Anti-icing properties of femtosecond laser-induced nano and multiscale topographies
[Display omitted] •LIPSS and multiscale topographies are fabricated by an NIR femtosecond laser.•Laser treated surfaces significantly delayed droplet freezing time on surfaces.•Nano and multiscale topographies inhibit the frost formation on surfaces.•Severely abraded multiscale topographies exhibite...
Saved in:
Published in | Applied surface science Vol. 552; p. 149443 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 1873-5584 |
DOI | 10.1016/j.apsusc.2021.149443 |
Cover
Loading…
Abstract | [Display omitted]
•LIPSS and multiscale topographies are fabricated by an NIR femtosecond laser.•Laser treated surfaces significantly delayed droplet freezing time on surfaces.•Nano and multiscale topographies inhibit the frost formation on surfaces.•Severely abraded multiscale topographies exhibited icephobic properties too.
Surfaces covered with micro, nano and multiscale topographies are the subject of significant interest due to their ice-repellency properties in the last decade. Ultrafast laser processing is becoming a widely used clean manufacturing technique to fabricate ordered nano and multiscale topographies on metallic surfaces over relatively large areas. In this work, single-tier nano and two-tier multiscale topographies were fabricated on stainless steel surfaces with one-step femtosecond laser processing to impart anti-icing response. Droplet freezing and frost formation on laser treated surfaces were examined at −10 °C and compared with the lubricant-impregnated and superhydrophobic nanoparticle-coated ones. While the hydrophilic nanoscale topography has accelerated the droplet freezing and performed worse than untreated surfaces, their hydrophobic counterparts increased the time to freezing by nearly two times. Overall, the superhydrophobic two-tier multiscale topography has significantly delayed both the droplet freezing time and frost formation on surfaces. Furthermore, the two-tier multiscale topography has sustained its anti-icing response even after being subjected to 25 abrasion cycles, while the surfaces with only nanoscale topography and nanoparticle-coating lost their functionality in only 10 cycles. Therefore, such robust two-tier multiscale topographies devoid of any coatings can enable and underpin many industrial applications where ice accumulation on surfaces results in performance degradation, e.g. in aerospace, refrigeration, air-conditioning and energy applications. |
---|---|
AbstractList | [Display omitted]
•LIPSS and multiscale topographies are fabricated by an NIR femtosecond laser.•Laser treated surfaces significantly delayed droplet freezing time on surfaces.•Nano and multiscale topographies inhibit the frost formation on surfaces.•Severely abraded multiscale topographies exhibited icephobic properties too.
Surfaces covered with micro, nano and multiscale topographies are the subject of significant interest due to their ice-repellency properties in the last decade. Ultrafast laser processing is becoming a widely used clean manufacturing technique to fabricate ordered nano and multiscale topographies on metallic surfaces over relatively large areas. In this work, single-tier nano and two-tier multiscale topographies were fabricated on stainless steel surfaces with one-step femtosecond laser processing to impart anti-icing response. Droplet freezing and frost formation on laser treated surfaces were examined at −10 °C and compared with the lubricant-impregnated and superhydrophobic nanoparticle-coated ones. While the hydrophilic nanoscale topography has accelerated the droplet freezing and performed worse than untreated surfaces, their hydrophobic counterparts increased the time to freezing by nearly two times. Overall, the superhydrophobic two-tier multiscale topography has significantly delayed both the droplet freezing time and frost formation on surfaces. Furthermore, the two-tier multiscale topography has sustained its anti-icing response even after being subjected to 25 abrasion cycles, while the surfaces with only nanoscale topography and nanoparticle-coating lost their functionality in only 10 cycles. Therefore, such robust two-tier multiscale topographies devoid of any coatings can enable and underpin many industrial applications where ice accumulation on surfaces results in performance degradation, e.g. in aerospace, refrigeration, air-conditioning and energy applications. |
ArticleNumber | 149443 |
Author | Karkantonis, Themistoklis Gaddam, Anvesh Sharma, Himani Dimov, Stefan |
Author_xml | – sequence: 1 givenname: Anvesh surname: Gaddam fullname: Gaddam, Anvesh organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK – sequence: 2 givenname: Himani surname: Sharma fullname: Sharma, Himani organization: Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA – sequence: 3 givenname: Themistoklis surname: Karkantonis fullname: Karkantonis, Themistoklis organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK – sequence: 4 givenname: Stefan surname: Dimov fullname: Dimov, Stefan organization: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK |
BookMark | eNqFkMtKAzEUhoNUsK2-gYt5gRlzm0tdCKV4g4ILdR0yyUlNmSZDkgq-vSnjyoWufjjnfD-cb4FmzjtA6JrgimDS3OwrOcZjVBXFlFSErzhnZ2hOupaVdd3xGZrns1XJGaMXaBHjHmNC83aOXtcu2dIq63bFGPwIIVmIhTeFgUPyEZR3uhhkhFBap48KdOGk84XM48NxSDYqOUCR_Oh3QY4fmb5E50YOEa5-coneH-7fNk_l9uXxebPelorVNJXQm5XqetMRgrsWY84wp6xRDdaMG1CgJG-B9402mmHGgZE-R0vb_DRQzZbodupVwccYwAhlk0zWuxSkHQTB4qRH7MWkR5z0iElPhvkveAz2IMPXf9jdhEF-7NNCEFFZcFmLDaCS0N7-XfANXKKEzA |
CitedBy_id | crossref_primary_10_1007_s10404_021_02470_7 crossref_primary_10_1016_j_colsurfa_2022_130742 crossref_primary_10_1080_09506608_2021_1995112 crossref_primary_10_1016_j_apsusc_2023_157644 crossref_primary_10_1016_j_jmrt_2023_11_250 crossref_primary_10_1007_s41403_021_00244_9 crossref_primary_10_1016_j_apsusc_2022_154177 crossref_primary_10_3788_LOP222196 crossref_primary_10_1021_acs_langmuir_2c02075 crossref_primary_10_1016_j_apsusc_2021_152223 crossref_primary_10_1016_j_triboint_2024_109637 crossref_primary_10_1108_RPJ_03_2024_0129 crossref_primary_10_3390_su141912412 crossref_primary_10_1016_j_apsusc_2022_155652 crossref_primary_10_1177_02670844241295337 crossref_primary_10_1021_acsami_3c14083 crossref_primary_10_1680_jsuin_24_00051 crossref_primary_10_1016_j_apsusc_2024_159454 crossref_primary_10_1016_j_optlastec_2022_108995 crossref_primary_10_1007_s44251_023_00033_2 crossref_primary_10_1016_j_surfcoat_2024_130820 crossref_primary_10_1021_acs_langmuir_2c01671 crossref_primary_10_1088_1742_6596_2720_1_012005 crossref_primary_10_1016_j_matdes_2024_113021 crossref_primary_10_1002_app_53416 crossref_primary_10_3390_nano15050355 crossref_primary_10_1016_j_surfin_2022_102096 crossref_primary_10_1016_j_colsurfa_2023_131334 crossref_primary_10_1016_j_jmst_2022_01_045 crossref_primary_10_3390_coatings13030569 crossref_primary_10_1016_j_surfin_2022_102013 crossref_primary_10_1007_s12206_024_0342_3 crossref_primary_10_1016_j_cis_2024_103090 crossref_primary_10_26599_JAC_2023_9220784 crossref_primary_10_1016_j_ceramint_2021_12_238 crossref_primary_10_1016_j_surfin_2023_102806 crossref_primary_10_3390_app13095478 crossref_primary_10_3390_mi13081211 crossref_primary_10_1016_j_colsurfa_2024_133674 crossref_primary_10_1007_s11998_023_00785_4 crossref_primary_10_3390_cryst13010020 crossref_primary_10_1021_acs_langmuir_2c01566 crossref_primary_10_1515_ntrev_2023_0105 crossref_primary_10_1002_tcr_202200298 crossref_primary_10_1016_j_surfin_2024_104167 crossref_primary_10_1016_j_jmapro_2023_12_005 crossref_primary_10_2139_ssrn_3998942 crossref_primary_10_1016_j_colsurfa_2023_131244 crossref_primary_10_1016_j_porgcoat_2021_106560 crossref_primary_10_1016_j_porgcoat_2022_107076 crossref_primary_10_1016_j_surfin_2024_103873 crossref_primary_10_1016_j_mtphys_2022_100651 crossref_primary_10_1134_S1061933X23601166 crossref_primary_10_1016_j_susmat_2024_e01136 crossref_primary_10_1021_acsami_3c07262 crossref_primary_10_1016_j_surfcoat_2023_130340 crossref_primary_10_3390_biomimetics7040196 crossref_primary_10_1021_acsami_1c24284 crossref_primary_10_1016_j_mtcomm_2024_109099 |
Cites_doi | 10.1016/j.matdes.2019.108156 10.1016/j.applthermaleng.2019.04.052 10.1021/acsami.6b11531 10.1016/j.apsusc.2019.07.126 10.1021/acs.langmuir.9b01333 10.1016/j.ijheatmasstransfer.2018.04.165 10.1039/C9SM01256G 10.1126/sciadv.aaw9727 10.1016/j.surfcoat.2020.126043 10.1039/C9SM01942A 10.1021/acs.langmuir.0c00413 10.1016/j.porgcoat.2019.105373 10.1007/s10404-017-1974-8 10.1016/j.surfcoat.2019.06.046 10.1021/acs.langmuir.9b02273 10.2351/1.4986058 10.1016/j.surfcoat.2020.126166 10.1016/j.ijrefrig.2019.12.002 10.1038/s41598-019-49615-x 10.1021/la8037582 10.1063/1.5113845 10.1021/acsnano.8b09549 10.1021/acs.langmuir.9b00398 10.1021/acs.nanolett.0c02956 10.1016/j.matdes.2020.108744 10.1021/acs.langmuir.0c00753 10.1016/j.matdes.2018.05.069 10.1002/adfm.201910268 10.1021/acs.langmuir.8b02765 10.1088/2053-1591/ab6e33 10.1016/j.apsusc.2018.04.277 10.1039/C9NR06934H 10.1016/j.surfcoat.2020.126136 10.1016/j.colsurfa.2019.124180 10.1016/j.apsusc.2018.03.075 10.3390/ma13245692 10.1002/admi.201800353 10.1016/j.cplett.2020.137806 10.1016/j.ijrefrig.2020.05.016 10.1021/acsami.6b01133 10.1021/acs.langmuir.6b03752 10.3390/coatings10060587 10.1021/acsami.8b13099 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2021.149443 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
ExternalDocumentID | 10_1016_j_apsusc_2021_149443 S0169433221005195 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SSH WUQ |
ID | FETCH-LOGICAL-c352t-ebf9c8bf811087004304236c60d34fececa47e4b6dfd3034e31b034727101e2d3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 01:40:11 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Fri Feb 23 02:42:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Textured surfaces LIPSS Superhydrophobic Stainless steel Femtosecond laser Anti-icing XPS Frost |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-ebf9c8bf811087004304236c60d34fececa47e4b6dfd3034e31b034727101e2d3 |
OpenAccessLink | https://pure-oai.bham.ac.uk/ws/files/115247604/Anti_icing_manuscript_vf.pdf |
ParticipantIDs | crossref_citationtrail_10_1016_j_apsusc_2021_149443 crossref_primary_10_1016_j_apsusc_2021_149443 elsevier_sciencedirect_doi_10_1016_j_apsusc_2021_149443 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-30 |
PublicationDateYYYYMMDD | 2021-06-30 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Azouz, Korany (b0225) 2020 Joshipura, Ayers, Castillo, Ladd, Tabor, Adams, Dickey (b0175) 2018; 10 Jwad, Penchev, Nasrollahi, Dimov (b0155) 2018; 453 Lengaigne, Bousser, Brown, Xing, Turcot, Dolatabadi, Martinu, Klemberg-Sapieha (b0210) 2020; 399 Li, Zhou, Wang, Xu, Ren (b0125) 2020; 36 Long, He, Zhou, Xie, Zhou, Hong, Hu (b0105) 2018; 5 Zhang, Klittich, Gao, Dhinojwala (b0075) 2017; 9 Pham, Zhang, Montazeri, Won (b0215) 2018; 34 Liu, Yuan, Jiang, Youdong, Liang (b0070) 2020; 7 Belaud, Vercillo, Kolb, Bonaccurso (b0090) 2020 Yin, Xue, Luo, Hong, Xie, Ren, Wang (b0065) 2020 Vercillo, Tonnicchia, Romano, García-Girón, Aguilar-Morales, Alamri, Dimov, Kunze, Lasagni, Bonaccurso (b0160) 2020; 30 Shen, Jin, Wu, Tao, Luo, Chen, Lu, Xie (b0050) 2019; 156 Samanta, Wang, Shaw, Ding (b0170) 2020 Garcia-Giron, Romano, Batal, Dashtbozorg, Dong, Solanas, Angos, Walker, Penchev, Dimov (b0180) 2019; 35 Milles, Soldera, Voisiat, Lasagni (b0095) 2019; 9 Malik, Khan, Lazoglu (b0010) 2020; 117 Volpe, Gaudiuso, Venere, Licciulli, Giordano, Ancona (b0140) 2020; 10 Tang, Liu, Ruan, Wu, Yang, Cui, Ma, Fu, Tian, Chu, Wu (b0205) 2020 Yue, Liu, Wang (b0055) 2018; 126 Kietzig, Hatzikiriakos, Englezos (b0185) 2009; 25 Latthe, Sutar, Bhosale, Nagappan, Ha, Sadasivuni, Liu, Xing (b0005) 2019; 137 Karkantonis, Gaddam, See, Joshi, Dimov (b0150) 2020 Xi, Liu, Zhang, Liu, Fu, Hang, Yang, Chen, Gao (b0080) 2018; 444 Huang, Bell, Tsubaki, Zuhlke, Alexander (b0135) 2018; 30 Siddiquie, Gaddam, Agrawal, Dimov, Joshi (b0145) 2020; 36 Wu, Yang, Cao, Zhang, Zhu, Wu, Jiang, Chai (b0200) 2017; 33 Liu, Zhang, Hu, Hu, Samanta, Wang, Ding (b0120) 2019; 374 Varughese, Bhandaru (b0190) 2020; 16 Volpe, Gaudiuso, Ancona (b0130) 2020; 13 Barthwal, Lim (b0085) 2019; 15 Wang, Guo (b0165) 2019; 11 Pan, Cao, Xue, Zhu, Liu (b0030) 2019; 35 Mohammadian, Annavarapu, Raiyan, Nemani, Kim, Wang, Sojoudi (b0060) 2020 Boinovich, Emelyanenko, Emelyanenko, Modin (b0110) 2019; 13 Long, He, Zhou, Xie, Cao, Zhou, Zhu, Hong, Zhou (b0100) 2018; 155 Gaddam, Kattemalalawadi, Agrawal, Joshi (b0025) 2017; 21 Xing, Li, Yang, Li, Wang, Li (b0115) 2019; 183 Bengaluru Subramanyam, Kondrashov, Rühe, Varanasi (b0045) 2016; 8 Giannuzzi, Gaudiuso, Di Mundo, Mirenghi, Fraggelakis, Kling, Lugarà, Ancona (b0195) 2019; 494 Wong, Hegner, Donadei, Hauer, Naga, Vollmer (b0220) 2020 Geyer, D’Acunzi, Sharifi-Aghili, Saal, Gao, Kaltbeitzel, Sloot, Berger, Butt, Vollmer (b0035) 2020; 6 Hou, Shen, Tao, Xu, Jiang, Chen, Jia (b0040) 2020; 586 Zhao, Huang, Peng, Qiao (b0015) 2020; 111 Chavan, Foulkes, Gurumukhi, Boyina, Rabbi, Miljkovic (b0020) 2019; 115 Belaud (10.1016/j.apsusc.2021.149443_b0090) 2020 Liu (10.1016/j.apsusc.2021.149443_b0120) 2019; 374 Latthe (10.1016/j.apsusc.2021.149443_b0005) 2019; 137 Tang (10.1016/j.apsusc.2021.149443_b0205) 2020 Wong (10.1016/j.apsusc.2021.149443_b0220) 2020 Xing (10.1016/j.apsusc.2021.149443_b0115) 2019; 183 Gaddam (10.1016/j.apsusc.2021.149443_b0025) 2017; 21 Yin (10.1016/j.apsusc.2021.149443_b0065) 2020 Li (10.1016/j.apsusc.2021.149443_b0125) 2020; 36 Milles (10.1016/j.apsusc.2021.149443_b0095) 2019; 9 Wu (10.1016/j.apsusc.2021.149443_b0200) 2017; 33 Hou (10.1016/j.apsusc.2021.149443_b0040) 2020; 586 Garcia-Giron (10.1016/j.apsusc.2021.149443_b0180) 2019; 35 Siddiquie (10.1016/j.apsusc.2021.149443_b0145) 2020; 36 Wang (10.1016/j.apsusc.2021.149443_b0165) 2019; 11 Geyer (10.1016/j.apsusc.2021.149443_b0035) 2020; 6 Boinovich (10.1016/j.apsusc.2021.149443_b0110) 2019; 13 Mohammadian (10.1016/j.apsusc.2021.149443_b0060) 2020 Chavan (10.1016/j.apsusc.2021.149443_b0020) 2019; 115 Yue (10.1016/j.apsusc.2021.149443_b0055) 2018; 126 Pham (10.1016/j.apsusc.2021.149443_b0215) 2018; 34 Vercillo (10.1016/j.apsusc.2021.149443_b0160) 2020; 30 Shen (10.1016/j.apsusc.2021.149443_b0050) 2019; 156 Malik (10.1016/j.apsusc.2021.149443_b0010) 2020; 117 Barthwal (10.1016/j.apsusc.2021.149443_b0085) 2019; 15 Long (10.1016/j.apsusc.2021.149443_b0105) 2018; 5 Joshipura (10.1016/j.apsusc.2021.149443_b0175) 2018; 10 Varughese (10.1016/j.apsusc.2021.149443_b0190) 2020; 16 Kietzig (10.1016/j.apsusc.2021.149443_b0185) 2009; 25 Long (10.1016/j.apsusc.2021.149443_b0100) 2018; 155 Volpe (10.1016/j.apsusc.2021.149443_b0130) 2020; 13 Bengaluru Subramanyam (10.1016/j.apsusc.2021.149443_b0045) 2016; 8 Liu (10.1016/j.apsusc.2021.149443_b0070) 2020; 7 Karkantonis (10.1016/j.apsusc.2021.149443_b0150) 2020 Huang (10.1016/j.apsusc.2021.149443_b0135) 2018; 30 Xi (10.1016/j.apsusc.2021.149443_b0080) 2018; 444 Pan (10.1016/j.apsusc.2021.149443_b0030) 2019; 35 Zhang (10.1016/j.apsusc.2021.149443_b0075) 2017; 9 Azouz (10.1016/j.apsusc.2021.149443_b0225) 2020 Zhao (10.1016/j.apsusc.2021.149443_b0015) 2020; 111 Volpe (10.1016/j.apsusc.2021.149443_b0140) 2020; 10 Giannuzzi (10.1016/j.apsusc.2021.149443_b0195) 2019; 494 Lengaigne (10.1016/j.apsusc.2021.149443_b0210) 2020; 399 Jwad (10.1016/j.apsusc.2021.149443_b0155) 2018; 453 Samanta (10.1016/j.apsusc.2021.149443_b0170) 2020 |
References_xml | – volume: 183 start-page: 108156 year: 2019 ident: b0115 article-title: Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser publication-title: Mater. Des. – volume: 36 start-page: 1075 year: 2020 end-page: 1082 ident: b0125 article-title: Superhydrophobic copper surface textured by laser for delayed icing phenomenon publication-title: Langmuir – volume: 156 start-page: 111 year: 2019 end-page: 118 ident: b0050 article-title: Understanding the frosting and defrosting mechanism on the superhydrophobic surfaces with multiscale structures for enhancing anti-frosting performance publication-title: Appl. Therm. Eng. – start-page: 126652 year: 2020 ident: b0090 article-title: Development of nanostructured icephobic aluminium oxide surfaces for aeronautic applications publication-title: Surf. Coat. Technol. – volume: 126 start-page: 442 year: 2018 end-page: 451 ident: b0055 article-title: Freezing delay, frost accumulation and droplets condensation properties of micro-or multiscalely-structured silicon surfaces publication-title: Int. J. Heat Mass Transf. – start-page: 1 year: 2020 end-page: 10 ident: b0225 article-title: Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study publication-title: Biol. Trace Elem. Res. – volume: 155 start-page: 185 year: 2018 end-page: 193 ident: b0100 article-title: Multiscale micro-and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance publication-title: Mater. Des. – volume: 16 start-page: 1692 year: 2020 end-page: 1701 ident: b0190 article-title: Durability of submerged hydrophobic surfaces publication-title: Soft Matter – volume: 111 start-page: 1 year: 2020 end-page: 8 ident: b0015 article-title: Comprehensive measures to enhance electric heater defrosting (EHD) performance for household frost-free refrigerators publication-title: Int. J. Refrig. – volume: 117 start-page: 256 year: 2020 end-page: 268 ident: b0010 article-title: A novel hybrid frost detection and defrosting system for domestic refrigerators publication-title: Int. J. Refrig. – start-page: 126166 year: 2020 ident: b0150 article-title: Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications publication-title: Surf. Coat. Technol. – volume: 8 start-page: 12583 year: 2016 end-page: 12587 ident: b0045 article-title: Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions publication-title: ACS Appl. Mater. Interfaces – volume: 374 start-page: 634 year: 2019 end-page: 644 ident: b0120 article-title: An experimental study to characterize a surface treated with a novel laser surface texturing technique: Water repellency and reduced ice adhesion publication-title: Surf. Coat. Technol. – year: 2020 ident: b0220 article-title: Capillary balancing: Designing frost-resistant lubricant-infused surfaces publication-title: Nano Lett. – volume: 6 start-page: p.eaaw9727 year: 2020 ident: b0035 article-title: When and how self-cleaning of superhydrophobic surfaces works publication-title: Sci. Adv. – volume: 5 start-page: 1800353 year: 2018 ident: b0105 article-title: Low-Cost fabrication of large-area broccoli-like multiscale micro-and nanostructures for metallic super-hydrophobic surfaces with ultralow water adhesion and superior anti-frost ability publication-title: Adv. Mater. Interfaces – volume: 453 start-page: 449 year: 2018 end-page: 456 ident: b0155 article-title: Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms publication-title: Appl. Surf. Sci. – volume: 30 start-page: 1910268 year: 2020 ident: b0160 article-title: Design rules for laser-treated icephobic metallic surfaces for aeronautic applications publication-title: Adv. Funct. Mater. – volume: 10 start-page: 44686 year: 2018 end-page: 44695 ident: b0175 article-title: Patterning and reversible actuation of liquid gallium alloys by preventing adhesion on rough surfaces publication-title: ACS Appl. Mater. Interfaces – volume: 444 start-page: 757 year: 2018 end-page: 762 ident: b0080 article-title: Steady anti-icing coatings on weathering steel fabricated by HVOF spraying publication-title: Appl. Surf. Sci. – volume: 115 start-page: 071601 year: 2019 ident: b0020 article-title: Pulse interfacial defrosting publication-title: Appl. Phys. Lett. – volume: 399 start-page: 126136 year: 2020 ident: b0210 article-title: In situ ice growth kinetics on water-repellent coatings under atmospheric icing conditions publication-title: Surf. Coat. Technol. – volume: 30 start-page: 011501 year: 2018 ident: b0135 article-title: Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces publication-title: J. Laser Appl. – volume: 21 start-page: 137 year: 2017 ident: b0025 article-title: Demarcating wetting states in textured microchannels under flow conditions by Poiseuille number publication-title: Microfluid. Nanofluid. – volume: 34 start-page: 14439 year: 2018 end-page: 14447 ident: b0215 article-title: Droplets on slippery lubricant-infused porous surfaces: A macroscale to nanoscale perspective publication-title: Langmuir – volume: 137 start-page: 105373 year: 2019 ident: b0005 article-title: Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application publication-title: Prog. Org. Coat. – volume: 15 start-page: 7945 year: 2019 end-page: 7955 ident: b0085 article-title: Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties publication-title: Soft Matter – volume: 586 start-page: 124180 year: 2020 ident: b0040 article-title: Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching publication-title: Colloids Surf., A – volume: 13 start-page: 5692 year: 2020 ident: b0130 article-title: Laser fabrication of anti-icing surfaces: A review publication-title: Materials – volume: 10 start-page: 587 year: 2020 ident: b0140 article-title: Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties publication-title: Coatings – volume: 13 start-page: 4335 year: 2019 end-page: 4346 ident: b0110 article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings publication-title: ACS Nano – start-page: 108744 year: 2020 ident: b0170 article-title: Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors publication-title: Mater. Des. – start-page: 126043 year: 2020 ident: b0205 article-title: Dynamic changes of hydrophobic behavior during icing publication-title: Surf. Coat. Technol. – volume: 25 start-page: 4821 year: 2009 end-page: 4827 ident: b0185 article-title: Patterned superhydrophobic metallic surfaces publication-title: Langmuir – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: b0095 article-title: Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures publication-title: Sci. Rep. – volume: 33 start-page: 407 year: 2017 end-page: 416 ident: b0200 article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures publication-title: Langmuir – year: 2020 ident: b0060 article-title: Delayed frost growth on nanoporous microstructured surfaces utilizing jumping and sweeping condensates publication-title: Langmuir – volume: 35 start-page: 5353 year: 2019 end-page: 5363 ident: b0180 article-title: Durability and wear resistance of laser-textured hardened stainless steel surfaces with hydrophobic properties publication-title: Langmuir – volume: 9 start-page: 6512 year: 2017 end-page: 6519 ident: b0075 article-title: Delaying frost formation by controlling surface chemistry of carbon nanotube-coated steel surfaces publication-title: ACS Appl. Mater. Interfaces – volume: 494 start-page: 1055 year: 2019 end-page: 1065 ident: b0195 article-title: Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses publication-title: Appl. Surf. Sci. – volume: 36 start-page: 5349 year: 2020 end-page: 5358 ident: b0145 article-title: Anti-biofouling properties of femtosecond laser-induced submicron topographies on elastomeric surfaces publication-title: Langmuir – volume: 35 start-page: 11414 year: 2019 end-page: 11421 ident: b0030 article-title: Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property publication-title: Langmuir – start-page: 137806 year: 2020 ident: b0065 article-title: Excellent static and dynamic anti-icing properties of multiscale structured ZnO superhydrophobic surface on Cu substrates publication-title: Chem. Phys. Lett. – volume: 7 start-page: 026401 year: 2020 ident: b0070 article-title: Anti-frosting/anti-icing property of nano-ZnO superhydrophobic surface on Al alloy prepared by radio frequency magnetron sputtering publication-title: Mater. Res. Express – volume: 11 start-page: 22615 year: 2019 end-page: 22635 ident: b0165 article-title: Liquid infused surfaces with anti-icing properties publication-title: Nanoscale – volume: 183 start-page: 108156 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0115 article-title: Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108156 – volume: 156 start-page: 111 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0050 article-title: Understanding the frosting and defrosting mechanism on the superhydrophobic surfaces with multiscale structures for enhancing anti-frosting performance publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.052 – volume: 9 start-page: 6512 issue: 7 year: 2017 ident: 10.1016/j.apsusc.2021.149443_b0075 article-title: Delaying frost formation by controlling surface chemistry of carbon nanotube-coated steel surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11531 – volume: 494 start-page: 1055 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0195 article-title: Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.07.126 – volume: 35 start-page: 11414 issue: 35 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0030 article-title: Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property publication-title: Langmuir doi: 10.1021/acs.langmuir.9b01333 – volume: 126 start-page: 442 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0055 article-title: Freezing delay, frost accumulation and droplets condensation properties of micro-or multiscalely-structured silicon surfaces publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.165 – volume: 15 start-page: 7945 issue: 39 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0085 article-title: Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties publication-title: Soft Matter doi: 10.1039/C9SM01256G – volume: 6 start-page: p.eaaw9727 issue: 3 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0035 article-title: When and how self-cleaning of superhydrophobic surfaces works publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw9727 – start-page: 126043 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0205 article-title: Dynamic changes of hydrophobic behavior during icing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126043 – volume: 16 start-page: 1692 issue: 6 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0190 article-title: Durability of submerged hydrophobic surfaces publication-title: Soft Matter doi: 10.1039/C9SM01942A – year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0060 article-title: Delayed frost growth on nanoporous microstructured surfaces utilizing jumping and sweeping condensates publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00413 – volume: 137 start-page: 105373 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0005 article-title: Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2019.105373 – volume: 21 start-page: 137 issue: 8 year: 2017 ident: 10.1016/j.apsusc.2021.149443_b0025 article-title: Demarcating wetting states in textured microchannels under flow conditions by Poiseuille number publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-017-1974-8 – volume: 374 start-page: 634 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0120 article-title: An experimental study to characterize a surface treated with a novel laser surface texturing technique: Water repellency and reduced ice adhesion publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2019.06.046 – volume: 36 start-page: 1075 issue: 5 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0125 article-title: Superhydrophobic copper surface textured by laser for delayed icing phenomenon publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02273 – volume: 30 start-page: 011501 issue: 1 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0135 article-title: Condensation and subsequent freezing delays as a result of using femtosecond laser functionalized surfaces publication-title: J. Laser Appl. doi: 10.2351/1.4986058 – start-page: 126166 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0150 article-title: Femtosecond laser-induced sub-micron and multi-scale topographies for durable lubricant impregnated surfaces for food packaging applications publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126166 – volume: 111 start-page: 1 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0015 article-title: Comprehensive measures to enhance electric heater defrosting (EHD) performance for household frost-free refrigerators publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.12.002 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0095 article-title: Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures publication-title: Sci. Rep. doi: 10.1038/s41598-019-49615-x – volume: 25 start-page: 4821 issue: 8 year: 2009 ident: 10.1016/j.apsusc.2021.149443_b0185 article-title: Patterned superhydrophobic metallic surfaces publication-title: Langmuir doi: 10.1021/la8037582 – volume: 115 start-page: 071601 issue: 7 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0020 article-title: Pulse interfacial defrosting publication-title: Appl. Phys. Lett. doi: 10.1063/1.5113845 – volume: 13 start-page: 4335 issue: 4 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0110 article-title: Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings publication-title: ACS Nano doi: 10.1021/acsnano.8b09549 – volume: 35 start-page: 5353 issue: 15 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0180 article-title: Durability and wear resistance of laser-textured hardened stainless steel surfaces with hydrophobic properties publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00398 – year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0220 article-title: Capillary balancing: Designing frost-resistant lubricant-infused surfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02956 – start-page: 108744 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0170 article-title: Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108744 – volume: 36 start-page: 5349 issue: 19 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0145 article-title: Anti-biofouling properties of femtosecond laser-induced submicron topographies on elastomeric surfaces publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00753 – volume: 155 start-page: 185 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0100 article-title: Multiscale micro-and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.069 – volume: 30 start-page: 1910268 issue: 16 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0160 article-title: Design rules for laser-treated icephobic metallic surfaces for aeronautic applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910268 – volume: 34 start-page: 14439 issue: 47 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0215 article-title: Droplets on slippery lubricant-infused porous surfaces: A macroscale to nanoscale perspective publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02765 – start-page: 1 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0225 article-title: Toxic impacts of amorphous silica nanoparticles on liver and kidney of male adult rats: an in vivo study publication-title: Biol. Trace Elem. Res. – volume: 7 start-page: 026401 issue: 2 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0070 article-title: Anti-frosting/anti-icing property of nano-ZnO superhydrophobic surface on Al alloy prepared by radio frequency magnetron sputtering publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab6e33 – volume: 453 start-page: 449 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0155 article-title: Laser induced ripples’ gratings with angular periodicity for fabrication of diffraction holograms publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.277 – volume: 11 start-page: 22615 issue: 47 year: 2019 ident: 10.1016/j.apsusc.2021.149443_b0165 article-title: Liquid infused surfaces with anti-icing properties publication-title: Nanoscale doi: 10.1039/C9NR06934H – volume: 399 start-page: 126136 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0210 article-title: In situ ice growth kinetics on water-repellent coatings under atmospheric icing conditions publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2020.126136 – volume: 586 start-page: 124180 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0040 article-title: Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2019.124180 – volume: 444 start-page: 757 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0080 article-title: Steady anti-icing coatings on weathering steel fabricated by HVOF spraying publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.075 – volume: 13 start-page: 5692 issue: 24 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0130 article-title: Laser fabrication of anti-icing surfaces: A review publication-title: Materials doi: 10.3390/ma13245692 – volume: 5 start-page: 1800353 issue: 13 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0105 article-title: Low-Cost fabrication of large-area broccoli-like multiscale micro-and nanostructures for metallic super-hydrophobic surfaces with ultralow water adhesion and superior anti-frost ability publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800353 – start-page: 126652 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0090 article-title: Development of nanostructured icephobic aluminium oxide surfaces for aeronautic applications publication-title: Surf. Coat. Technol. – start-page: 137806 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0065 article-title: Excellent static and dynamic anti-icing properties of multiscale structured ZnO superhydrophobic surface on Cu substrates publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2020.137806 – volume: 117 start-page: 256 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0010 article-title: A novel hybrid frost detection and defrosting system for domestic refrigerators publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2020.05.016 – volume: 8 start-page: 12583 issue: 20 year: 2016 ident: 10.1016/j.apsusc.2021.149443_b0045 article-title: Low ice adhesion on nano-textured superhydrophobic surfaces under supersaturated conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01133 – volume: 33 start-page: 407 issue: 1 year: 2017 ident: 10.1016/j.apsusc.2021.149443_b0200 article-title: Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03752 – volume: 10 start-page: 587 issue: 6 year: 2020 ident: 10.1016/j.apsusc.2021.149443_b0140 article-title: Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti-icing properties publication-title: Coatings doi: 10.3390/coatings10060587 – volume: 10 start-page: 44686 issue: 51 year: 2018 ident: 10.1016/j.apsusc.2021.149443_b0175 article-title: Patterning and reversible actuation of liquid gallium alloys by preventing adhesion on rough surfaces publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13099 |
SSID | ssj0012873 |
Score | 2.5763416 |
Snippet | [Display omitted]
•LIPSS and multiscale topographies are fabricated by an NIR femtosecond laser.•Laser treated surfaces significantly delayed droplet freezing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 149443 |
SubjectTerms | Anti-icing Femtosecond laser Frost LIPSS Stainless steel Superhydrophobic Textured surfaces XPS |
Title | Anti-icing properties of femtosecond laser-induced nano and multiscale topographies |
URI | https://dx.doi.org/10.1016/j.apsusc.2021.149443 |
Volume | 552 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuZQ5exzaZyXYsxVIVe6mF3kJmk4omoY1Xf7vvZZKiIAqeQoZ5EL4Z3pL53jeEXOvAlyYQIYNYHDFhh5pJaWIW8iyyw0x5scLm5MdZOF2I-2Ww7JBx2wuDtMrG9zufXnvrZmTQoDkoV6vBHHVEUH0LihbMQ7DRHNXrYE_ffGxpHuB-3SkzTMbuIL9tn6s5XhlUohsUMvQ9cBmJEPzn8PQl5EwOyH6TK9KR-5xD0jH5Edn7oiB4TOajvFoxPB1_piX-V1-jQCotLLXmrSo2WO5qChmyWTOovmEdNc2zvKAZDNdkwg0skqFVUTrtarA-IYvJ7dN4ypp7EpiC9KliRtpExdLGSOmPahUvSJJCFQ41F9YoozIRGSFDbTVELGG4J-EBmQvAYHzNT0k3L3JzRqjgJvBiqCwzKPu09GKTJBrCl4x8xZWSPcJbeFLViIjjXRavacsWe0kdqCmCmjpQe4RtrUonovHH_KhFPv22GVLw879anv_b8oLs4pujAl6SbrV-N1eQb1SyX2-oPtkZ3T1MZ58tptXq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5ND2ULrSdNWhV5HYkrdjCA1Js1ySQG7GWlxSWtsk7v935CWkUFroySBrwIzEzHvWzBPAk3JsoR3uUszFHuVxV1EhtE9dFnlxN5KWL01z8nTmDpf8ZeWsGtCve2FMWWUV-8uYXkTraqRTebOTrdedudERMepbSFoMDnEOoGXUqXgTWr3ReDjbHSYgKWClxHdgGoTsuoOuKPOKkIxujZahbWHUCDhnP2eovawzOIWTCi6SXvlFZ9DQyTkc74kIXsC8l-Rrag7IX0lmfq1vjEYqSWMS64883RrGqwiCZL2hSMBxKRVJoiQlEQ4X9YRbXCdN8jQr5avR-hKWg-dFf0irqxKoRASVUy3iQPoi9k1Vv1cIeSFOcqXbVYzHWmoZcU9z4apYYdLimlkCHwhe0A3aVuwKmkma6GsgnGnH8pFcRsj8lLB8HQQKM5jwbMmkFG1gtXtCWemIm-ss3sO6YOwtLJ0aGqeGpVPbQHdWWamj8cd8r_Z8-G0_hBjqf7W8-bflIxwOF9NJOBnNxrdwZN6UlYF30Mw3n_oe4UcuHqrt9QWO7dib |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-icing+properties+of+femtosecond+laser-induced+nano+and+multiscale+topographies&rft.jtitle=Applied+surface+science&rft.au=Gaddam%2C+Anvesh&rft.au=Sharma%2C+Himani&rft.au=Karkantonis%2C+Themistoklis&rft.au=Dimov%2C+Stefan&rft.date=2021-06-30&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=552&rft_id=info:doi/10.1016%2Fj.apsusc.2021.149443&rft.externalDocID=S0169433221005195 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |