Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review
Cellulose nanocrystals (CNCs) are rod-shaped nanomaterials with the same chemical composition as plant cellulose and can be extracted by physical, chemical, or biological pretreatment from raw materials. To modify the properties of CNCs, esterification, oxidation, and etherification can be further a...
Saved in:
Published in | Colloid and interface science communications Vol. 53; p. 100707 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellulose nanocrystals (CNCs) are rod-shaped nanomaterials with the same chemical composition as plant cellulose and can be extracted by physical, chemical, or biological pretreatment from raw materials. To modify the properties of CNCs, esterification, oxidation, and etherification can be further applied to modify the surface of CNCs. In addition to surface modification, graft modification is an approach to significantly alter the properties of CNCs via covalently conjugating cellulose with other polymers with distinct features. After modification, the adsorption performance of CNCs for heavy metal ions (e.g. Pb2+, Cd2+, Cu2+), organic dyes (e.g. methylene blue, crystal violet), and volatile organic compounds (VOCs) can be greatly improved. This review focuses on the preparation and modification methods of CNCs, as well as the adsorption performance of CNCs and CNC composites.
[Display omitted]
•The preparation methods of CNCs were reviewed, and the advantages and disadvantages of physical and chemical methods were compared.•The advantages of selecting graft modification were highlighted by comprehensive comparison of various modification methods.•The treatment performance of CNCs and its composite materials after graft modification to heavy metal ions, organic dyes and volatile organic pollutants was greatly improved. |
---|---|
AbstractList | Cellulose nanocrystals (CNCs) are rod-shaped nanomaterials with the same chemical composition as plant cellulose and can be extracted by physical, chemical, or biological pretreatment from raw materials. To modify the properties of CNCs, esterification, oxidation, and etherification can be further applied to modify the surface of CNCs. In addition to surface modification, graft modification is an approach to significantly alter the properties of CNCs via covalently conjugating cellulose with other polymers with distinct features. After modification, the adsorption performance of CNCs for heavy metal ions (e.g. Pb2+, Cd2+, Cu2+), organic dyes (e.g. methylene blue, crystal violet), and volatile organic compounds (VOCs) can be greatly improved. This review focuses on the preparation and modification methods of CNCs, as well as the adsorption performance of CNCs and CNC composites.
[Display omitted]
•The preparation methods of CNCs were reviewed, and the advantages and disadvantages of physical and chemical methods were compared.•The advantages of selecting graft modification were highlighted by comprehensive comparison of various modification methods.•The treatment performance of CNCs and its composite materials after graft modification to heavy metal ions, organic dyes and volatile organic pollutants was greatly improved. |
ArticleNumber | 100707 |
Author | Zhang, Yuzhe Gu, Peiyang Li, Zhongyu Shao, Yizi Wu, Hao Han, Xiaogang Zhang, Yan Xu, Wei Zhou, Man |
Author_xml | – sequence: 1 givenname: Yuzhe surname: Zhang fullname: Zhang, Yuzhe organization: School of Environmental science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 2 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: School of Environmental science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 3 givenname: Wei surname: Xu fullname: Xu, Wei organization: Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China – sequence: 4 givenname: Hao surname: Wu fullname: Wu, Hao organization: School of Environmental science and Engineering, Changzhou University, Changzhou 213164, China – sequence: 5 givenname: Yizi surname: Shao fullname: Shao, Yizi organization: Changzhou University School of Environmental & Safety Engineering, School of Urban Construction, School of Emergency Management Science and Engineering, China – sequence: 6 givenname: Xiaogang surname: Han fullname: Han, Xiaogang organization: Changzhou Qingliu environmental protection technology co. LTD, China – sequence: 7 givenname: Man surname: Zhou fullname: Zhou, Man organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 8 givenname: Peiyang surname: Gu fullname: Gu, Peiyang email: gupeiyang0714@cczu.edu.cn organization: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China – sequence: 9 givenname: Zhongyu surname: Li fullname: Li, Zhongyu email: zhongyuli@mail.tsinghua.edu.cn organization: School of Environmental science and Engineering, Changzhou University, Changzhou 213164, China |
BookMark | eNqFkEtLAzEUhYNUsD7-gYv8galJZqbTdiGU4gsKutB1yNy5wZRMMiSxpf_eGceFuNDVfXC-A-eck4nzDgm55mzGGZ_f7GbgLfh2JpjI-xerWHVCpkLwMmP5Qkx-7GfkKsYdY0zwolcvpuTwErBTQSXjHW0xvfsmUq8poLUf1kekTjkP4RiTslS5hpoUqeo6a2CEjKMpoEotujSQ6PYmeDecPdH53mfQreiatsaZLODe4OGSnGplI159zwvydn_3unnMts8PT5v1NoO8FCnTQvFKLxWrayaaecWgrJb1ElFxjUVZFDyHpoZykVdFhVgDCp4XNWjNOeoa8wtSjL4QfIwBteyCaVU4Ss7k0J_cybE_OfQnx_56bPULA5O-8qagjP0Pvh1h7IP1YYOMYNABNiYgJNl487fBJ0uAlDw |
CitedBy_id | crossref_primary_10_1021_acsomega_3c08448 crossref_primary_10_1177_0958305X241251394 crossref_primary_10_3390_ijms25179671 crossref_primary_10_1021_acs_langmuir_4c01685 crossref_primary_10_1016_j_envpol_2023_122830 crossref_primary_10_1016_j_carbpol_2024_122423 crossref_primary_10_1016_j_ijbiomac_2024_134990 crossref_primary_10_12677_ije_2024_132035 crossref_primary_10_1016_j_jddst_2023_104858 crossref_primary_10_3390_polym16192774 crossref_primary_10_1016_j_ijbiomac_2025_141156 crossref_primary_10_1016_j_indcrop_2024_118025 crossref_primary_10_1016_j_ijbiomac_2024_136949 crossref_primary_10_1016_j_ijbiomac_2024_129303 crossref_primary_10_1002_jbm_b_35472 crossref_primary_10_1002_bkcs_12906 crossref_primary_10_1016_j_carbpol_2024_122395 crossref_primary_10_1007_s10924_024_03227_3 crossref_primary_10_1016_j_heliyon_2024_e41188 crossref_primary_10_1016_j_ijbiomac_2023_128834 crossref_primary_10_1039_D2EW00794K crossref_primary_10_1007_s10904_023_02692_y crossref_primary_10_1007_s41101_025_00338_3 crossref_primary_10_1016_j_carbpol_2023_121169 crossref_primary_10_1016_j_ijbiomac_2024_134063 crossref_primary_10_1016_j_foodhyd_2024_110010 crossref_primary_10_3390_coatings14081036 crossref_primary_10_1016_j_rineng_2024_103012 crossref_primary_10_1016_j_ijbiomac_2024_129456 crossref_primary_10_1016_j_indcrop_2024_119787 |
Cites_doi | 10.1002/anie.201001273 10.1016/j.colcom.2022.100678 10.1021/acssuschemeng.9b05081 10.1016/j.cej.2014.04.034 10.1016/j.carbpol.2021.118471 10.1021/acssuschemeng.6b01674 10.1021/acs.langmuir.0c02509 10.1016/j.jhazmat.2021.126580 10.1016/j.jclepro.2019.119749 10.1007/s11356-019-05810-x 10.1016/j.carbpol.2016.11.008 10.1016/j.ijbiomac.2022.10.220 10.1016/j.carbpol.2017.10.094 10.1007/s10570-014-0168-8 10.1016/j.carbpol.2010.04.073 10.1016/j.ijbiomac.2016.09.004 10.1016/j.jhazmat.2015.04.001 10.1021/la900452a 10.1016/j.carbpol.2015.03.087 10.1016/j.ijbiomac.2019.06.112 10.1016/j.carbpol.2019.115102 10.1098/rsos.200857 10.1016/j.mseb.2020.114953 10.1016/j.chemosphere.2015.07.078 10.1016/j.ces.2020.115998 10.1007/s10924-019-01533-9 10.1021/acssuschemeng.7b02472 10.1016/j.carbpol.2020.115889 10.1039/c0cc05359g 10.1016/j.jece.2019.103251 10.1007/s10570-014-0283-6 10.1016/j.ijleo.2018.10.153 10.1016/j.apsusc.2017.02.265 10.1016/S1001-0742(12)60145-4 10.1016/j.carbpol.2020.116180 10.1039/C7PY00631D 10.1016/j.ijbiomac.2020.04.204 10.1007/s10570-015-0785-x 10.1016/j.jhazmat.2020.122512 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.colcom.2023.100707 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2215-0382 |
ExternalDocumentID | 10_1016_j_colcom_2023_100707 S2215038223000146 |
GroupedDBID | --M 0R~ 0SF 4.4 457 4G. 6I. 7-5 AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GROUPED_DOAJ IXB KOM KQ8 M41 M~E NCXOZ O9- OAUVE OK1 RIG ROL SPC SPCBC SSG SSK SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-f2a17f9a0bb02d670c579b9eea1fe454413cdbc583747eebce2134bcff11efbe3 |
IEDL.DBID | AIKHN |
ISSN | 2215-0382 |
IngestDate | Thu Apr 24 22:55:01 EDT 2025 Tue Jul 01 01:24:31 EDT 2025 Fri Feb 23 02:37:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | VOCs Cellulose nanocrystal Adsorption Heavy metal |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-f2a17f9a0bb02d670c579b9eea1fe454413cdbc583747eebce2134bcff11efbe3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215038223000146 |
ParticipantIDs | crossref_primary_10_1016_j_colcom_2023_100707 crossref_citationtrail_10_1016_j_colcom_2023_100707 elsevier_sciencedirect_doi_10_1016_j_colcom_2023_100707 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Colloid and interface science communications |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Buyukada-Kesici, Gezmis-Yavuz, Aydin, Cansoy, Alp, Koseoglu-Imer (bb0175) 2021; 264 Azzam, Galliot, Putaux, Heux, Jean (bb0050) 2015; 22 Fan, Yu, Wang, Mao, Yao, Tam (bb0055) 2019; 7 Garcia-Valdez, Brescacin, Arredondo, Bouchard, Jessop, Champagne, Cunningham (bb0075) 2017; 8 Teixeira, Silva, Jang, Kim, Ishikawa, Endo, Lee, Bon (bb0025) 2015; 128 Lu, Hsieh (bb0030) 2010; 82 Wang, Ouyang, Yang, Omer (bb0145) 2017; 5 Yu, Tong, Ge, Wu, Zuo, Cao, Song (bb0085) 2013; 25 Sun, Hou, Liu, He, Ni (bb0060) 2014; 21 Dou, Gan, Huang, Liu, Chen, Deng, Zhu, Wen, Zhang, Wei (bb0115) 2019; 136 Lu, Jin, Liu, Wang, Ouyang (bb0110) 2016; 93 Kausar, Zohra, Ijaz, Iqbal, Iqbal, Bibi, Nouren, El Messaoudi, Nazir (bb0010) 2023; 224 Zhou, Wu, Lei, Negulescu (bb0190) 2014; 251 Mohammed, Baidya, Murugesan, Kumar, Ganayee, Mohanty, Tam, Pradeep (bb0140) 2016; 4 Zhang, Sèbe, Wang, Tam (bb0180) 2018; 182 Liu, Xu, An, Wu, Yang, Ma, Huang, Li, Li, Liu (bb0130) 2019; 26 Klemm, Kramer, Moritz, Lindström, Ankerfors, Gray, Dorris (bb0005) 2011; 50 Chen, Yu, Deutschman, Yang, Tam (bb0020) 2020; 234 Hoang, Pham, Verheyen, Nguyen, Pham, Zhu, Van der Bruggen (bb0095) 2020; 228 Tao, Yang, Ma, Li, Du, Wei, Chen, Wang, Zhao, Deng (bb0195) 2020; 7 Liu, Borrell, Božič, Kokol, Oksman, Mathew (bb0090) 2015; 294 Park, Shin, Park, Jeon, Gwon, Lee, Kim, Kim, Lee (bb0125) 2020; 394 Eyley, Thielemans (bb0170) 2011; 47 Cui, Huang, Liu, Chen, Deng, Zhou, Zhang, Wei (bb0135) 2019; 223 Qiao, Zhou, Yu, Wang, Min, Huang, Pang, Ma (bb0155) 2015; 141 Oyewo, Mutesse, Leswifi, Onyango (bb0065) 2019; 7 Sun, Sha, Liang, Yang, Hu, He, Liu, Zhou, Zhang, Wei (bb0105) 2021; 420 Jiang, Lou, Hua, Deng, Tian (bb0070) 2020; 251 Dhar, Narendren, Gaur, Sharma, Kumar, Katiyar (bb0120) 2020; 158 Liu, Jin, Ouyang, Wang (bb0150) 2017; 408 Wu, Yang, Zhu, Gao (bb0185) 2019; 179 Jiang, Ji, Gu, Wang, Zhou, Chen, Xu (bb0015) 2022; 51 Morandi, Heath, Thielemans (bb0165) 2009; 25 Zhang, Chen, Wang, Ma, Yu, Dai, Zhang (bb0035) 2020; 238 Arredondo, Woodcock, Garcia-Valdez, Jessop, Champagne, Cunningham (bb0080) 2020; 36 Emam, Shaheen (bb0160) 2019; 27 Batmaz, Mohammed, Zaman, Minhas, Berry, Tam (bb0045) 2014; 21 Ávila Ramírez, Fortunati, Kenny, Torre, Foresti (bb0040) 2017; 157 Qiao, Cui, Huang, Ding, Qi, He, Klemeš, Su (bb0100) 2021; 272 Zhang (10.1016/j.colcom.2023.100707_bb0035) 2020; 238 Liu (10.1016/j.colcom.2023.100707_bb0130) 2019; 26 Liu (10.1016/j.colcom.2023.100707_bb0090) 2015; 294 Cui (10.1016/j.colcom.2023.100707_bb0135) 2019; 223 Buyukada-Kesici (10.1016/j.colcom.2023.100707_bb0175) 2021; 264 Sun (10.1016/j.colcom.2023.100707_bb0105) 2021; 420 Morandi (10.1016/j.colcom.2023.100707_bb0165) 2009; 25 Kausar (10.1016/j.colcom.2023.100707_bb0010) 2023; 224 Lu (10.1016/j.colcom.2023.100707_bb0110) 2016; 93 Zhou (10.1016/j.colcom.2023.100707_bb0190) 2014; 251 Batmaz (10.1016/j.colcom.2023.100707_bb0045) 2014; 21 Klemm (10.1016/j.colcom.2023.100707_bb0005) 2011; 50 Emam (10.1016/j.colcom.2023.100707_bb0160) 2019; 27 Dou (10.1016/j.colcom.2023.100707_bb0115) 2019; 136 Liu (10.1016/j.colcom.2023.100707_bb0150) 2017; 408 Azzam (10.1016/j.colcom.2023.100707_bb0050) 2015; 22 Arredondo (10.1016/j.colcom.2023.100707_bb0080) 2020; 36 Wang (10.1016/j.colcom.2023.100707_bb0145) 2017; 5 Qiao (10.1016/j.colcom.2023.100707_bb0155) 2015; 141 Teixeira (10.1016/j.colcom.2023.100707_bb0025) 2015; 128 Ávila Ramírez (10.1016/j.colcom.2023.100707_bb0040) 2017; 157 Garcia-Valdez (10.1016/j.colcom.2023.100707_bb0075) 2017; 8 Sun (10.1016/j.colcom.2023.100707_bb0060) 2014; 21 Yu (10.1016/j.colcom.2023.100707_bb0085) 2013; 25 Tao (10.1016/j.colcom.2023.100707_bb0195) 2020; 7 Zhang (10.1016/j.colcom.2023.100707_bb0180) 2018; 182 Mohammed (10.1016/j.colcom.2023.100707_bb0140) 2016; 4 Chen (10.1016/j.colcom.2023.100707_bb0020) 2020; 234 Dhar (10.1016/j.colcom.2023.100707_bb0120) 2020; 158 Park (10.1016/j.colcom.2023.100707_bb0125) 2020; 394 Fan (10.1016/j.colcom.2023.100707_bb0055) 2019; 7 Jiang (10.1016/j.colcom.2023.100707_bb0015) 2022; 51 Lu (10.1016/j.colcom.2023.100707_bb0030) 2010; 82 Hoang (10.1016/j.colcom.2023.100707_bb0095) 2020; 228 Qiao (10.1016/j.colcom.2023.100707_bb0100) 2021; 272 Jiang (10.1016/j.colcom.2023.100707_bb0070) 2020; 251 Eyley (10.1016/j.colcom.2023.100707_bb0170) 2011; 47 Oyewo (10.1016/j.colcom.2023.100707_bb0065) 2019; 7 Wu (10.1016/j.colcom.2023.100707_bb0185) 2019; 179 |
References_xml | – volume: 136 start-page: 476 year: 2019 end-page: 485 ident: bb0115 article-title: Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu publication-title: Int. J. Biol. Macromol. – volume: 8 start-page: 4124 year: 2017 end-page: 4131 ident: bb0075 article-title: Grafting CO2-responsive polymers from cellulose nanocrystals via nitroxide-mediated polymerisation publication-title: Polym. Chem. – volume: 21 start-page: 2879 year: 2014 end-page: 2887 ident: bb0060 article-title: Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals publication-title: Cellulose – volume: 294 start-page: 177 year: 2015 end-page: 185 ident: bb0090 article-title: Nanocelluloses and their phosphorylated derivatives for selective adsorption of ag publication-title: J. Hazard. Mater. – volume: 82 start-page: 329 year: 2010 end-page: 336 ident: bb0030 article-title: Preparation and properties of cellulose nanocrystals: rods, spheres, and network publication-title: Carbohydr. Polym. – volume: 234 year: 2020 ident: bb0020 article-title: Novel design of Fe-cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb publication-title: Carbohydr. Polym. – volume: 4 start-page: 6167 year: 2016 end-page: 6176 ident: bb0140 article-title: Diffusion-Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster–Cellulose Nanocrystal Composites publication-title: ACS Sustain. Chem. Eng. – volume: 36 start-page: 13989 year: 2020 end-page: 13997 ident: bb0080 article-title: Surface modification of cellulose nanocrystals via RAFT polymerization of CO2-responsive monomer-tuning hydrophobicity publication-title: Langmuir – volume: 394 year: 2020 ident: bb0125 article-title: Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity publication-title: J. Hazard. Mater. – volume: 51 year: 2022 ident: bb0015 article-title: Facile preparation of a multicomponent catalytic system Bi2O3/Bi2S3/CDs with an exceptional catalytic activity in the photocatalytic reduction of 4-nitrophenol publication-title: Colloid Interface Sci. Commun. – volume: 238 year: 2020 ident: bb0035 article-title: Extraction and comparison of cellulose nanocrystals from lemon (Citrus Limon) seeds using sulfuric acid hydrolysis and oxidation methods publication-title: Carbohydr. Polym. – volume: 25 start-page: 933 year: 2013 end-page: 943 ident: bb0085 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: J. Environ. Sci. – volume: 93 start-page: 547 year: 2016 end-page: 556 ident: bb0110 article-title: Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 10447 year: 2017 end-page: 10458 ident: bb0145 article-title: Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb(II) from water publication-title: ACS Sustain. Chem. Eng. – volume: 251 year: 2020 ident: bb0070 article-title: Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents publication-title: J. Clean. Prod. – volume: 223 year: 2019 ident: bb0135 article-title: Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization publication-title: Carbohydr. Polym. – volume: 157 start-page: 1358 year: 2017 end-page: 1364 ident: bb0040 article-title: Simple citric acid-catalyzed surface esterification of cellulose nanocrystals publication-title: Carbohydr. Polym. – volume: 228 year: 2020 ident: bb0095 article-title: Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II) publication-title: Chem. Eng. Sci. – volume: 7 start-page: 18067 year: 2019 end-page: 18075 ident: bb0055 article-title: Facile and green synthesis of Carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments publication-title: ACS Sustain. Chem. Eng. – volume: 408 start-page: 77 year: 2017 end-page: 87 ident: bb0150 article-title: Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions publication-title: Appl. Surf. Sci. – volume: 182 start-page: 61 year: 2018 end-page: 68 ident: bb0180 article-title: Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts publication-title: Carbohydr. Polym. – volume: 7 year: 2019 ident: bb0065 article-title: Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals publication-title: J. Environ. Chem. Eng. – volume: 47 start-page: 4177 year: 2011 end-page: 4179 ident: bb0170 article-title: Imidazolium grafted cellulose nanocrystals for ion exchange applications publication-title: Chem. Commun. – volume: 141 start-page: 297 year: 2015 end-page: 303 ident: bb0155 article-title: Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals publication-title: Chemosphere – volume: 7 year: 2020 ident: bb0195 article-title: Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution publication-title: R. Soc. Open Sci. – volume: 50 start-page: 5438 year: 2011 end-page: 5466 ident: bb0005 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 8280 year: 2009 end-page: 8286 ident: bb0165 article-title: Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP) publication-title: Langmuir – volume: 158 start-page: 1020 year: 2020 end-page: 1036 ident: bb0120 article-title: Self-propelled cellulose nanocrystal based catalytic nanomotors for targeted hyperthermia and pollutant remediation applications publication-title: Int. J. Biol. Macromol. – volume: 251 start-page: 17 year: 2014 end-page: 24 ident: bb0190 article-title: Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels publication-title: Chem. Eng. J. – volume: 128 start-page: 75 year: 2015 end-page: 81 ident: bb0025 article-title: Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals publication-title: Carbohydr. Polym. – volume: 264 year: 2021 ident: bb0175 article-title: Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air publication-title: Mater. Sci. Eng. B – volume: 420 year: 2021 ident: bb0105 article-title: Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance publication-title: J. Hazard. Mater. – volume: 22 start-page: 3701 year: 2015 end-page: 3714 ident: bb0050 article-title: Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers publication-title: Cellulose – volume: 27 start-page: 2419 year: 2019 end-page: 2427 ident: bb0160 article-title: Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal publication-title: J. Polym. Environ. – volume: 179 start-page: 195 year: 2019 end-page: 206 ident: bb0185 article-title: Construction of CNCs-TiO2 heterojunctions with enhanced photocatalytic activity for crystal violet removal publication-title: Optik – volume: 224 start-page: 1337 year: 2023 end-page: 1355 ident: bb0010 article-title: Cellulose-based materials and their adsorptive removal efficiency for dyes: a review publication-title: Int. J. Biol. Macromol. – volume: 21 start-page: 1655 year: 2014 end-page: 1665 ident: bb0045 article-title: Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes publication-title: Cellulose – volume: 272 year: 2021 ident: bb0100 article-title: Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes publication-title: Carbohydr. Polym. – volume: 26 start-page: 25583 year: 2019 end-page: 25595 ident: bb0130 article-title: A facile hydrothermal method–fabricated robust and ultralight weight cellulose nanocrystal-based hydro/aerogels for metal ion removal publication-title: Environ. Sci. Pollut. Res. – volume: 50 start-page: 5438 year: 2011 ident: 10.1016/j.colcom.2023.100707_bb0005 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001273 – volume: 51 year: 2022 ident: 10.1016/j.colcom.2023.100707_bb0015 article-title: Facile preparation of a multicomponent catalytic system Bi2O3/Bi2S3/CDs with an exceptional catalytic activity in the photocatalytic reduction of 4-nitrophenol publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2022.100678 – volume: 7 start-page: 18067 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0055 article-title: Facile and green synthesis of Carboxylated cellulose nanocrystals as efficient adsorbents in wastewater treatments publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05081 – volume: 251 start-page: 17 year: 2014 ident: 10.1016/j.colcom.2023.100707_bb0190 article-title: Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.04.034 – volume: 272 year: 2021 ident: 10.1016/j.colcom.2023.100707_bb0100 article-title: Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118471 – volume: 4 start-page: 6167 year: 2016 ident: 10.1016/j.colcom.2023.100707_bb0140 article-title: Diffusion-Controlled Simultaneous Sensing and Scavenging of Heavy Metal Ions in Water Using Atomically Precise Cluster–Cellulose Nanocrystal Composites publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b01674 – volume: 36 start-page: 13989 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0080 article-title: Surface modification of cellulose nanocrystals via RAFT polymerization of CO2-responsive monomer-tuning hydrophobicity publication-title: Langmuir doi: 10.1021/acs.langmuir.0c02509 – volume: 420 year: 2021 ident: 10.1016/j.colcom.2023.100707_bb0105 article-title: Rapid synthesis of polyimidazole functionalized MXene via microwave-irradiation assisted multi-component reaction and its iodine adsorption performance publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126580 – volume: 251 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0070 article-title: Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119749 – volume: 26 start-page: 25583 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0130 article-title: A facile hydrothermal method–fabricated robust and ultralight weight cellulose nanocrystal-based hydro/aerogels for metal ion removal publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05810-x – volume: 157 start-page: 1358 year: 2017 ident: 10.1016/j.colcom.2023.100707_bb0040 article-title: Simple citric acid-catalyzed surface esterification of cellulose nanocrystals publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.11.008 – volume: 224 start-page: 1337 year: 2023 ident: 10.1016/j.colcom.2023.100707_bb0010 article-title: Cellulose-based materials and their adsorptive removal efficiency for dyes: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.10.220 – volume: 182 start-page: 61 year: 2018 ident: 10.1016/j.colcom.2023.100707_bb0180 article-title: Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.10.094 – volume: 21 start-page: 1655 year: 2014 ident: 10.1016/j.colcom.2023.100707_bb0045 article-title: Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes publication-title: Cellulose doi: 10.1007/s10570-014-0168-8 – volume: 82 start-page: 329 year: 2010 ident: 10.1016/j.colcom.2023.100707_bb0030 article-title: Preparation and properties of cellulose nanocrystals: rods, spheres, and network publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.04.073 – volume: 93 start-page: 547 year: 2016 ident: 10.1016/j.colcom.2023.100707_bb0110 article-title: Magnetic carboxylated cellulose nanocrystals as adsorbent for the removal of Pb(II) from aqueous solution publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.09.004 – volume: 294 start-page: 177 year: 2015 ident: 10.1016/j.colcom.2023.100707_bb0090 article-title: Nanocelluloses and their phosphorylated derivatives for selective adsorption of ag+, Cu2+ and Fe3+ from industrial effluents publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.04.001 – volume: 25 start-page: 8280 year: 2009 ident: 10.1016/j.colcom.2023.100707_bb0165 article-title: Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP) publication-title: Langmuir doi: 10.1021/la900452a – volume: 128 start-page: 75 year: 2015 ident: 10.1016/j.colcom.2023.100707_bb0025 article-title: Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.03.087 – volume: 136 start-page: 476 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0115 article-title: Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.06.112 – volume: 223 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0135 article-title: Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115102 – volume: 7 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0195 article-title: Cellulose nanocrystals/graphene oxide composite for the adsorption and removal of levofloxacin hydrochloride antibiotic from aqueous solution publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.200857 – volume: 264 year: 2021 ident: 10.1016/j.colcom.2023.100707_bb0175 article-title: Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2020.114953 – volume: 141 start-page: 297 year: 2015 ident: 10.1016/j.colcom.2023.100707_bb0155 article-title: Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.07.078 – volume: 228 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0095 article-title: Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II) publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115998 – volume: 27 start-page: 2419 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0160 article-title: Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal publication-title: J. Polym. Environ. doi: 10.1007/s10924-019-01533-9 – volume: 5 start-page: 10447 year: 2017 ident: 10.1016/j.colcom.2023.100707_bb0145 article-title: Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb(II) from water publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02472 – volume: 234 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0020 article-title: Novel design of Fe-cu alloy coated cellulose nanocrystals with strong antibacterial ability and efficient Pb2+ removal publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.115889 – volume: 47 start-page: 4177 year: 2011 ident: 10.1016/j.colcom.2023.100707_bb0170 article-title: Imidazolium grafted cellulose nanocrystals for ion exchange applications publication-title: Chem. Commun. doi: 10.1039/c0cc05359g – volume: 7 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0065 article-title: Highly efficient removal of nickel and cadmium from water using sawdust-derived cellulose nanocrystals publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103251 – volume: 21 start-page: 2879 year: 2014 ident: 10.1016/j.colcom.2023.100707_bb0060 article-title: Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals publication-title: Cellulose doi: 10.1007/s10570-014-0283-6 – volume: 179 start-page: 195 year: 2019 ident: 10.1016/j.colcom.2023.100707_bb0185 article-title: Construction of CNCs-TiO2 heterojunctions with enhanced photocatalytic activity for crystal violet removal publication-title: Optik doi: 10.1016/j.ijleo.2018.10.153 – volume: 408 start-page: 77 year: 2017 ident: 10.1016/j.colcom.2023.100707_bb0150 article-title: Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.02.265 – volume: 25 start-page: 933 year: 2013 ident: 10.1016/j.colcom.2023.100707_bb0085 article-title: Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(12)60145-4 – volume: 238 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0035 article-title: Extraction and comparison of cellulose nanocrystals from lemon (Citrus Limon) seeds using sulfuric acid hydrolysis and oxidation methods publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116180 – volume: 8 start-page: 4124 year: 2017 ident: 10.1016/j.colcom.2023.100707_bb0075 article-title: Grafting CO2-responsive polymers from cellulose nanocrystals via nitroxide-mediated polymerisation publication-title: Polym. Chem. doi: 10.1039/C7PY00631D – volume: 158 start-page: 1020 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0120 article-title: Self-propelled cellulose nanocrystal based catalytic nanomotors for targeted hyperthermia and pollutant remediation applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.04.204 – volume: 22 start-page: 3701 year: 2015 ident: 10.1016/j.colcom.2023.100707_bb0050 article-title: Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers publication-title: Cellulose doi: 10.1007/s10570-015-0785-x – volume: 394 year: 2020 ident: 10.1016/j.colcom.2023.100707_bb0125 article-title: Poly(acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr(VI) adsorption capacity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122512 |
SSID | ssj0002140238 |
Score | 2.4404802 |
SecondaryResourceType | review_article |
Snippet | Cellulose nanocrystals (CNCs) are rod-shaped nanomaterials with the same chemical composition as plant cellulose and can be extracted by physical, chemical, or... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100707 |
SubjectTerms | Adsorption Cellulose nanocrystal Heavy metal VOCs |
Title | Preparation methods of cellulose nanocrystal and its application in treatment of environmental pollution: A mini-review |
URI | https://dx.doi.org/10.1016/j.colcom.2023.100707 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu3gRRcX5MXLwGtY2TWu9zeHYHA5Rh7uVJk1gMtqxdYj_ve817ZggCl5aWvKD8pK-j-S99yPkWnoqUdrxWQSaj_mp4EymxocJETcOV0EgDBY4P06C4dR_mIlZg_TrWhhMq6x0v9Xppbau3nQraXaX83n3xQNr5XAwcLx09IM90vJ4FMDSbvVG4-Fku9XiQRDhlZzWCGGIqYvoykwvkDhmjiCReJk0gNSyPxmpHcMzOCQHlcdIe_ajjkhDZ8fk42mlbdfuPKOWBXpNc0NxH36zyNeaZkmWq9UnOH8LmmQpnRdrunNaTecZ3SaZI3Kn4g0QS2RAxnG3tEex_QizNS4nZDq4f-0PWcWhwBS4VgUzXuKGJkocKR0vDUJHiTCSkdaJa7SPBGRcpVIJiFP9UGupNLZ4k8oY19VGan5Kmlme6TNChWtcsHdp4gh0uyAKF5GG3xeAAE2jNuG10GJVNRhHnotFXGeSvcdW1DGKOraibhO2RS1tg40_xof1fMTfFkoMNuBX5Pm_kRdkH59s6tklaRarjb4CX6SQnWqt4X38_DbulDE9XEezuy__AOMy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9zPuiLKCp-mwdfw_qV1vo2h2PTbQhusLfQpAlURjv2gfjfe9e0Y4Io-NrmB-WS3P2S3t2PkDvpqURpJ2AxeD4WpNxnMjUBTAi_d3wVhtxggfNwFPYmwfOUTxukU9fCYFpl5futTy-9dfWkVVmzNc-y1psH0crxIcD5JdEPd8gusIEI9Rv608fNRYsHRwivVLRGAENEXUJX5nmBvTFvBGXEy5QBFJb9KURthZ3uITmo-CJt2086Ig2dH5OP14W2PbuLnFoN6CUtDMVb-PWsWGqaJ3mhFp9A_WY0yVOarZZ06181zXK6STFH5Fa9GyDmqH-M4x5om2LzEWYrXE7IpPs07vRYpaDAFBCrFTNe4kYmThwpHS8F2ygexTLWOnGNDlB-zFepVBxOqUGktVQaG7xJZYzraiO1f0qaeZHrM0K5a1yIdmnicCRdcAbnsYbNC0CApvE58WujCVW1F0eVi5mo88jehTW1QFMLa-pzwjaouW2v8cf4qJ4P8W2ZCIgAvyIv_o28JXu98XAgBv3RyyXZxzc2Ce2KNFeLtb4GVrKSN-Wq-wKJyOFl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+methods+of+cellulose+nanocrystal+and+its+application+in+treatment+of+environmental+pollution%3A+A+mini-review&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Zhang%2C+Yuzhe&rft.au=Zhang%2C+Yan&rft.au=Xu%2C+Wei&rft.au=Wu%2C+Hao&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=53&rft_id=info:doi/10.1016%2Fj.colcom.2023.100707&rft.externalDocID=S2215038223000146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon |