Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals
We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, di...
Saved in:
Published in | ACS sustainable chemistry & engineering Vol. 8; no. 41; pp. 15772 - 15781 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
19.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, different model celluloses (cellulose I and mercerized and regenerated cellulose II), and raw biomass. Under optimized conditions, the glucose was totally consumed within 3 h of reaction, with nearly 78 wt % carbon conversion to lactic acid. The highest activity observed for cellulose in the PR used phosphoric acid swollen cellulose (PASC, regenerated cellulose II) with a H₂ production rate of ∼178 μmol·h–¹·gcₐₜ–¹, more than 71 wt % cellulose conversion after 12 h, and the formation of ∼617 μmol lactic acid per gram of cellulose. This high activity was mainly attributed to enhanced interaction of the photocatalyst with PASC, as evidenced by quartz crystal microbalance analysis. Based on the knowledge obtained from model cellulose, we took a step further to evaluate the photorefining ability of raw lignocellulosic biomass wheat straw (WS), with/without various biomass pretreatment strategies. The pretreated biomass showed much higher H₂ and lactic acid production and cellulose conversions as compared with raw biomass but the degree of improvement is highly dependent on pretreatment strategies. Our results not only demonstrate the potential of using visible light for the coproduction of H₂, along with value-added bioproducts from biomass PR, but also shed light on developing pretreatment strategies to achieve a scalable biomass PR. |
---|---|
AbstractList | We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under visible light illumination. To do so, we follow a bottom-up approach to systematically investigate the photoreforming performance of glucose, different model celluloses (cellulose I and mercerized and regenerated cellulose II), and raw biomass. Under optimized conditions, the glucose was totally consumed within 3 h of reaction, with nearly 78 wt % carbon conversion to lactic acid. The highest activity observed for cellulose in the PR used phosphoric acid swollen cellulose (PASC, regenerated cellulose II) with a H₂ production rate of ∼178 μmol·h–¹·gcₐₜ–¹, more than 71 wt % cellulose conversion after 12 h, and the formation of ∼617 μmol lactic acid per gram of cellulose. This high activity was mainly attributed to enhanced interaction of the photocatalyst with PASC, as evidenced by quartz crystal microbalance analysis. Based on the knowledge obtained from model cellulose, we took a step further to evaluate the photorefining ability of raw lignocellulosic biomass wheat straw (WS), with/without various biomass pretreatment strategies. The pretreated biomass showed much higher H₂ and lactic acid production and cellulose conversions as compared with raw biomass but the degree of improvement is highly dependent on pretreatment strategies. Our results not only demonstrate the potential of using visible light for the coproduction of H₂, along with value-added bioproducts from biomass PR, but also shed light on developing pretreatment strategies to achieve a scalable biomass PR. |
Author | Mohammed, Omar F. Yong, Qiang Zhao, Heng Khan, Mohd Adnan Maity, Partha Larter, Stephen Hu, Jinguang Wu, Xinxing Kibria, Md Golam Al-Attas, Tareq |
Author_xml | – sequence: 1 givenname: Xinxing surname: Wu fullname: Wu, Xinxing organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China, Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 2 givenname: Heng surname: Zhao fullname: Zhao, Heng organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 3 givenname: Mohd Adnan surname: Khan fullname: Khan, Mohd Adnan organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 4 givenname: Partha orcidid: 0000-0002-0293-7118 surname: Maity fullname: Maity, Partha organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 5 givenname: Tareq surname: Al-Attas fullname: Al-Attas, Tareq organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 6 givenname: Stephen surname: Larter fullname: Larter, Stephen organization: Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 7 givenname: Qiang orcidid: 0000-0001-5266-7278 surname: Yong fullname: Yong, Qiang organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People’s Republic of China – sequence: 8 givenname: Omar F. orcidid: 0000-0001-8500-1130 surname: Mohammed fullname: Mohammed, Omar F. organization: Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia – sequence: 9 givenname: Md Golam orcidid: 0000-0003-3105-5576 surname: Kibria fullname: Kibria, Md Golam organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada – sequence: 10 givenname: Jinguang orcidid: 0000-0001-8033-7102 surname: Hu fullname: Hu, Jinguang organization: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada |
BookMark | eNqFUD1PwzAUtFCRKKU_ASkjS4rtJE4iplI-ilQJpAJr5DjPrSGxi-0g9d_jqAzAwlvuDXenuztFI200IHRO8IxgSi65cK53Ygsd6M0MC8xoQY_QmBJWxDgtstGP_wRNnXvD4coyoQUZo_d1r1u12fr4xqpP0NG1Mh13LnraGm8sSKXB7iNpbLQwO2uaXnhldGRktO6d50rzuoVouW-s2QQ51030ytse4nnTQDPYDdmU4K07Q8cyAEy_cYJe7m6fF8t49Xj_sJivYpFk1Mcyl5mEnDBeSuBJmZY5k1SkgnFIBC4IE2mRSg5lLZJckpoAEWUisjyrc0nrZIIuDr4h70cPzledcgLalmswvatoWTAS2hcsULMDVVjjXKhb7azquN1XBFfDvtWvfavvfYPu6o9OKM-HZbzlqv1H_QXEhovk |
CitedBy_id | crossref_primary_10_1021_acscatal_4c05707 crossref_primary_10_1021_acsanm_4c00279 crossref_primary_10_1002_adfm_202403795 crossref_primary_10_1002_cctc_202101006 crossref_primary_10_1039_D4GC03829K crossref_primary_10_1016_j_fuel_2024_132617 crossref_primary_10_1016_j_isci_2021_102109 crossref_primary_10_1007_s10570_025_06475_1 crossref_primary_10_1016_j_cej_2022_137128 crossref_primary_10_1016_j_recm_2023_01_001 crossref_primary_10_1016_j_fuproc_2024_108057 crossref_primary_10_1002_ange_202408504 crossref_primary_10_1007_s11237_024_09783_y crossref_primary_10_1016_j_cej_2023_144093 crossref_primary_10_1016_j_cej_2023_146794 crossref_primary_10_1021_acscatal_2c03618 crossref_primary_10_1016_j_mtener_2024_101667 crossref_primary_10_1039_D1GC02150H crossref_primary_10_1016_j_jechem_2021_04_033 crossref_primary_10_1016_j_jcis_2023_07_081 crossref_primary_10_3390_catal12080819 crossref_primary_10_1016_j_biombioe_2024_107431 crossref_primary_10_1016_j_cej_2024_155180 crossref_primary_10_1016_j_cej_2022_138980 crossref_primary_10_1002_smll_202403347 crossref_primary_10_1016_j_mtchem_2024_102091 crossref_primary_10_1016_j_cej_2022_135232 crossref_primary_10_1016_j_mtsust_2023_100612 crossref_primary_10_1016_j_fuel_2023_129630 crossref_primary_10_2139_ssrn_4060677 crossref_primary_10_1002_anie_202408504 crossref_primary_10_1016_j_seppur_2023_123540 crossref_primary_10_1021_acssuschemeng_3c04835 crossref_primary_10_1038_s41570_023_00567_x crossref_primary_10_1016_j_cej_2023_145167 crossref_primary_10_1039_D1GC02307A crossref_primary_10_1021_acssuschemeng_1c08708 crossref_primary_10_1002_eom2_12259 crossref_primary_10_1016_j_mtsust_2024_100827 crossref_primary_10_1093_pnasnexus_pgac139 crossref_primary_10_1039_D2EE00816E crossref_primary_10_1002_aesr_202400069 crossref_primary_10_1016_j_cattod_2024_114587 crossref_primary_10_1186_s40580_021_00256_9 crossref_primary_10_1016_j_jcat_2022_07_042 crossref_primary_10_1002_aenm_202300257 crossref_primary_10_1021_acssuschemeng_1c03420 crossref_primary_10_1016_j_cej_2023_143972 crossref_primary_10_1016_j_eurpolymj_2024_113188 crossref_primary_10_1016_j_apcatb_2022_121814 crossref_primary_10_1021_acssuschemeng_1c04592 crossref_primary_10_1016_j_cej_2023_145716 crossref_primary_10_1039_D2NA00119E crossref_primary_10_1016_j_enchem_2024_100133 crossref_primary_10_1002_ese3_1487 crossref_primary_10_1007_s42114_025_01282_5 crossref_primary_10_1016_j_envres_2021_111239 crossref_primary_10_1016_j_checat_2022_04_015 crossref_primary_10_1039_D4CY00305E crossref_primary_10_1021_acs_iecr_1c04437 crossref_primary_10_1016_j_apcatb_2021_120872 |
Cites_doi | 10.1016/j.biortech.2016.08.018 10.1023/A:1015840111614 10.1021/acssuschemeng.8b01835 10.1016/j.jcat.2013.11.023 10.1021/bm050799c 10.1021/cs300240x 10.1039/C7CS00213K 10.1002/smll.201402636 10.1126/science.aaa3145 10.1039/D0CC01686A 10.1021/bm2017542 10.1038/474S012a 10.1002/bit.22981 10.1021/acs.jpcc.8b00256 10.1002/bbb.49 10.1007/s10570-011-9644-6 10.1002/cssc.201600309 10.1016/j.jphotochem.2018.09.049 10.1016/j.ijhydene.2018.06.103 10.1021/ja413254g 10.1039/C5EE02940F 10.1002/adfm.201200922 10.1007/s100860300026 10.1002/anie.202008217 10.1002/anie.201611605 10.1038/nphoton.2012.175 10.1021/jp106452m 10.1002/anie.201710133 10.1039/C1EE01120K 10.1021/ja01279a007 10.1039/C3EE00069A 10.1016/S0032-3861(96)00516-2 10.1038/s41929-018-0148-8 10.1023/A:1009272632367 10.1021/acs.jpcc.8b03741 10.1038/nmat2317 10.1021/ac00020a015 10.1039/C7CY00960G 10.1126/science.1162018 10.1039/C4CC02042A 10.1021/jacs.8b07853 10.1021/ja0257319 10.1039/C8EE01316K 10.1039/C9TA08361H 10.1016/S0144-8617(02)00183-2 10.1016/s0003-2697(69)80009-6 10.1021/bp990109e 10.1126/science.1194218 10.1016/j.compscitech.2010.06.016 10.1021/acs.chemmater.6b00580 10.1021/jz5000512 10.1016/j.biortech.2015.08.030 10.1007/s12010-016-2273-7 10.1002/cctc.201901856 10.1039/C9GC01728C 10.1021/acsami.7b00370 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E 10.1039/C4PP00128A |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1021/acssuschemeng.0c06282 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0485 |
EndPage | 15781 |
ExternalDocumentID | 10_1021_acssuschemeng_0c06282 |
GroupedDBID | 55A AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ GGK GNL IH9 JG~ ROL UI2 VF5 VG9 W1F 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-f7f5fe716a9fea394976f2c4c6ae3c0816c484fae9bc37f1b1e1c93c575b7f2b3 |
IEDL.DBID | ACS |
ISSN | 2168-0485 |
IngestDate | Thu Jul 10 23:34:39 EDT 2025 Tue Jul 01 04:21:36 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-f7f5fe716a9fea394976f2c4c6ae3c0816c484fae9bc37f1b1e1c93c575b7f2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3105-5576 0000-0001-8500-1130 0000-0001-8033-7102 0000-0001-5266-7278 0000-0002-0293-7118 |
PQID | 2986128186 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2986128186 crossref_primary_10_1021_acssuschemeng_0c06282 crossref_citationtrail_10_1021_acssuschemeng_0c06282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-19 |
PublicationDateYYYYMMDD | 2020-10-19 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | ACS sustainable chemistry & engineering |
PublicationYear | 2020 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.1016/j.biortech.2016.08.018 – ident: ref30/cit30 doi: 10.1023/A:1015840111614 – ident: ref33/cit33 doi: 10.1021/acssuschemeng.8b01835 – ident: ref39/cit39 doi: 10.1016/j.jcat.2013.11.023 – ident: ref16/cit16 doi: 10.1021/bm050799c – ident: ref17/cit17 doi: 10.1021/cs300240x – ident: ref45/cit45 doi: 10.1039/C7CS00213K – ident: ref22/cit22 doi: 10.1002/smll.201402636 – ident: ref19/cit19 doi: 10.1126/science.aaa3145 – ident: ref52/cit52 doi: 10.1039/D0CC01686A – ident: ref27/cit27 doi: 10.1021/bm2017542 – ident: ref11/cit11 doi: 10.1038/474S012a – ident: ref24/cit24 doi: 10.1002/bit.22981 – ident: ref42/cit42 doi: 10.1021/acs.jpcc.8b00256 – ident: ref14/cit14 doi: 10.1002/bbb.49 – ident: ref49/cit49 doi: 10.1007/s10570-011-9644-6 – ident: ref3/cit3 doi: 10.1002/cssc.201600309 – ident: ref34/cit34 doi: 10.1016/j.jphotochem.2018.09.049 – ident: ref7/cit7 doi: 10.1016/j.ijhydene.2018.06.103 – ident: ref36/cit36 doi: 10.1021/ja413254g – ident: ref54/cit54 doi: 10.1039/C5EE02940F – ident: ref31/cit31 doi: 10.1002/adfm.201200922 – ident: ref61/cit61 doi: 10.1007/s100860300026 – ident: ref12/cit12 doi: 10.1002/anie.202008217 – ident: ref20/cit20 doi: 10.1002/anie.201611605 – ident: ref5/cit5 doi: 10.1038/nphoton.2012.175 – ident: ref51/cit51 doi: 10.1021/jp106452m – ident: ref4/cit4 doi: 10.1002/anie.201710133 – ident: ref8/cit8 doi: 10.1039/C1EE01120K – ident: ref44/cit44 doi: 10.1021/ja01279a007 – ident: ref46/cit46 doi: 10.1039/C3EE00069A – ident: ref23/cit23 doi: 10.1016/S0032-3861(96)00516-2 – ident: ref48/cit48 – ident: ref60/cit60 doi: 10.1038/s41929-018-0148-8 – ident: ref37/cit37 – ident: ref15/cit15 doi: 10.1023/A:1009272632367 – ident: ref43/cit43 doi: 10.1021/acs.jpcc.8b03741 – ident: ref18/cit18 doi: 10.1038/nmat2317 – ident: ref58/cit58 doi: 10.1021/ac00020a015 – ident: ref32/cit32 doi: 10.1039/C7CY00960G – ident: ref21/cit21 doi: 10.1126/science.1162018 – ident: ref38/cit38 doi: 10.1039/C4CC02042A – ident: ref13/cit13 doi: 10.1021/jacs.8b07853 – ident: ref50/cit50 doi: 10.1021/ja0257319 – ident: ref59/cit59 doi: 10.1039/C8EE01316K – ident: ref40/cit40 doi: 10.1039/C9TA08361H – ident: ref53/cit53 doi: 10.1016/S0144-8617(02)00183-2 – ident: ref10/cit10 doi: 10.1016/s0003-2697(69)80009-6 – ident: ref9/cit9 doi: 10.1021/bp990109e – ident: ref1/cit1 doi: 10.1126/science.1194218 – ident: ref29/cit29 doi: 10.1016/j.compscitech.2010.06.016 – ident: ref57/cit57 doi: 10.1021/acs.chemmater.6b00580 – ident: ref35/cit35 doi: 10.1021/jz5000512 – ident: ref28/cit28 doi: 10.1021/ja0257319 – ident: ref2/cit2 doi: 10.1016/j.biortech.2015.08.030 – ident: ref25/cit25 doi: 10.1007/s12010-016-2273-7 – ident: ref6/cit6 doi: 10.1002/cctc.201901856 – ident: ref56/cit56 doi: 10.1039/C9GC01728C – ident: ref41/cit41 doi: 10.1021/acsami.7b00370 – ident: ref47/cit47 doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E – ident: ref55/cit55 doi: 10.1039/C4PP00128A |
SSID | ssj0000993281 |
Score | 2.4705667 |
Snippet | We demonstrate a potential pathway of biomass photorefinery (PR) using low-cost CoO/g-C₃N₄ catalysts for the coproduction of hydrogen and lactic acid under... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 15772 |
SubjectTerms | biobased products biomass carbon cellulose glucose green chemistry hydrogen lactic acid light lighting lignocellulose phosphoric acid photocatalysts quartz crystal microbalance value added wheat straw |
Title | Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals |
URI | https://www.proquest.com/docview/2986128186 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4IJz34Nr5TE6-7sG132R4RJcREQ4IYbpt2aNVAdgnsHvDX2-4DJYaoP6CTpp1Ov-l0vg-hG6Ai8BVoB0IeOExLqwaotMMUkKYIiKC52MTjU9AbsoeRP6qhxoYKPvEaAswETKZnX8te3SbYpr885raY5cpvdwarNxWDdijJdUmJF4SOcU6_atrZZGj9OlqPxvkV091F_apRp_hZMnGzVLrw8ZO38a-z30M7JdzE7cI_9lFNxQdo-xsJ4SGaDLJ4mtOJ3M1t6MO37_bP0AL335LUypDY9sAlNuAWd5JZQRBrNhMnGg--uq9wbzmeJ8YbsYjH-EVMM-W0TVAbW3NQshIsjtCwe__c6TmlBIMDBpmljm5pXyuTUwmulaCcGfSiCTAIhKJgRTuAhUwLxSXQlvakpzzgFAwIlC1NJD1G9TiJ1QnCjBJfU5OfSJBMCSX52L6gMF-HoEPGTxGrdiKCkp_cymRMo7xOTrxobS2jci1PkbsaNisIOn4bcF1tc2SOkq2PiFgl2SIiPAxsYTEMzv5r9BxtEZuI268u_ALV03mmLg1aSeVV7qKfx2LtLg |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sunlight-Driven+Biomass+Photorefinery+for+Coproduction+of+Sustainable+Hydrogen+and+Value-Added+Biochemicals&rft.jtitle=ACS+sustainable+chemistry+%26+engineering&rft.au=Wu%2C+Xinxing&rft.au=Zhao%2C+Heng&rft.au=Khan%2C+Mohd+Adnan&rft.au=Maity%2C+Partha&rft.date=2020-10-19&rft.issn=2168-0485&rft.eissn=2168-0485&rft.volume=8&rft.issue=41&rft.spage=15772&rft.epage=15781&rft_id=info:doi/10.1021%2Facssuschemeng.0c06282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acssuschemeng_0c06282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-0485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-0485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-0485&client=summon |