
crossref_primary_10_1016_j_apenergy_2024_125104
crossref_primary_10_1016_j_ijhydene_2025_01_371
crossref_primary_10_1016_j_jeurceramsoc_2024_116827
crossref_primary_10_1016_j_mineng_2024_108899
crossref_primary_10_1080_03019233_2022_2138168
crossref_primary_10_1111_ijac_15104
crossref_primary_10_1016_j_powtec_2024_120549
crossref_primary_10_1016_j_powtec_2022_117934
crossref_primary_10_1021_acs_energyfuels_4c06109
crossref_primary_10_1016_j_accre_2023_05_004
crossref_primary_10_3390_su15086518
crossref_primary_10_3390_en14051392
crossref_primary_10_1007_s40831_024_00999_9
crossref_primary_10_1016_j_powtec_2023_119270
crossref_primary_10_1007_s11837_023_05814_6
crossref_primary_10_1007_s40831_024_00860_z
crossref_primary_10_1038_s41563_022_01370_7
crossref_primary_10_1016_j_gerr_2024_100098
crossref_primary_10_1051_metal_2024092
crossref_primary_10_1016_j_apt_2023_104037
crossref_primary_10_1016_j_powtec_2025_120953
crossref_primary_10_3390_app14166913
crossref_primary_10_1007_s12613_022_2518_0
crossref_primary_10_1016_j_fuel_2021_122412
crossref_primary_10_1016_j_scitotenv_2024_173274
crossref_primary_10_1016_j_jclepro_2021_129797
crossref_primary_10_1051_mattech_2021023
crossref_primary_10_1016_j_heliyon_2024_e36715
crossref_primary_10_1016_j_jmst_2022_10_076
crossref_primary_10_1016_j_ijhydene_2023_06_058
crossref_primary_10_1007_s42243_023_00910_y
crossref_primary_10_1016_j_ijhydene_2024_12_305
crossref_primary_10_3390_min13111385
crossref_primary_10_1007_s42243_024_01377_1
crossref_primary_10_1038_s41529_023_00397_8
crossref_primary_10_1016_j_ijhydene_2022_02_090
crossref_primary_10_1016_j_jallcom_2025_179355
crossref_primary_10_3390_met13030464
crossref_primary_10_1016_j_energy_2023_128279
crossref_primary_10_1002_srin_202300500
crossref_primary_10_1002_srin_202400717
crossref_primary_10_1007_s11663_022_02672_6
crossref_primary_10_52150_2522_9117_2024_38_59_102
crossref_primary_10_1016_j_cej_2023_141918
crossref_primary_10_1007_s40831_023_00712_2
crossref_primary_10_1016_j_cej_2023_147582
crossref_primary_10_1007_s11837_023_05830_6
crossref_primary_10_1016_j_seppur_2024_126425
crossref_primary_10_21595_stge_2021_21985
crossref_primary_10_1016_j_fuel_2024_131542
crossref_primary_10_1016_j_ijhydene_2024_08_273
crossref_primary_10_1016_j_energy_2021_122922
crossref_primary_10_1016_j_applthermaleng_2022_118489
crossref_primary_10_1007_s12613_022_2511_7
crossref_primary_10_1016_j_jclepro_2023_136909
crossref_primary_10_1007_s12666_022_02685_4
crossref_primary_10_1016_j_fuel_2023_128641
crossref_primary_10_1016_j_powtec_2021_02_038
crossref_primary_10_1051_mattech_2022009
crossref_primary_10_1016_j_ijhydene_2024_12_208
crossref_primary_10_1007_s11015_021_01159_0
crossref_primary_10_1016_j_jmrt_2023_07_183
Cites_doi 10.1002/srin.201200172
10.2355/tetsutohagane.TETSU-2019-008
10.2355/isijinternational.53.2065
10.1016/S1872-2067(17)62949-8
10.1016/j.jclepro.2019.118185
10.1016/j.jclepro.2012.07.045
10.1016/j.jclepro.2018.11.204
10.1007/s40831-016-0054-8
10.1016/S1006-706X(14)60042-X
10.1016/j.enconman.2018.03.088
10.1007/s12613-018-1608-5
10.1007/s12613-015-1108-9
10.1007/s11663-019-01594-0
10.1149/09101.2537ecst
10.1002/srin.201500372
10.1007/s12613-018-1623-6
10.1007/s40831-019-00219-9
10.1007/s00501-019-00908-8
10.1016/j.jclepro.2019.01.247
10.1016/j.egypro.2013.06.653
10.1007/s12613-017-1509-z
10.1007/978-3-030-21209-4
10.1016/j.jclepro.2018.08.279
10.1007/s12613-017-1422-5
10.1016/j.rser.2015.10.101
10.1016/j.jclepro.2018.03.107
ContentType Journal Article
Copyright University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020
University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12613-020-2021-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList

ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 723
ExternalDocumentID bjkjdxxb_e202006001
10_1007_s12613_020_2021_4
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GrantInformation_xml – fundername: This work was financially supported by the National Nat-ural Science Foundation of China; the Fun-damental Research Funds for the Central Universities; the China Postdoctoral Science Foundation; the Xingliao Talent Plan
  funderid: (51904063); (. N2025023, N172503016, N172502005, and N172506011); (2018M640259); (XLYC1902118)
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
4A8
93N
PMFND
PSX
ID FETCH-LOGICAL-c352t-f91b329ff398d2507cc4b7a43d6bc6fcf7f74723c73581540991c7c7295dc62f3
IEDL.DBID BENPR
ISSN 1674-4799
IngestDate Thu May 29 04:07:33 EDT 2025
Fri Jul 25 11:22:48 EDT 2025
Tue Jul 01 01:18:44 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hydrogen metallurgy
hydrogen
blast furnace
shaft furnace
low carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f91b329ff398d2507cc4b7a43d6bc6fcf7f74723c73581540991c7c7295dc62f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2919607804
PQPubID 2043631
PageCount 11
ParticipantIDs wanfang_journals_bjkjdxxb_e202006001
proquest_journals_2919607804
crossref_primary_10_1007_s12613_020_2021_4
crossref_citationtrail_10_1007_s12613_020_2021_4
springer_journals_10_1007_s12613_020_2021_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationTitle_FL International Journal of Minerals, Metallurgy and Materials
PublicationYear 2020
Publisher University of Science and Technology Beijing
Springer Nature B.V
School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
– name: School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
References CavalierePClean Ironmaking and Steelmaking Process2019SwitzerlandSpringer10.1007/978-3-030-21209-4
ZhaoPDongPLCarbon emission cannot be ignored in future of Chinese steel industryIron Steel201853811:CAS:528:DC%2BC1cXmtVagtrs%3D
Abdul QuaderMAhmedSDawalSZNukmanYPresent needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) programRenewable Sustainable Energy Rev.2016555371:CAS:528:DC%2BC2MXhvVaqsL%2FO10.1016/j.rser.2015.10.101
WangQLiGQZhangWYangYXAn Investigation of carburization behavior of molten iron for the flash ironmaking processMetall. Mater. Trans. B201950420061:CAS:528:DC%2BC1MXpvVGltrc%3D10.1007/s11663-019-01594-0
ArcelorMittal Commissions Midrex to Design Demonstration Plant for Hydrogen Steel Production in Hamburg [2020-05-22]. https://www.midrex.com/press-release/arcelormittal-commissions-midrex-to-design-demonstration-plant-for-hydrogen-steel-production-in-hamburg
YanJJProgress and future of ultra-low CO2 steelmaking programChina Metall.20172726
Y. Gan, The 21th century is the Age of Hydrogen [2020-05-22]. http://www.sohu.com/a/238747317_655347
SohnHYSuspension ironmaking technology with greatly reduced energy requirement and CO2 emissionsSteel Times Int.200731468
SungJKKangMRMinSOAddition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiencyInt. J. Miner. Metall. Mater.201724441510.1007/s12613-017-1422-5
WangHTChuMSGuoTLZhaoWFengCLiuZGTangJMathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recyclingSteel Res. Int.20168755391:CAS:528:DC%2BC28XhsVOjt78%3D10.1002/srin.201500372
WatakabeSMiyagawaKMatsuzakiSInadaTTomitaYSaitoKOsameMSikströmPÖkvistLSWikstromJ-OOperation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnaceISIJ Int.2013531220651:CAS:528:DC%2BC2cXjsFej10.2355/isijinternational.53.2065
K.D. Xu, G.C. Jiang, and J.L. Xu, Theoretical analysis of steel production process in 21th century, [in] The 125th Xiangshan Scientific Conference Proceeding, Beijing, 1999, p. 31.
SongJZZhaoZYZhaoXFuRDHanSMHydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbHInt. J. Miner. Metall. Mater.2017241011831:CAS:528:DC%2BC2sXhvVGjtbfE10.1007/s12613-017-1509-z
A. Inoue, Efforts of Nippon Steel Corporation for global environmental problems, [in] The 12th CSM Steel Congress Proceeding, Beijing, 2019.
PosdziechOGeißlerTSchwarzeKBlumentrittRSystem development and demonstration of large-scale high-temperature electrolysisECS Trans.2019911253710.1149/09101.2537ecst
IEA, Explore Energy Data by Category, Indicator, Country or Region [0200-55-22]. https://www.iaa.rgg/aata-nnd-statistics?country=WORLD&fuel=CO2%20emissions&indicator=Total%20CO2%20emissions
AriyamaTTakahashiKKawashiriYNouchiTDiversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigationJ. Sustainable Metall.20195327610.1007/s40831-019-00219-9
K.D. Xu, National natural science foundation of China, [in] National Natural Science Foundation Proceeding, Shanghai, 2002.
HYBRIT Brochure [0200-55-22]. http://www.hybritdevelopment.com
W. Zhang, Z.Y. Wang, X.L. Wang, and L.G. Zhang, Experimental study of pulverized coal added dust injection into blast furnace, [in] The 9th CSM Steel Congress Proceeding, Beijing, 2009.
BatailleCÅhmanMNeuhoffKNilssonLJFischedickMLechtenböhmerSSolano-RodriquezBDenis-RyanAStiebertSWaismanHSartorORahbarSA review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris AgreementJ. Cleaner Prod.201818796010.1016/j.jclepro.2018.03.107
WangRRZhangJLLiuYRZhengAYLiuZJLiuXLLiZGThermal performance and reduction kinetic analysis of cold-bonded pellets with CO and H2 mixturesInt. J. Miner. Metall. Mater.20182577521:CAS:528:DC%2BC1cXhtlGlsrvO10.1007/s12613-018-1623-6
AriyamaTPerspective toward long-term global goal for carbon dioxide mitigation in steel industryTetsu-to-Hagané2019105656710.2355/tetsutohagane.TETSU-2019-008
FengCChuMSTangJLiuZGEffects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction processInt. J. Miner. Metall. Mater.20182566091:CAS:528:DC%2BC1cXhtV2mtLjJ10.1007/s12613-018-1608-5
SohnHYMohassabYDevelopment of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissionsJ. Sustainable Metall.20162321610.1007/s40831-016-0054-8
ChiJYuHGWater electrolysis based on renewable energy for hydrogen productionChin. J. Catal.20183933901:CAS:528:DC%2BC1cXhtVelsLfE10.1016/S1872-2067(17)62949-8
BuerglerTPrammerJHydrogen steelmaking: Technology options and R&D projectsBHM Berg-Hüttenmänn. Monatsh.2019164114471:CAS:528:DC%2BC1MXisVeju7jP10.1007/s00501-019-00908-8
TangJChuMSLiFTangYTLiuZGXueXXReduction mechanism of high chromium vanadium-titanium magnetite pellet by H2-CO-CO2 gas mixturesInt. J. Miner. Metall. Mater.20152265621:CAS:528:DC%2BC2MXhtVOhsLbL10.1007/s12613-015-1108-9
TonomuraSOutline of course 50Energy Procedia20133771601:CAS:528:DC%2BC3sXhs1ygurbP10.1016/j.egypro.2013.06.653
Midrex, 2018 World Direct Reduction Statistics [2020-05-22]. https://www.midrex.com/wp-content/uploads/Midrex_STATS-bookprint_2018Final-1.pdf
Z.D. Tang, W.B. Li, Y.J. Li, and Y.X. Han, Experimental study on producing super iron concentrate from an ordinary iron concentrate in Shandong province, Conserv. Utilization Miner. Res., (2017), No. 2, p. 56.
VoglVÅhmanMNilssonLJAssessment of hydrogen direct reduction for fossil-free steelmakingJ. Cleaner Prod.20182037361:CAS:528:DC%2BC1cXhs1GqsbjJ10.1016/j.jclepro.2018.08.279
Ranzani da CostaAWagnerDPatissonFModelling a new, low CO2 emissions, hydrogen steelmaking processJ. Cleaner Prod.201346271:CAS:528:DC%2BC3sXmvVels74%3D10.1016/j.jclepro.2012.07.045
LotfiBAhmedECarbon footprint of the global pharmaceutical industry and relative impact of its major playersJ. Cleaner Prod.201921418510.1016/j.jclepro.2018.11.204
Paul Wurth, Paul Wurth to Design and Supply Coke Oven Gas Injection Systems for ROGESA Blast Furnaces [2020-05-22]. http://www.paulwurth.com/en/News-Media/News-and-Archives/Paul-Wurth-to-design-and-supply-Coke-Oven-Gas-Injection-Systems-for-ROGESA-Blast-Furnaces
AbdallaAMHossainacSNisfindyOBAzadATDawoodMAzadAKHydrogen production, storage, transportation and key challenges with applications: A reviewEnergy Convers. Manage.20181656021:CAS:528:DC%2BC1cXnt1GgsL4%3D10.1016/j.enconman.2018.03.088
YingZWChuMSTangJLiuZGZhouYSCurrent situation and future adaptability analysis of non-blast furnace ironmaing processHeibei Metall.201928261
Germany Officially Announced “Hydrogen Instead of Coal” Ironmaking, Is Hydrogen Metallurgy Feasible? [2020-05-22]. https://www.sohu.com/a/358309948_99964894
A. Fleischanderl, T. Plattner, P. Nair, and M. Schultz, Carbon recycling from metallurgical waste gases into bio-fuel and chemical, [in] The SCANMET V Proceeding, Luleå, 2016, p. 31.
WeiZKGuoRXieQACOURSE50 new technology of Japan’s environmental ironmaking processJ. North China Univ. Sci. Technol. Nat. Sci. Ed.201840326
MeijerKDenysMLasarJBiratJPStillGOvermaatBULCOS: Ultra-low CO2 steelmakingIronmaking Steel-making2009364251
MandovaHPatrizioPLeducSKjärstadcJWangCWetterlundEKraxnerFGaleWAchieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storageJ. Cleaner Prod.201921811810.1016/j.jclepro.2019.01.247
FuJXTangGHZhaoRJWangWSCarbon reduction programs and key technologies in global steel industryJ. Iron Steel Rese. Int.201421327510.1016/S1006-706X(14)60042-X
WangZCFundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation]2013ShenyangNortheastern University
DuartePTrends in H2-based steelmakingSteel Times Int.201943127
D. Kushnir, T. Hansen, V. Vogl, and M. Åhmanc, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2019), art. No. 118185.
GuoTLChuMSLiuZGTangJYagiJIMathematical modeling and exergy analysis of blast furnace operation with natural gas injectionSteel Res. Int.20138443331:CAS:528:DC%2BC38XhsFynur%2FJ10.1002/srin.201200172
WangDYBreaking-through iron-making technologies in ULCOS projectWorld Iron Steel201127
RR Wang (2021_CR10) 2018; 25
ZK Wei (2021_CR18) 2018; 40
T Ariyama (2021_CR30) 2019; 5
2021_CR31
B Lotfi (2021_CR4) 2019; 214
JX Fu (2021_CR22) 2014; 21
JJ Yan (2021_CR24) 2017; 27
ZC Wang (2021_CR46) 2013
2021_CR36
2021_CR39
P Zhao (2021_CR2) 2018; 53
2021_CR32
V Vogl (2021_CR37) 2018; 203
M Abdul Quader (2021_CR21) 2016; 55
H Mandova (2021_CR28) 2019; 218
S Watakabe (2021_CR17) 2013; 53
2021_CR19
DY Wang (2021_CR25) 2011; 2
ZW Ying (2021_CR41) 2019; 282
Q Wang (2021_CR33) 2019; 50
S Tonomura (2021_CR16) 2013; 37
J Chi (2021_CR48) 2018; 39
T Buergler (2021_CR27) 2019; 164
JK Sung (2021_CR5) 2017; 24
C Feng (2021_CR11) 2018; 25
2021_CR40
P Cavaliere (2021_CR42) 2019
2021_CR20
J Tang (2021_CR12) 2015; 22
HT Wang (2021_CR14) 2016; 87
2021_CR7
JZ Song (2021_CR6) 2017; 24
2021_CR8
A Ranzani da Costa (2021_CR26) 2013; 46
P Duarte (2021_CR38) 2019; 43
AM Abdalla (2021_CR47) 2018; 165
C Bataille (2021_CR3) 2018; 187
TL Guo (2021_CR13) 2013; 84
HY Sohn (2021_CR35) 2016; 2
2021_CR44
T Ariyama (2021_CR15) 2019; 105
2021_CR43
2021_CR1
2021_CR45
HY Sohn (2021_CR34) 2007; 31
K Meijer (2021_CR23) 2009; 36
O Posdziech (2021_CR29) 2019; 91
2021_CR9
References_xml – reference: WangHTChuMSGuoTLZhaoWFengCLiuZGTangJMathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recyclingSteel Res. Int.20168755391:CAS:528:DC%2BC28XhsVOjt78%3D10.1002/srin.201500372
– reference: AbdallaAMHossainacSNisfindyOBAzadATDawoodMAzadAKHydrogen production, storage, transportation and key challenges with applications: A reviewEnergy Convers. Manage.20181656021:CAS:528:DC%2BC1cXnt1GgsL4%3D10.1016/j.enconman.2018.03.088
– reference: LotfiBAhmedECarbon footprint of the global pharmaceutical industry and relative impact of its major playersJ. Cleaner Prod.201921418510.1016/j.jclepro.2018.11.204
– reference: Midrex, 2018 World Direct Reduction Statistics [2020-05-22]. https://www.midrex.com/wp-content/uploads/Midrex_STATS-bookprint_2018Final-1.pdf
– reference: DuartePTrends in H2-based steelmakingSteel Times Int.201943127
– reference: SungJKKangMRMinSOAddition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiencyInt. J. Miner. Metall. Mater.201724441510.1007/s12613-017-1422-5
– reference: FuJXTangGHZhaoRJWangWSCarbon reduction programs and key technologies in global steel industryJ. Iron Steel Rese. Int.201421327510.1016/S1006-706X(14)60042-X
– reference: WangZCFundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation]2013ShenyangNortheastern University
– reference: TonomuraSOutline of course 50Energy Procedia20133771601:CAS:528:DC%2BC3sXhs1ygurbP10.1016/j.egypro.2013.06.653
– reference: A. Fleischanderl, T. Plattner, P. Nair, and M. Schultz, Carbon recycling from metallurgical waste gases into bio-fuel and chemical, [in] The SCANMET V Proceeding, Luleå, 2016, p. 31.
– reference: WeiZKGuoRXieQACOURSE50 new technology of Japan’s environmental ironmaking processJ. North China Univ. Sci. Technol. Nat. Sci. Ed.201840326
– reference: Abdul QuaderMAhmedSDawalSZNukmanYPresent needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) programRenewable Sustainable Energy Rev.2016555371:CAS:528:DC%2BC2MXhvVaqsL%2FO10.1016/j.rser.2015.10.101
– reference: GuoTLChuMSLiuZGTangJYagiJIMathematical modeling and exergy analysis of blast furnace operation with natural gas injectionSteel Res. Int.20138443331:CAS:528:DC%2BC38XhsFynur%2FJ10.1002/srin.201200172
– reference: Germany Officially Announced “Hydrogen Instead of Coal” Ironmaking, Is Hydrogen Metallurgy Feasible? [2020-05-22]. https://www.sohu.com/a/358309948_99964894
– reference: YanJJProgress and future of ultra-low CO2 steelmaking programChina Metall.20172726
– reference: Ranzani da CostaAWagnerDPatissonFModelling a new, low CO2 emissions, hydrogen steelmaking processJ. Cleaner Prod.201346271:CAS:528:DC%2BC3sXmvVels74%3D10.1016/j.jclepro.2012.07.045
– reference: IEA, Explore Energy Data by Category, Indicator, Country or Region [0200-55-22]. https://www.iaa.rgg/aata-nnd-statistics?country=WORLD&fuel=CO2%20emissions&indicator=Total%20CO2%20emissions
– reference: BuerglerTPrammerJHydrogen steelmaking: Technology options and R&D projectsBHM Berg-Hüttenmänn. Monatsh.2019164114471:CAS:528:DC%2BC1MXisVeju7jP10.1007/s00501-019-00908-8
– reference: AriyamaTTakahashiKKawashiriYNouchiTDiversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigationJ. Sustainable Metall.20195327610.1007/s40831-019-00219-9
– reference: K.D. Xu, G.C. Jiang, and J.L. Xu, Theoretical analysis of steel production process in 21th century, [in] The 125th Xiangshan Scientific Conference Proceeding, Beijing, 1999, p. 31.
– reference: ZhaoPDongPLCarbon emission cannot be ignored in future of Chinese steel industryIron Steel201853811:CAS:528:DC%2BC1cXmtVagtrs%3D
– reference: YingZWChuMSTangJLiuZGZhouYSCurrent situation and future adaptability analysis of non-blast furnace ironmaing processHeibei Metall.201928261
– reference: WangDYBreaking-through iron-making technologies in ULCOS projectWorld Iron Steel201127
– reference: Z.D. Tang, W.B. Li, Y.J. Li, and Y.X. Han, Experimental study on producing super iron concentrate from an ordinary iron concentrate in Shandong province, Conserv. Utilization Miner. Res., (2017), No. 2, p. 56.
– reference: MandovaHPatrizioPLeducSKjärstadcJWangCWetterlundEKraxnerFGaleWAchieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storageJ. Cleaner Prod.201921811810.1016/j.jclepro.2019.01.247
– reference: BatailleCÅhmanMNeuhoffKNilssonLJFischedickMLechtenböhmerSSolano-RodriquezBDenis-RyanAStiebertSWaismanHSartorORahbarSA review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris AgreementJ. Cleaner Prod.201818796010.1016/j.jclepro.2018.03.107
– reference: Y. Gan, The 21th century is the Age of Hydrogen [2020-05-22]. http://www.sohu.com/a/238747317_655347
– reference: CavalierePClean Ironmaking and Steelmaking Process2019SwitzerlandSpringer10.1007/978-3-030-21209-4
– reference: SohnHYMohassabYDevelopment of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissionsJ. Sustainable Metall.20162321610.1007/s40831-016-0054-8
– reference: FengCChuMSTangJLiuZGEffects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction processInt. J. Miner. Metall. Mater.20182566091:CAS:528:DC%2BC1cXhtV2mtLjJ10.1007/s12613-018-1608-5
– reference: AriyamaTPerspective toward long-term global goal for carbon dioxide mitigation in steel industryTetsu-to-Hagané2019105656710.2355/tetsutohagane.TETSU-2019-008
– reference: HYBRIT Brochure [0200-55-22]. http://www.hybritdevelopment.com/
– reference: SohnHYSuspension ironmaking technology with greatly reduced energy requirement and CO2 emissionsSteel Times Int.200731468
– reference: VoglVÅhmanMNilssonLJAssessment of hydrogen direct reduction for fossil-free steelmakingJ. Cleaner Prod.20182037361:CAS:528:DC%2BC1cXhs1GqsbjJ10.1016/j.jclepro.2018.08.279
– reference: WatakabeSMiyagawaKMatsuzakiSInadaTTomitaYSaitoKOsameMSikströmPÖkvistLSWikstromJ-OOperation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnaceISIJ Int.2013531220651:CAS:528:DC%2BC2cXjsFej10.2355/isijinternational.53.2065
– reference: ArcelorMittal Commissions Midrex to Design Demonstration Plant for Hydrogen Steel Production in Hamburg [2020-05-22]. https://www.midrex.com/press-release/arcelormittal-commissions-midrex-to-design-demonstration-plant-for-hydrogen-steel-production-in-hamburg/
– reference: MeijerKDenysMLasarJBiratJPStillGOvermaatBULCOS: Ultra-low CO2 steelmakingIronmaking Steel-making2009364251
– reference: D. Kushnir, T. Hansen, V. Vogl, and M. Åhmanc, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2019), art. No. 118185.
– reference: W. Zhang, Z.Y. Wang, X.L. Wang, and L.G. Zhang, Experimental study of pulverized coal added dust injection into blast furnace, [in] The 9th CSM Steel Congress Proceeding, Beijing, 2009.
– reference: TangJChuMSLiFTangYTLiuZGXueXXReduction mechanism of high chromium vanadium-titanium magnetite pellet by H2-CO-CO2 gas mixturesInt. J. Miner. Metall. Mater.20152265621:CAS:528:DC%2BC2MXhtVOhsLbL10.1007/s12613-015-1108-9
– reference: K.D. Xu, National natural science foundation of China, [in] National Natural Science Foundation Proceeding, Shanghai, 2002.
– reference: WangRRZhangJLLiuYRZhengAYLiuZJLiuXLLiZGThermal performance and reduction kinetic analysis of cold-bonded pellets with CO and H2 mixturesInt. J. Miner. Metall. Mater.20182577521:CAS:528:DC%2BC1cXhtlGlsrvO10.1007/s12613-018-1623-6
– reference: WangQLiGQZhangWYangYXAn Investigation of carburization behavior of molten iron for the flash ironmaking processMetall. Mater. Trans. B201950420061:CAS:528:DC%2BC1MXpvVGltrc%3D10.1007/s11663-019-01594-0
– reference: ChiJYuHGWater electrolysis based on renewable energy for hydrogen productionChin. J. Catal.20183933901:CAS:528:DC%2BC1cXhtVelsLfE10.1016/S1872-2067(17)62949-8
– reference: PosdziechOGeißlerTSchwarzeKBlumentrittRSystem development and demonstration of large-scale high-temperature electrolysisECS Trans.2019911253710.1149/09101.2537ecst
– reference: SongJZZhaoZYZhaoXFuRDHanSMHydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbHInt. J. Miner. Metall. Mater.2017241011831:CAS:528:DC%2BC2sXhvVGjtbfE10.1007/s12613-017-1509-z
– reference: Paul Wurth, Paul Wurth to Design and Supply Coke Oven Gas Injection Systems for ROGESA Blast Furnaces [2020-05-22]. http://www.paulwurth.com/en/News-Media/News-and-Archives/Paul-Wurth-to-design-and-supply-Coke-Oven-Gas-Injection-Systems-for-ROGESA-Blast-Furnaces
– reference: A. Inoue, Efforts of Nippon Steel Corporation for global environmental problems, [in] The 12th CSM Steel Congress Proceeding, Beijing, 2019.
– volume: 84
  start-page: 333
  issue: 4
  year: 2013
  ident: 2021_CR13
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201200172
– volume: 105
  start-page: 567
  issue: 6
  year: 2019
  ident: 2021_CR15
  publication-title: Tetsu-to-Hagané
  doi: 10.2355/tetsutohagane.TETSU-2019-008
– volume: 53
  start-page: 2065
  issue: 12
  year: 2013
  ident: 2021_CR17
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.53.2065
– volume: 39
  start-page: 390
  issue: 3
  year: 2018
  ident: 2021_CR48
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62949-8
– ident: 2021_CR39
  doi: 10.1016/j.jclepro.2019.118185
– volume: 36
  start-page: 251
  issue: 4
  year: 2009
  ident: 2021_CR23
  publication-title: Ironmaking Steel-making
– volume: 46
  start-page: 27
  year: 2013
  ident: 2021_CR26
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2012.07.045
– volume: 43
  start-page: 27
  issue: 1
  year: 2019
  ident: 2021_CR38
  publication-title: Steel Times Int.
– volume: 214
  start-page: 185
  year: 2019
  ident: 2021_CR4
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.11.204
– ident: 2021_CR32
– ident: 2021_CR9
– ident: 2021_CR36
– volume: 2
  start-page: 7
  year: 2011
  ident: 2021_CR25
  publication-title: World Iron Steel
– volume: 2
  start-page: 216
  issue: 3
  year: 2016
  ident: 2021_CR35
  publication-title: J. Sustainable Metall.
  doi: 10.1007/s40831-016-0054-8
– ident: 2021_CR40
– ident: 2021_CR7
– volume: 21
  start-page: 275
  issue: 3
  year: 2014
  ident: 2021_CR22
  publication-title: J. Iron Steel Rese. Int.
  doi: 10.1016/S1006-706X(14)60042-X
– ident: 2021_CR44
– ident: 2021_CR1
– volume: 165
  start-page: 602
  year: 2018
  ident: 2021_CR47
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.03.088
– volume: 25
  start-page: 609
  issue: 6
  year: 2018
  ident: 2021_CR11
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-018-1608-5
– volume: 22
  start-page: 562
  issue: 6
  year: 2015
  ident: 2021_CR12
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-015-1108-9
– volume: 50
  start-page: 2006
  issue: 4
  year: 2019
  ident: 2021_CR33
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-019-01594-0
– volume: 31
  start-page: 68
  issue: 4
  year: 2007
  ident: 2021_CR34
  publication-title: Steel Times Int.
– volume: 91
  start-page: 2537
  issue: 1
  year: 2019
  ident: 2021_CR29
  publication-title: ECS Trans.
  doi: 10.1149/09101.2537ecst
– ident: 2021_CR31
– volume: 53
  start-page: 1
  issue: 8
  year: 2018
  ident: 2021_CR2
  publication-title: Iron Steel
– ident: 2021_CR19
– volume: 87
  start-page: 539
  issue: 5
  year: 2016
  ident: 2021_CR14
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201500372
– volume: 282
  start-page: 1
  issue: 6
  year: 2019
  ident: 2021_CR41
  publication-title: Heibei Metall.
– volume: 25
  start-page: 752
  issue: 7
  year: 2018
  ident: 2021_CR10
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-018-1623-6
– volume: 40
  start-page: 26
  issue: 3
  year: 2018
  ident: 2021_CR18
  publication-title: J. North China Univ. Sci. Technol. Nat. Sci. Ed.
– volume: 5
  start-page: 276
  issue: 3
  year: 2019
  ident: 2021_CR30
  publication-title: J. Sustainable Metall.
  doi: 10.1007/s40831-019-00219-9
– volume: 164
  start-page: 447
  issue: 11
  year: 2019
  ident: 2021_CR27
  publication-title: BHM Berg-Hüttenmänn. Monatsh.
  doi: 10.1007/s00501-019-00908-8
– volume: 218
  start-page: 118
  year: 2019
  ident: 2021_CR28
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.01.247
– volume-title: Fundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation]
  year: 2013
  ident: 2021_CR46
– ident: 2021_CR8
– volume: 37
  start-page: 7160
  year: 2013
  ident: 2021_CR16
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.06.653
– volume: 27
  start-page: 6
  issue: 2
  year: 2017
  ident: 2021_CR24
  publication-title: China Metall.
– volume: 24
  start-page: 1183
  issue: 10
  year: 2017
  ident: 2021_CR6
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-017-1509-z
– volume-title: Clean Ironmaking and Steelmaking Process
  year: 2019
  ident: 2021_CR42
  doi: 10.1007/978-3-030-21209-4
– volume: 203
  start-page: 736
  year: 2018
  ident: 2021_CR37
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.08.279
– ident: 2021_CR43
– volume: 24
  start-page: 415
  issue: 4
  year: 2017
  ident: 2021_CR5
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-017-1422-5
– ident: 2021_CR20
– volume: 55
  start-page: 537
  year: 2016
  ident: 2021_CR21
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.10.101
– ident: 2021_CR45
– volume: 187
  start-page: 960
  year: 2018
  ident: 2021_CR3
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.03.107
SSID ssj0067707
Score 2.5951996
SecondaryResourceType review_article
Snippet Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO 2 emission, and the use of hydrogen is beneficial...
Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 713
SubjectTerms Carbon dioxide
Carbon dioxide emissions
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coal gasification
Composites
Corrosion and Coatings
Direct reduced iron
Electric furnaces
Energy consumption
Furnaces
Glass
Hydrogen
Hydrogen production
Hydrogen reduction
Invited Review
Iron and steel industry
Ironmaking
Liquid metals
Materials Science
Metallic Materials
Metallurgy
Natural Materials
Scrap iron
Shaft furnaces
Steel converters
Steel industry
Steel making
Steel scrap
Surfaces and Interfaces
Sustainable development
Thin Films
Tribology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvQgPrFaZQ89KYv7TDbHIpYi6MlCb2HzqtSaSh_Q_nsn291uBSl422Unc5jJTr5kZr4AtKlJspzkGU5e3Ku66419xvLAZypVNCEyDI07Gnh9I71-8jJIB2Uf96yqdq9SkkWkrpvdEOy7nGOAno1Q7z4cpPjk6rj6UacKv4TSokfaVde7YyNWpTL_UvF7MaoR5iYpWrTyWJPb4daq0z2B4xIuep21f09hT9szONoiETyHx626Hy-3yitKrjCAeRPrfawUvmnrfWlE2ePFdLi6gH73-f2p55fXIPgS0dHcNywUccSMiVmmELFQKRNB8yRWREhipKEG9wRRLKnjMkMEhpBPUomoOVWSRCa-hIadWH0FnoxZKhBAIcbT6CMp0kjGgQqU0dpkgjQhqOzBZckR7q6qGPOa3diZkKMJuTMhT5pwvxnyvSbI2CXcqozMy39lxiOGUSBwREhNeKgMX3_eoaxd-qYWFqPPkVouBdco47hmgvD6X0pv4NCNXBeDtaAxny70LcKOubgrptkP43_LQA
  priority: 102
  providerName: Springer Nature
Title Development and progress on hydrogen metallurgy
URI https://link.springer.com/article/10.1007/s12613-020-2021-4
https://www.proquest.com/docview/2919607804
https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202006001
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JQEJ4IXPRgXCOKpAdOmsbS7fWdDBqWaCTGSKKnpm_DuBRkSeDfO6-8UrxwbDtdMjOd983yZgAaRPlREiYRKi_6qnq8sU1p4thUBIL4IW82lQ4NPPXD3sB_eAveTMBtasoqc5uYGWox4jpGfuNS1BVHt8u5Hf_aemqUzq6aERolqKAJjqIyVO7a_eeX3BaHhGQbpnWpvY4h0TyvmW2eQ-dB5zAd1BQXv_P_ylTAzXWGNNvXk6okHW4sQZ0D2DfY0WqthH0IOzI9gr2NjoLHcLNRBGQlqbCy-iu0ZtYotT6WAo9kav1IhNzf88lweQKDTvv1vmebmQg2R6g0sxVtMs-lSnk0EghfCOc-I4nviZDxUHFFFDoIrseJbmyGcAzxHyccIXQgeOgq7xTK6SiVZ2BxjwYM0RQCPokC4yxwuecIRygpVcTCKjg5P2JuGobruRXfcdHqWLMwRhbGmoWxX4Wr9S3jVbeMbcS1nMmx-XGmcSHmKlznjC8ub3lYw8imIGafX59isWCxRBrdeMZpnm9_5wXsatJVKVgNyrPJXF4i6JixOpSiTrcOlVb3_bFdN3qGZwdu6w-biNOy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH4qMAAD4hSFAhlgAUWkuVwPCCGglHMCic3EV1EpKUcR9E_xG3kvTUhZujFGsR3p8xf7s98FsM1s2EjipIHkxbMqlTd2OU88l-tIszBW9bqlq4Hrm7h1F17cR_cV-C5iYcitslgTs4Va9xTdke_7HLniUbqcw5dXl6pGkXW1KKExpMWlGXzike394PwE53fH95unt8ctN68q4CoUG33X8roMfG5twBsaBQBTKpQsCQMdSxVbZZlFie0HilFqMBQ0qKAUUyhCI61i3wY47gRMhQHu5BSZ3jwrVv6YsSw8mxz76caKF1bULFQPjypkMfWQlz6i8ncfLMXtrz02iyJKbZK2Rza85jzM5UrVORpSawEqJl2E2ZH8hUuwP-Jy5CSpdjJvL1w7nV7qPA40PpnUeTYo8Lsfb-3BMtz9C1YrMJn2UrMKjgp4JFG7obw0SA8lI18Fnva0NcY2ZFwFr8BDqDw9OVXJ6IoysTJBKBBCQRCKsAq7v11ehrk5xjWuFSCL_Dd9FyWpqrBXAF--HjPYdj43ZWPZeerory8pDLahNDdefW38N7dgunV7fSWuzm8u12GGug2d0Gow2X_7MBsod_pyM-OYAw__Teof83kLIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFUUCuQAF1DU1FlcHzhUQMUuDlTiZuINxGKqLoJ-Fb_IOE1IkRASB45RnEn0PLZfPDPPADvURI00SRvovPiv6o439hlLA5-pWNEokfW6cVsDl1fJSTs6u41vJ-CjqIXJst2LkOSopsGpNNl-raNMrSx8Q-Lv4o8B9jLBd-RZled6-Ib_bL2D0yPs4F1CWsc3hyd-fqyAL5Ft9H3D6iIkzJiQNRQyACplJGgahSoRMjHSUIMcm4SSOm0wZDRIoSSVyEJjJRNiQrQ7CdORKz7GAdQmzWLqTyjN6rNdZr_bsmJFGPWnT_6-EJbs9isgm5URWZPa-7EVr7UA8zlV9Zoj31qECW2XYG5MwHAZamM5R15qlZele-Hk6b1a72Go8Epb70Ujw38edO-HK9D-F6xWYcq-Wr0GngxZLJC8Ib_U6B9SxESGgQqU0do0RFKBoMCDy1yf3B2T8cxLZWUHIUcIuYOQRxXY-3qkMxLn-K1xtQCZ5-O0xwnDGShwIkwV2C-AL2__Ymwn75uysXh8elTv74JrbON0boL6-p-MbsPM9VGLX5xenW_ArDMyykmrwlS_O9CbyH76YivzOA_u_tvFPwE2lQvJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+progress+on+hydrogen+metallurgy&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Jue+Tang&rft.au=Man-sheng+Chu&rft.au=Feng+Li&rft.au=Cong+Feng&rft.date=2020-06-01&rft.pub=School+of+Ferrous+Metallurgy%2C+Northeastern+University%2C+Shenyang+110819%2C+China%25State+Key+Laboratory+of+Rolling+and+Automation%2C+Northeastern+University%2C+Shenyang+110819%2C+China&rft.issn=1674-4799&rft.volume=27&rft.issue=6&rft.spage=713&rft.epage=723&rft_id=info:doi/10.1007%2Fs12613-020-2021-4&rft.externalDocID=bjkjdxxb_e202006001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg