Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton

A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exo...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 75; pp. 108 - 117
Main Authors Riani, A., Madani, T., Benallegue, A., Djouani, K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements. •Adaptive integral sliding mode control design for exoskeletons.•Finite time convergence of the closed-loop system.•Robustness of the control law with respect to parametric variations and disturbances.•No requirement of the knowledge of the system bounds.•Real experiments using an upper limb exoskeleton with and without human subjects.
AbstractList A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements. •Adaptive integral sliding mode control design for exoskeletons.•Finite time convergence of the closed-loop system.•Robustness of the control law with respect to parametric variations and disturbances.•No requirement of the knowledge of the system bounds.•Real experiments using an upper limb exoskeleton with and without human subjects.
A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a nonlinear system. This method is applied for the control of upper limb exoskeleton in order to achieve passive rehabilitation movements. Indeed, exoskeletons are in direct interaction with the human limb and even if it is possible to identify the nominal dynamics of the exoskeleton, the subject’s limb dynamics remain typically unknown and defer from a person to another. The proposed approach uses only the exoskeleton nominal model while the system upper bounds are adjusted adaptively. No prior knowledge of the exact dynamic model and upper bounds of uncertainties is required. Finite time stability and convergence are proven using Lyapunov theory. Experiments were performed with healthy subjects to evaluate the performance and the efficiency of the proposed controller in tracking trajectories that correspond to passive arm movements.
Author Riani, A.
Madani, T.
Benallegue, A.
Djouani, K.
Author_xml – sequence: 1
  givenname: A.
  surname: Riani
  fullname: Riani, A.
  email: akram.riani@lisv.uvsq.fr
  organization: Laboratoire d’Ingénierie des Systémes de Versailles, UVSQ, Université Paris-Saclay, 78140 Velizy, France
– sequence: 2
  givenname: T.
  surname: Madani
  fullname: Madani, T.
  email: tarek.madani@u-pec.fr
  organization: Laboratoire Images, Signaux et Systémes Intelligents, Université Paris-Est Créteil, 94400 Vitry sur Seine, France
– sequence: 3
  givenname: A.
  surname: Benallegue
  fullname: Benallegue, A.
  email: benalleg@lisv.uvsq.fr
  organization: Laboratoire d’Ingénierie des Systémes de Versailles, UVSQ, Université Paris-Saclay, 78140 Velizy, France
– sequence: 4
  givenname: K.
  surname: Djouani
  fullname: Djouani, K.
  email: djouani@u-pec.fr
  organization: Laboratoire Images, Signaux et Systémes Intelligents, Université Paris-Est Créteil, 94400 Vitry sur Seine, France
BackLink https://hal.science/hal-04035042$$DView record in HAL
BookMark eNqNkE1LAzEQhoNUsH78h1w97DrZbLe7F6EWv6DgRQ-eQjaZbVPTZMnGov_elFYEL3qaYeZ93xmeUzJy3iEhlEHOgFVX61ylgVv2Qaq8AFbnUOTA-BEZs3rKs6rhzYiMoammGVQVOyGnw7CGZG0aNiavMy37aLZIjYu4DNLSiGFjXGoGa7RxS7rxGmm6EoO3tPOBvvc9hsyaTUsDrmRrrIkyGu8ofvjhDS1G787JcSftgBeHekZe7m6f5w_Z4un-cT5bZIpPiphhxRWXSrcSFCJTTQ2qrZUseVfqacf0pC1LmZbQlqB5Elc1tqgL1RR6ogt-Ri73uStpRR_MRoZP4aURD7OF2M2gBD6BstiypL3ea1XwwxCwE-rweQzSWMFA7KCKtfiBKnZQBRQiQU0B9a-A74v_sN7srZhgbA0GMSiDTqE2AVUU2pu_Q74AJgmdhw
CitedBy_id crossref_primary_10_1007_s12541_024_01130_4
crossref_primary_10_1016_j_oceaneng_2023_115943
crossref_primary_10_1016_j_eswa_2025_126601
crossref_primary_10_1002_rob_22455
crossref_primary_10_1007_s12555_019_0175_5
crossref_primary_10_3390_math10203853
crossref_primary_10_1007_s12555_021_0540_z
crossref_primary_10_1016_j_oceaneng_2022_112710
crossref_primary_10_1109_ACCESS_2018_2885082
crossref_primary_10_1177_09544070231192728
crossref_primary_10_1007_s12206_021_0639_4
crossref_primary_10_1016_j_eswa_2021_116482
crossref_primary_10_1002_acs_3445
crossref_primary_10_1007_s11633_019_1201_z
crossref_primary_10_1109_ACCESS_2019_2938566
crossref_primary_10_1080_14484846_2021_1939490
crossref_primary_10_1109_ACCESS_2018_2875550
crossref_primary_10_1177_10775463221138647
crossref_primary_10_1016_j_isatra_2020_10_008
crossref_primary_10_1080_17461391_2022_2063070
crossref_primary_10_1016_j_bspc_2021_102445
crossref_primary_10_1177_01423312231152936
crossref_primary_10_1016_j_apor_2022_103126
crossref_primary_10_1016_j_cnsns_2024_108085
crossref_primary_10_1109_ACCESS_2019_2941973
crossref_primary_10_1177_01423312221124050
crossref_primary_10_1017_S0263574724001668
crossref_primary_10_1177_1729881420916980
crossref_primary_10_31763_ijrcs_v3i1_840
crossref_primary_10_1177_01423312221126231
crossref_primary_10_1007_s11465_021_0651_5
crossref_primary_10_1080_03772063_2020_1800522
crossref_primary_10_1109_ACCESS_2022_3194911
crossref_primary_10_3390_drones6100311
crossref_primary_10_1016_j_mechatronics_2022_102782
crossref_primary_10_3390_machines11070732
crossref_primary_10_3390_ijerph17082948
crossref_primary_10_1109_TNSRE_2024_3429206
crossref_primary_10_1109_TNSRE_2023_3306201
crossref_primary_10_1016_j_isatra_2019_06_027
crossref_primary_10_1007_s11071_022_07910_9
crossref_primary_10_1088_1757_899X_568_1_012022
crossref_primary_10_1016_j_ifacol_2020_12_2078
crossref_primary_10_1016_j_conengprac_2020_104496
crossref_primary_10_1016_j_apor_2021_102960
crossref_primary_10_1155_2019_2016416
crossref_primary_10_3390_s18113611
crossref_primary_10_1177_0959651819844339
crossref_primary_10_1177_09596518231156537
crossref_primary_10_1017_S0263574724000547
crossref_primary_10_1177_09544062241258909
crossref_primary_10_1177_01423312231225605
crossref_primary_10_1177_09596518211008767
crossref_primary_10_1002_2050_7038_12997
crossref_primary_10_3390_en12050853
crossref_primary_10_12677_DSC_2018_74038
crossref_primary_10_1007_s11071_021_06984_1
crossref_primary_10_1016_j_conengprac_2023_105774
crossref_primary_10_1109_ACCESS_2019_2949197
crossref_primary_10_1016_j_energy_2024_130479
crossref_primary_10_1177_0954411920947849
crossref_primary_10_1007_s11431_023_2541_x
crossref_primary_10_1016_j_mechatronics_2022_102808
crossref_primary_10_1016_j_neucom_2020_02_088
crossref_primary_10_3390_math10173147
crossref_primary_10_1177_01423312211050720
crossref_primary_10_1002_asjc_2744
crossref_primary_10_1177_09596518211047008
crossref_primary_10_1016_j_isatra_2019_07_003
crossref_primary_10_1177_01423312251316140
crossref_primary_10_1007_s40313_024_01131_8
crossref_primary_10_1016_j_isatra_2024_06_001
crossref_primary_10_1088_1757_899X_717_1_012004
crossref_primary_10_3390_s22197645
crossref_primary_10_1002_rnc_6719
crossref_primary_10_1155_2022_4125606
crossref_primary_10_1109_LRA_2021_3105996
crossref_primary_10_1007_s00542_020_04934_2
crossref_primary_10_1109_ACCESS_2022_3217528
crossref_primary_10_1177_10775463211026031
crossref_primary_10_1017_S0263574722001084
crossref_primary_10_1007_s40998_020_00358_w
crossref_primary_10_1016_j_matcom_2021_10_022
crossref_primary_10_1142_S0219843620500188
crossref_primary_10_1016_j_conengprac_2020_104670
crossref_primary_10_1016_j_matcom_2021_03_039
Cites_doi 10.1016/j.mechatronics.2015.10.012
10.1016/j.robot.2007.11.007
10.1109/TIE.2016.2638403
10.1109/TFUZZ.2014.2317511
10.1016/j.automatica.2006.07.015
10.1007/s00498-005-0151-x
10.1109/TRO.2015.2503726
10.1109/TCYB.2016.2536149
10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V
10.1682/JRRD.2010.04.0063
10.1299/jsmec.40.493
10.1109/9.362847
10.1016/S0005-1098(02)00147-4
10.1109/TCST.2016.2579603
10.1016/j.robot.2017.01.006
10.1177/1545968316666957
10.1109/81.983876
10.1109/TRO.2007.903820
10.1109/RBME.2016.2552201
10.1016/j.conengprac.2012.11.006
10.1016/j.conengprac.2014.05.009
10.1109/TMECH.2009.2030796
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.conengprac.2018.02.013
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6939
EndPage 117
ExternalDocumentID oai_HAL_hal_04035042v1
10_1016_j_conengprac_2018_02_013
S0967066118300285
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
ID FETCH-LOGICAL-c352t-e63c3acdba0cee1c980cb8ca43f4d7f1d5b44aa0c0b40d33c368ebed2c92d5d23
IEDL.DBID .~1
ISSN 0967-0661
IngestDate Fri May 09 12:16:46 EDT 2025
Tue Jul 01 00:39:02 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Fri Feb 23 02:35:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rehabilitation robotics
Exoskeleton
Adaptive control
Sliding mode control
Wearable robots
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-e63c3acdba0cee1c980cb8ca43f4d7f1d5b44aa0c0b40d33c368ebed2c92d5d23
ORCID 0000-0001-6060-8200
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_04035042v1
crossref_citationtrail_10_1016_j_conengprac_2018_02_013
crossref_primary_10_1016_j_conengprac_2018_02_013
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
2018-06
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wei, Balasubramanian, Xu, He (b29) 2008
Xu, Chu, Rogers (b30) 2014; 31
Marini, Hughes, Squeri, Doglio, Moretti, Morasso (b18) 2017; 91
Krebs, Volpe, Aisen, Hogan (b11) 2000; 37
Li, Liu, Huang, Peng, Pu, Ding (b13) 2017
Komurcugil (b10) 2013; 21
Khalil, Dombre (b8) 2004
Feng, Yu, Man (b5) 2002; 38
Masiero, Armani (b19) 2011; 48
Mulero Martínez (b21) 2007; 23
Madani, Daachi, Djouani (b16) 2016; 33
Veerbeek, Langbroek-Amersfoort, van Wegen, Meskers, Kwakkel (b28) 2017
Peng, Jianjun, Lina, Zhiqiang (b24) 2015
Ghorbel, Srinivasan, Spong (b7) 1998; 15
Pehlivan, Losey, O’Malley (b23) 2016; 32
Chen, Li, Chen (b3) 2017; 47
Madani, Daachi, Djouani (b17) 2017; 25
Slotine, Li (b27) 1991
Perruquetti, Barbot (b25) 2002
Li, Su, Li, Su (b14) 2015; 23
Li, Kang, Xiao, Song (b12) 2017; 64
Yu, Zhihong (b31) 2002; 49
Zhihong, Yu (b34) 1997; 40
Feng, Zhou, Zheng, Han (b6) 2016
Culmer, Jackson, Makower, Richardson, Cozens, Levesley (b4) 2010; 15
Bhat, Bernstein (b1) 2005; 17
Zhihong, Paplinski, Wu (b33) 1994; 39
Burgar, Lum, Shor, Van der Loos (b2) 2000; 37
Kiguchi, Rahman, Sasaki, Teramoto (b9) 2008; 56
Loconsole, Dettori, Frisoli, Avizzano, Bergamasco (b15) 2014
Proietti, Crocher, Roby-Brami, Jarrassé (b26) 2016; 9
Morshed, Fekih (b20) 2015
Park, Choi, Kong (b22) 2007; 43
Yuri, Christopher, Leonid, Arie (b32) 2014
Li (10.1016/j.conengprac.2018.02.013_b13) 2017
Li (10.1016/j.conengprac.2018.02.013_b12) 2017; 64
Veerbeek (10.1016/j.conengprac.2018.02.013_b28) 2017
Xu (10.1016/j.conengprac.2018.02.013_b30) 2014; 31
Culmer (10.1016/j.conengprac.2018.02.013_b4) 2010; 15
Marini (10.1016/j.conengprac.2018.02.013_b18) 2017; 91
Pehlivan (10.1016/j.conengprac.2018.02.013_b23) 2016; 32
Chen (10.1016/j.conengprac.2018.02.013_b3) 2017; 47
Proietti (10.1016/j.conengprac.2018.02.013_b26) 2016; 9
Madani (10.1016/j.conengprac.2018.02.013_b16) 2016; 33
Wei (10.1016/j.conengprac.2018.02.013_b29) 2008
Zhihong (10.1016/j.conengprac.2018.02.013_b34) 1997; 40
Park (10.1016/j.conengprac.2018.02.013_b22) 2007; 43
Burgar (10.1016/j.conengprac.2018.02.013_b2) 2000; 37
Yu (10.1016/j.conengprac.2018.02.013_b31) 2002; 49
Feng (10.1016/j.conengprac.2018.02.013_b6) 2016
Kiguchi (10.1016/j.conengprac.2018.02.013_b9) 2008; 56
Zhihong (10.1016/j.conengprac.2018.02.013_b33) 1994; 39
Peng (10.1016/j.conengprac.2018.02.013_b24) 2015
Ghorbel (10.1016/j.conengprac.2018.02.013_b7) 1998; 15
Bhat (10.1016/j.conengprac.2018.02.013_b1) 2005; 17
Loconsole (10.1016/j.conengprac.2018.02.013_b15) 2014
Komurcugil (10.1016/j.conengprac.2018.02.013_b10) 2013; 21
Yuri (10.1016/j.conengprac.2018.02.013_b32) 2014
Krebs (10.1016/j.conengprac.2018.02.013_b11) 2000; 37
Feng (10.1016/j.conengprac.2018.02.013_b5) 2002; 38
Masiero (10.1016/j.conengprac.2018.02.013_b19) 2011; 48
Slotine (10.1016/j.conengprac.2018.02.013_b27) 1991
Morshed (10.1016/j.conengprac.2018.02.013_b20) 2015
Khalil (10.1016/j.conengprac.2018.02.013_b8) 2004
Mulero Martínez (10.1016/j.conengprac.2018.02.013_b21) 2007; 23
Li (10.1016/j.conengprac.2018.02.013_b14) 2015; 23
Perruquetti (10.1016/j.conengprac.2018.02.013_b25) 2002
Madani (10.1016/j.conengprac.2018.02.013_b17) 2017; 25
References_xml – start-page: 184
  year: 2016
  end-page: 188
  ident: b6
  article-title: Continuous adaptive terminal sliding-mode control
  publication-title: IEEE 11th conference on industrial electronics and applications
– volume: 64
  start-page: 5171
  year: 2017
  end-page: 5181
  ident: b12
  article-title: Human–robot coordination control of robotic exoskeletons by skill transfers
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 37
  start-page: 663
  year: 2000
  end-page: 674
  ident: b2
  article-title: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience
  publication-title: Journal of Rehabilitation Research and Development
– start-page: 181
  year: 2014
  end-page: 186
  ident: b15
  article-title: An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation
  publication-title: Haptics symposium HAPTICS, 2014 IEEE
– volume: 91
  start-page: 169
  year: 2017
  end-page: 178
  ident: b18
  article-title: Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation
  publication-title: Robotics and Autonomous Systems
– volume: 21
  start-page: 321
  year: 2013
  end-page: 332
  ident: b10
  article-title: Non-singular terminal sliding-mode control of DC-DC buck converters
  publication-title: Control Engineering Practice
– year: 2002
  ident: b25
  article-title: Sliding mode control in engineering
– volume: 33
  start-page: 136
  year: 2016
  end-page: 145
  ident: b16
  article-title: Non-singular terminal sliding mode controller: Application to an actuated exoskeleton
  publication-title: Mechatronics
– year: 2017
  ident: b13
  article-title: Adaptive impedance control of human-robot cooperation using reinforcement learning
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 1913
  year: 2015
  end-page: 1918
  ident: b20
  article-title: A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines
  publication-title: Control applications, 2015 IEEE Conference on
– volume: 17
  start-page: 101
  year: 2005
  end-page: 127
  ident: b1
  article-title: Geometric homogeneity with applications to finite-time stability
  publication-title: Mathematics of Control, Signals, and Systems
– year: 2017
  ident: b28
  article-title: Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis
  publication-title: Neurorehabilitation and Neural Repair
– start-page: 824
  year: 2015
  end-page: 828
  ident: b24
  article-title: Integral terminal sliding mode control for uncertain nonlinear systems
  publication-title: Control conference, 2015 34th Chinese
– volume: 25
  start-page: 1133
  year: 2017
  end-page: 1140
  ident: b17
  article-title: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 40
  start-page: 493
  year: 1997
  end-page: 502
  ident: b34
  article-title: Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics
  publication-title: JSME International Journal Series C
– year: 2004
  ident: b8
  article-title: Modeling, identification and control of robots
  publication-title: Modeling, identification and control of robots
– volume: 23
  start-page: 1083
  year: 2007
  end-page: 1089
  ident: b21
  article-title: Uniform bounds of the coriolis/centripetal matrix of serial robot manipulators
  publication-title: IEEE Transactions on Robotics
– year: 2014
  ident: b32
  article-title: Sliding mode control and observation (Vol. 10)
– start-page: 647
  year: 2008
  end-page: 652
  ident: b29
  article-title: Adaptive iterative learning control design for rupert iv
  publication-title: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics
– year: 1991
  ident: b27
  article-title: Applied nonlinear control (Vol. 199)
– volume: 38
  start-page: 2159
  year: 2002
  end-page: 2167
  ident: b5
  article-title: Non-singular terminal sliding mode control of rigid manipulators
  publication-title: Automatica
– volume: 48
  start-page: 355
  year: 2011
  end-page: 366
  ident: b19
  article-title: Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial
  publication-title: Journal of Rehabilitation Research and Development
– volume: 32
  start-page: 113
  year: 2016
  end-page: 124
  ident: b23
  article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation
  publication-title: IEEE Transactions on Robotics
– volume: 15
  start-page: 17
  year: 1998
  end-page: 28
  ident: b7
  article-title: On the uniform boundedness of the inertia matrix of serial robot manipulators
  publication-title: Journal of Robotic Systems
– volume: 31
  start-page: 63
  year: 2014
  end-page: 72
  ident: b30
  article-title: Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue
  publication-title: Control Engineering Practice
– volume: 39
  start-page: 2464
  year: 1994
  end-page: 2469
  ident: b33
  article-title: A robust mimo terminal sliding mode control scheme for rigid robotic manipulators
  publication-title: IEEE Transactions on Automatic Control
– volume: 9
  start-page: 4
  year: 2016
  end-page: 14
  ident: b26
  article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 43
  start-page: 72
  year: 2007
  end-page: 79
  ident: b22
  article-title: Output feedback variable structure control for linear systems with uncertainties and disturbances
  publication-title: Automatica
– volume: 15
  start-page: 575
  year: 2010
  end-page: 585
  ident: b4
  article-title: A control strategy for upper limb robotic rehabilitation with a dual robot system
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 49
  start-page: 261
  year: 2002
  end-page: 264
  ident: b31
  article-title: Fast terminal sliding-mode control design for nonlinear dynamical systems
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
– volume: 56
  start-page: 678
  year: 2008
  end-page: 691
  ident: b9
  article-title: Development of a 3dof mobile exoskeleton robot for human upper-limb motion assist
  publication-title: Robotics and Autonomous Systems
– volume: 37
  start-page: 639
  year: 2000
  end-page: 652
  ident: b11
  article-title: Increasing productivity and quality of care: robot-aided neuro-rehabilitation
  publication-title: Journal of Rehabilitation Research and Development
– volume: 23
  start-page: 555
  year: 2015
  end-page: 566
  ident: b14
  article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 47
  start-page: 984
  year: 2017
  end-page: 994
  ident: b3
  article-title: Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton
  publication-title: IEEE Transactions on Cybernetics
– volume: 33
  start-page: 136
  year: 2016
  ident: 10.1016/j.conengprac.2018.02.013_b16
  article-title: Non-singular terminal sliding mode controller: Application to an actuated exoskeleton
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.10.012
– volume: 56
  start-page: 678
  issue: 8
  year: 2008
  ident: 10.1016/j.conengprac.2018.02.013_b9
  article-title: Development of a 3dof mobile exoskeleton robot for human upper-limb motion assist
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2007.11.007
– volume: 64
  start-page: 5171
  issue: 6
  year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b12
  article-title: Human–robot coordination control of robotic exoskeletons by skill transfers
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2016.2638403
– volume: 23
  start-page: 555
  issue: 3
  year: 2015
  ident: 10.1016/j.conengprac.2018.02.013_b14
  article-title: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2014.2317511
– volume: 43
  start-page: 72
  issue: 1
  year: 2007
  ident: 10.1016/j.conengprac.2018.02.013_b22
  article-title: Output feedback variable structure control for linear systems with uncertainties and disturbances
  publication-title: Automatica
  doi: 10.1016/j.automatica.2006.07.015
– year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b13
  article-title: Adaptive impedance control of human-robot cooperation using reinforcement learning
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 17
  start-page: 101
  issue: 2
  year: 2005
  ident: 10.1016/j.conengprac.2018.02.013_b1
  article-title: Geometric homogeneity with applications to finite-time stability
  publication-title: Mathematics of Control, Signals, and Systems
  doi: 10.1007/s00498-005-0151-x
– volume: 32
  start-page: 113
  issue: 1
  year: 2016
  ident: 10.1016/j.conengprac.2018.02.013_b23
  article-title: Minimal assist-as-needed controller for upper limb robotic rehabilitation
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2015.2503726
– volume: 47
  start-page: 984
  issue: 4
  year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b3
  article-title: Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2016.2536149
– volume: 15
  start-page: 17
  issue: 1
  year: 1998
  ident: 10.1016/j.conengprac.2018.02.013_b7
  article-title: On the uniform boundedness of the inertia matrix of serial robot manipulators
  publication-title: Journal of Robotic Systems
  doi: 10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V
– volume: 48
  start-page: 355
  issue: 4
  year: 2011
  ident: 10.1016/j.conengprac.2018.02.013_b19
  article-title: Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial
  publication-title: Journal of Rehabilitation Research and Development
  doi: 10.1682/JRRD.2010.04.0063
– start-page: 824
  year: 2015
  ident: 10.1016/j.conengprac.2018.02.013_b24
  article-title: Integral terminal sliding mode control for uncertain nonlinear systems
– volume: 40
  start-page: 493
  issue: 3
  year: 1997
  ident: 10.1016/j.conengprac.2018.02.013_b34
  article-title: Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics
  publication-title: JSME International Journal Series C
  doi: 10.1299/jsmec.40.493
– volume: 39
  start-page: 2464
  issue: 12
  year: 1994
  ident: 10.1016/j.conengprac.2018.02.013_b33
  article-title: A robust mimo terminal sliding mode control scheme for rigid robotic manipulators
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.362847
– year: 2004
  ident: 10.1016/j.conengprac.2018.02.013_b8
  article-title: Modeling, identification and control of robots
– volume: 37
  start-page: 639
  issue: 6
  year: 2000
  ident: 10.1016/j.conengprac.2018.02.013_b11
  article-title: Increasing productivity and quality of care: robot-aided neuro-rehabilitation
  publication-title: Journal of Rehabilitation Research and Development
– start-page: 1913
  year: 2015
  ident: 10.1016/j.conengprac.2018.02.013_b20
  article-title: A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines
– volume: 38
  start-page: 2159
  issue: 12
  year: 2002
  ident: 10.1016/j.conengprac.2018.02.013_b5
  article-title: Non-singular terminal sliding mode control of rigid manipulators
  publication-title: Automatica
  doi: 10.1016/S0005-1098(02)00147-4
– volume: 25
  start-page: 1133
  issue: 3
  year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b17
  article-title: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2016.2579603
– volume: 91
  start-page: 169
  year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b18
  article-title: Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2017.01.006
– start-page: 184
  year: 2016
  ident: 10.1016/j.conengprac.2018.02.013_b6
  article-title: Continuous adaptive terminal sliding-mode control
– year: 2017
  ident: 10.1016/j.conengprac.2018.02.013_b28
  article-title: Effects of robot-assisted therapy for the upper limb after stroke: a systematic review and meta-analysis
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968316666957
– start-page: 647
  year: 2008
  ident: 10.1016/j.conengprac.2018.02.013_b29
  article-title: Adaptive iterative learning control design for rupert iv
– volume: 49
  start-page: 261
  issue: 2
  year: 2002
  ident: 10.1016/j.conengprac.2018.02.013_b31
  article-title: Fast terminal sliding-mode control design for nonlinear dynamical systems
  publication-title: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
  doi: 10.1109/81.983876
– year: 1991
  ident: 10.1016/j.conengprac.2018.02.013_b27
– start-page: 181
  year: 2014
  ident: 10.1016/j.conengprac.2018.02.013_b15
  article-title: An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation
– year: 2002
  ident: 10.1016/j.conengprac.2018.02.013_b25
– volume: 37
  start-page: 663
  issue: 6
  year: 2000
  ident: 10.1016/j.conengprac.2018.02.013_b2
  article-title: Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience
  publication-title: Journal of Rehabilitation Research and Development
– volume: 23
  start-page: 1083
  issue: 5
  year: 2007
  ident: 10.1016/j.conengprac.2018.02.013_b21
  article-title: Uniform bounds of the coriolis/centripetal matrix of serial robot manipulators
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2007.903820
– volume: 9
  start-page: 4
  year: 2016
  ident: 10.1016/j.conengprac.2018.02.013_b26
  article-title: Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies
  publication-title: IEEE Reviews in Biomedical Engineering
  doi: 10.1109/RBME.2016.2552201
– volume: 21
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.conengprac.2018.02.013_b10
  article-title: Non-singular terminal sliding-mode control of DC-DC buck converters
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2012.11.006
– volume: 31
  start-page: 63
  issue: Suppl. C
  year: 2014
  ident: 10.1016/j.conengprac.2018.02.013_b30
  article-title: Iterative learning control for robotic-assisted upper limb stroke rehabilitation in the presence of muscle fatigue
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2014.05.009
– volume: 15
  start-page: 575
  issue: 4
  year: 2010
  ident: 10.1016/j.conengprac.2018.02.013_b4
  article-title: A control strategy for upper limb robotic rehabilitation with a dual robot system
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2009.2030796
– year: 2014
  ident: 10.1016/j.conengprac.2018.02.013_b32
SSID ssj0016991
Score 2.5266576
Snippet A robust adaptive integral terminal sliding mode control strategy is proposed in this paper to deal with unknown but bounded dynamic uncertainties of a...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108
SubjectTerms Adaptive control
Computer Science
Exoskeleton
Rehabilitation robotics
Robotics
Sliding mode control
Wearable robots
Title Adaptive integral terminal sliding mode control for upper-limb rehabilitation exoskeleton
URI https://dx.doi.org/10.1016/j.conengprac.2018.02.013
https://hal.science/hal-04035042
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYLnBArKIslYW4hsaxkzjiVCGqsl4ACU6WlxgKpUSlRZz4dsaJU-gBqRLHOLYcje03z9GbGYQOSRKlknMT8CSLA0ZzOFIhnCvCZWqtsjwuVZVX10n3jp3fx_dz6KSOhXGySo_9FaaXaO1bWt6araLXa90A-U7BYQJDpu7m4ALNGUvdLj_6msg8SJJVVfOgs4u2J17NU2m84MqZDx5dPJITefEyeyehf7mo-af6Z2vpfDqraMWzRtyuPmwNzeWDdbT8K5fgBnpoG1k47MI-A0Qfe6FLHwOXdC4Ku7I32IvTMbBVPC6KfBj0e68KD6dSduP88-39BVwSUMNNdNc5vT3pBr5uQqCBTo2CPKGaSm2UDMEFEp3xUCuuJaOWmdQSEyvGJLwMFQsNhc4Jh7U0kc4iE5uIbqGFAVhmG2GrEqkdKEjDWGxpFnOpM015aBlRVjdQWptKaP-FrrZFX9TqsWfxY2ThjCzCSICRG4hMRhZVYo0ZxhzXqyGmNokA_J9h9AEs4GQyl1e7274Urg2QjMYAXx9k519T7KIl91RJyfbQwmg4zveBtIxUs9yVTbTYPrvoXn8Dtyjvcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLa6cth2mNiXgDFmTXDMGsdO4ghxqPhQGaUXQOpOnj9i6NaVqB8bXPhT-4O8TpxCD5MqTVyTWHYex8_7OHr8vghtkyRKJecm4EkWB4zmsKRCWFeEy9RaZXlcuipPe0nngn3tx_0G-lufhXG2Ss_9FaeXbO2vtDyarWIwaJ2B-E4hYIJCpm7nUDsrT_LbP7Bvm-wdH8Ak70TR0eH5fifwpQUCDYpjGuQJ1VRqo2QIUYLojIdacS0ZtcyklphYMSbhZqhYaCg8nHB4XRPpLDKxcdkOgPdXGNCFK5vw5W7uKyFJVpXpg9G54_3E24cqUxnscfPRpTsA5VxlvEwXSui_YuKzq_rvbhntjlbRKy9TcbtC4jVq5KM36OWj5IVv0be2kYUjS-xTTgyxd9YMMYhXFxOxq7ODvRsegzzGs6LIx8Fw8Evh8UKOcJzfXE9-QgwELfoOXTwJmu9RcwTIrCFsVSK1YyFpGIstzWIudaYpDy0jyup1lNZQCe1H6IppDEVtV_shHkAWDmQRRgJAXkdk3rKoMnks0Wa3ng2x8FUKCDhLtP4MEzjvzCXy7rS7wl0D6qQx8OVvsvFfXXxCzzvnp13RPe6dfEAv3J3Kx7aJmtPxLP8IimmqtsovFKPvT70k7gHoni36
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+integral+terminal+sliding+mode+control+for+upper-limb+rehabilitation+exoskeleton&rft.jtitle=Control+engineering+practice&rft.au=Riani%2C+A.&rft.au=Madani%2C+T.&rft.au=Benallegue%2C+A.&rft.au=Djouani%2C+K.&rft.date=2018-06-01&rft.pub=Elsevier&rft.issn=0967-0661&rft.volume=75&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1016%2Fj.conengprac.2018.02.013&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04035042v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon