Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals

We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, di...

Full description

Saved in:
Bibliographic Details
Published inACS sustainable chemistry & engineering Vol. 8; no. 41; pp. 15772 - 15781
Main Authors Wu, Xinxing, Zhao, Heng, Khan, Mohd Adnan, Maity, Partha, Al-Attas, Tareq, Larter, Stephen, Yong, Qiang, Mohammed, Omar F., Kibria, Md Golam, Hu, Jinguang
Format Journal Article
LanguageEnglish
Published 19.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, different model celluloses (cellulose I and mercerized and regenerated cellulose II), and raw biomass. Under optimized conditions, the glucose was totally consumed within 3 h of reaction, with nearly 78 wt % carbon conversion to lactic acid. The highest activity observed for cellulose in the PR used phosphoric acid swollen cellulose (PASC, regenerated cellulose II) with a H₂ production rate of ∼178 μmol·h–¹·gcₐₜ–¹, more than 71 wt % cellulose conversion after 12 h, and the formation of ∼617 μmol lactic acid per gram of cellulose. This high activity was mainly attributed to enhanced interaction of the photocatalyst with PASC, as evidenced by quartz crystal microbalance analysis. Based on the knowledge obtained from model cellulose, we took a step further to evaluate the photorefining ability of raw lignocellulosic biomass wheat straw (WS), with/without various biomass pretreatment strategies. The pretreated biomass showed much higher H₂ and lactic acid production and cellulose conversions as compared with raw biomass but the degree of improvement is highly dependent on pretreatment strategies. Our results not only demonstrate the potential of using visible light for the coproduction of H₂, along with value-added bioproducts from biomass PR, but also shed light on developing pretreatment strategies to achieve a scalable biomass PR.
AbstractList We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, different model celluloses (cellulose I and mercerized and regenerated cellulose II), and raw biomass. Under optimized conditions, the glucose was totally consumed within 3 h of reaction, with nearly 78 wt % carbon conversion to lactic acid. The highest activity observed for cellulose in the PR used phosphoric acid swollen cellulose (PASC, regenerated cellulose II) with a H₂ production rate of ∼178 μmol·h–¹·gcₐₜ–¹, more than 71 wt % cellulose conversion after 12 h, and the formation of ∼617 μmol lactic acid per gram of cellulose. This high activity was mainly attributed to enhanced interaction of the photocatalyst with PASC, as evidenced by quartz crystal microbalance analysis. Based on the knowledge obtained from model cellulose, we took a step further to evaluate the photorefining ability of raw lignocellulosic biomass wheat straw (WS), with/without various biomass pretreatment strategies. The pretreated biomass showed much higher H₂ and lactic acid production and cellulose conversions as compared with raw biomass but the degree of improvement is highly dependent on pretreatment strategies. Our results not only demonstrate the potential of using visible light for the coproduction of H₂, along with value-added bioproducts from biomass PR, but also shed light on developing pretreatment strategies to achieve a scalable biomass PR.
Author Mohammed, Omar F.
Yong, Qiang
Zhao, Heng
Khan, Mohd Adnan
Maity, Partha
Larter, Stephen
Hu, Jinguang
Wu, Xinxing
Kibria, Md Golam
Al-Attas, Tareq
Author_xml – sequence: 1
  givenname: Xinxing
  surname: Wu
  fullname: Wu, Xinxing
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China, Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 2
  givenname: Heng
  surname: Zhao
  fullname: Zhao, Heng
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 3
  givenname: Mohd Adnan
  surname: Khan
  fullname: Khan, Mohd Adnan
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 4
  givenname: Partha
  orcidid: 0000-0002-0293-7118
  surname: Maity
  fullname: Maity, Partha
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 5
  givenname: Tareq
  surname: Al-Attas
  fullname: Al-Attas, Tareq
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 6
  givenname: Stephen
  surname: Larter
  fullname: Larter, Stephen
  organization: Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0001-5266-7278
  surname: Yong
  fullname: Yong, Qiang
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China
– sequence: 8
  givenname: Omar F.
  orcidid: 0000-0001-8500-1130
  surname: Mohammed
  fullname: Mohammed, Omar F.
  organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
– sequence: 9
  givenname: Md Golam
  orcidid: 0000-0003-3105-5576
  surname: Kibria
  fullname: Kibria, Md Golam
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
– sequence: 10
  givenname: Jinguang
  orcidid: 0000-0001-8033-7102
  surname: Hu
  fullname: Hu, Jinguang
  organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
BookMark eNqFUD1PwzAUtFCRKKU_ASkjS4rtJE4iplI-ilQJpAJr5DjPrSGxi-0g9d_jqAzAwlvuDXenuztFI200IHRO8IxgSi65cK53Ygsd6M0MC8xoQY_QmBJWxDgtstGP_wRNnXvD4coyoQUZo_d1r1u12fr4xqpP0NG1Mh13LnraGm8sSKXB7iNpbLQwO2uaXnhldGRktO6d50rzuoVouW-s2QQ51030ytse4nnTQDPYDdmU4K07Q8cyAEy_cYJe7m6fF8t49Xj_sJivYpFk1Mcyl5mEnDBeSuBJmZY5k1SkgnFIBC4IE2mRSg5lLZJckpoAEWUisjyrc0nrZIIuDr4h70cPzledcgLalmswvatoWTAS2hcsULMDVVjjXKhb7azquN1XBFfDvtWvfavvfYPu6o9OKM-HZbzlqv1H_QXEhovk
CitedBy_id crossref_primary_10_1021_acscatal_4c05707
crossref_primary_10_1021_acsanm_4c00279
crossref_primary_10_1002_adfm_202403795
crossref_primary_10_1002_cctc_202101006
crossref_primary_10_1039_D4GC03829K
crossref_primary_10_1016_j_fuel_2024_132617
crossref_primary_10_1016_j_isci_2021_102109
crossref_primary_10_1007_s10570_025_06475_1
crossref_primary_10_1016_j_cej_2022_137128
crossref_primary_10_1016_j_recm_2023_01_001
crossref_primary_10_1016_j_fuproc_2024_108057
crossref_primary_10_1002_ange_202408504
crossref_primary_10_1007_s11237_024_09783_y
crossref_primary_10_1016_j_cej_2023_144093
crossref_primary_10_1016_j_cej_2023_146794
crossref_primary_10_1021_acscatal_2c03618
crossref_primary_10_1016_j_mtener_2024_101667
crossref_primary_10_1039_D1GC02150H
crossref_primary_10_1016_j_jechem_2021_04_033
crossref_primary_10_1016_j_jcis_2023_07_081
crossref_primary_10_3390_catal12080819
crossref_primary_10_1016_j_biombioe_2024_107431
crossref_primary_10_1016_j_cej_2024_155180
crossref_primary_10_1016_j_cej_2022_138980
crossref_primary_10_1002_smll_202403347
crossref_primary_10_1016_j_mtchem_2024_102091
crossref_primary_10_1016_j_cej_2022_135232
crossref_primary_10_1016_j_mtsust_2023_100612
crossref_primary_10_1016_j_fuel_2023_129630
crossref_primary_10_2139_ssrn_4060677
crossref_primary_10_1002_anie_202408504
crossref_primary_10_1016_j_seppur_2023_123540
crossref_primary_10_1021_acssuschemeng_3c04835
crossref_primary_10_1038_s41570_023_00567_x
crossref_primary_10_1016_j_cej_2023_145167
crossref_primary_10_1039_D1GC02307A
crossref_primary_10_1021_acssuschemeng_1c08708
crossref_primary_10_1002_eom2_12259
crossref_primary_10_1016_j_mtsust_2024_100827
crossref_primary_10_1093_pnasnexus_pgac139
crossref_primary_10_1039_D2EE00816E
crossref_primary_10_1002_aesr_202400069
crossref_primary_10_1016_j_cattod_2024_114587
crossref_primary_10_1186_s40580_021_00256_9
crossref_primary_10_1016_j_jcat_2022_07_042
crossref_primary_10_1002_aenm_202300257
crossref_primary_10_1021_acssuschemeng_1c03420
crossref_primary_10_1016_j_cej_2023_143972
crossref_primary_10_1016_j_eurpolymj_2024_113188
crossref_primary_10_1016_j_apcatb_2022_121814
crossref_primary_10_1021_acssuschemeng_1c04592
crossref_primary_10_1016_j_cej_2023_145716
crossref_primary_10_1039_D2NA00119E
crossref_primary_10_1016_j_enchem_2024_100133
crossref_primary_10_1002_ese3_1487
crossref_primary_10_1007_s42114_025_01282_5
crossref_primary_10_1016_j_envres_2021_111239
crossref_primary_10_1016_j_checat_2022_04_015
crossref_primary_10_1039_D4CY00305E
crossref_primary_10_1021_acs_iecr_1c04437
crossref_primary_10_1016_j_apcatb_2021_120872
Cites_doi 10.1016/j.biortech.2016.08.018
10.1023/A:1015840111614
10.1021/acssuschemeng.8b01835
10.1016/j.jcat.2013.11.023
10.1021/bm050799c
10.1021/cs300240x
10.1039/C7CS00213K
10.1002/smll.201402636
10.1126/science.aaa3145
10.1039/D0CC01686A
10.1021/bm2017542
10.1038/474S012a
10.1002/bit.22981
10.1021/acs.jpcc.8b00256
10.1002/bbb.49
10.1007/s10570-011-9644-6
10.1002/cssc.201600309
10.1016/j.jphotochem.2018.09.049
10.1016/j.ijhydene.2018.06.103
10.1021/ja413254g
10.1039/C5EE02940F
10.1002/adfm.201200922
10.1007/s100860300026
10.1002/anie.202008217
10.1002/anie.201611605
10.1038/nphoton.2012.175
10.1021/jp106452m
10.1002/anie.201710133
10.1039/C1EE01120K
10.1021/ja01279a007
10.1039/C3EE00069A
10.1016/S0032-3861(96)00516-2
10.1038/s41929-018-0148-8
10.1023/A:1009272632367
10.1021/acs.jpcc.8b03741
10.1038/nmat2317
10.1021/ac00020a015
10.1039/C7CY00960G
10.1126/science.1162018
10.1039/C4CC02042A
10.1021/jacs.8b07853
10.1021/ja0257319
10.1039/C8EE01316K
10.1039/C9TA08361H
10.1016/S0144-8617(02)00183-2
10.1016/s0003-2697(69)80009-6
10.1021/bp990109e
10.1126/science.1194218
10.1016/j.compscitech.2010.06.016
10.1021/acs.chemmater.6b00580
10.1021/jz5000512
10.1016/j.biortech.2015.08.030
10.1007/s12010-016-2273-7
10.1002/cctc.201901856
10.1039/C9GC01728C
10.1021/acsami.7b00370
10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
10.1039/C4PP00128A
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1021/acssuschemeng.0c06282
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0485
EndPage 15781
ExternalDocumentID 10_1021_acssuschemeng_0c06282
GroupedDBID 55A
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
GGK
GNL
IH9
JG~
ROL
UI2
VF5
VG9
W1F
7S9
L.6
ID FETCH-LOGICAL-c352t-f7f5fe716a9fea394976f2c4c6ae3c0816c484fae9bc37f1b1e1c93c575b7f2b3
IEDL.DBID ACS
ISSN 2168-0485
IngestDate Thu Jul 10 23:34:39 EDT 2025
Tue Jul 01 04:21:36 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f7f5fe716a9fea394976f2c4c6ae3c0816c484fae9bc37f1b1e1c93c575b7f2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3105-5576
0000-0001-8500-1130
0000-0001-8033-7102
0000-0001-5266-7278
0000-0002-0293-7118
PQID 2986128186
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2986128186
crossref_primary_10_1021_acssuschemeng_0c06282
crossref_citationtrail_10_1021_acssuschemeng_0c06282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-19
PublicationDateYYYYMMDD 2020-10-19
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-19
  day: 19
PublicationDecade 2020
PublicationTitle ACS sustainable chemistry & engineering
PublicationYear 2020
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.1016/j.biortech.2016.08.018
– ident: ref30/cit30
  doi: 10.1023/A:1015840111614
– ident: ref33/cit33
  doi: 10.1021/acssuschemeng.8b01835
– ident: ref39/cit39
  doi: 10.1016/j.jcat.2013.11.023
– ident: ref16/cit16
  doi: 10.1021/bm050799c
– ident: ref17/cit17
  doi: 10.1021/cs300240x
– ident: ref45/cit45
  doi: 10.1039/C7CS00213K
– ident: ref22/cit22
  doi: 10.1002/smll.201402636
– ident: ref19/cit19
  doi: 10.1126/science.aaa3145
– ident: ref52/cit52
  doi: 10.1039/D0CC01686A
– ident: ref27/cit27
  doi: 10.1021/bm2017542
– ident: ref11/cit11
  doi: 10.1038/474S012a
– ident: ref24/cit24
  doi: 10.1002/bit.22981
– ident: ref42/cit42
  doi: 10.1021/acs.jpcc.8b00256
– ident: ref14/cit14
  doi: 10.1002/bbb.49
– ident: ref49/cit49
  doi: 10.1007/s10570-011-9644-6
– ident: ref3/cit3
  doi: 10.1002/cssc.201600309
– ident: ref34/cit34
  doi: 10.1016/j.jphotochem.2018.09.049
– ident: ref7/cit7
  doi: 10.1016/j.ijhydene.2018.06.103
– ident: ref36/cit36
  doi: 10.1021/ja413254g
– ident: ref54/cit54
  doi: 10.1039/C5EE02940F
– ident: ref31/cit31
  doi: 10.1002/adfm.201200922
– ident: ref61/cit61
  doi: 10.1007/s100860300026
– ident: ref12/cit12
  doi: 10.1002/anie.202008217
– ident: ref20/cit20
  doi: 10.1002/anie.201611605
– ident: ref5/cit5
  doi: 10.1038/nphoton.2012.175
– ident: ref51/cit51
  doi: 10.1021/jp106452m
– ident: ref4/cit4
  doi: 10.1002/anie.201710133
– ident: ref8/cit8
  doi: 10.1039/C1EE01120K
– ident: ref44/cit44
  doi: 10.1021/ja01279a007
– ident: ref46/cit46
  doi: 10.1039/C3EE00069A
– ident: ref23/cit23
  doi: 10.1016/S0032-3861(96)00516-2
– ident: ref48/cit48
– ident: ref60/cit60
  doi: 10.1038/s41929-018-0148-8
– ident: ref37/cit37
– ident: ref15/cit15
  doi: 10.1023/A:1009272632367
– ident: ref43/cit43
  doi: 10.1021/acs.jpcc.8b03741
– ident: ref18/cit18
  doi: 10.1038/nmat2317
– ident: ref58/cit58
  doi: 10.1021/ac00020a015
– ident: ref32/cit32
  doi: 10.1039/C7CY00960G
– ident: ref21/cit21
  doi: 10.1126/science.1162018
– ident: ref38/cit38
  doi: 10.1039/C4CC02042A
– ident: ref13/cit13
  doi: 10.1021/jacs.8b07853
– ident: ref50/cit50
  doi: 10.1021/ja0257319
– ident: ref59/cit59
  doi: 10.1039/C8EE01316K
– ident: ref40/cit40
  doi: 10.1039/C9TA08361H
– ident: ref53/cit53
  doi: 10.1016/S0144-8617(02)00183-2
– ident: ref10/cit10
  doi: 10.1016/s0003-2697(69)80009-6
– ident: ref9/cit9
  doi: 10.1021/bp990109e
– ident: ref1/cit1
  doi: 10.1126/science.1194218
– ident: ref29/cit29
  doi: 10.1016/j.compscitech.2010.06.016
– ident: ref57/cit57
  doi: 10.1021/acs.chemmater.6b00580
– ident: ref35/cit35
  doi: 10.1021/jz5000512
– ident: ref28/cit28
  doi: 10.1021/ja0257319
– ident: ref2/cit2
  doi: 10.1016/j.biortech.2015.08.030
– ident: ref25/cit25
  doi: 10.1007/s12010-016-2273-7
– ident: ref6/cit6
  doi: 10.1002/cctc.201901856
– ident: ref56/cit56
  doi: 10.1039/C9GC01728C
– ident: ref41/cit41
  doi: 10.1021/acsami.7b00370
– ident: ref47/cit47
  doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
– ident: ref55/cit55
  doi: 10.1039/C4PP00128A
SSID ssj0000993281
Score 2.4705667
Snippet We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 15772
SubjectTerms biobased products
biomass
carbon
cellulose
glucose
green chemistry
hydrogen
lactic acid
light
lighting
lignocellulose
phosphoric acid
photocatalysts
quartz crystal microbalance
value added
wheat straw
Title Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals
URI https://www.proquest.com/docview/2986128186
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IJz34Nr5TE6-7sG132R4RJcREQ4IYbpt2aNVAdgnsHvDX2-4DJYaoP6CTpp1Ov-l0vg-hG6Ai8BVoB0IeOExLqwaotMMUkKYIiKC52MTjU9AbsoeRP6qhxoYKPvEaAswETKZnX8te3SbYpr885raY5cpvdwarNxWDdijJdUmJF4SOcU6_atrZZGj9OlqPxvkV091F_apRp_hZMnGzVLrw8ZO38a-z30M7JdzE7cI_9lFNxQdo-xsJ4SGaDLJ4mtOJ3M1t6MO37_bP0AL335LUypDY9sAlNuAWd5JZQRBrNhMnGg--uq9wbzmeJ8YbsYjH-EVMM-W0TVAbW3NQshIsjtCwe__c6TmlBIMDBpmljm5pXyuTUwmulaCcGfSiCTAIhKJgRTuAhUwLxSXQlvakpzzgFAwIlC1NJD1G9TiJ1QnCjBJfU5OfSJBMCSX52L6gMF-HoEPGTxGrdiKCkp_cymRMo7xOTrxobS2jci1PkbsaNisIOn4bcF1tc2SOkq2PiFgl2SIiPAxsYTEMzv5r9BxtEZuI268u_ALV03mmLg1aSeVV7qKfx2LtLg
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sunlight-Driven+Biomass+Photorefinery+for+Coproduction+of+Sustainable+Hydrogen+and+Value-Added+Biochemicals&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Wu%2C+Xinxing&rft.au=Zhao%2C+Heng&rft.au=Khan%2C+Mohd+Adnan&rft.au=Maity%2C+Partha&rft.date=2020-10-19&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=8&rft.issue=41&rft.spage=15772&rft.epage=15781&rft_id=info:doi/10.1021%2Facssuschemeng.0c06282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssuschemeng_0c06282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon