Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton
A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exo...
Saved in:
Published in | Control engineering practice Vol. 75; pp. 108 - 117 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements.
•Adaptive integral sliding mode control design for exoskeletons.•Finite time convergence of the closed-loop system.•Robustness of the control law with respect to parametric variations and disturbances.•No requirement of the knowledge of the system bounds.•Real experiments using an upper limb exoskeleton with and without human subjects. |
---|---|
AbstractList | A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements.
•Adaptive integral sliding mode control design for exoskeletons.•Finite time convergence of the closed-loop system.•Robustness of the control law with respect to parametric variations and disturbances.•No requirement of the knowledge of the system bounds.•Real experiments using an upper limb exoskeleton with and without human subjects. A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements. |
Author | Riani, A. Madani, T. Benallegue, A. Djouani, K. |
Author_xml | – sequence: 1 givenname: A. surname: Riani fullname: Riani, A. email: akram.riani@lisv.uvsq.fr organization: Laboratoire d’Ingénierie des Systémes de Versailles, UVSQ, Université Paris-Saclay, 78140 Velizy, France – sequence: 2 givenname: T. surname: Madani fullname: Madani, T. email: tarek.madani@u-pec.fr organization: Laboratoire Images, Signaux et Systémes Intelligents, Université Paris-Est Créteil, 94400 Vitry sur Seine, France – sequence: 3 givenname: A. surname: Benallegue fullname: Benallegue, A. email: benalleg@lisv.uvsq.fr organization: Laboratoire d’Ingénierie des Systémes de Versailles, UVSQ, Université Paris-Saclay, 78140 Velizy, France – sequence: 4 givenname: K. surname: Djouani fullname: Djouani, K. email: djouani@u-pec.fr organization: Laboratoire Images, Signaux et Systémes Intelligents, Université Paris-Est Créteil, 94400 Vitry sur Seine, France |
BackLink | https://hal.science/hal-04035042$$DView record in HAL |
BookMark | eNqNkE1LAzEQhoNUsH78h1w97DrZbLe7F6EWv6DgRQ-eQjaZbVPTZMnGov_elFYEL3qaYeZ93xmeUzJy3iEhlEHOgFVX61ylgVv2Qaq8AFbnUOTA-BEZs3rKs6rhzYiMoammGVQVOyGnw7CGZG0aNiavMy37aLZIjYu4DNLSiGFjXGoGa7RxS7rxGmm6EoO3tPOBvvc9hsyaTUsDrmRrrIkyGu8ofvjhDS1G787JcSftgBeHekZe7m6f5w_Z4un-cT5bZIpPiphhxRWXSrcSFCJTTQ2qrZUseVfqacf0pC1LmZbQlqB5Elc1tqgL1RR6ogt-Ri73uStpRR_MRoZP4aURD7OF2M2gBD6BstiypL3ea1XwwxCwE-rweQzSWMFA7KCKtfiBKnZQBRQiQU0B9a-A74v_sN7srZhgbA0GMSiDTqE2AVUU2pu_Q74AJgmdhw |
CitedBy_id | crossref_primary_10_1007_s12541_024_01130_4 crossref_primary_10_1016_j_oceaneng_2023_115943 crossref_primary_10_1016_j_eswa_2025_126601 crossref_primary_10_1002_rob_22455 crossref_primary_10_1007_s12555_019_0175_5 crossref_primary_10_3390_math10203853 crossref_primary_10_1007_s12555_021_0540_z crossref_primary_10_1016_j_oceaneng_2022_112710 crossref_primary_10_1109_ACCESS_2018_2885082 crossref_primary_10_1177_09544070231192728 crossref_primary_10_1007_s12206_021_0639_4 crossref_primary_10_1016_j_eswa_2021_116482 crossref_primary_10_1002_acs_3445 crossref_primary_10_1007_s11633_019_1201_z crossref_primary_10_1109_ACCESS_2019_2938566 crossref_primary_10_1080_14484846_2021_1939490 crossref_primary_10_1109_ACCESS_2018_2875550 crossref_primary_10_1177_10775463221138647 crossref_primary_10_1016_j_isatra_2020_10_008 crossref_primary_10_1080_17461391_2022_2063070 crossref_primary_10_1016_j_bspc_2021_102445 crossref_primary_10_1177_01423312231152936 crossref_primary_10_1016_j_apor_2022_103126 crossref_primary_10_1016_j_cnsns_2024_108085 crossref_primary_10_1109_ACCESS_2019_2941973 crossref_primary_10_1177_01423312221124050 crossref_primary_10_1017_S0263574724001668 crossref_primary_10_1177_1729881420916980 crossref_primary_10_31763_ijrcs_v3i1_840 crossref_primary_10_1177_01423312221126231 crossref_primary_10_1007_s11465_021_0651_5 crossref_primary_10_1080_03772063_2020_1800522 crossref_primary_10_1109_ACCESS_2022_3194911 crossref_primary_10_3390_drones6100311 crossref_primary_10_1016_j_mechatronics_2022_102782 crossref_primary_10_3390_machines11070732 crossref_primary_10_3390_ijerph17082948 crossref_primary_10_1109_TNSRE_2024_3429206 crossref_primary_10_1109_TNSRE_2023_3306201 crossref_primary_10_1016_j_isatra_2019_06_027 crossref_primary_10_1007_s11071_022_07910_9 crossref_primary_10_1088_1757_899X_568_1_012022 crossref_primary_10_1016_j_ifacol_2020_12_2078 crossref_primary_10_1016_j_conengprac_2020_104496 crossref_primary_10_1016_j_apor_2021_102960 crossref_primary_10_1155_2019_2016416 crossref_primary_10_3390_s18113611 crossref_primary_10_1177_0959651819844339 crossref_primary_10_1177_09596518231156537 crossref_primary_10_1017_S0263574724000547 crossref_primary_10_1177_09544062241258909 crossref_primary_10_1177_01423312231225605 crossref_primary_10_1177_09596518211008767 crossref_primary_10_1002_2050_7038_12997 crossref_primary_10_3390_en12050853 crossref_primary_10_12677_DSC_2018_74038 crossref_primary_10_1007_s11071_021_06984_1 crossref_primary_10_1016_j_conengprac_2023_105774 crossref_primary_10_1109_ACCESS_2019_2949197 crossref_primary_10_1016_j_energy_2024_130479 crossref_primary_10_1177_0954411920947849 crossref_primary_10_1007_s11431_023_2541_x crossref_primary_10_1016_j_mechatronics_2022_102808 crossref_primary_10_1016_j_neucom_2020_02_088 crossref_primary_10_3390_math10173147 crossref_primary_10_1177_01423312211050720 crossref_primary_10_1002_asjc_2744 crossref_primary_10_1177_09596518211047008 crossref_primary_10_1016_j_isatra_2019_07_003 crossref_primary_10_1177_01423312251316140 crossref_primary_10_1007_s40313_024_01131_8 crossref_primary_10_1016_j_isatra_2024_06_001 crossref_primary_10_1088_1757_899X_717_1_012004 crossref_primary_10_3390_s22197645 crossref_primary_10_1002_rnc_6719 crossref_primary_10_1155_2022_4125606 crossref_primary_10_1109_LRA_2021_3105996 crossref_primary_10_1007_s00542_020_04934_2 crossref_primary_10_1109_ACCESS_2022_3217528 crossref_primary_10_1177_10775463211026031 crossref_primary_10_1017_S0263574722001084 crossref_primary_10_1007_s40998_020_00358_w crossref_primary_10_1016_j_matcom_2021_10_022 crossref_primary_10_1142_S0219843620500188 crossref_primary_10_1016_j_conengprac_2020_104670 crossref_primary_10_1016_j_matcom_2021_03_039 |
Cites_doi | 10.1016/j.mechatronics.2015.10.012 10.1016/j.robot.2007.11.007 10.1109/TIE.2016.2638403 10.1109/TFUZZ.2014.2317511 10.1016/j.automatica.2006.07.015 10.1007/s00498-005-0151-x 10.1109/TRO.2015.2503726 10.1109/TCYB.2016.2536149 10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V 10.1682/JRRD.2010.04.0063 10.1299/jsmec.40.493 10.1109/9.362847 10.1016/S0005-1098(02)00147-4 10.1109/TCST.2016.2579603 10.1016/j.robot.2017.01.006 10.1177/1545968316666957 10.1109/81.983876 10.1109/TRO.2007.903820 10.1109/RBME.2016.2552201 10.1016/j.conengprac.2012.11.006 10.1016/j.conengprac.2014.05.009 10.1109/TMECH.2009.2030796 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.conengprac.2018.02.013 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-6939 |
EndPage | 117 |
ExternalDocumentID | oai_HAL_hal_04035042v1 10_1016_j_conengprac_2018_02_013 S0967066118300285 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c352t-e63c3acdba0cee1c980cb8ca43f4d7f1d5b44aa0c0b40d33c368ebed2c92d5d23 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 |
IngestDate | Fri May 09 12:16:46 EDT 2025 Tue Jul 01 00:39:02 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Fri Feb 23 02:35:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rehabilitation robotics Exoskeleton Adaptive control Sliding mode control Wearable robots |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-e63c3acdba0cee1c980cb8ca43f4d7f1d5b44aa0c0b40d33c368ebed2c92d5d23 |
ORCID | 0000-0001-6060-8200 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_04035042v1 crossref_citationtrail_10_1016_j_conengprac_2018_02_013 crossref_primary_10_1016_j_conengprac_2018_02_013 elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 2018-06 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationTitle | Control engineering practice |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wei, Balasubramanian, Xu, He (b29) 2008 Xu, Chu, Rogers (b30) 2014; 31 Marini, Hughes, Squeri, Doglio, Moretti, Morasso (b18) 2017; 91 Krebs, Volpe, Aisen, Hogan (b11) 2000; 37 Li, Liu, Huang, Peng, Pu, Ding (b13) 2017 Komurcugil (b10) 2013; 21 Khalil, Dombre (b8) 2004 Feng, Yu, Man (b5) 2002; 38 Masiero, Armani (b19) 2011; 48 Mulero Martínez (b21) 2007; 23 Madani, Daachi, Djouani (b16) 2016; 33 Veerbeek, Langbroek-Amersfoort, van Wegen, Meskers, Kwakkel (b28) 2017 Peng, Jianjun, Lina, Zhiqiang (b24) 2015 Ghorbel, Srinivasan, Spong (b7) 1998; 15 Pehlivan, Losey, O’Malley (b23) 2016; 32 Chen, Li, Chen (b3) 2017; 47 Madani, Daachi, Djouani (b17) 2017; 25 Slotine, Li (b27) 1991 Perruquetti, Barbot (b25) 2002 Li, Su, Li, Su (b14) 2015; 23 Li, Kang, Xiao, Song (b12) 2017; 64 Yu, Zhihong (b31) 2002; 49 Zhihong, Yu (b34) 1997; 40 Feng, Zhou, Zheng, Han (b6) 2016 Culmer, Jackson, Makower, Richardson, Cozens, Levesley (b4) 2010; 15 Bhat, Bernstein (b1) 2005; 17 Zhihong, Paplinski, Wu (b33) 1994; 39 Burgar, Lum, Shor, Van der Loos (b2) 2000; 37 Kiguchi, Rahman, Sasaki, Teramoto (b9) 2008; 56 Loconsole, Dettori, Frisoli, Avizzano, Bergamasco (b15) 2014 Proietti, Crocher, Roby-Brami, Jarrassé (b26) 2016; 9 Morshed, Fekih (b20) 2015 Park, Choi, Kong (b22) 2007; 43 Yuri, Christopher, Leonid, Arie (b32) 2014 Li (10.1016/j.conengprac.2018.02.013_b13) 2017 Li (10.1016/j.conengprac.2018.02.013_b12) 2017; 64 Veerbeek (10.1016/j.conengprac.2018.02.013_b28) 2017 Xu (10.1016/j.conengprac.2018.02.013_b30) 2014; 31 Culmer (10.1016/j.conengprac.2018.02.013_b4) 2010; 15 Marini (10.1016/j.conengprac.2018.02.013_b18) 2017; 91 Pehlivan (10.1016/j.conengprac.2018.02.013_b23) 2016; 32 Chen (10.1016/j.conengprac.2018.02.013_b3) 2017; 47 Proietti (10.1016/j.conengprac.2018.02.013_b26) 2016; 9 Madani (10.1016/j.conengprac.2018.02.013_b16) 2016; 33 Wei (10.1016/j.conengprac.2018.02.013_b29) 2008 Zhihong (10.1016/j.conengprac.2018.02.013_b34) 1997; 40 Park (10.1016/j.conengprac.2018.02.013_b22) 2007; 43 Burgar (10.1016/j.conengprac.2018.02.013_b2) 2000; 37 Yu (10.1016/j.conengprac.2018.02.013_b31) 2002; 49 Feng (10.1016/j.conengprac.2018.02.013_b6) 2016 Kiguchi (10.1016/j.conengprac.2018.02.013_b9) 2008; 56 Zhihong (10.1016/j.conengprac.2018.02.013_b33) 1994; 39 Peng (10.1016/j.conengprac.2018.02.013_b24) 2015 Ghorbel (10.1016/j.conengprac.2018.02.013_b7) 1998; 15 Bhat (10.1016/j.conengprac.2018.02.013_b1) 2005; 17 Loconsole (10.1016/j.conengprac.2018.02.013_b15) 2014 Komurcugil (10.1016/j.conengprac.2018.02.013_b10) 2013; 21 Yuri (10.1016/j.conengprac.2018.02.013_b32) 2014 Krebs (10.1016/j.conengprac.2018.02.013_b11) 2000; 37 Feng (10.1016/j.conengprac.2018.02.013_b5) 2002; 38 Masiero (10.1016/j.conengprac.2018.02.013_b19) 2011; 48 Slotine (10.1016/j.conengprac.2018.02.013_b27) 1991 Morshed (10.1016/j.conengprac.2018.02.013_b20) 2015 Khalil (10.1016/j.conengprac.2018.02.013_b8) 2004 Mulero Martínez (10.1016/j.conengprac.2018.02.013_b21) 2007; 23 Li (10.1016/j.conengprac.2018.02.013_b14) 2015; 23 Perruquetti (10.1016/j.conengprac.2018.02.013_b25) 2002 Madani (10.1016/j.conengprac.2018.02.013_b17) 2017; 25 |
References_xml | – start-page: 184 year: 2016 end-page: 188 ident: b6 article-title: Continuous adaptive terminal sliding-mode control publication-title: IEEE 11th conference on industrial electronics and applications – volume: 64 start-page: 5171 year: 2017 end-page: 5181 ident: b12 article-title: Human–robot coordination control of robotic exoskeletons by skill transfers publication-title: IEEE Transactions on Industrial Electronics – volume: 37 start-page: 663 year: 2000 end-page: 674 ident: b2 article-title: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience publication-title: Journal of Rehabilitation Research and Development – start-page: 181 year: 2014 end-page: 186 ident: b15 article-title: An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation publication-title: Haptics symposium HAPTICS, 2014 IEEE – volume: 91 start-page: 169 year: 2017 end-page: 178 ident: b18 article-title: Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation publication-title: Robotics and Autonomous Systems – volume: 21 start-page: 321 year: 2013 end-page: 332 ident: b10 article-title: Non-singular terminal sliding-mode control of DC-DC buck converters publication-title: Control Engineering Practice – year: 2002 ident: b25 article-title: Sliding mode control in engineering – volume: 33 start-page: 136 year: 2016 end-page: 145 ident: b16 article-title: Non-singular terminal sliding mode controller: Application to an actuated exoskeleton publication-title: Mechatronics – year: 2017 ident: b13 article-title: Adaptive impedance control of human-robot cooperation using reinforcement learning publication-title: IEEE Transactions on Industrial Electronics – start-page: 1913 year: 2015 end-page: 1918 ident: b20 article-title: A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines publication-title: Control applications, 2015 IEEE Conference on – volume: 17 start-page: 101 year: 2005 end-page: 127 ident: b1 article-title: Geometric homogeneity with applications to finite-time stability publication-title: Mathematics of Control, Signals, and Systems – year: 2017 ident: b28 article-title: Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis publication-title: Neurorehabilitation and Neural Repair – start-page: 824 year: 2015 end-page: 828 ident: b24 article-title: Integral terminal sliding mode control for uncertain nonlinear systems publication-title: Control conference, 2015 34th Chinese – volume: 25 start-page: 1133 year: 2017 end-page: 1140 ident: b17 article-title: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems publication-title: IEEE Transactions on Control Systems Technology – volume: 40 start-page: 493 year: 1997 end-page: 502 ident: b34 article-title: Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics publication-title: JSME International Journal Series C – year: 2004 ident: b8 article-title: Modeling, identification and control of robots publication-title: Modeling, identification and control of robots – volume: 23 start-page: 1083 year: 2007 end-page: 1089 ident: b21 article-title: Uniform bounds of the coriolis/centripetal matrix of serial robot manipulators publication-title: IEEE Transactions on Robotics – year: 2014 ident: b32 article-title: Sliding mode control and observation (Vol. 10) – start-page: 647 year: 2008 end-page: 652 ident: b29 article-title: Adaptive iterative learning control design for rupert iv publication-title: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics – year: 1991 ident: b27 article-title: Applied nonlinear control (Vol. 199) – volume: 38 start-page: 2159 year: 2002 end-page: 2167 ident: b5 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica – volume: 48 start-page: 355 year: 2011 end-page: 366 ident: b19 article-title: Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial publication-title: Journal of Rehabilitation Research and Development – volume: 32 start-page: 113 year: 2016 end-page: 124 ident: b23 article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation publication-title: IEEE Transactions on Robotics – volume: 15 start-page: 17 year: 1998 end-page: 28 ident: b7 article-title: On the uniform boundedness of the inertia matrix of serial robot manipulators publication-title: Journal of Robotic Systems – volume: 31 start-page: 63 year: 2014 end-page: 72 ident: b30 article-title: Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue publication-title: Control Engineering Practice – volume: 39 start-page: 2464 year: 1994 end-page: 2469 ident: b33 article-title: A robust mimo terminal sliding mode control scheme for rigid robotic manipulators publication-title: IEEE Transactions on Automatic Control – volume: 9 start-page: 4 year: 2016 end-page: 14 ident: b26 article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies publication-title: IEEE Reviews in Biomedical Engineering – volume: 43 start-page: 72 year: 2007 end-page: 79 ident: b22 article-title: Output feedback variable structure control for linear systems with uncertainties and disturbances publication-title: Automatica – volume: 15 start-page: 575 year: 2010 end-page: 585 ident: b4 article-title: A control strategy for upper limb robotic rehabilitation with a dual robot system publication-title: IEEE/ASME Transactions on Mechatronics – volume: 49 start-page: 261 year: 2002 end-page: 264 ident: b31 article-title: Fast terminal sliding-mode control design for nonlinear dynamical systems publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications – volume: 56 start-page: 678 year: 2008 end-page: 691 ident: b9 article-title: Development of a 3dof mobile exoskeleton robot for human upper-limb motion assist publication-title: Robotics and Autonomous Systems – volume: 37 start-page: 639 year: 2000 end-page: 652 ident: b11 article-title: Increasing productivity and quality of care: robot-aided neuro-rehabilitation publication-title: Journal of Rehabilitation Research and Development – volume: 23 start-page: 555 year: 2015 end-page: 566 ident: b14 article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs publication-title: IEEE Transactions on Fuzzy Systems – volume: 47 start-page: 984 year: 2017 end-page: 994 ident: b3 article-title: Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton publication-title: IEEE Transactions on Cybernetics – volume: 33 start-page: 136 year: 2016 ident: 10.1016/j.conengprac.2018.02.013_b16 article-title: Non-singular terminal sliding mode controller: Application to an actuated exoskeleton publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.10.012 – volume: 56 start-page: 678 issue: 8 year: 2008 ident: 10.1016/j.conengprac.2018.02.013_b9 article-title: Development of a 3dof mobile exoskeleton robot for human upper-limb motion assist publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2007.11.007 – volume: 64 start-page: 5171 issue: 6 year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b12 article-title: Human–robot coordination control of robotic exoskeletons by skill transfers publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2016.2638403 – volume: 23 start-page: 555 issue: 3 year: 2015 ident: 10.1016/j.conengprac.2018.02.013_b14 article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2014.2317511 – volume: 43 start-page: 72 issue: 1 year: 2007 ident: 10.1016/j.conengprac.2018.02.013_b22 article-title: Output feedback variable structure control for linear systems with uncertainties and disturbances publication-title: Automatica doi: 10.1016/j.automatica.2006.07.015 – year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b13 article-title: Adaptive impedance control of human-robot cooperation using reinforcement learning publication-title: IEEE Transactions on Industrial Electronics – volume: 17 start-page: 101 issue: 2 year: 2005 ident: 10.1016/j.conengprac.2018.02.013_b1 article-title: Geometric homogeneity with applications to finite-time stability publication-title: Mathematics of Control, Signals, and Systems doi: 10.1007/s00498-005-0151-x – volume: 32 start-page: 113 issue: 1 year: 2016 ident: 10.1016/j.conengprac.2018.02.013_b23 article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2015.2503726 – volume: 47 start-page: 984 issue: 4 year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b3 article-title: Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2016.2536149 – volume: 15 start-page: 17 issue: 1 year: 1998 ident: 10.1016/j.conengprac.2018.02.013_b7 article-title: On the uniform boundedness of the inertia matrix of serial robot manipulators publication-title: Journal of Robotic Systems doi: 10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V – volume: 48 start-page: 355 issue: 4 year: 2011 ident: 10.1016/j.conengprac.2018.02.013_b19 article-title: Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial publication-title: Journal of Rehabilitation Research and Development doi: 10.1682/JRRD.2010.04.0063 – start-page: 824 year: 2015 ident: 10.1016/j.conengprac.2018.02.013_b24 article-title: Integral terminal sliding mode control for uncertain nonlinear systems – volume: 40 start-page: 493 issue: 3 year: 1997 ident: 10.1016/j.conengprac.2018.02.013_b34 article-title: Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics publication-title: JSME International Journal Series C doi: 10.1299/jsmec.40.493 – volume: 39 start-page: 2464 issue: 12 year: 1994 ident: 10.1016/j.conengprac.2018.02.013_b33 article-title: A robust mimo terminal sliding mode control scheme for rigid robotic manipulators publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.362847 – year: 2004 ident: 10.1016/j.conengprac.2018.02.013_b8 article-title: Modeling, identification and control of robots – volume: 37 start-page: 639 issue: 6 year: 2000 ident: 10.1016/j.conengprac.2018.02.013_b11 article-title: Increasing productivity and quality of care: robot-aided neuro-rehabilitation publication-title: Journal of Rehabilitation Research and Development – start-page: 1913 year: 2015 ident: 10.1016/j.conengprac.2018.02.013_b20 article-title: A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines – volume: 38 start-page: 2159 issue: 12 year: 2002 ident: 10.1016/j.conengprac.2018.02.013_b5 article-title: Non-singular terminal sliding mode control of rigid manipulators publication-title: Automatica doi: 10.1016/S0005-1098(02)00147-4 – volume: 25 start-page: 1133 issue: 3 year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b17 article-title: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2016.2579603 – volume: 91 start-page: 169 year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b18 article-title: Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2017.01.006 – start-page: 184 year: 2016 ident: 10.1016/j.conengprac.2018.02.013_b6 article-title: Continuous adaptive terminal sliding-mode control – year: 2017 ident: 10.1016/j.conengprac.2018.02.013_b28 article-title: Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968316666957 – start-page: 647 year: 2008 ident: 10.1016/j.conengprac.2018.02.013_b29 article-title: Adaptive iterative learning control design for rupert iv – volume: 49 start-page: 261 issue: 2 year: 2002 ident: 10.1016/j.conengprac.2018.02.013_b31 article-title: Fast terminal sliding-mode control design for nonlinear dynamical systems publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications doi: 10.1109/81.983876 – year: 1991 ident: 10.1016/j.conengprac.2018.02.013_b27 – start-page: 181 year: 2014 ident: 10.1016/j.conengprac.2018.02.013_b15 article-title: An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation – year: 2002 ident: 10.1016/j.conengprac.2018.02.013_b25 – volume: 37 start-page: 663 issue: 6 year: 2000 ident: 10.1016/j.conengprac.2018.02.013_b2 article-title: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience publication-title: Journal of Rehabilitation Research and Development – volume: 23 start-page: 1083 issue: 5 year: 2007 ident: 10.1016/j.conengprac.2018.02.013_b21 article-title: Uniform bounds of the coriolis/centripetal matrix of serial robot manipulators publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2007.903820 – volume: 9 start-page: 4 year: 2016 ident: 10.1016/j.conengprac.2018.02.013_b26 article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies publication-title: IEEE Reviews in Biomedical Engineering doi: 10.1109/RBME.2016.2552201 – volume: 21 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.conengprac.2018.02.013_b10 article-title: Non-singular terminal sliding-mode control of DC-DC buck converters publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2012.11.006 – volume: 31 start-page: 63 issue: Suppl. C year: 2014 ident: 10.1016/j.conengprac.2018.02.013_b30 article-title: Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2014.05.009 – volume: 15 start-page: 575 issue: 4 year: 2010 ident: 10.1016/j.conengprac.2018.02.013_b4 article-title: A control strategy for upper limb robotic rehabilitation with a dual robot system publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2009.2030796 – year: 2014 ident: 10.1016/j.conengprac.2018.02.013_b32 |
SSID | ssj0016991 |
Score | 2.5266576 |
Snippet | A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 108 |
SubjectTerms | Adaptive control Computer Science Exoskeleton Rehabilitation robotics Robotics Sliding mode control Wearable robots |
Title | Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton |
URI | https://dx.doi.org/10.1016/j.conengprac.2018.02.013 https://hal.science/hal-04035042 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYLnBArKIslYW4hsaxkzjiVCGqsl4ACU6WlxgKpUSlRZz4dsaJU-gBqRLHOLYcje03z9GbGYQOSRKlknMT8CSLA0ZzOFIhnCvCZWqtsjwuVZVX10n3jp3fx_dz6KSOhXGySo_9FaaXaO1bWt6araLXa90A-U7BYQJDpu7m4ALNGUvdLj_6msg8SJJVVfOgs4u2J17NU2m84MqZDx5dPJITefEyeyehf7mo-af6Z2vpfDqraMWzRtyuPmwNzeWDdbT8K5fgBnpoG1k47MI-A0Qfe6FLHwOXdC4Ku7I32IvTMbBVPC6KfBj0e68KD6dSduP88-39BVwSUMNNdNc5vT3pBr5uQqCBTo2CPKGaSm2UDMEFEp3xUCuuJaOWmdQSEyvGJLwMFQsNhc4Jh7U0kc4iE5uIbqGFAVhmG2GrEqkdKEjDWGxpFnOpM015aBlRVjdQWptKaP-FrrZFX9TqsWfxY2ThjCzCSICRG4hMRhZVYo0ZxhzXqyGmNokA_J9h9AEs4GQyl1e7274Urg2QjMYAXx9k519T7KIl91RJyfbQwmg4zveBtIxUs9yVTbTYPrvoXn8Dtyjvcw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLa6cth2mNiXgDFmTXDMGsdO4ghxqPhQGaUXQOpOnj9i6NaVqB8bXPhT-4O8TpxCD5MqTVyTWHYex8_7OHr8vghtkyRKJecm4EkWB4zmsKRCWFeEy9RaZXlcuipPe0nngn3tx_0G-lufhXG2Ss_9FaeXbO2vtDyarWIwaJ2B-E4hYIJCpm7nUDsrT_LbP7Bvm-wdH8Ak70TR0eH5fifwpQUCDYpjGuQJ1VRqo2QIUYLojIdacS0ZtcyklphYMSbhZqhYaCg8nHB4XRPpLDKxcdkOgPdXGNCFK5vw5W7uKyFJVpXpg9G54_3E24cqUxnscfPRpTsA5VxlvEwXSui_YuKzq_rvbhntjlbRKy9TcbtC4jVq5KM36OWj5IVv0be2kYUjS-xTTgyxd9YMMYhXFxOxq7ODvRsegzzGs6LIx8Fw8Evh8UKOcJzfXE9-QgwELfoOXTwJmu9RcwTIrCFsVSK1YyFpGIstzWIudaYpDy0jyup1lNZQCe1H6IppDEVtV_shHkAWDmQRRgJAXkdk3rKoMnks0Wa3ng2x8FUKCDhLtP4MEzjvzCXy7rS7wl0D6qQx8OVvsvFfXXxCzzvnp13RPe6dfEAv3J3Kx7aJmtPxLP8IimmqtsovFKPvT70k7gHoni36 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+integral+terminal+sliding+mode+control+for+upper-limb+rehabilitation+exoskeleton&rft.jtitle=Control+engineering+practice&rft.au=Riani%2C+A.&rft.au=Madani%2C+T.&rft.au=Benallegue%2C+A.&rft.au=Djouani%2C+K.&rft.date=2018-06-01&rft.pub=Elsevier&rft.issn=0967-0661&rft.volume=75&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1016%2Fj.conengprac.2018.02.013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04035042v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |