Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans
The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep le...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. PP; no. 11; pp. 1 - 18 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension. |
---|---|
AbstractList | The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension. The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension. |
Author | Liu, Rui Tan, Kay Chen Huang, Zhi-An Hu, Yao Sun, Xiaoyan Song, Linqi Xue, Xiaoming |
Author_xml | – sequence: 1 givenname: Yao orcidid: 0000-0002-5477-8753 surname: Hu fullname: Hu, Yao organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 2 givenname: Zhi-An surname: Huang fullname: Huang, Zhi-An organization: Research Office, City University of Hong Kong (Dongguan), Dongguan, China – sequence: 3 givenname: Rui orcidid: 0000-0003-1926-3321 surname: Liu fullname: Liu, Rui organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 4 givenname: Xiaoming orcidid: 0000-0001-6836-7245 surname: Xue fullname: Xue, Xiaoming organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 5 givenname: Xiaoyan orcidid: 0000-0002-1386-6853 surname: Sun fullname: Sun, Xiaoyan organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 6 givenname: Linqi orcidid: 0000-0003-2756-4984 surname: Song fullname: Song, Linqi organization: Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong – sequence: 7 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen organization: Department of Computing, Hong Kong Polytechnic University, Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37486851$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaJy0f6CUIuill3X0sdqdPYakaQ02KbV7LELWjoLCWnKl3UL_fZXYgZJDT4KX55kR856TkxADEvKOsznnrLvcfLtaLeaCCTmXogMpxSsyE7xhVSc6cUJmjDeiAhBwRs5zfmCM14rJ1-RMtjU0oPiM_FzHKVmktwmRrnHnq_W0x_TbZ-zpJpmQHSa6RJOCD_fUxURvvLkPMftMo6MrDKMZSpZj6jGVLFC3-r6ga1vcN-TUmSHj2-N7QX7cft5cf62Wd18W11fLykolxspJKRsFlreWN1vlnBOs7w2o2lkjt0oKALN1LfJadiUuINQMbKMYOIVOXpBPh7n7FH9NmEe989niMJiAccpaQM2h7VjNCvrxBfpQLhDK7wrVirpsEG2hPhypabvDXu-T35n0Rz8frgBwAGyKOSd02vrRjD6GMRk_aM70Y0f6qSP92JE-dlRU8UJ9nv5f6f1B8oj4j8A7IRuQfwGTr5s8 |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_knosys_2024_112615 crossref_primary_10_1016_j_patcog_2025_111603 crossref_primary_10_3389_fdgth_2024_1495999 |
Cites_doi | 10.1038/mp.2013.78 10.1016/j.nicl.2018.08.005 10.1109/TETCI.2022.3209345 10.1109/ISBI.2018.8363676 10.1007/978-3-030-32692-0_31 10.1109/ICMEW.2019.00009 10.3389/fnins.2018.00491 10.1016/j.media.2015.06.010 10.1109/TPAMI.2019.2945942 10.3389/fnsys.2012.00069 10.1109/TPAMI.2021.3129809 10.1016/j.media.2020.101765 10.1109/TPAMI.2015.2511754 10.1109/IJCNN.2017.7966432 10.1109/CVPR52688.2022.02004 10.1109/TPAMI.2016.2621761 10.1109/TBME.2022.3210940 10.1007/s11920-017-0780-z 10.1002/hbm.21333 10.1109/EMBC.2019.8856726 10.24963/ijcai.2022/213 10.1007/978-3-030-87196-3_46 10.1016/j.jpdc.2020.10.006 10.1038/s41467-019-10933-3 10.3389/fnsys.2010.00013 10.3390/brainsci10070463 10.1109/TNNLS.2016.2582924 10.1109/TMI.2019.2933160 10.1109/TMI.2018.2859478 10.1109/TPAMI.2018.2824309 10.1109/TNNLS.2019.2953131 10.3389/fnagi.2020.00206 10.3390/jimaging7040066 10.1377/hlthaff.2014.0147 10.3389/fncom.2020.00019 10.1016/j.neuroimage.2016.10.045 10.1109/BCI48061.2020.9061617 10.1109/CVPR.2017.316 10.1109/ISBI.2019.8759585 10.1109/TNNLS.2020.3007943 10.1109/TPAMI.2021.3125686 10.1007/978-3-030-47436-2_31 10.1007/s11682-015-9356-x 10.1007/978-3-031-16452-1_12 10.1109/CVPR46437.2021.00685 10.1109/ISBI52829.2022.9761681 10.1109/CVPR.2018.00454 10.1007/978-3-030-59710-8_59 10.1109/TPAMI.2020.3031898 10.1109/TMI.2020.2987817 10.1007/s11042-019-7469-8 10.1117/12.2548630 10.1109/TMI.2021.3104474 10.1109/IAI50351.2020.9262176 10.1007/s10994-019-05855-6 10.1007/978-3-030-59713-9_36 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2023.3298332 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 18 |
ExternalDocumentID | 37486851 10_1109_TPAMI_2023_3298332 10192368 |
Genre | orig-research Journal Article |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYOK AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RIG RNI RZB VH1 XJT NPM RIC Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c352t-f333658c17c16b5fff20dda854fca3b53288abf7e1439a85c178408c6508f5ef3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 02:57:42 EDT 2025 Mon Jun 30 06:33:03 EDT 2025 Wed Feb 19 02:23:08 EST 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 01:43:07 EDT 2025 Wed Aug 27 02:21:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-f333658c17c16b5fff20dda854fca3b53288abf7e1439a85c178408c6508f5ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1926-3321 0000-0002-5477-8753 0000-0002-6802-2463 0000-0003-2756-4984 0000-0001-6836-7245 0000-0002-1386-6853 |
PMID | 37486851 |
PQID | 2872443927 |
PQPubID | 85458 |
PageCount | 18 |
ParticipantIDs | ieee_primary_10192368 proquest_miscellaneous_2841879040 proquest_journals_2872443927 crossref_citationtrail_10_1109_TPAMI_2023_3298332 pubmed_primary_37486851 crossref_primary_10_1109_TPAMI_2023_3298332 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref52 ref11 ref55 ref10 müller (ref48) 2019; 32 ref17 ref16 ref19 ref18 craddock (ref64) 2013; 7 kundu (ref21) 2020 ge (ref61) 2020 pérez-carrasco (ref69) 0 ref50 collins (ref56) 2021 ref46 rizve (ref68) 2021 ref45 boudiaf (ref51) 2020; 33 ref42 ref41 ref44 ref43 mcmahan (ref76) 2017 li (ref58) 2022 ref8 ref7 long (ref54) 2018 ref9 ref4 ref3 ref6 wang (ref5) 2022; 44 bengs (ref47) 2020 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 liang (ref20) 2022; 44 krizhevsky (ref57) 2010; 40 jang (ref63) 2019 van der maaten (ref73) 2008; 9 hu (ref49) 2017 ref71 ref70 ref72 ref24 khosla (ref59) 2020 ref23 ref67 ref26 ref25 ref22 ref66 ref65 shu (ref53) 2018 ref28 ref27 ref29 ref60 ref62 |
References_xml | – ident: ref10 doi: 10.1038/mp.2013.78 – ident: ref41 doi: 10.1016/j.nicl.2018.08.005 – ident: ref75 doi: 10.1109/TETCI.2022.3209345 – ident: ref66 doi: 10.1109/ISBI.2018.8363676 – volume: 44 start-page: 5042 year: 2022 ident: ref5 article-title: Learning deep sparse regularizers with applications to multi-view clustering and semi-supervised classification publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref40 doi: 10.1007/978-3-030-32692-0_31 – ident: ref30 doi: 10.1109/ICMEW.2019.00009 – start-page: 1558 year: 2017 ident: ref49 article-title: Learning discrete representations via information maximizing self-augmented training publication-title: Proc Int Conf Mach Learn – ident: ref44 doi: 10.3389/fnins.2018.00491 – ident: ref37 doi: 10.1016/j.media.2015.06.010 – ident: ref33 doi: 10.1109/TPAMI.2019.2945942 – start-page: 1273 year: 2017 ident: ref76 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Artif Intell Statist – ident: ref12 doi: 10.3389/fnsys.2012.00069 – ident: ref74 doi: 10.1109/TPAMI.2021.3129809 – volume: 40 start-page: 1 year: 2010 ident: ref57 article-title: Convolutional deep belief networks on CIFAR-10 publication-title: Unpublished manuscript – ident: ref19 doi: 10.1016/j.media.2020.101765 – ident: ref3 doi: 10.1109/TPAMI.2015.2511754 – ident: ref32 doi: 10.1109/IJCNN.2017.7966432 – ident: ref71 doi: 10.1109/CVPR52688.2022.02004 – ident: ref50 doi: 10.1109/TPAMI.2016.2621761 – start-page: 1 year: 2022 ident: ref58 article-title: Not all knowledge is created equal: Mutual distillation of confident knowledge publication-title: Proc Annu Conf Neural Inf Process Syst – ident: ref55 doi: 10.1109/TBME.2022.3210940 – ident: ref1 doi: 10.1007/s11920-017-0780-z – ident: ref43 doi: 10.1002/hbm.21333 – ident: ref36 doi: 10.1109/EMBC.2019.8856726 – ident: ref70 doi: 10.24963/ijcai.2022/213 – ident: ref29 doi: 10.1007/978-3-030-87196-3_46 – ident: ref22 doi: 10.1016/j.jpdc.2020.10.006 – ident: ref8 doi: 10.1038/s41467-019-10933-3 – year: 2020 ident: ref47 article-title: 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification – ident: ref65 doi: 10.3389/fnsys.2010.00013 – ident: ref42 doi: 10.3390/brainsci10070463 – ident: ref13 doi: 10.1109/TNNLS.2016.2582924 – start-page: 1 year: 0 ident: ref69 article-title: Con$^{2}$2DA: Simplifying semi-supervised domain adaptation by learning consistent and contrastive feature representations publication-title: Proc Adv Neural Inf Process Syst – volume: 33 start-page: 2445 year: 2020 ident: ref51 article-title: Information maximization for few-shot learning publication-title: Adv Neural Inf Process Syst – ident: ref17 doi: 10.1109/TMI.2019.2933160 – ident: ref38 doi: 10.1109/TMI.2018.2859478 – ident: ref18 doi: 10.1109/TPAMI.2018.2824309 – start-page: 4544 year: 2020 ident: ref21 article-title: Universal source-free domain adaptation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref62 doi: 10.1109/TNNLS.2019.2953131 – ident: ref46 doi: 10.3389/fnagi.2020.00206 – ident: ref9 doi: 10.3390/jimaging7040066 – ident: ref7 doi: 10.1377/hlthaff.2014.0147 – ident: ref39 doi: 10.3389/fncom.2020.00019 – ident: ref15 doi: 10.1016/j.neuroimage.2016.10.045 – ident: ref25 doi: 10.1109/BCI48061.2020.9061617 – ident: ref52 doi: 10.1109/CVPR.2017.316 – start-page: 1647 year: 2018 ident: ref54 article-title: Conditional adversarial domain adaptation publication-title: Proc Adv Neural Inf Process Syst – ident: ref28 doi: 10.1109/ISBI.2019.8759585 – ident: ref2 doi: 10.1109/TNNLS.2020.3007943 – ident: ref4 doi: 10.1109/TPAMI.2021.3125686 – ident: ref24 doi: 10.1007/978-3-030-47436-2_31 – start-page: 1 year: 2018 ident: ref53 article-title: A DIRT-T approach to unsupervised domain adaptation publication-title: Proc Int Conf Learn Representations – ident: ref34 doi: 10.1007/s11682-015-9356-x – ident: ref72 doi: 10.1007/978-3-031-16452-1_12 – ident: ref67 doi: 10.1109/CVPR46437.2021.00685 – volume: 32 year: 2019 ident: ref48 article-title: When does label smoothing help? publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1109/ISBI52829.2022.9761681 – ident: ref60 doi: 10.1109/CVPR.2018.00454 – ident: ref26 doi: 10.1007/978-3-030-59710-8_59 – start-page: 1 year: 2021 ident: ref68 article-title: In defense of pseudo-labeling: An uncertainty-aware pseudo-label selection framework for semi-supervised learning publication-title: Proc Int Conf Learn Representations – ident: ref6 doi: 10.1109/TPAMI.2020.3031898 – ident: ref16 doi: 10.1109/TMI.2020.2987817 – ident: ref45 doi: 10.1007/s11042-019-7469-8 – ident: ref27 doi: 10.1117/12.2548630 – start-page: 1 year: 2020 ident: ref61 article-title: Mutual mean-teaching: Pseudo label refinery for unsupervised domain adaptation on person re-identification publication-title: Proc Int Conf Learn Representations – start-page: 2089 year: 2021 ident: ref56 article-title: Exploiting shared representations for personalized federated learning publication-title: Proc Int Conf Mach Learn – ident: ref14 doi: 10.1109/TMI.2021.3104474 – ident: ref11 doi: 10.1109/IAI50351.2020.9262176 – volume: 44 start-page: 8602 year: 2022 ident: ref20 article-title: Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 7 start-page: 41 year: 2013 ident: ref64 article-title: The neuro bureau preprocessing initiative: Open sharing of preprocessed neuroimaging data and derivatives publication-title: Front Neuroinform – ident: ref23 doi: 10.1007/s10994-019-05855-6 – start-page: 18661 year: 2020 ident: ref59 article-title: Supervised contrastive learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref35 doi: 10.1007/978-3-030-59713-9_36 – start-page: 3030 year: 2019 ident: ref63 article-title: Learning what and where to transfer publication-title: Proc Int Conf Mach Learn – volume: 9 start-page: 2579 year: 2008 ident: ref73 article-title: Visualizing data using t-SNE. publication-title: J Mach Learn Res |
SSID | ssj0014503 |
Score | 2.540295 |
Snippet | The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD)... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Adaptation models Attention deficit/hyperactivity disorder autism spectrum disorder CAI Computational modeling Computer assisted instruction computer-aided diagnosis Datasets Deep learning Diagnosis domain shift Functional magnetic resonance imaging Health care Health services Knowledge management Labels Medical diagnostic imaging Medical imaging Mental disorders Neuroimaging Semi-supervised learning semi-supervised transfer learning Solid modeling source free Training |
Title | Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans |
URI | https://ieeexplore.ieee.org/document/10192368 https://www.ncbi.nlm.nih.gov/pubmed/37486851 https://www.proquest.com/docview/2872443927 https://www.proquest.com/docview/2841879040 |
Volume | PP |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQYEtLeMmVekNJkzjPIwJWLNKuqi5IXFAU22OEWrKI3Vz49YztZEWRFnGLnLHjaB7-xvbMAPxM6zwXMpI-LQXST3Su_BKL2teIWV7HWoa2NuB4kl1cJ5c36U0XrG5jYRDRXj7DwDzas3w1k63ZKiMNN3gkK9ZgjTw3F6y1PDJIUlsGmSAMqTj5EX2ETFj-uvp9Mh4FplB4wOOy4Dz-bxWyZVVWI0y70gw3YdLP0V0w-Ru0CxHI5zfpGz_8E1vwpcOc7MQJyTZ8wmYAm309B9ap9wA2XiUn_Aq3U7uvz4ZPiGyKD_f-tH00lmWOitklTlPnLj_rHSPwy87cvb37OZtp5rIDsT69J7U1TI__jOh71HcHrofnV6cXfleMwZeE0Ra-5pwTWpFRLqNMpFrrOFSqLtJEy5qLlMdFUQudIwGwkpqJkHzHQhoEqFPU_BusN7MGd4EppXlNI5RCRUmkQ2HMNhm7UIksVHHhQdQzp5JdpnJTMONfZT2WsKwsQyvD0KpjqAfHyz6PLk_Hu9Q7hjGvKB1PPDjohaDqdHlekU9JGIhwZO7Bj-Vr0kJztFI3OGsNTWLKtpNF9OC7E57l4CbBT0bAdm_FR_fhs5mbC3A8gPXFU4uHhHQW4shK-AvYmvfs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLc29rDxABsw6Ma2TNobatc2_XxEg9MdcKdpd0i8TFWTOAgBPcRdX_jrcZL2xCYx7a1KnTSV7fjnJLYBvqV1ngsZSZ9MgfQTnSu_xKL2NWKW17GWoa0NOJ5kw_Pk5CK96ILVbSwMItrLZxiYR3uWr-ayNVtlpOEGj2TFS3hFhj-NXLjW6tAgSW0hZAIxpOTkSfQxMmH5ffbzcDwKTKnwgMdlwXn8hx2yhVWex5jW1gw2YdLP0l0xuQ7apQjkw18JHP_7N97CRoc62aETk3fwApst2OwrOrBOwbdg_Ul6wm34PbU7-2xwj8imeHvlT9s7s7YsUDFr5DR17jK0XjKCv-zI3dy7WrC5Zi4_EOsTfFJbw_T414i-R3134HxwPPsx9LtyDL4klLb0Neec8IqMchllItVax6FSdZEmWtZcpDwuilroHAmCldRMhOQ9FtJgQJ2i5u9hrZk3uAdMKc1rGqEUKkoiHQqzcNNyFyqRhSouPIh65lSyy1VuSmbcVNZnCcvKMrQyDK06hnpwsOpz5zJ1_JN6xzDmCaXjiQf7vRBUnTYvKvIqCQURksw9-Lp6TXpoDlfqBuetoUlM4XZaEz3YdcKzGtyk-MkI2n545qNf4PVwNj6rzkaT04_wxszThTvuw9ryvsVPhHuW4rOV9kftY_s1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source+Free+Semi-Supervised+Transfer+Learning+for+Diagnosis+of+Mental+Disorders+on+fMRI+Scans&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Hu%2C+Yao&rft.au=Huang%2C+Zhi-An&rft.au=Liu%2C+Rui&rft.au=Xue%2C+Xiaoming&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1109%2FTPAMI.2023.3298332&rft.externalDocID=10192368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |