Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans

The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep le...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. PP; no. 11; pp. 1 - 18
Main Authors Hu, Yao, Huang, Zhi-An, Liu, Rui, Xue, Xiaoming, Sun, Xiaoyan, Song, Linqi, Tan, Kay Chen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.
AbstractList The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.
The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.
Author Liu, Rui
Tan, Kay Chen
Huang, Zhi-An
Hu, Yao
Sun, Xiaoyan
Song, Linqi
Xue, Xiaoming
Author_xml – sequence: 1
  givenname: Yao
  orcidid: 0000-0002-5477-8753
  surname: Hu
  fullname: Hu, Yao
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 2
  givenname: Zhi-An
  surname: Huang
  fullname: Huang, Zhi-An
  organization: Research Office, City University of Hong Kong (Dongguan), Dongguan, China
– sequence: 3
  givenname: Rui
  orcidid: 0000-0003-1926-3321
  surname: Liu
  fullname: Liu, Rui
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 4
  givenname: Xiaoming
  orcidid: 0000-0001-6836-7245
  surname: Xue
  fullname: Xue, Xiaoming
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 5
  givenname: Xiaoyan
  orcidid: 0000-0002-1386-6853
  surname: Sun
  fullname: Sun, Xiaoyan
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 6
  givenname: Linqi
  orcidid: 0000-0003-2756-4984
  surname: Song
  fullname: Song, Linqi
  organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
– sequence: 7
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37486851$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaJy0f6CUIuill3X0sdqdPYakaQ02KbV7LELWjoLCWnKl3UL_fZXYgZJDT4KX55kR856TkxADEvKOsznnrLvcfLtaLeaCCTmXogMpxSsyE7xhVSc6cUJmjDeiAhBwRs5zfmCM14rJ1-RMtjU0oPiM_FzHKVmktwmRrnHnq_W0x_TbZ-zpJpmQHSa6RJOCD_fUxURvvLkPMftMo6MrDKMZSpZj6jGVLFC3-r6ga1vcN-TUmSHj2-N7QX7cft5cf62Wd18W11fLykolxspJKRsFlreWN1vlnBOs7w2o2lkjt0oKALN1LfJadiUuINQMbKMYOIVOXpBPh7n7FH9NmEe989niMJiAccpaQM2h7VjNCvrxBfpQLhDK7wrVirpsEG2hPhypabvDXu-T35n0Rz8frgBwAGyKOSd02vrRjD6GMRk_aM70Y0f6qSP92JE-dlRU8UJ9nv5f6f1B8oj4j8A7IRuQfwGTr5s8
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_knosys_2024_112615
crossref_primary_10_1016_j_patcog_2025_111603
crossref_primary_10_3389_fdgth_2024_1495999
Cites_doi 10.1038/mp.2013.78
10.1016/j.nicl.2018.08.005
10.1109/TETCI.2022.3209345
10.1109/ISBI.2018.8363676
10.1007/978-3-030-32692-0_31
10.1109/ICMEW.2019.00009
10.3389/fnins.2018.00491
10.1016/j.media.2015.06.010
10.1109/TPAMI.2019.2945942
10.3389/fnsys.2012.00069
10.1109/TPAMI.2021.3129809
10.1016/j.media.2020.101765
10.1109/TPAMI.2015.2511754
10.1109/IJCNN.2017.7966432
10.1109/CVPR52688.2022.02004
10.1109/TPAMI.2016.2621761
10.1109/TBME.2022.3210940
10.1007/s11920-017-0780-z
10.1002/hbm.21333
10.1109/EMBC.2019.8856726
10.24963/ijcai.2022/213
10.1007/978-3-030-87196-3_46
10.1016/j.jpdc.2020.10.006
10.1038/s41467-019-10933-3
10.3389/fnsys.2010.00013
10.3390/brainsci10070463
10.1109/TNNLS.2016.2582924
10.1109/TMI.2019.2933160
10.1109/TMI.2018.2859478
10.1109/TPAMI.2018.2824309
10.1109/TNNLS.2019.2953131
10.3389/fnagi.2020.00206
10.3390/jimaging7040066
10.1377/hlthaff.2014.0147
10.3389/fncom.2020.00019
10.1016/j.neuroimage.2016.10.045
10.1109/BCI48061.2020.9061617
10.1109/CVPR.2017.316
10.1109/ISBI.2019.8759585
10.1109/TNNLS.2020.3007943
10.1109/TPAMI.2021.3125686
10.1007/978-3-030-47436-2_31
10.1007/s11682-015-9356-x
10.1007/978-3-031-16452-1_12
10.1109/CVPR46437.2021.00685
10.1109/ISBI52829.2022.9761681
10.1109/CVPR.2018.00454
10.1007/978-3-030-59710-8_59
10.1109/TPAMI.2020.3031898
10.1109/TMI.2020.2987817
10.1007/s11042-019-7469-8
10.1117/12.2548630
10.1109/TMI.2021.3104474
10.1109/IAI50351.2020.9262176
10.1007/s10994-019-05855-6
10.1007/978-3-030-59713-9_36
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3298332
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 18
ExternalDocumentID 37486851
10_1109_TPAMI_2023_3298332
10192368
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYOK
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RIG
RNI
RZB
VH1
XJT
NPM
RIC
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-f333658c17c16b5fff20dda854fca3b53288abf7e1439a85c178408c6508f5ef3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 02:57:42 EDT 2025
Mon Jun 30 06:33:03 EDT 2025
Wed Feb 19 02:23:08 EST 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 01:43:07 EDT 2025
Wed Aug 27 02:21:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f333658c17c16b5fff20dda854fca3b53288abf7e1439a85c178408c6508f5ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1926-3321
0000-0002-5477-8753
0000-0002-6802-2463
0000-0003-2756-4984
0000-0001-6836-7245
0000-0002-1386-6853
PMID 37486851
PQID 2872443927
PQPubID 85458
PageCount 18
ParticipantIDs ieee_primary_10192368
proquest_miscellaneous_2841879040
proquest_journals_2872443927
crossref_citationtrail_10_1109_TPAMI_2023_3298332
pubmed_primary_37486851
crossref_primary_10_1109_TPAMI_2023_3298332
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref55
ref10
müller (ref48) 2019; 32
ref17
ref16
ref19
ref18
craddock (ref64) 2013; 7
kundu (ref21) 2020
ge (ref61) 2020
pérez-carrasco (ref69) 0
ref50
collins (ref56) 2021
ref46
rizve (ref68) 2021
ref45
boudiaf (ref51) 2020; 33
ref42
ref41
ref44
ref43
mcmahan (ref76) 2017
li (ref58) 2022
ref8
ref7
long (ref54) 2018
ref9
ref4
ref3
ref6
wang (ref5) 2022; 44
bengs (ref47) 2020
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref32
ref2
ref1
ref39
ref38
liang (ref20) 2022; 44
krizhevsky (ref57) 2010; 40
jang (ref63) 2019
van der maaten (ref73) 2008; 9
hu (ref49) 2017
ref71
ref70
ref72
ref24
khosla (ref59) 2020
ref23
ref67
ref26
ref25
ref22
ref66
ref65
shu (ref53) 2018
ref28
ref27
ref29
ref60
ref62
References_xml – ident: ref10
  doi: 10.1038/mp.2013.78
– ident: ref41
  doi: 10.1016/j.nicl.2018.08.005
– ident: ref75
  doi: 10.1109/TETCI.2022.3209345
– ident: ref66
  doi: 10.1109/ISBI.2018.8363676
– volume: 44
  start-page: 5042
  year: 2022
  ident: ref5
  article-title: Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref40
  doi: 10.1007/978-3-030-32692-0_31
– ident: ref30
  doi: 10.1109/ICMEW.2019.00009
– start-page: 1558
  year: 2017
  ident: ref49
  article-title: Learning discrete representations via information maximizing self-augmented training
  publication-title: Proc Int Conf Mach Learn
– ident: ref44
  doi: 10.3389/fnins.2018.00491
– ident: ref37
  doi: 10.1016/j.media.2015.06.010
– ident: ref33
  doi: 10.1109/TPAMI.2019.2945942
– start-page: 1273
  year: 2017
  ident: ref76
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Artif Intell Statist
– ident: ref12
  doi: 10.3389/fnsys.2012.00069
– ident: ref74
  doi: 10.1109/TPAMI.2021.3129809
– volume: 40
  start-page: 1
  year: 2010
  ident: ref57
  article-title: Convolutional deep belief networks on CIFAR-10
  publication-title: Unpublished manuscript
– ident: ref19
  doi: 10.1016/j.media.2020.101765
– ident: ref3
  doi: 10.1109/TPAMI.2015.2511754
– ident: ref32
  doi: 10.1109/IJCNN.2017.7966432
– ident: ref71
  doi: 10.1109/CVPR52688.2022.02004
– ident: ref50
  doi: 10.1109/TPAMI.2016.2621761
– start-page: 1
  year: 2022
  ident: ref58
  article-title: Not all knowledge is created equal: Mutual distillation of confident knowledge
  publication-title: Proc Annu Conf Neural Inf Process Syst
– ident: ref55
  doi: 10.1109/TBME.2022.3210940
– ident: ref1
  doi: 10.1007/s11920-017-0780-z
– ident: ref43
  doi: 10.1002/hbm.21333
– ident: ref36
  doi: 10.1109/EMBC.2019.8856726
– ident: ref70
  doi: 10.24963/ijcai.2022/213
– ident: ref29
  doi: 10.1007/978-3-030-87196-3_46
– ident: ref22
  doi: 10.1016/j.jpdc.2020.10.006
– ident: ref8
  doi: 10.1038/s41467-019-10933-3
– year: 2020
  ident: ref47
  article-title: 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification
– ident: ref65
  doi: 10.3389/fnsys.2010.00013
– ident: ref42
  doi: 10.3390/brainsci10070463
– ident: ref13
  doi: 10.1109/TNNLS.2016.2582924
– start-page: 1
  year: 0
  ident: ref69
  article-title: Con$^{2}$2DA: Simplifying semi-supervised domain adaptation by learning consistent and contrastive feature representations
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 33
  start-page: 2445
  year: 2020
  ident: ref51
  article-title: Information maximization for few-shot learning
  publication-title: Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1109/TMI.2019.2933160
– ident: ref38
  doi: 10.1109/TMI.2018.2859478
– ident: ref18
  doi: 10.1109/TPAMI.2018.2824309
– start-page: 4544
  year: 2020
  ident: ref21
  article-title: Universal source-free domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref62
  doi: 10.1109/TNNLS.2019.2953131
– ident: ref46
  doi: 10.3389/fnagi.2020.00206
– ident: ref9
  doi: 10.3390/jimaging7040066
– ident: ref7
  doi: 10.1377/hlthaff.2014.0147
– ident: ref39
  doi: 10.3389/fncom.2020.00019
– ident: ref15
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: ref25
  doi: 10.1109/BCI48061.2020.9061617
– ident: ref52
  doi: 10.1109/CVPR.2017.316
– start-page: 1647
  year: 2018
  ident: ref54
  article-title: Conditional adversarial domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref28
  doi: 10.1109/ISBI.2019.8759585
– ident: ref2
  doi: 10.1109/TNNLS.2020.3007943
– ident: ref4
  doi: 10.1109/TPAMI.2021.3125686
– ident: ref24
  doi: 10.1007/978-3-030-47436-2_31
– start-page: 1
  year: 2018
  ident: ref53
  article-title: A DIRT-T approach to unsupervised domain adaptation
  publication-title: Proc Int Conf Learn Representations
– ident: ref34
  doi: 10.1007/s11682-015-9356-x
– ident: ref72
  doi: 10.1007/978-3-031-16452-1_12
– ident: ref67
  doi: 10.1109/CVPR46437.2021.00685
– volume: 32
  year: 2019
  ident: ref48
  article-title: When does label smoothing help?
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1109/ISBI52829.2022.9761681
– ident: ref60
  doi: 10.1109/CVPR.2018.00454
– ident: ref26
  doi: 10.1007/978-3-030-59710-8_59
– start-page: 1
  year: 2021
  ident: ref68
  article-title: In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref6
  doi: 10.1109/TPAMI.2020.3031898
– ident: ref16
  doi: 10.1109/TMI.2020.2987817
– ident: ref45
  doi: 10.1007/s11042-019-7469-8
– ident: ref27
  doi: 10.1117/12.2548630
– start-page: 1
  year: 2020
  ident: ref61
  article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification
  publication-title: Proc Int Conf Learn Representations
– start-page: 2089
  year: 2021
  ident: ref56
  article-title: Exploiting shared representations for personalized federated learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref14
  doi: 10.1109/TMI.2021.3104474
– ident: ref11
  doi: 10.1109/IAI50351.2020.9262176
– volume: 44
  start-page: 8602
  year: 2022
  ident: ref20
  article-title: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 7
  start-page: 41
  year: 2013
  ident: ref64
  article-title: The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front Neuroinform
– ident: ref23
  doi: 10.1007/s10994-019-05855-6
– start-page: 18661
  year: 2020
  ident: ref59
  article-title: Supervised contrastive learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref35
  doi: 10.1007/978-3-030-59713-9_36
– start-page: 3030
  year: 2019
  ident: ref63
  article-title: Learning what and where to transfer
  publication-title: Proc Int Conf Mach Learn
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref73
  article-title: Visualizing data using t-SNE.
  publication-title: J Mach Learn Res
SSID ssj0014503
Score 2.540295
Snippet The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD)...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adaptation models
Attention deficit/hyperactivity disorder
autism spectrum disorder
CAI
Computational modeling
Computer assisted instruction
computer-aided diagnosis
Datasets
Deep learning
Diagnosis
domain shift
Functional magnetic resonance imaging
Health care
Health services
Knowledge management
Labels
Medical diagnostic imaging
Medical imaging
Mental disorders
Neuroimaging
Semi-supervised learning
semi-supervised transfer learning
Solid modeling
source free
Training
Title Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans
URI https://ieeexplore.ieee.org/document/10192368
https://www.ncbi.nlm.nih.gov/pubmed/37486851
https://www.proquest.com/docview/2872443927
https://www.proquest.com/docview/2841879040
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQYEtLeMmVekNJkzjPIwJWLNKuqi5IXFAU22OEWrKI3Vz49YztZEWRFnGLnLHjaB7-xvbMAPxM6zwXMpI-LQXST3Su_BKL2teIWV7HWoa2NuB4kl1cJ5c36U0XrG5jYRDRXj7DwDzas3w1k63ZKiMNN3gkK9ZgjTw3F6y1PDJIUlsGmSAMqTj5EX2ETFj-uvp9Mh4FplB4wOOy4Dz-bxWyZVVWI0y70gw3YdLP0V0w-Ru0CxHI5zfpGz_8E1vwpcOc7MQJyTZ8wmYAm309B9ap9wA2XiUn_Aq3U7uvz4ZPiGyKD_f-tH00lmWOitklTlPnLj_rHSPwy87cvb37OZtp5rIDsT69J7U1TI__jOh71HcHrofnV6cXfleMwZeE0Ra-5pwTWpFRLqNMpFrrOFSqLtJEy5qLlMdFUQudIwGwkpqJkHzHQhoEqFPU_BusN7MGd4EppXlNI5RCRUmkQ2HMNhm7UIksVHHhQdQzp5JdpnJTMONfZT2WsKwsQyvD0KpjqAfHyz6PLk_Hu9Q7hjGvKB1PPDjohaDqdHlekU9JGIhwZO7Bj-Vr0kJztFI3OGsNTWLKtpNF9OC7E57l4CbBT0bAdm_FR_fhs5mbC3A8gPXFU4uHhHQW4shK-AvYmvfs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLc29rDxABsw6Ma2TNobatc2_XxEg9MdcKdpd0i8TFWTOAgBPcRdX_jrcZL2xCYx7a1KnTSV7fjnJLYBvqV1ngsZSZ9MgfQTnSu_xKL2NWKW17GWoa0NOJ5kw_Pk5CK96ILVbSwMItrLZxiYR3uWr-ayNVtlpOEGj2TFS3hFhj-NXLjW6tAgSW0hZAIxpOTkSfQxMmH5ffbzcDwKTKnwgMdlwXn8hx2yhVWex5jW1gw2YdLP0l0xuQ7apQjkw18JHP_7N97CRoc62aETk3fwApst2OwrOrBOwbdg_Ul6wm34PbU7-2xwj8imeHvlT9s7s7YsUDFr5DR17jK0XjKCv-zI3dy7WrC5Zi4_EOsTfFJbw_T414i-R3134HxwPPsx9LtyDL4klLb0Neec8IqMchllItVax6FSdZEmWtZcpDwuilroHAmCldRMhOQ9FtJgQJ2i5u9hrZk3uAdMKc1rGqEUKkoiHQqzcNNyFyqRhSouPIh65lSyy1VuSmbcVNZnCcvKMrQyDK06hnpwsOpz5zJ1_JN6xzDmCaXjiQf7vRBUnTYvKvIqCQURksw9-Lp6TXpoDlfqBuetoUlM4XZaEz3YdcKzGtyk-MkI2n545qNf4PVwNj6rzkaT04_wxszThTvuw9ryvsVPhHuW4rOV9kftY_s1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+Free+Semi-Supervised+Transfer+Learning+for+Diagnosis+of+Mental+Disorders+on+fMRI+Scans&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Yao&rft.au=Huang%2C+Zhi-An&rft.au=Liu%2C+Rui&rft.au=Xue%2C+Xiaoming&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTPAMI.2023.3298332&rft.externalDocID=10192368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon