Development and progress on hydrogen metallurgy
Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO 2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H 2 reduction ironmak...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 27; no. 6; pp. 713 - 723 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.06.2020
Springer Nature B.V School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO
2
emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H
2
reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H
2
™ by Midrex Technologies, Inc. (United States); H
2
FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H
2
and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO
2
emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace. |
---|---|
AbstractList | Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO
2
emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H
2
reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H
2
™ by Midrex Technologies, Inc. (United States); H
2
FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H
2
and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO
2
emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace. Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2TM by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been in-dustrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification–gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification–gas-based shaft furnace–electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hy-drogen shaft furnace. Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry. Hydrogen metallurgy has numerous applications, such as H2 reduction ironmaking in Japan, ULCORED and hydrogen-based steelmaking in Europe; hydrogen flash ironmaking technology in the US; HYBRIT in the Nordics; Midrex H2™ by Midrex Technologies, Inc. (United States); H2FUTURE by Voestalpine (Austria); and SAL-COS by Salzgitter AG (Germany). Hydrogen-rich blast furnaces (BFs) with COG injection are common in China. Running BFs have been industrially tested by AnSteel, XuSteel, and BenSteel. In a currently under construction pilot plant of a coal gasification-gas-based shaft furnace with an annual output of 10000 t direct reduction iron (DRI), a reducing gas composed of 57vol% H2 and 38vol% CO is prepared via the Ende method. The life cycle of the coal gasification—gas-based shaft furnace—electric furnace short process (30wt% DRI + 70wt% scrap) is assessed with 1 t of molten steel as a functional unit. This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg, which are superior to those of a traditional BF converter process. Considering domestic materials and fuels, hydrogen production and storage, and hydrogen reduction characteristics, we believe that a hydrogen-rich shaft furnace will be suitable in China. Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace. |
Author | Li, Feng Feng, Cong Tang, Jue Chu, Man-sheng Zhou, Yu-sheng Liu, Zheng-gen |
AuthorAffiliation | School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
AuthorAffiliation_xml | – name: School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
Author_xml | – sequence: 1 givenname: Jue surname: Tang fullname: Tang, Jue email: tangj@smm.neu.edu.cn organization: School of Ferrous Metallurgy, Northeastern University – sequence: 2 givenname: Man-sheng surname: Chu fullname: Chu, Man-sheng email: chums@smm.neu.edu.cn organization: State Key Laboratory of Rolling and Automation, Northeastern University – sequence: 3 givenname: Feng surname: Li fullname: Li, Feng organization: School of Ferrous Metallurgy, Northeastern University – sequence: 4 givenname: Cong surname: Feng fullname: Feng, Cong organization: School of Ferrous Metallurgy, Northeastern University – sequence: 5 givenname: Zheng-gen surname: Liu fullname: Liu, Zheng-gen organization: School of Ferrous Metallurgy, Northeastern University – sequence: 6 givenname: Yu-sheng surname: Zhou fullname: Zhou, Yu-sheng organization: School of Ferrous Metallurgy, Northeastern University |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8KXkrcSdI2y6XMTxh4o-BdSNOktnbpTDrd_r0ZFQaCXuUEnud8vBM0cp0zCJ0TuCIAfBYIzQnDQAFToASnR2hM5rnABNjrKNY5T3HKhThBkxAagJxz4GM0uzGfpu3WK-P6RLkyWfuu8iaEpHPJ266MP-OSlelV2258tTtFx1a1wZz9vFP0cnf7vHjAy6f7x8X1EmuW0R5bQQpGhbVMzEuaAdc6LbhKWZkXOrfacstTTpnmLJuTLAUhiOaaU5GVOqeWTdHl0PdLOatcJZtu412cKIvmvSm320KaeGi8A4BE-mKg4_YfGxP6A04FETnwOaSRIgOlfReCN1aufb1SficJyH2KckhRxr5yn6LcO_yXo-te9XXneq_q9l-TDmaIU1xl_GGnv6Vvi4yGkA |
CitedBy_id | crossref_primary_10_1007_s12613_023_2730_6 crossref_primary_10_3390_ma16247676 crossref_primary_10_1002_ange_202014449 crossref_primary_10_1002_srin_202400659 crossref_primary_10_1016_j_cej_2023_142319 crossref_primary_10_1016_j_jcis_2023_10_104 crossref_primary_10_1007_s42461_022_00714_w crossref_primary_10_3390_met14050589 crossref_primary_10_1016_j_ijhydene_2024_04_229 crossref_primary_10_1016_j_jes_2023_03_031 crossref_primary_10_1002_celc_202300205 crossref_primary_10_3389_fenvs_2024_1491608 crossref_primary_10_3390_met13050927 crossref_primary_10_52150_2522_9117_2023_37_4_25 crossref_primary_10_3390_ma14164433 crossref_primary_10_1016_j_energy_2025_134387 crossref_primary_10_1016_j_ijhydene_2022_10_071 crossref_primary_10_1007_s40831_023_00752_8 crossref_primary_10_1080_03019233_2021_1909992 crossref_primary_10_1016_j_ijhydene_2024_11_432 crossref_primary_10_1007_s10098_023_02686_x crossref_primary_10_15407_steelcast2022_02_008 crossref_primary_10_1002_cssc_202401045 crossref_primary_10_1007_s11837_024_07025_z crossref_primary_10_1016_j_ijhydene_2021_05_095 crossref_primary_10_1007_s40831_022_00555_3 crossref_primary_10_1016_j_energy_2023_130112 crossref_primary_10_1016_j_ijhydene_2024_05_175 crossref_primary_10_1016_j_fuel_2024_132715 crossref_primary_10_1016_j_isci_2021_102966 crossref_primary_10_1016_j_ijhydene_2021_01_083 crossref_primary_10_1007_s11663_021_02156_z crossref_primary_10_1016_j_est_2023_108473 crossref_primary_10_2355_isijinternational_ISIJINT_2020_401 crossref_primary_10_1088_1742_6596_2812_1_012018 crossref_primary_10_3390_met12111864 crossref_primary_10_1016_S1003_6326_22_66006_0 crossref_primary_10_3390_pr12091829 crossref_primary_10_1007_s10098_023_02518_y crossref_primary_10_1007_s12613_022_2494_4 crossref_primary_10_3390_molecules28248103 crossref_primary_10_1007_s12613_021_2329_8 crossref_primary_10_1016_j_egyr_2023_01_083 crossref_primary_10_1080_03019233_2022_2071093 crossref_primary_10_1016_j_jclepro_2024_141867 crossref_primary_10_1007_s40831_024_00962_8 crossref_primary_10_1016_j_enconman_2024_118843 crossref_primary_10_3390_ma17071613 crossref_primary_10_1007_s42243_023_01057_6 crossref_primary_10_1016_j_eti_2023_103420 crossref_primary_10_1007_s11356_025_36038_7 crossref_primary_10_1016_j_apenergy_2023_122452 crossref_primary_10_1016_j_eng_2023_02_014 crossref_primary_10_1007_s40831_024_00925_z crossref_primary_10_1016_j_powtec_2021_09_080 crossref_primary_10_1016_j_eng_2024_04_025 crossref_primary_10_1016_j_ijhydene_2023_07_269 crossref_primary_10_1016_j_powtec_2022_118073 crossref_primary_10_1016_j_ijhydene_2020_12_123 crossref_primary_10_1080_03019233_2022_2128403 crossref_primary_10_2355_isijinternational_ISIJINT_2021_574 crossref_primary_10_3390_pr11051506 crossref_primary_10_1016_j_ijhydene_2022_06_170 crossref_primary_10_1007_s11663_023_02827_z crossref_primary_10_1016_j_energy_2022_125847 crossref_primary_10_1002_srin_202400698 crossref_primary_10_1016_j_powtec_2022_117654 crossref_primary_10_1016_j_ijhydene_2024_09_373 crossref_primary_10_1016_j_hydromet_2025_106468 crossref_primary_10_1007_s42243_022_00876_3 crossref_primary_10_1016_j_ijhydene_2024_03_192 crossref_primary_10_1016_j_ijhydene_2022_12_033 crossref_primary_10_1016_j_energy_2023_127237 crossref_primary_10_3390_ma14081914 crossref_primary_10_1016_j_seppur_2023_123693 crossref_primary_10_1016_j_seppur_2023_125993 crossref_primary_10_1016_j_ijhydene_2021_12_154 crossref_primary_10_1016_j_jenvman_2024_123483 crossref_primary_10_1016_j_jaap_2024_106659 crossref_primary_10_1002_anie_202014449 crossref_primary_10_1002_srin_202300435 crossref_primary_10_1007_s12613_023_2800_9 crossref_primary_10_1016_j_fuel_2023_129432 crossref_primary_10_1007_s11663_024_03341_6 crossref_primary_10_1016_j_ijhydene_2024_09_014 crossref_primary_10_1063_5_0188819 crossref_primary_10_1016_j_ijhydene_2024_08_460 crossref_primary_10_1007_s12613_022_2443_2 crossref_primary_10_1007_s12613_024_2925_5 crossref_primary_10_1051_metal_2024043 crossref_primary_10_1007_s12613_020_2188_8 crossref_primary_10_3390_pr11092748 crossref_primary_10_1007_s12613_022_2478_4 crossref_primary_10_1016_j_ceramint_2024_07_163 crossref_primary_10_1007_s11356_024_35136_2 crossref_primary_10_1007_s40831_025_01017_2 crossref_primary_10_3390_rsee1010002 crossref_primary_10_1016_j_jclepro_2023_139585 crossref_primary_10_2298_JMMB231127011Z crossref_primary_10_1038_s41467_021_27770_y crossref_primary_10_1016_j_apcatb_2021_120909 crossref_primary_10_1016_j_fuel_2022_124823 crossref_primary_10_3390_su16093684 crossref_primary_10_2355_isijinternational_ISIJINT_2021_371 crossref_primary_10_1039_D3SU00201B crossref_primary_10_1007_s12613_020_2210_1 crossref_primary_10_1007_s12613_022_2523_3 crossref_primary_10_3390_en17143565 crossref_primary_10_1002_srin_202200241 crossref_primary_10_1016_j_ijhydene_2024_08_094 crossref_primary_10_1016_j_ijhydene_2022_02_219 crossref_primary_10_1088_1742_6596_2951_1_012092 crossref_primary_10_1007_s12613_022_2475_7 crossref_primary_10_1016_j_ijhydene_2023_01_268 crossref_primary_10_1016_j_clet_2021_100345 crossref_primary_10_1002_srin_202300092 crossref_primary_10_1016_j_calphad_2023_102593 crossref_primary_10_1007_s43938_024_00067_4 crossref_primary_10_1016_j_ijhydene_2021_12_119 crossref_primary_10_1007_s12613_022_2512_6 crossref_primary_10_1007_s11837_023_05978_1 crossref_primary_10_1016_j_jclepro_2022_130805 crossref_primary_10_1007_s40831_022_00645_2 crossref_primary_10_1016_j_ijhydene_2022_06_106 crossref_primary_10_1002_srin_202400808 crossref_primary_10_1016_j_est_2024_112601 crossref_primary_10_3390_inventions7030063 crossref_primary_10_3390_cryst13020210 crossref_primary_10_1007_s11837_022_05301_4 crossref_primary_10_1016_j_fuel_2022_124368 crossref_primary_10_1080_03019233_2023_2204267 crossref_primary_10_1016_j_jclepro_2023_135874 crossref_primary_10_1007_s12613_021_2408_x crossref_primary_10_1007_s42243_023_00951_3 crossref_primary_10_1016_j_powtec_2024_119462 crossref_primary_10_1007_s11663_023_02980_5 crossref_primary_10_1016_j_cherd_2022_10_007 crossref_primary_10_1002_srin_202100730 crossref_primary_10_2355_isijinternational_ISIJINT_2023_213 crossref_primary_10_3390_ma17174362 crossref_primary_10_1016_j_ijhydene_2021_09_195 crossref_primary_10_1002_srin_202300425 crossref_primary_10_1007_s11015_024_01656_y crossref_primary_10_1007_s12613_021_2385_0 crossref_primary_10_1016_j_ijhydene_2022_07_258 crossref_primary_10_1007_s11015_024_01632_6 crossref_primary_10_1002_srin_202400480 crossref_primary_10_1007_s10668_022_02234_5 crossref_primary_10_1021_acssuschemeng_4c08451 crossref_primary_10_1016_j_jallcom_2024_174279 crossref_primary_10_1007_s40831_025_01011_8 crossref_primary_10_3390_hydrogen6020019 crossref_primary_10_1016_j_energy_2024_131094 crossref_primary_10_3390_su15129159 crossref_primary_10_3390_pr12020340 crossref_primary_10_1007_s40831_023_00772_4 crossref_primary_10_2355_isijinternational_ISIJINT_2023_448 crossref_primary_10_1016_j_jclepro_2023_136391 crossref_primary_10_1016_j_fuel_2021_121465 crossref_primary_10_3390_ma17163896 crossref_primary_10_1002_srin_202100749 crossref_primary_10_1002_srin_202300411 crossref_primary_10_1021_acssuschemeng_2c07136 crossref_primary_10_1021_acsengineeringau_3c00033 crossref_primary_10_3390_ma15197022 crossref_primary_10_1016_j_ijhydene_2023_07_307 crossref_primary_10_1016_j_apenergy_2024_125104 crossref_primary_10_1016_j_ijhydene_2025_01_371 crossref_primary_10_1016_j_jeurceramsoc_2024_116827 crossref_primary_10_1016_j_mineng_2024_108899 crossref_primary_10_1080_03019233_2022_2138168 crossref_primary_10_1111_ijac_15104 crossref_primary_10_1016_j_powtec_2024_120549 crossref_primary_10_1016_j_powtec_2022_117934 crossref_primary_10_1021_acs_energyfuels_4c06109 crossref_primary_10_1016_j_accre_2023_05_004 crossref_primary_10_3390_su15086518 crossref_primary_10_3390_en14051392 crossref_primary_10_1007_s40831_024_00999_9 crossref_primary_10_1016_j_powtec_2023_119270 crossref_primary_10_1007_s11837_023_05814_6 crossref_primary_10_1007_s40831_024_00860_z crossref_primary_10_1038_s41563_022_01370_7 crossref_primary_10_1016_j_gerr_2024_100098 crossref_primary_10_1051_metal_2024092 crossref_primary_10_1016_j_apt_2023_104037 crossref_primary_10_1016_j_powtec_2025_120953 crossref_primary_10_3390_app14166913 crossref_primary_10_1007_s12613_022_2518_0 crossref_primary_10_1016_j_fuel_2021_122412 crossref_primary_10_1016_j_scitotenv_2024_173274 crossref_primary_10_1016_j_jclepro_2021_129797 crossref_primary_10_1051_mattech_2021023 crossref_primary_10_1016_j_heliyon_2024_e36715 crossref_primary_10_1016_j_jmst_2022_10_076 crossref_primary_10_1016_j_ijhydene_2023_06_058 crossref_primary_10_1007_s42243_023_00910_y crossref_primary_10_1016_j_ijhydene_2024_12_305 crossref_primary_10_3390_min13111385 crossref_primary_10_1007_s42243_024_01377_1 crossref_primary_10_1038_s41529_023_00397_8 crossref_primary_10_1016_j_ijhydene_2022_02_090 crossref_primary_10_1016_j_jallcom_2025_179355 crossref_primary_10_3390_met13030464 crossref_primary_10_1016_j_energy_2023_128279 crossref_primary_10_1002_srin_202300500 crossref_primary_10_1002_srin_202400717 crossref_primary_10_1007_s11663_022_02672_6 crossref_primary_10_52150_2522_9117_2024_38_59_102 crossref_primary_10_1016_j_cej_2023_141918 crossref_primary_10_1007_s40831_023_00712_2 crossref_primary_10_1016_j_cej_2023_147582 crossref_primary_10_1007_s11837_023_05830_6 crossref_primary_10_1016_j_seppur_2024_126425 crossref_primary_10_21595_stge_2021_21985 crossref_primary_10_1016_j_fuel_2024_131542 crossref_primary_10_1016_j_ijhydene_2024_08_273 crossref_primary_10_1016_j_energy_2021_122922 crossref_primary_10_1016_j_applthermaleng_2022_118489 crossref_primary_10_1007_s12613_022_2511_7 crossref_primary_10_1016_j_jclepro_2023_136909 crossref_primary_10_1007_s12666_022_02685_4 crossref_primary_10_1016_j_fuel_2023_128641 crossref_primary_10_1016_j_powtec_2021_02_038 crossref_primary_10_1051_mattech_2022009 crossref_primary_10_1016_j_ijhydene_2024_12_208 crossref_primary_10_1007_s11015_021_01159_0 crossref_primary_10_1016_j_jmrt_2023_07_183 |
Cites_doi | 10.1002/srin.201200172 10.2355/tetsutohagane.TETSU-2019-008 10.2355/isijinternational.53.2065 10.1016/S1872-2067(17)62949-8 10.1016/j.jclepro.2019.118185 10.1016/j.jclepro.2012.07.045 10.1016/j.jclepro.2018.11.204 10.1007/s40831-016-0054-8 10.1016/S1006-706X(14)60042-X 10.1016/j.enconman.2018.03.088 10.1007/s12613-018-1608-5 10.1007/s12613-015-1108-9 10.1007/s11663-019-01594-0 10.1149/09101.2537ecst 10.1002/srin.201500372 10.1007/s12613-018-1623-6 10.1007/s40831-019-00219-9 10.1007/s00501-019-00908-8 10.1016/j.jclepro.2019.01.247 10.1016/j.egypro.2013.06.653 10.1007/s12613-017-1509-z 10.1007/978-3-030-21209-4 10.1016/j.jclepro.2018.08.279 10.1007/s12613-017-1422-5 10.1016/j.rser.2015.10.101 10.1016/j.jclepro.2018.03.107 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020 University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s12613-020-2021-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 723 |
ExternalDocumentID | bjkjdxxb_e202006001 10_1007_s12613_020_2021_4 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GrantInformation_xml | – fundername: This work was financially supported by the National Nat-ural Science Foundation of China; the Fun-damental Research Funds for the Central Universities; the China Postdoctoral Science Foundation; the Xingliao Talent Plan funderid: (51904063); (. N2025023, N172503016, N172502005, and N172506011); (2018M640259); (XLYC1902118) |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 4A8 93N PMFND PSX |
ID | FETCH-LOGICAL-c352t-f91b329ff398d2507cc4b7a43d6bc6fcf7f74723c73581540991c7c7295dc62f3 |
IEDL.DBID | BENPR |
ISSN | 1674-4799 |
IngestDate | Thu May 29 04:07:33 EDT 2025 Fri Jul 25 11:22:48 EDT 2025 Tue Jul 01 01:18:44 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | hydrogen metallurgy hydrogen blast furnace shaft furnace low carbon |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-f91b329ff398d2507cc4b7a43d6bc6fcf7f74723c73581540991c7c7295dc62f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2919607804 |
PQPubID | 2043631 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_bjkjdxxb_e202006001 proquest_journals_2919607804 crossref_primary_10_1007_s12613_020_2021_4 crossref_citationtrail_10_1007_s12613_020_2021_4 springer_journals_10_1007_s12613_020_2021_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationTitle_FL | International Journal of Minerals, Metallurgy and Materials |
PublicationYear | 2020 |
Publisher | University of Science and Technology Beijing Springer Nature B.V School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V – name: School of Ferrous Metallurgy, Northeastern University, Shenyang 110819, China%State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
References | CavalierePClean Ironmaking and Steelmaking Process2019SwitzerlandSpringer10.1007/978-3-030-21209-4 ZhaoPDongPLCarbon emission cannot be ignored in future of Chinese steel industryIron Steel201853811:CAS:528:DC%2BC1cXmtVagtrs%3D Abdul QuaderMAhmedSDawalSZNukmanYPresent needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) programRenewable Sustainable Energy Rev.2016555371:CAS:528:DC%2BC2MXhvVaqsL%2FO10.1016/j.rser.2015.10.101 WangQLiGQZhangWYangYXAn Investigation of carburization behavior of molten iron for the flash ironmaking processMetall. Mater. Trans. B201950420061:CAS:528:DC%2BC1MXpvVGltrc%3D10.1007/s11663-019-01594-0 ArcelorMittal Commissions Midrex to Design Demonstration Plant for Hydrogen Steel Production in Hamburg [2020-05-22]. https://www.midrex.com/press-release/arcelormittal-commissions-midrex-to-design-demonstration-plant-for-hydrogen-steel-production-in-hamburg YanJJProgress and future of ultra-low CO2 steelmaking programChina Metall.20172726 Y. Gan, The 21th century is the Age of Hydrogen [2020-05-22]. http://www.sohu.com/a/238747317_655347 SohnHYSuspension ironmaking technology with greatly reduced energy requirement and CO2 emissionsSteel Times Int.200731468 SungJKKangMRMinSOAddition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiencyInt. J. Miner. Metall. Mater.201724441510.1007/s12613-017-1422-5 WangHTChuMSGuoTLZhaoWFengCLiuZGTangJMathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recyclingSteel Res. Int.20168755391:CAS:528:DC%2BC28XhsVOjt78%3D10.1002/srin.201500372 WatakabeSMiyagawaKMatsuzakiSInadaTTomitaYSaitoKOsameMSikströmPÖkvistLSWikstromJ-OOperation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnaceISIJ Int.2013531220651:CAS:528:DC%2BC2cXjsFej10.2355/isijinternational.53.2065 K.D. Xu, G.C. Jiang, and J.L. Xu, Theoretical analysis of steel production process in 21th century, [in] The 125th Xiangshan Scientific Conference Proceeding, Beijing, 1999, p. 31. SongJZZhaoZYZhaoXFuRDHanSMHydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbHInt. J. Miner. Metall. Mater.2017241011831:CAS:528:DC%2BC2sXhvVGjtbfE10.1007/s12613-017-1509-z A. Inoue, Efforts of Nippon Steel Corporation for global environmental problems, [in] The 12th CSM Steel Congress Proceeding, Beijing, 2019. PosdziechOGeißlerTSchwarzeKBlumentrittRSystem development and demonstration of large-scale high-temperature electrolysisECS Trans.2019911253710.1149/09101.2537ecst IEA, Explore Energy Data by Category, Indicator, Country or Region [0200-55-22]. https://www.iaa.rgg/aata-nnd-statistics?country=WORLD&fuel=CO2%20emissions&indicator=Total%20CO2%20emissions AriyamaTTakahashiKKawashiriYNouchiTDiversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigationJ. Sustainable Metall.20195327610.1007/s40831-019-00219-9 K.D. Xu, National natural science foundation of China, [in] National Natural Science Foundation Proceeding, Shanghai, 2002. HYBRIT Brochure [0200-55-22]. http://www.hybritdevelopment.com W. Zhang, Z.Y. Wang, X.L. Wang, and L.G. Zhang, Experimental study of pulverized coal added dust injection into blast furnace, [in] The 9th CSM Steel Congress Proceeding, Beijing, 2009. BatailleCÅhmanMNeuhoffKNilssonLJFischedickMLechtenböhmerSSolano-RodriquezBDenis-RyanAStiebertSWaismanHSartorORahbarSA review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris AgreementJ. Cleaner Prod.201818796010.1016/j.jclepro.2018.03.107 WangRRZhangJLLiuYRZhengAYLiuZJLiuXLLiZGThermal performance and reduction kinetic analysis of cold-bonded pellets with CO and H2 mixturesInt. J. Miner. Metall. Mater.20182577521:CAS:528:DC%2BC1cXhtlGlsrvO10.1007/s12613-018-1623-6 AriyamaTPerspective toward long-term global goal for carbon dioxide mitigation in steel industryTetsu-to-Hagané2019105656710.2355/tetsutohagane.TETSU-2019-008 FengCChuMSTangJLiuZGEffects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction processInt. J. Miner. Metall. Mater.20182566091:CAS:528:DC%2BC1cXhtV2mtLjJ10.1007/s12613-018-1608-5 SohnHYMohassabYDevelopment of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissionsJ. Sustainable Metall.20162321610.1007/s40831-016-0054-8 ChiJYuHGWater electrolysis based on renewable energy for hydrogen productionChin. J. Catal.20183933901:CAS:528:DC%2BC1cXhtVelsLfE10.1016/S1872-2067(17)62949-8 BuerglerTPrammerJHydrogen steelmaking: Technology options and R&D projectsBHM Berg-Hüttenmänn. Monatsh.2019164114471:CAS:528:DC%2BC1MXisVeju7jP10.1007/s00501-019-00908-8 TangJChuMSLiFTangYTLiuZGXueXXReduction mechanism of high chromium vanadium-titanium magnetite pellet by H2-CO-CO2 gas mixturesInt. J. Miner. Metall. Mater.20152265621:CAS:528:DC%2BC2MXhtVOhsLbL10.1007/s12613-015-1108-9 TonomuraSOutline of course 50Energy Procedia20133771601:CAS:528:DC%2BC3sXhs1ygurbP10.1016/j.egypro.2013.06.653 Midrex, 2018 World Direct Reduction Statistics [2020-05-22]. https://www.midrex.com/wp-content/uploads/Midrex_STATS-bookprint_2018Final-1.pdf Z.D. Tang, W.B. Li, Y.J. Li, and Y.X. Han, Experimental study on producing super iron concentrate from an ordinary iron concentrate in Shandong province, Conserv. Utilization Miner. Res., (2017), No. 2, p. 56. VoglVÅhmanMNilssonLJAssessment of hydrogen direct reduction for fossil-free steelmakingJ. Cleaner Prod.20182037361:CAS:528:DC%2BC1cXhs1GqsbjJ10.1016/j.jclepro.2018.08.279 Ranzani da CostaAWagnerDPatissonFModelling a new, low CO2 emissions, hydrogen steelmaking processJ. Cleaner Prod.201346271:CAS:528:DC%2BC3sXmvVels74%3D10.1016/j.jclepro.2012.07.045 LotfiBAhmedECarbon footprint of the global pharmaceutical industry and relative impact of its major playersJ. Cleaner Prod.201921418510.1016/j.jclepro.2018.11.204 Paul Wurth, Paul Wurth to Design and Supply Coke Oven Gas Injection Systems for ROGESA Blast Furnaces [2020-05-22]. http://www.paulwurth.com/en/News-Media/News-and-Archives/Paul-Wurth-to-design-and-supply-Coke-Oven-Gas-Injection-Systems-for-ROGESA-Blast-Furnaces AbdallaAMHossainacSNisfindyOBAzadATDawoodMAzadAKHydrogen production, storage, transportation and key challenges with applications: A reviewEnergy Convers. Manage.20181656021:CAS:528:DC%2BC1cXnt1GgsL4%3D10.1016/j.enconman.2018.03.088 YingZWChuMSTangJLiuZGZhouYSCurrent situation and future adaptability analysis of non-blast furnace ironmaing processHeibei Metall.201928261 Germany Officially Announced “Hydrogen Instead of Coal” Ironmaking, Is Hydrogen Metallurgy Feasible? [2020-05-22]. https://www.sohu.com/a/358309948_99964894 A. Fleischanderl, T. Plattner, P. Nair, and M. Schultz, Carbon recycling from metallurgical waste gases into bio-fuel and chemical, [in] The SCANMET V Proceeding, Luleå, 2016, p. 31. WeiZKGuoRXieQACOURSE50 new technology of Japan’s environmental ironmaking processJ. North China Univ. Sci. Technol. Nat. Sci. Ed.201840326 MeijerKDenysMLasarJBiratJPStillGOvermaatBULCOS: Ultra-low CO2 steelmakingIronmaking Steel-making2009364251 MandovaHPatrizioPLeducSKjärstadcJWangCWetterlundEKraxnerFGaleWAchieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storageJ. Cleaner Prod.201921811810.1016/j.jclepro.2019.01.247 FuJXTangGHZhaoRJWangWSCarbon reduction programs and key technologies in global steel industryJ. Iron Steel Rese. Int.201421327510.1016/S1006-706X(14)60042-X WangZCFundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation]2013ShenyangNortheastern University DuartePTrends in H2-based steelmakingSteel Times Int.201943127 D. Kushnir, T. Hansen, V. Vogl, and M. Åhmanc, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2019), art. No. 118185. GuoTLChuMSLiuZGTangJYagiJIMathematical modeling and exergy analysis of blast furnace operation with natural gas injectionSteel Res. Int.20138443331:CAS:528:DC%2BC38XhsFynur%2FJ10.1002/srin.201200172 WangDYBreaking-through iron-making technologies in ULCOS projectWorld Iron Steel201127 RR Wang (2021_CR10) 2018; 25 ZK Wei (2021_CR18) 2018; 40 T Ariyama (2021_CR30) 2019; 5 2021_CR31 B Lotfi (2021_CR4) 2019; 214 JX Fu (2021_CR22) 2014; 21 JJ Yan (2021_CR24) 2017; 27 ZC Wang (2021_CR46) 2013 2021_CR36 2021_CR39 P Zhao (2021_CR2) 2018; 53 2021_CR32 V Vogl (2021_CR37) 2018; 203 M Abdul Quader (2021_CR21) 2016; 55 H Mandova (2021_CR28) 2019; 218 S Watakabe (2021_CR17) 2013; 53 2021_CR19 DY Wang (2021_CR25) 2011; 2 ZW Ying (2021_CR41) 2019; 282 Q Wang (2021_CR33) 2019; 50 S Tonomura (2021_CR16) 2013; 37 J Chi (2021_CR48) 2018; 39 T Buergler (2021_CR27) 2019; 164 JK Sung (2021_CR5) 2017; 24 C Feng (2021_CR11) 2018; 25 2021_CR40 P Cavaliere (2021_CR42) 2019 2021_CR20 J Tang (2021_CR12) 2015; 22 HT Wang (2021_CR14) 2016; 87 2021_CR7 JZ Song (2021_CR6) 2017; 24 2021_CR8 A Ranzani da Costa (2021_CR26) 2013; 46 P Duarte (2021_CR38) 2019; 43 AM Abdalla (2021_CR47) 2018; 165 C Bataille (2021_CR3) 2018; 187 TL Guo (2021_CR13) 2013; 84 HY Sohn (2021_CR35) 2016; 2 2021_CR44 T Ariyama (2021_CR15) 2019; 105 2021_CR43 2021_CR1 2021_CR45 HY Sohn (2021_CR34) 2007; 31 K Meijer (2021_CR23) 2009; 36 O Posdziech (2021_CR29) 2019; 91 2021_CR9 |
References_xml | – reference: WangHTChuMSGuoTLZhaoWFengCLiuZGTangJMathematical simulation on blast furnace operation of coke oven gas injection in combination with top gas recyclingSteel Res. Int.20168755391:CAS:528:DC%2BC28XhsVOjt78%3D10.1002/srin.201500372 – reference: AbdallaAMHossainacSNisfindyOBAzadATDawoodMAzadAKHydrogen production, storage, transportation and key challenges with applications: A reviewEnergy Convers. Manage.20181656021:CAS:528:DC%2BC1cXnt1GgsL4%3D10.1016/j.enconman.2018.03.088 – reference: LotfiBAhmedECarbon footprint of the global pharmaceutical industry and relative impact of its major playersJ. Cleaner Prod.201921418510.1016/j.jclepro.2018.11.204 – reference: Midrex, 2018 World Direct Reduction Statistics [2020-05-22]. https://www.midrex.com/wp-content/uploads/Midrex_STATS-bookprint_2018Final-1.pdf – reference: DuartePTrends in H2-based steelmakingSteel Times Int.201943127 – reference: SungJKKangMRMinSOAddition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiencyInt. J. Miner. Metall. Mater.201724441510.1007/s12613-017-1422-5 – reference: FuJXTangGHZhaoRJWangWSCarbon reduction programs and key technologies in global steel industryJ. Iron Steel Rese. Int.201421327510.1016/S1006-706X(14)60042-X – reference: WangZCFundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation]2013ShenyangNortheastern University – reference: TonomuraSOutline of course 50Energy Procedia20133771601:CAS:528:DC%2BC3sXhs1ygurbP10.1016/j.egypro.2013.06.653 – reference: A. Fleischanderl, T. Plattner, P. Nair, and M. Schultz, Carbon recycling from metallurgical waste gases into bio-fuel and chemical, [in] The SCANMET V Proceeding, Luleå, 2016, p. 31. – reference: WeiZKGuoRXieQACOURSE50 new technology of Japan’s environmental ironmaking processJ. North China Univ. Sci. Technol. Nat. Sci. Ed.201840326 – reference: Abdul QuaderMAhmedSDawalSZNukmanYPresent needs, recent progress and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) programRenewable Sustainable Energy Rev.2016555371:CAS:528:DC%2BC2MXhvVaqsL%2FO10.1016/j.rser.2015.10.101 – reference: GuoTLChuMSLiuZGTangJYagiJIMathematical modeling and exergy analysis of blast furnace operation with natural gas injectionSteel Res. Int.20138443331:CAS:528:DC%2BC38XhsFynur%2FJ10.1002/srin.201200172 – reference: Germany Officially Announced “Hydrogen Instead of Coal” Ironmaking, Is Hydrogen Metallurgy Feasible? [2020-05-22]. https://www.sohu.com/a/358309948_99964894 – reference: YanJJProgress and future of ultra-low CO2 steelmaking programChina Metall.20172726 – reference: Ranzani da CostaAWagnerDPatissonFModelling a new, low CO2 emissions, hydrogen steelmaking processJ. Cleaner Prod.201346271:CAS:528:DC%2BC3sXmvVels74%3D10.1016/j.jclepro.2012.07.045 – reference: IEA, Explore Energy Data by Category, Indicator, Country or Region [0200-55-22]. https://www.iaa.rgg/aata-nnd-statistics?country=WORLD&fuel=CO2%20emissions&indicator=Total%20CO2%20emissions – reference: BuerglerTPrammerJHydrogen steelmaking: Technology options and R&D projectsBHM Berg-Hüttenmänn. Monatsh.2019164114471:CAS:528:DC%2BC1MXisVeju7jP10.1007/s00501-019-00908-8 – reference: AriyamaTTakahashiKKawashiriYNouchiTDiversification of the ironmaking process toward the long-term global goal for carbon dioxide mitigationJ. Sustainable Metall.20195327610.1007/s40831-019-00219-9 – reference: K.D. Xu, G.C. Jiang, and J.L. Xu, Theoretical analysis of steel production process in 21th century, [in] The 125th Xiangshan Scientific Conference Proceeding, Beijing, 1999, p. 31. – reference: ZhaoPDongPLCarbon emission cannot be ignored in future of Chinese steel industryIron Steel201853811:CAS:528:DC%2BC1cXmtVagtrs%3D – reference: YingZWChuMSTangJLiuZGZhouYSCurrent situation and future adaptability analysis of non-blast furnace ironmaing processHeibei Metall.201928261 – reference: WangDYBreaking-through iron-making technologies in ULCOS projectWorld Iron Steel201127 – reference: Z.D. Tang, W.B. Li, Y.J. Li, and Y.X. Han, Experimental study on producing super iron concentrate from an ordinary iron concentrate in Shandong province, Conserv. Utilization Miner. Res., (2017), No. 2, p. 56. – reference: MandovaHPatrizioPLeducSKjärstadcJWangCWetterlundEKraxnerFGaleWAchieving carbon-neutral iron and steelmaking in Europe through the deployment of bioenergy with carbon capture and storageJ. Cleaner Prod.201921811810.1016/j.jclepro.2019.01.247 – reference: BatailleCÅhmanMNeuhoffKNilssonLJFischedickMLechtenböhmerSSolano-RodriquezBDenis-RyanAStiebertSWaismanHSartorORahbarSA review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris AgreementJ. Cleaner Prod.201818796010.1016/j.jclepro.2018.03.107 – reference: Y. Gan, The 21th century is the Age of Hydrogen [2020-05-22]. http://www.sohu.com/a/238747317_655347 – reference: CavalierePClean Ironmaking and Steelmaking Process2019SwitzerlandSpringer10.1007/978-3-030-21209-4 – reference: SohnHYMohassabYDevelopment of a novel flash ironmaking technology with greatly reduced energy consumption and CO2 emissionsJ. Sustainable Metall.20162321610.1007/s40831-016-0054-8 – reference: FengCChuMSTangJLiuZGEffects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction processInt. J. Miner. Metall. Mater.20182566091:CAS:528:DC%2BC1cXhtV2mtLjJ10.1007/s12613-018-1608-5 – reference: AriyamaTPerspective toward long-term global goal for carbon dioxide mitigation in steel industryTetsu-to-Hagané2019105656710.2355/tetsutohagane.TETSU-2019-008 – reference: HYBRIT Brochure [0200-55-22]. http://www.hybritdevelopment.com/ – reference: SohnHYSuspension ironmaking technology with greatly reduced energy requirement and CO2 emissionsSteel Times Int.200731468 – reference: VoglVÅhmanMNilssonLJAssessment of hydrogen direct reduction for fossil-free steelmakingJ. Cleaner Prod.20182037361:CAS:528:DC%2BC1cXhs1GqsbjJ10.1016/j.jclepro.2018.08.279 – reference: WatakabeSMiyagawaKMatsuzakiSInadaTTomitaYSaitoKOsameMSikströmPÖkvistLSWikstromJ-OOperation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnaceISIJ Int.2013531220651:CAS:528:DC%2BC2cXjsFej10.2355/isijinternational.53.2065 – reference: ArcelorMittal Commissions Midrex to Design Demonstration Plant for Hydrogen Steel Production in Hamburg [2020-05-22]. https://www.midrex.com/press-release/arcelormittal-commissions-midrex-to-design-demonstration-plant-for-hydrogen-steel-production-in-hamburg/ – reference: MeijerKDenysMLasarJBiratJPStillGOvermaatBULCOS: Ultra-low CO2 steelmakingIronmaking Steel-making2009364251 – reference: D. Kushnir, T. Hansen, V. Vogl, and M. Åhmanc, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2019), art. No. 118185. – reference: W. Zhang, Z.Y. Wang, X.L. Wang, and L.G. Zhang, Experimental study of pulverized coal added dust injection into blast furnace, [in] The 9th CSM Steel Congress Proceeding, Beijing, 2009. – reference: TangJChuMSLiFTangYTLiuZGXueXXReduction mechanism of high chromium vanadium-titanium magnetite pellet by H2-CO-CO2 gas mixturesInt. J. Miner. Metall. Mater.20152265621:CAS:528:DC%2BC2MXhtVOhsLbL10.1007/s12613-015-1108-9 – reference: K.D. Xu, National natural science foundation of China, [in] National Natural Science Foundation Proceeding, Shanghai, 2002. – reference: WangRRZhangJLLiuYRZhengAYLiuZJLiuXLLiZGThermal performance and reduction kinetic analysis of cold-bonded pellets with CO and H2 mixturesInt. J. Miner. Metall. Mater.20182577521:CAS:528:DC%2BC1cXhtlGlsrvO10.1007/s12613-018-1623-6 – reference: WangQLiGQZhangWYangYXAn Investigation of carburization behavior of molten iron for the flash ironmaking processMetall. Mater. Trans. B201950420061:CAS:528:DC%2BC1MXpvVGltrc%3D10.1007/s11663-019-01594-0 – reference: ChiJYuHGWater electrolysis based on renewable energy for hydrogen productionChin. J. Catal.20183933901:CAS:528:DC%2BC1cXhtVelsLfE10.1016/S1872-2067(17)62949-8 – reference: PosdziechOGeißlerTSchwarzeKBlumentrittRSystem development and demonstration of large-scale high-temperature electrolysisECS Trans.2019911253710.1149/09101.2537ecst – reference: SongJZZhaoZYZhaoXFuRDHanSMHydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbHInt. J. Miner. Metall. Mater.2017241011831:CAS:528:DC%2BC2sXhvVGjtbfE10.1007/s12613-017-1509-z – reference: Paul Wurth, Paul Wurth to Design and Supply Coke Oven Gas Injection Systems for ROGESA Blast Furnaces [2020-05-22]. http://www.paulwurth.com/en/News-Media/News-and-Archives/Paul-Wurth-to-design-and-supply-Coke-Oven-Gas-Injection-Systems-for-ROGESA-Blast-Furnaces – reference: A. Inoue, Efforts of Nippon Steel Corporation for global environmental problems, [in] The 12th CSM Steel Congress Proceeding, Beijing, 2019. – volume: 84 start-page: 333 issue: 4 year: 2013 ident: 2021_CR13 publication-title: Steel Res. Int. doi: 10.1002/srin.201200172 – volume: 105 start-page: 567 issue: 6 year: 2019 ident: 2021_CR15 publication-title: Tetsu-to-Hagané doi: 10.2355/tetsutohagane.TETSU-2019-008 – volume: 53 start-page: 2065 issue: 12 year: 2013 ident: 2021_CR17 publication-title: ISIJ Int. doi: 10.2355/isijinternational.53.2065 – volume: 39 start-page: 390 issue: 3 year: 2018 ident: 2021_CR48 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62949-8 – ident: 2021_CR39 doi: 10.1016/j.jclepro.2019.118185 – volume: 36 start-page: 251 issue: 4 year: 2009 ident: 2021_CR23 publication-title: Ironmaking Steel-making – volume: 46 start-page: 27 year: 2013 ident: 2021_CR26 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2012.07.045 – volume: 43 start-page: 27 issue: 1 year: 2019 ident: 2021_CR38 publication-title: Steel Times Int. – volume: 214 start-page: 185 year: 2019 ident: 2021_CR4 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.11.204 – ident: 2021_CR32 – ident: 2021_CR9 – ident: 2021_CR36 – volume: 2 start-page: 7 year: 2011 ident: 2021_CR25 publication-title: World Iron Steel – volume: 2 start-page: 216 issue: 3 year: 2016 ident: 2021_CR35 publication-title: J. Sustainable Metall. doi: 10.1007/s40831-016-0054-8 – ident: 2021_CR40 – ident: 2021_CR7 – volume: 21 start-page: 275 issue: 3 year: 2014 ident: 2021_CR22 publication-title: J. Iron Steel Rese. Int. doi: 10.1016/S1006-706X(14)60042-X – ident: 2021_CR44 – ident: 2021_CR1 – volume: 165 start-page: 602 year: 2018 ident: 2021_CR47 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.088 – volume: 25 start-page: 609 issue: 6 year: 2018 ident: 2021_CR11 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-018-1608-5 – volume: 22 start-page: 562 issue: 6 year: 2015 ident: 2021_CR12 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-015-1108-9 – volume: 50 start-page: 2006 issue: 4 year: 2019 ident: 2021_CR33 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-019-01594-0 – volume: 31 start-page: 68 issue: 4 year: 2007 ident: 2021_CR34 publication-title: Steel Times Int. – volume: 91 start-page: 2537 issue: 1 year: 2019 ident: 2021_CR29 publication-title: ECS Trans. doi: 10.1149/09101.2537ecst – ident: 2021_CR31 – volume: 53 start-page: 1 issue: 8 year: 2018 ident: 2021_CR2 publication-title: Iron Steel – ident: 2021_CR19 – volume: 87 start-page: 539 issue: 5 year: 2016 ident: 2021_CR14 publication-title: Steel Res. Int. doi: 10.1002/srin.201500372 – volume: 282 start-page: 1 issue: 6 year: 2019 ident: 2021_CR41 publication-title: Heibei Metall. – volume: 25 start-page: 752 issue: 7 year: 2018 ident: 2021_CR10 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-018-1623-6 – volume: 40 start-page: 26 issue: 3 year: 2018 ident: 2021_CR18 publication-title: J. North China Univ. Sci. Technol. Nat. Sci. Ed. – volume: 5 start-page: 276 issue: 3 year: 2019 ident: 2021_CR30 publication-title: J. Sustainable Metall. doi: 10.1007/s40831-019-00219-9 – volume: 164 start-page: 447 issue: 11 year: 2019 ident: 2021_CR27 publication-title: BHM Berg-Hüttenmänn. Monatsh. doi: 10.1007/s00501-019-00908-8 – volume: 218 start-page: 118 year: 2019 ident: 2021_CR28 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.01.247 – volume-title: Fundamental Research on the Process of Coal Gasification-Gas-Based Shaft Direct Reduction [Dissertation] year: 2013 ident: 2021_CR46 – ident: 2021_CR8 – volume: 37 start-page: 7160 year: 2013 ident: 2021_CR16 publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.653 – volume: 27 start-page: 6 issue: 2 year: 2017 ident: 2021_CR24 publication-title: China Metall. – volume: 24 start-page: 1183 issue: 10 year: 2017 ident: 2021_CR6 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-017-1509-z – volume-title: Clean Ironmaking and Steelmaking Process year: 2019 ident: 2021_CR42 doi: 10.1007/978-3-030-21209-4 – volume: 203 start-page: 736 year: 2018 ident: 2021_CR37 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.08.279 – ident: 2021_CR43 – volume: 24 start-page: 415 issue: 4 year: 2017 ident: 2021_CR5 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-017-1422-5 – ident: 2021_CR20 – volume: 55 start-page: 537 year: 2016 ident: 2021_CR21 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.10.101 – ident: 2021_CR45 – volume: 187 start-page: 960 year: 2018 ident: 2021_CR3 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.03.107 |
SSID | ssj0067707 |
Score | 2.5951996 |
SecondaryResourceType | review_article |
Snippet | Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO
2
emission, and the use of hydrogen is beneficial... Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission, and the use of hydrogen is beneficial... |
SourceID | wanfang proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 713 |
SubjectTerms | Carbon dioxide Carbon dioxide emissions Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Coal gasification Composites Corrosion and Coatings Direct reduced iron Electric furnaces Energy consumption Furnaces Glass Hydrogen Hydrogen production Hydrogen reduction Invited Review Iron and steel industry Ironmaking Liquid metals Materials Science Metallic Materials Metallurgy Natural Materials Scrap iron Shaft furnaces Steel converters Steel industry Steel making Steel scrap Surfaces and Interfaces Sustainable development Thin Films Tribology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvQgPrFaZQ89KYv7TDbHIpYi6MlCb2HzqtSaSh_Q_nsn291uBSl422Unc5jJTr5kZr4AtKlJspzkGU5e3Ku66419xvLAZypVNCEyDI07Gnh9I71-8jJIB2Uf96yqdq9SkkWkrpvdEOy7nGOAno1Q7z4cpPjk6rj6UacKv4TSokfaVde7YyNWpTL_UvF7MaoR5iYpWrTyWJPb4daq0z2B4xIuep21f09hT9szONoiETyHx626Hy-3yitKrjCAeRPrfawUvmnrfWlE2ePFdLi6gH73-f2p55fXIPgS0dHcNywUccSMiVmmELFQKRNB8yRWREhipKEG9wRRLKnjMkMEhpBPUomoOVWSRCa-hIadWH0FnoxZKhBAIcbT6CMp0kjGgQqU0dpkgjQhqOzBZckR7q6qGPOa3diZkKMJuTMhT5pwvxnyvSbI2CXcqozMy39lxiOGUSBwREhNeKgMX3_eoaxd-qYWFqPPkVouBdco47hmgvD6X0pv4NCNXBeDtaAxny70LcKOubgrptkP43_LQA priority: 102 providerName: Springer Nature |
Title | Development and progress on hydrogen metallurgy |
URI | https://link.springer.com/article/10.1007/s12613-020-2021-4 https://www.proquest.com/docview/2919607804 https://d.wanfangdata.com.cn/periodical/bjkjdxxb-e202006001 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT8JQEJ4IXPRgXCOKpAdOmsbS7fWdDBqWaCTGSKKnpm_DuBRkSeDfO6-8UrxwbDtdMjOd983yZgAaRPlREiYRKi_6qnq8sU1p4thUBIL4IW82lQ4NPPXD3sB_eAveTMBtasoqc5uYGWox4jpGfuNS1BVHt8u5Hf_aemqUzq6aERolqKAJjqIyVO7a_eeX3BaHhGQbpnWpvY4h0TyvmW2eQ-dB5zAd1BQXv_P_ylTAzXWGNNvXk6okHW4sQZ0D2DfY0WqthH0IOzI9gr2NjoLHcLNRBGQlqbCy-iu0ZtYotT6WAo9kav1IhNzf88lweQKDTvv1vmebmQg2R6g0sxVtMs-lSnk0EghfCOc-I4nviZDxUHFFFDoIrseJbmyGcAzxHyccIXQgeOgq7xTK6SiVZ2BxjwYM0RQCPokC4yxwuecIRygpVcTCKjg5P2JuGobruRXfcdHqWLMwRhbGmoWxX4Wr9S3jVbeMbcS1nMmx-XGmcSHmKlznjC8ub3lYw8imIGafX59isWCxRBrdeMZpnm9_5wXsatJVKVgNyrPJXF4i6JixOpSiTrcOlVb3_bFdN3qGZwdu6w-biNOy |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH4qMAAD4hSFAhlgAUWkuVwPCCGglHMCic3EV1EpKUcR9E_xG3kvTUhZujFGsR3p8xf7s98FsM1s2EjipIHkxbMqlTd2OU88l-tIszBW9bqlq4Hrm7h1F17cR_cV-C5iYcitslgTs4Va9xTdke_7HLniUbqcw5dXl6pGkXW1KKExpMWlGXzike394PwE53fH95unt8ctN68q4CoUG33X8roMfG5twBsaBQBTKpQsCQMdSxVbZZlFie0HilFqMBQ0qKAUUyhCI61i3wY47gRMhQHu5BSZ3jwrVv6YsSw8mxz76caKF1bULFQPjypkMfWQlz6i8ncfLMXtrz02iyJKbZK2Rza85jzM5UrVORpSawEqJl2E2ZH8hUuwP-Jy5CSpdjJvL1w7nV7qPA40PpnUeTYo8Lsfb-3BMtz9C1YrMJn2UrMKjgp4JFG7obw0SA8lI18Fnva0NcY2ZFwFr8BDqDw9OVXJ6IoysTJBKBBCQRCKsAq7v11ehrk5xjWuFSCL_Dd9FyWpqrBXAF--HjPYdj43ZWPZeerory8pDLahNDdefW38N7dgunV7fSWuzm8u12GGug2d0Gow2X_7MBsod_pyM-OYAw__Teof83kLIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFUUCuQAF1DU1FlcHzhUQMUuDlTiZuINxGKqLoJ-Fb_IOE1IkRASB45RnEn0PLZfPDPPADvURI00SRvovPiv6o439hlLA5-pWNEokfW6cVsDl1fJSTs6u41vJ-CjqIXJst2LkOSopsGpNNl-raNMrSx8Q-Lv4o8B9jLBd-RZled6-Ib_bL2D0yPs4F1CWsc3hyd-fqyAL5Ft9H3D6iIkzJiQNRQyACplJGgahSoRMjHSUIMcm4SSOm0wZDRIoSSVyEJjJRNiQrQ7CdORKz7GAdQmzWLqTyjN6rNdZr_bsmJFGPWnT_6-EJbs9isgm5URWZPa-7EVr7UA8zlV9Zoj31qECW2XYG5MwHAZamM5R15qlZele-Hk6b1a72Go8Epb70Ujw38edO-HK9D-F6xWYcq-Wr0GngxZLJC8Ib_U6B9SxESGgQqU0do0RFKBoMCDy1yf3B2T8cxLZWUHIUcIuYOQRxXY-3qkMxLn-K1xtQCZ5-O0xwnDGShwIkwV2C-AL2__Ymwn75uysXh8elTv74JrbON0boL6-p-MbsPM9VGLX5xenW_ArDMyykmrwlS_O9CbyH76YivzOA_u_tvFPwE2lQvJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+progress+on+hydrogen+metallurgy&rft.jtitle=%E7%9F%BF%E7%89%A9%E5%86%B6%E9%87%91%E4%B8%8E%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=Jue+Tang&rft.au=Man-sheng+Chu&rft.au=Feng+Li&rft.au=Cong+Feng&rft.date=2020-06-01&rft.pub=School+of+Ferrous+Metallurgy%2C+Northeastern+University%2C+Shenyang+110819%2C+China%25State+Key+Laboratory+of+Rolling+and+Automation%2C+Northeastern+University%2C+Shenyang+110819%2C+China&rft.issn=1674-4799&rft.volume=27&rft.issue=6&rft.spage=713&rft.epage=723&rft_id=info:doi/10.1007%2Fs12613-020-2021-4&rft.externalDocID=bjkjdxxb_e202006001 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjkjdxxb-e%2Fbjkjdxxb-e.jpg |