Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state
Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developin...
Saved in:
Published in | Medical & biological engineering & computing Vol. 58; no. 9; pp. 2071 - 2082 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the
F
-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers.
Graphical abstract |
---|---|
AbstractList | Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers-least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)-for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract.Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers-least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)-for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract. Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F -score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract |
Author | Li, Shasha Yuan, Zhen Zhou, Jiansong Lu, Fengmei Zhang, Jiang Du, Zhengcong Luo, Ruisen Liu, Yuyan |
Author_xml | – sequence: 1 givenname: Jiang orcidid: 0000-0002-0783-3705 surname: Zhang fullname: Zhang, Jiang organization: College of Electrical Engineering, Sichuan University – sequence: 2 givenname: Yuyan surname: Liu fullname: Liu, Yuyan organization: College of Electrical Engineering, Sichuan University – sequence: 3 givenname: Ruisen surname: Luo fullname: Luo, Ruisen email: rsluo@scu.edu.cn organization: College of Electrical Engineering, Sichuan University – sequence: 4 givenname: Zhengcong surname: Du fullname: Du, Zhengcong organization: School of Information Science and Technology, Xichang University – sequence: 5 givenname: Fengmei surname: Lu fullname: Lu, Fengmei organization: The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China – sequence: 6 givenname: Zhen surname: Yuan fullname: Yuan, Zhen organization: Bioimaging Core, Faculty of Health Sciences, University of Macau – sequence: 7 givenname: Jiansong surname: Zhou fullname: Zhou, Jiansong organization: Mental Health Institute, Second Xiangya Hospital, Hunan Province Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University – sequence: 8 givenname: Shasha surname: Li fullname: Li, Shasha organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School |
BookMark | eNp9kUtrHDEQhEVwIOtN_kBOglxymUStx8z4GJa8wOCLcxYaqSeWMytt1BqC_3003kDABx9EHbo-Ud11yS5STsjYWxAfQIjhIwEYGDohRXsSTDe-YDsYNHRCa33BdgJ0GwGMr9gl0b0QzST1jq2HxRHFOXpXY048z_y0FuQ-p7D6ykOkXAIWPpd85Hfolnr3sE1ryQvxyREG3riYQvRIGz8VFxNPWP_k8ot4WEtMP3lBqptSdRVfs5ezWwjf_NM9-_Hl8-3hW3d98_X74dN155WRtUPltdReCBh8D8qMgBjCLMME0KObNKIeEa_MZECbMKDpezNJKVV_NakwqD17f_73VPLvtSWwx0gel8UlzCtZqaUSZtBN9uzdE-t9Xktq6ZpLSdkL0yLs2Xh2-ZKJCs7Wx_p4udq2XiwIu_Vhz33Y1od97MOODZVP0FOJR1cenofUGaLTdkUs_1M9Q_0F-higeA |
CitedBy_id | crossref_primary_10_1016_j_bpsc_2022_02_004 crossref_primary_10_1016_j_copsyc_2022_101356 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1097_DBP_0000000000001049 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_neubiorev_2022_104995 |
Cites_doi | 10.1016/j.neucom.2014.09.102 10.1142/5089 10.3389/fphys.2012.00123 10.1016/j.neuroimage.2009.06.026 10.1177/1073858406293182 10.1103/PhysRevLett.104.025701 10.1006/nimg.2001.0978 10.1371/journal.pone.0064704 10.1007/s10549-010-1317-x 10.1016/j.neuroimage.2005.06.070 10.1371/journal.pone.0048789 10.1016/j.plrev.2014.03.005 10.1073/pnas.1106612109 10.1016/j.neuroimage.2011.12.052 10.1073/pnas.0504136102 10.1126/science.1065103 10.1109/ACCESS.2014.2325029 10.1023/A:1018628609742 10.1038/30918 10.1016/j.neuroimage.2009.12.051 10.1016/j.psychres.2014.01.024 10.1212/WNL.0000000000002940 10.3389/fpsyt.2015.00021 10.1093/cercor/bhl149 10.1371/journal.pone.0002051 10.1016/j.pnpbp.2015.06.014 10.1016/j.eswa.2008.01.009 10.1176/appi.books.9780890425596 10.1016/j.neuroimage.2009.10.003 10.1111/j.1469-7610.1987.tb00651.x 10.1371/journal.pone.0008525 10.1177/0081246316628455 10.1080/14789949.2012.727452 10.1016/j.neuroimage.2010.08.007 10.1002/hbm.22610 10.1016/j.patrec.2016.06.023 10.1007/s00787-014-0639-3 10.1038/nphys3081 10.1016/j.janxdis.2007.05.011 10.1002/hbm.20517 10.1016/j.comppsych.2014.03.022 10.1016/j.eswa.2006.07.007 10.1126/science.298.5594.824 10.1016/j.eswa.2014.09.019 10.1016/j.neuroimage.2008.08.010 10.1038/srep25297 10.1007/978-1-4757-2440-0 10.1093/cercor/bht004 10.1097/00004583-199707000-00021 10.18632/oncotarget.19098 10.3233/XST-2011-0312 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2020 International Federation for Medical and Biological Engineering 2020. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2020 – notice: International Federation for Medical and Biological Engineering 2020. |
DBID | AAYXX CITATION 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1007/s11517-020-02215-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 2082 |
ExternalDocumentID | 10_1007_s11517_020_02215_8 |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c352t-e3c424c0017c613581eeddf2db116eab4ee48ee95b5145d7e5665b222369b3d73 |
IEDL.DBID | 7X7 |
ISSN | 0140-0118 1741-0444 |
IngestDate | Tue Aug 05 09:37:00 EDT 2025 Fri Jul 25 19:13:00 EDT 2025 Tue Jul 01 02:58:31 EDT 2025 Thu Apr 24 23:01:21 EDT 2025 Fri Feb 21 02:31:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Conduct disorder Functional magnetic resonance imaging Classification scheme Feature selection Small-world networks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-e3c424c0017c613581eeddf2db116eab4ee48ee95b5145d7e5665b222369b3d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0783-3705 |
PQID | 2432260561 |
PQPubID | 54161 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2423057442 proquest_journals_2432260561 crossref_citationtrail_10_1007_s11517_020_02215_8 crossref_primary_10_1007_s11517_020_02215_8 springer_journals_10_1007_s11517_020_02215_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200900 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200900 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | VapnikVThe nature of statistical learning theory1995New YorkSpringer Verlag ZhouJWittKZhangYChenCQiuCCaoLWangXAnxiety, depression, impulsivity and substance misuse in violent and non-violent adolescent boys in detention in ChinaPsychiatry Res2014216337938424612970 HuangC-LChenM-CWangC-JCredit scoring with a data mining approach based on support vector machinesExpert Syst Appl2007334847856 HeYChenZJEvansACSmall-world anatomical networks in the human brain revealed by cortical thickness from MRICereb Cortex200717102407241917204824 ZhouJChenCWangXCaiWZhangSQiuCWangHLuoYFazelSPsychiatric disorders in adolescent boys in detention: a preliminary prevalence and case–control study in two Chinese provincesJ Forensic Psychiatry Psychol2012235–6664675 Tzourio-MazoyerNLandeauBPapathanassiouDCrivelloaFEtardaODelcroixaNMazoyercBJoliotaMAutomated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brainNeuroimage.2002152732891:STN:280:DC%2BD38%2FltFCntw%3D%3D11771995 RubinovMSpornsOComplex network measures of brain connectivity: uses and interpretationsNeuroimage201052105910691981933719819337 HumphriesMGurneyKPrescottTThe brainstem reticular formation is a small-world, not scale-free, networkPhilos Trans RSocLond B BiolSci20062735035111:STN:280:DC%2BD283gvVKktw%3D%3D ChenXWLinXBig data deep learning: challenges and perspectivesIEEE access20142514525 AkayMFSupport vector machines combined with feature selection for breast cancer diagnosisExpert Syst Appl200936232403247 ChenHDuanXLiuFLuFMaXZhangYUddinLQChenHFMultivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center studyProg Neuro-Psychopharmacol Biol Psychiatry20166419 WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature199839366844404421:CAS:528:DyaK1cXjs1Khsrk%3D96239989623998 ZhangJLinXFuGSaiLChenHYangJWangMLiuQYangGZhangJYuanZMapping the small-world properties of brain networks in deception by functional near-infrared spectroscopySci Rep20166252971:CAS:528:DC%2BC28XmvFegs7Y%3D10.1038/srep25297271261454850450 John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. the Eleventh Conference on Uncertainty in Artificial Intelligence Mourão-MirandaJBokdeALWBornCHampelHStetterMClassifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI dataNeuroImage.20052898099516275139 MaurerCWLaFaverKAmeliREpsteinSAHallettMHorovitzSGImpaired self-agency in functional movement disorders: a resting-state fMRI studyNeurology.2016876564570273857464977370 Li P, Dong L, Xiao H, Xu M2015. A cloud image detection method based on SVM vector machine. Neurocomputing, 169: 34–42 MitchellTMachine learning, McGraw Hill1997 SuLWangKFanFSuYGaoXReliability and validity of the screen for child anxiety related emotional disorders (SCARED) in Chinese childrenJournal of anxiety disorders200822461262117628391 SarkarSDalyEFengYEckerCCraigMCReduced cortical surface area in adolescents with conduct disorderEuropean child & Adolescent Psychiatry2015248909917 Chen YW, Lin CJ2005. Combining SVMs with various feature selection strategies Available fromhttp://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf WittenIHFrankEData mining: practical machine learning tools and techniques20052San FranciscoMorgan Kaufmann LuFMZhouJSZhangJWangXPYuanZDisrupted small-world brain network topology in pure conduct disorderOncotarget.20178396550665524290294495630349 RubinovMKnockSAStamCJMicheloyannisSHarrisAWFWilliams LeanneMBreakspearMSmall-world properties of nonlinear brain activity in schizophreniaHum Brain Mapp200930240341618072237 SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999293300 GallosLKSigmanMMakseHAThe conundrum of functional brain networks: small-world efficiency or fractal modularityFront Physiology20123123 American Psychiatric Association2013. The diagnostic and statistical manual of mental disorders (5th ed.).Washington, DC: Author 2013 GallosLKMakseHSigmanAMA small world of weak ties provides optimal global integration of self-similar modules in functional brain networksProc Nat Acad Sci2012109282528301:CAS:528:DC%2BC38XjsFyisrs%3D22308319 WuJPanSZhuXCaiZZhangPZhangCSelf-adaptive attribute weighting for Naive Bayes classificationExpert Syst Appl20154214871502 ZhangJWangJZYuanZSobelESJiangHComputer-aided classification of optical images for diagnosis of osteoarthritis in the finger jointsJournal of X-Ray Science and Technology20111953154425214385 GaoJWangZYangYZhangWTaoCGuanJRaoNA novel approach for lie detection based on F-score and extreme learning machinePLoS One2013861:CAS:528:DC%2BC3sXpvVKhtrk%3D10.1371/journal.pone.0064704237551363670874 ShusterGGallimidiZReissAHDovgolevskyEBillanSAbdah-BortnyakRKutenAEngelAShibanATischUHaickHClassification of breast cancer precursors through exhaled breathBreast Cancer Res Treat201112679179621190078 SuthaharanSDeep learning models2016Boston, MAMachine Learning Models and Algorithms for Big Data Classification. Springer289307 FrickPJCurrent research on conduct disorder in children and adolescentsS Afr J Psychol20164611510.1177/0081246316628455 SuykensJAKVan GestelTDe BrabanterJDe MoorBVandewalleJLeast squares support vector machines2002SingaporeWorld Scientific MaslovSSneppenKSpecificity and stability in topology of protein networksScience.20022969109131:CAS:528:DC%2BD38XjsFymsr8%3D11988575 MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience.200229855948248271:CAS:528:DC%2BD38XotFSntb4%3D12399590 KaufmanJBirmaherBBrentDRaoUFlynnCMoreciPWilliamsonDRyanNSchedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity dataJ Am Acad Child Adolesc Psychiatry19973679809881:STN:280:DyaK2szkvVKqsQ%3D%3D9204677 AchardSBullmoreEEfficiency and cost of economical brain functional networksPLoS ComputBiol200732 DingJRLiaoWZhangZMantiniDXuQWuGRLuGMChenHFTopological fractionation of resting-state networksPLoS One20116101:CAS:528:DC%2BC3MXhsVGltbbP220289173197522 ZhouJWittKChenCZhangSZhangYQiuCCaoLWangXHigh impulsivity as a risk factor for the development of internalizing disorders in detained juvenile offendersCompr Psychiatry201455(511571164 ReisSDSHuYBabinoAAndradeJSJrCanalsSSigmanMMakseHAAvoiding catastrophic failure in correlated networks of networksNature Phys2014107627671:CAS:528:DC%2BC2cXhsFOlt7bF WangJZLiangXZhangQFajardoLLJiangHAutomated breast cancer classification using near-infrared optical tomographic imagesJ Biomed Opt20081319021329 XiaMWangJHeYBrain Netviewer: a network visualization tool for human brain connectomicsPLoS One201381:CAS:528:DC%2BC3sXhtFOmtL%2FI238619513701683 BirlesonPHudsonIBuchananDGWolffSClinical evaluation of a self-rating scale for depressive disorder in childhood (Depression Self-Rating Scale)J Child Psychol Psychiatry198728143601:STN:280:DyaL2s7ms1aquw%3D%3D3558538 LiaoWZhangZQPanZYMantiniDDingJRDuanXJLuoCLuGMChenHFAltered functional connectivity and small-world in mesial temporal lobe epilepsyPLoS One201051200726162799523 BassettDSBullmoreEDSmall-world brain networksNeuroscientist20061251252317079517 Vangelis M, Ion A, Geogios P (2006) Spam filtering with naive Bayes - which naive Bayes? Third Conference on Email and Anti-Spam PassamontiLFairchildGFornitoAGoodyerIMNimmo-SmithIHaganCCCalderAJAbnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorderPLoS One20127111:CAS:528:DC%2BC38XhslCju7zM231449703492256 Shanee N, Apter A, Weizman A. Psychometric properties of the K-SADS-PL in an Israeli adolescent clinical population. Israel Journal of Psychiatry and Related Sciences.1997 CortesCVapnikVSupport-vector networksMach Learn199520273297 HayasakaSLaurientiPJComparison of characteristics between region-and voxel-based network analyses in resting-state fMRI dataNeuroimage.20105049950820026219 SacchetMDPrasadGFoland-RossLCThompsonPMGotlibIHSupport vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theoryFront Psychiatry201562110.3389/fpsyt.2015.00021257629414332161 ChenHYangQLiaoWGongQShenSEvaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mappingNeuroimage.2009471844185319540349 PessoaLUnderstanding brain networks and brain organizationPhys Life Rev201411 (3400435 RozenfeldHDSongCMakseHASmall world-fractal transition in complex networks: renormalization group approachPhys Rev Lett201010420366610 UeharaTYamasakiTOkamotoTKoikeTKanSMiyauchiSKiraJTobimatsuSEfficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI studyCereb Cortex20142461529153923349223 DattaSMisraDDasSA feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing featuresPattern Recogn Lett201680231237 SitaramRLeeSRuizSRanaMVeitRBirbaumerNReal-time support vector classification and feedback of multiple emotional brain statesNeuroimage.201156 (2753765 van den HeuvelMPStamCJBoersmaMHulshoff PolHESmall-world and scale-free organization of voxel-based resting-state functional connectivity in the human brainNeuroimage.20084352853918786642 FoxMDSnyderAZVincentJLCorbettaMVan EssenDCRaichleMEThe human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad SciU S A2005102967396781:CAS:528:DC%2BD2MXmsVaktb8%3D SchlaffkeLLissekSLenzMJuckelGSchultzTTegenthoffMSchmidt-WilckeTShared and nonshared neural networks of cognitive and affective theory-of-mind: a neuroimaging study using cartoon picture storiesHum Brain Mapp201536293925131828 Meier TB, Desphande AS, Vergun S, Nair VA , Song J 2012. et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage., 1 (60):601-613 HumphriesMDGurneyKNetwor S Datta (2215_CR60) 2016; 80 JR Ding (2215_CR5) 2011; 6 T Uehara (2215_CR9) 2014; 24 W Liao (2215_CR42) 2010; 5 CW Maurer (2215_CR6) 2016; 87 M Rubinov (2215_CR43) 2010; 52 J Zhou (2215_CR34) 2014; 55(5 2215_CR48 LK Gallos (2215_CR11) 2012; 3 L Su (2215_CR33) 2008; 22 P Birleson (2215_CR32) 1987; 28 S Maslov (2215_CR46) 2002; 296 G Shuster (2215_CR61) 2011; 126 J Zhang (2215_CR41) 2016; 6 S Achard (2215_CR7) 2007; 3 JZ Wang (2215_CR54) 2008; 13 R Milo (2215_CR47) 2002; 298 MD Fox (2215_CR37) 2005; 102 DS Bassett (2215_CR57) 2006; 12 CW Hsu (2215_CR55) 2004 H Chen (2215_CR19) 2016; 64 J Kaufman (2215_CR29) 1997; 36 MP van den Heuvel (2215_CR39) 2008; 43 IH Witten (2215_CR56) 2005 2215_CR30 HD Rozenfeld (2215_CR14) 2010; 104 FM Lu (2215_CR23) 2017; 8 XW Chen (2215_CR64) 2014; 2 J Zhou (2215_CR35) 2014; 216 2215_CR28 V Vapnik (2215_CR17) 1995 M Xia (2215_CR63) 2013; 8 S Hayasaka (2215_CR38) 2010; 50 PJ Frick (2215_CR2) 2016; 46 JAK Suykens (2215_CR25) 1999; 9 J Mourão-Miranda (2215_CR52) 2005; 28 R Sitaram (2215_CR21) 2011; 56 (2 M Humphries (2215_CR58) 2006; 273 L Schlaffke (2215_CR51) 2015; 36 J Gao (2215_CR50) 2013; 8 LK Gallos (2215_CR13) 2012; 109 2215_CR27 S Sarkar (2215_CR4) 2015; 24 L Pessoa (2215_CR8) 2014; 11 (3 2215_CR20 2215_CR1 S Suthaharan (2215_CR65) 2016 C Cortes (2215_CR18) 1995; 20 SDS Reis (2215_CR12) 2014; 10 Y He (2215_CR15) 2007; 17 MD Humphries (2215_CR45) 2008; 3 J Wu (2215_CR59) 2015; 42 JAK Suykens (2215_CR24) 2002 MF Akay (2215_CR22) 2009; 36 C-L Huang (2215_CR49) 2007; 33 J Zhou (2215_CR31) 2012; 23 M Rubinov (2215_CR10) 2009; 30 2215_CR16 T Mitchell (2215_CR26) 1997 J Zhang (2215_CR53) 2011; 19 DJ Watts (2215_CR44) 1998; 393 H Chen (2215_CR36) 2009; 47 L Passamonti (2215_CR3) 2012; 7 N Tzourio-Mazoyer (2215_CR40) 2002; 15 MD Sacchet (2215_CR62) 2015; 6 |
References_xml | – reference: HayasakaSLaurientiPJComparison of characteristics between region-and voxel-based network analyses in resting-state fMRI dataNeuroimage.20105049950820026219 – reference: Li P, Dong L, Xiao H, Xu M2015. A cloud image detection method based on SVM vector machine. Neurocomputing, 169: 34–42 – reference: van den HeuvelMPStamCJBoersmaMHulshoff PolHESmall-world and scale-free organization of voxel-based resting-state functional connectivity in the human brainNeuroimage.20084352853918786642 – reference: Meier TB, Desphande AS, Vergun S, Nair VA , Song J 2012. et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage., 1 (60):601-613 – reference: SacchetMDPrasadGFoland-RossLCThompsonPMGotlibIHSupport vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theoryFront Psychiatry201562110.3389/fpsyt.2015.00021257629414332161 – reference: ChenHDuanXLiuFLuFMaXZhangYUddinLQChenHFMultivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center studyProg Neuro-Psychopharmacol Biol Psychiatry20166419 – reference: KaufmanJBirmaherBBrentDRaoUFlynnCMoreciPWilliamsonDRyanNSchedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity dataJ Am Acad Child Adolesc Psychiatry19973679809881:STN:280:DyaK2szkvVKqsQ%3D%3D9204677 – reference: GallosLKMakseHSigmanAMA small world of weak ties provides optimal global integration of self-similar modules in functional brain networksProc Nat Acad Sci2012109282528301:CAS:528:DC%2BC38XjsFyisrs%3D22308319 – reference: ZhouJChenCWangXCaiWZhangSQiuCWangHLuoYFazelSPsychiatric disorders in adolescent boys in detention: a preliminary prevalence and case–control study in two Chinese provincesJ Forensic Psychiatry Psychol2012235–6664675 – reference: WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature199839366844404421:CAS:528:DyaK1cXjs1Khsrk%3D96239989623998 – reference: HeYChenZJEvansACSmall-world anatomical networks in the human brain revealed by cortical thickness from MRICereb Cortex200717102407241917204824 – reference: FrickPJCurrent research on conduct disorder in children and adolescentsS Afr J Psychol20164611510.1177/0081246316628455 – reference: ChenXWLinXBig data deep learning: challenges and perspectivesIEEE access20142514525 – reference: ShusterGGallimidiZReissAHDovgolevskyEBillanSAbdah-BortnyakRKutenAEngelAShibanATischUHaickHClassification of breast cancer precursors through exhaled breathBreast Cancer Res Treat201112679179621190078 – reference: BirlesonPHudsonIBuchananDGWolffSClinical evaluation of a self-rating scale for depressive disorder in childhood (Depression Self-Rating Scale)J Child Psychol Psychiatry198728143601:STN:280:DyaL2s7ms1aquw%3D%3D3558538 – reference: PessoaLUnderstanding brain networks and brain organizationPhys Life Rev201411 (3400435 – reference: UeharaTYamasakiTOkamotoTKoikeTKanSMiyauchiSKiraJTobimatsuSEfficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI studyCereb Cortex20142461529153923349223 – reference: AchardSBullmoreEEfficiency and cost of economical brain functional networksPLoS ComputBiol200732 – reference: SarkarSDalyEFengYEckerCCraigMCReduced cortical surface area in adolescents with conduct disorderEuropean child & Adolescent Psychiatry2015248909917 – reference: ZhouJWittKZhangYChenCQiuCCaoLWangXAnxiety, depression, impulsivity and substance misuse in violent and non-violent adolescent boys in detention in ChinaPsychiatry Res2014216337938424612970 – reference: WuJPanSZhuXCaiZZhangPZhangCSelf-adaptive attribute weighting for Naive Bayes classificationExpert Syst Appl20154214871502 – reference: SitaramRLeeSRuizSRanaMVeitRBirbaumerNReal-time support vector classification and feedback of multiple emotional brain statesNeuroimage.201156 (2753765 – reference: WittenIHFrankEData mining: practical machine learning tools and techniques20052San FranciscoMorgan Kaufmann – reference: VapnikVThe nature of statistical learning theory1995New YorkSpringer Verlag – reference: FoxMDSnyderAZVincentJLCorbettaMVan EssenDCRaichleMEThe human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad SciU S A2005102967396781:CAS:528:DC%2BD2MXmsVaktb8%3D – reference: ZhouJWittKChenCZhangSZhangYQiuCCaoLWangXHigh impulsivity as a risk factor for the development of internalizing disorders in detained juvenile offendersCompr Psychiatry201455(511571164 – reference: American Psychiatric Association2013. The diagnostic and statistical manual of mental disorders (5th ed.).Washington, DC: Author 2013 – reference: ZhangJWangJZYuanZSobelESJiangHComputer-aided classification of optical images for diagnosis of osteoarthritis in the finger jointsJournal of X-Ray Science and Technology20111953154425214385 – reference: Tzourio-MazoyerNLandeauBPapathanassiouDCrivelloaFEtardaODelcroixaNMazoyercBJoliotaMAutomated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brainNeuroimage.2002152732891:STN:280:DC%2BD38%2FltFCntw%3D%3D11771995 – reference: WangJZLiangXZhangQFajardoLLJiangHAutomated breast cancer classification using near-infrared optical tomographic imagesJ Biomed Opt20081319021329 – reference: HumphriesMDGurneyKNetwork ‘small-world-ness’: a quantitative method for determining canonical network equivalencePLoS One2008318446219 – reference: LiaoWZhangZQPanZYMantiniDDingJRDuanXJLuoCLuGMChenHFAltered functional connectivity and small-world in mesial temporal lobe epilepsyPLoS One201051200726162799523 – reference: Mourão-MirandaJBokdeALWBornCHampelHStetterMClassifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI dataNeuroImage.20052898099516275139 – reference: PassamontiLFairchildGFornitoAGoodyerIMNimmo-SmithIHaganCCCalderAJAbnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorderPLoS One20127111:CAS:528:DC%2BC38XhslCju7zM231449703492256 – reference: Vangelis M, Ion A, Geogios P (2006) Spam filtering with naive Bayes - which naive Bayes? Third Conference on Email and Anti-Spam – reference: MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience.200229855948248271:CAS:528:DC%2BD38XotFSntb4%3D12399590 – reference: GallosLKSigmanMMakseHAThe conundrum of functional brain networks: small-world efficiency or fractal modularityFront Physiology20123123 – reference: John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. the Eleventh Conference on Uncertainty in Artificial Intelligence – reference: BassettDSBullmoreEDSmall-world brain networksNeuroscientist20061251252317079517 – reference: SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999293300 – reference: DingJRLiaoWZhangZMantiniDXuQWuGRLuGMChenHFTopological fractionation of resting-state networksPLoS One20116101:CAS:528:DC%2BC3MXhsVGltbbP220289173197522 – reference: SuLWangKFanFSuYGaoXReliability and validity of the screen for child anxiety related emotional disorders (SCARED) in Chinese childrenJournal of anxiety disorders200822461262117628391 – reference: LuFMZhouJSZhangJWangXPYuanZDisrupted small-world brain network topology in pure conduct disorderOncotarget.20178396550665524290294495630349 – reference: ReisSDSHuYBabinoAAndradeJSJrCanalsSSigmanMMakseHAAvoiding catastrophic failure in correlated networks of networksNature Phys2014107627671:CAS:528:DC%2BC2cXhsFOlt7bF – reference: HumphriesMGurneyKPrescottTThe brainstem reticular formation is a small-world, not scale-free, networkPhilos Trans RSocLond B BiolSci20062735035111:STN:280:DC%2BD283gvVKktw%3D%3D – reference: MitchellTMachine learning, McGraw Hill1997 – reference: RubinovMKnockSAStamCJMicheloyannisSHarrisAWFWilliams LeanneMBreakspearMSmall-world properties of nonlinear brain activity in schizophreniaHum Brain Mapp200930240341618072237 – reference: CortesCVapnikVSupport-vector networksMach Learn199520273297 – reference: ZhangJLinXFuGSaiLChenHYangJWangMLiuQYangGZhangJYuanZMapping the small-world properties of brain networks in deception by functional near-infrared spectroscopySci Rep20166252971:CAS:528:DC%2BC28XmvFegs7Y%3D10.1038/srep25297271261454850450 – reference: DattaSMisraDDasSA feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing featuresPattern Recogn Lett201680231237 – reference: Chen YW, Lin CJ2005. Combining SVMs with various feature selection strategies Available fromhttp://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf – reference: MaurerCWLaFaverKAmeliREpsteinSAHallettMHorovitzSGImpaired self-agency in functional movement disorders: a resting-state fMRI studyNeurology.2016876564570273857464977370 – reference: SchlaffkeLLissekSLenzMJuckelGSchultzTTegenthoffMSchmidt-WilckeTShared and nonshared neural networks of cognitive and affective theory-of-mind: a neuroimaging study using cartoon picture storiesHum Brain Mapp201536293925131828 – reference: MaslovSSneppenKSpecificity and stability in topology of protein networksScience.20022969109131:CAS:528:DC%2BD38XjsFymsr8%3D11988575 – reference: XiaMWangJHeYBrain Netviewer: a network visualization tool for human brain connectomicsPLoS One201381:CAS:528:DC%2BC3sXhtFOmtL%2FI238619513701683 – reference: HuangC-LChenM-CWangC-JCredit scoring with a data mining approach based on support vector machinesExpert Syst Appl2007334847856 – reference: SuykensJAKVan GestelTDe BrabanterJDe MoorBVandewalleJLeast squares support vector machines2002SingaporeWorld Scientific – reference: RozenfeldHDSongCMakseHASmall world-fractal transition in complex networks: renormalization group approachPhys Rev Lett201010420366610 – reference: ChenHYangQLiaoWGongQShenSEvaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mappingNeuroimage.2009471844185319540349 – reference: AkayMFSupport vector machines combined with feature selection for breast cancer diagnosisExpert Syst Appl200936232403247 – reference: Shanee N, Apter A, Weizman A. Psychometric properties of the K-SADS-PL in an Israeli adolescent clinical population. Israel Journal of Psychiatry and Related Sciences.1997 – reference: SuthaharanSDeep learning models2016Boston, MAMachine Learning Models and Algorithms for Big Data Classification. Springer289307 – reference: GaoJWangZYangYZhangWTaoCGuanJRaoNA novel approach for lie detection based on F-score and extreme learning machinePLoS One2013861:CAS:528:DC%2BC3sXpvVKhtrk%3D10.1371/journal.pone.0064704237551363670874 – reference: RubinovMSpornsOComplex network measures of brain connectivity: uses and interpretationsNeuroimage201052105910691981933719819337 – reference: HsuCWChangCCLinCJA practical guide to support vector classification2004Technical ReportDepartment of Computer Science and Information Engineering. National Taiwan University – volume: 8 year: 2013 ident: 2215_CR63 publication-title: PLoS One – ident: 2215_CR16 doi: 10.1016/j.neucom.2014.09.102 – volume: 20 start-page: 273 year: 1995 ident: 2215_CR18 publication-title: Mach Learn – volume-title: Least squares support vector machines year: 2002 ident: 2215_CR24 doi: 10.1142/5089 – volume: 3 start-page: 123 year: 2012 ident: 2215_CR11 publication-title: Front Physiology doi: 10.3389/fphys.2012.00123 – volume: 47 start-page: 1844 year: 2009 ident: 2215_CR36 publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2009.06.026 – volume: 12 start-page: 512 year: 2006 ident: 2215_CR57 publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 104 year: 2010 ident: 2215_CR14 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.104.025701 – volume: 15 start-page: 273 year: 2002 ident: 2215_CR40 publication-title: Neuroimage. doi: 10.1006/nimg.2001.0978 – volume: 8 issue: 6 year: 2013 ident: 2215_CR50 publication-title: PLoS One doi: 10.1371/journal.pone.0064704 – volume: 126 start-page: 791 year: 2011 ident: 2215_CR61 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-010-1317-x – ident: 2215_CR27 – volume: 28 start-page: 980 year: 2005 ident: 2215_CR52 publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2005.06.070 – volume: 7 issue: 11 year: 2012 ident: 2215_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0048789 – volume: 11 (3 start-page: 400 year: 2014 ident: 2215_CR8 publication-title: Phys Life Rev doi: 10.1016/j.plrev.2014.03.005 – volume: 109 start-page: 2825 year: 2012 ident: 2215_CR13 publication-title: Proc Nat Acad Sci doi: 10.1073/pnas.1106612109 – ident: 2215_CR20 doi: 10.1016/j.neuroimage.2011.12.052 – volume: 102 start-page: 9673 year: 2005 ident: 2215_CR37 publication-title: U S A doi: 10.1073/pnas.0504136102 – volume: 296 start-page: 910 year: 2002 ident: 2215_CR46 publication-title: Science. doi: 10.1126/science.1065103 – volume: 2 start-page: 514 year: 2014 ident: 2215_CR64 publication-title: IEEE access doi: 10.1109/ACCESS.2014.2325029 – volume: 3 issue: 2 year: 2007 ident: 2215_CR7 publication-title: PLoS ComputBiol – volume: 9 start-page: 293 year: 1999 ident: 2215_CR25 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 393 start-page: 440 issue: 6684 year: 1998 ident: 2215_CR44 publication-title: Nature doi: 10.1038/30918 – volume: 50 start-page: 499 year: 2010 ident: 2215_CR38 publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2009.12.051 – start-page: 289 volume-title: Deep learning models year: 2016 ident: 2215_CR65 – volume: 216 start-page: 379 issue: 3 year: 2014 ident: 2215_CR35 publication-title: Psychiatry Res doi: 10.1016/j.psychres.2014.01.024 – volume-title: Data mining: practical machine learning tools and techniques year: 2005 ident: 2215_CR56 – volume: 87 start-page: 564 issue: 6 year: 2016 ident: 2215_CR6 publication-title: Neurology. doi: 10.1212/WNL.0000000000002940 – volume: 273 start-page: 503 year: 2006 ident: 2215_CR58 publication-title: Philos Trans RSocLond B BiolSci – volume: 6 start-page: 21 year: 2015 ident: 2215_CR62 publication-title: Front Psychiatry doi: 10.3389/fpsyt.2015.00021 – volume: 17 start-page: 2407 issue: 10 year: 2007 ident: 2215_CR15 publication-title: Cereb Cortex doi: 10.1093/cercor/bhl149 – volume-title: A practical guide to support vector classification year: 2004 ident: 2215_CR55 – ident: 2215_CR28 – volume: 3 year: 2008 ident: 2215_CR45 publication-title: PLoS One doi: 10.1371/journal.pone.0002051 – ident: 2215_CR30 – volume: 64 start-page: 1 year: 2016 ident: 2215_CR19 publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2015.06.014 – volume: 36 start-page: 3240 issue: 2 year: 2009 ident: 2215_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.009 – ident: 2215_CR1 doi: 10.1176/appi.books.9780890425596 – volume: 52 start-page: 1059 year: 2010 ident: 2215_CR43 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 28 start-page: 43 issue: 1 year: 1987 ident: 2215_CR32 publication-title: J Child Psychol Psychiatry doi: 10.1111/j.1469-7610.1987.tb00651.x – volume: 5 issue: 1 year: 2010 ident: 2215_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0008525 – volume: 6 issue: 10 year: 2011 ident: 2215_CR5 publication-title: PLoS One – volume-title: Machine learning, McGraw Hill year: 1997 ident: 2215_CR26 – volume: 46 start-page: 1 year: 2016 ident: 2215_CR2 publication-title: S Afr J Psychol doi: 10.1177/0081246316628455 – volume: 23 start-page: 664 issue: 5–6 year: 2012 ident: 2215_CR31 publication-title: J Forensic Psychiatry Psychol doi: 10.1080/14789949.2012.727452 – volume: 56 (2 start-page: 753 year: 2011 ident: 2215_CR21 publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2010.08.007 – volume: 36 start-page: 29 year: 2015 ident: 2215_CR51 publication-title: Hum Brain Mapp doi: 10.1002/hbm.22610 – volume: 80 start-page: 231 year: 2016 ident: 2215_CR60 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2016.06.023 – volume: 24 start-page: 909 issue: 8 year: 2015 ident: 2215_CR4 publication-title: European child & Adolescent Psychiatry doi: 10.1007/s00787-014-0639-3 – volume: 10 start-page: 762 year: 2014 ident: 2215_CR12 publication-title: Nature Phys doi: 10.1038/nphys3081 – ident: 2215_CR48 – volume: 22 start-page: 612 issue: 4 year: 2008 ident: 2215_CR33 publication-title: Journal of anxiety disorders doi: 10.1016/j.janxdis.2007.05.011 – volume: 30 start-page: 403 issue: 2 year: 2009 ident: 2215_CR10 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20517 – volume: 55(5 start-page: 1157 year: 2014 ident: 2215_CR34 publication-title: Compr Psychiatry doi: 10.1016/j.comppsych.2014.03.022 – volume: 33 start-page: 847 issue: 4 year: 2007 ident: 2215_CR49 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2006.07.007 – volume: 298 start-page: 824 issue: 5594 year: 2002 ident: 2215_CR47 publication-title: Science. doi: 10.1126/science.298.5594.824 – volume: 13 year: 2008 ident: 2215_CR54 publication-title: J Biomed Opt – volume: 42 start-page: 1487 year: 2015 ident: 2215_CR59 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.019 – volume: 43 start-page: 528 year: 2008 ident: 2215_CR39 publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2008.08.010 – volume: 6 start-page: 25297 year: 2016 ident: 2215_CR41 publication-title: Sci Rep doi: 10.1038/srep25297 – volume-title: The nature of statistical learning theory year: 1995 ident: 2215_CR17 doi: 10.1007/978-1-4757-2440-0 – volume: 24 start-page: 1529 issue: 6 year: 2014 ident: 2215_CR9 publication-title: Cereb Cortex doi: 10.1093/cercor/bht004 – volume: 36 start-page: 980 issue: 7 year: 1997 ident: 2215_CR29 publication-title: J Am Acad Child Adolesc Psychiatry doi: 10.1097/00004583-199707000-00021 – volume: 8 start-page: 65506 issue: 39 year: 2017 ident: 2215_CR23 publication-title: Oncotarget. doi: 10.18632/oncotarget.19098 – volume: 19 start-page: 531 year: 2011 ident: 2215_CR53 publication-title: Journal of X-Ray Science and Technology doi: 10.3233/XST-2011-0312 |
SSID | ssj0021524 |
Score | 2.3169453 |
Snippet | Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2071 |
SubjectTerms | Bayesian analysis Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Children Classification Classifiers Computer Applications Conduct disorder Control methods Emotional disorders Feature extraction Feature selection Human Physiology Imaging Mental health Networks Original Article Radiology Singular value decomposition Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLyIT6yuEsGbFrZpkrbHRVwWYT25sLfSPHqS7rLdHvz3zqRpi6KCp0KbpDCZ5PuGeRFynxbwWsosjGNmQl7KcagyXoIumwIQThWR85jOX-VswV-WYumTwuou2r1zSbqbekh2A3BKQjR3AHciEaa7ZF-g7Q5avGCT3swCROJ94CLwZ58q8_MaX-Fo4Jjf3KIObabH5MjTRDpp9_WE7NjqlBzMvSP8jDSumSWG-TjJ0lVJ183GUrBusYArNb6oJsX0EdomO35QH5deU8QuQ2EeeqzhpsD5CptF0KoNC69pm79IsXUHPl3i0TlZTJ_fnmah76AQaiBW29DGmjOuEYo04LZII4BEUzKjokjaQnFreWptJhTwJmESC-ROKKQMMlOxSeILsletKntJKPojrZY6ypThZaGzSBS21EqWY61iFgck6gSZa19eHLtcvOdDYWQUfg7Cz53w8zQgD_2cdVtc48_Ro25_cn_Q6pxxuJEkmkEBues_wxFBv0dR2VWDY8DOEgnnLCCP3b4OS_z-x6v_Db8mh8ypFkagjcjedtPYG6AsW3XrNPQT627ipQ priority: 102 providerName: Springer Nature |
Title | Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state |
URI | https://link.springer.com/article/10.1007/s11517-020-02215-8 https://www.proquest.com/docview/2432260561 https://www.proquest.com/docview/2423057442 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFH64gHgRVxw3InjToG3TtD3JjM4oiiLiwHgqzdKTdMZZDv5730szUxT00kCTtPDymu9L3wZwlhZ4W8qMR1FouCjlFVeZKFGXTYEIp4rAWUyfnuV9XzwM4oH_4TbxbpXzPdFt1Gao6R_5ZShQ9STx3evRJ6eqUWRd9SU0lmGVUpeRS1cyaA5ciE1i4cKITNoHzdShcwh1CafDE6JYEPP0JzA1bPOXgdThTm8TNjxhZO16hbdgyVbbsPbkTeI7MHNlLcnhx8mYDUs2mo0tw3MupXJlxqfXZBRIwuqwxy_mPdQnjFDMMJxHtmvcM2i-orIRrKodxCesjmRkVMSDWheCtAv9Xvft5p77WgpcI8WachtpEQpNoKQRweM0QHA0ZWhUEEhbKGGtSK3NYoUMKjaJRZoXKyIPMlORSaI9WKmGld0HRpZJq6UOMmVEWegsiAtbaiXLK62iMGpBMBdkrn2icap38ZE3KZJJ-DkKP3fCz9MWnC_mjOo0G_-OPpqvT-4_uUneKEgLThfd-LGQBaSo7HBGY_DEFSdChC24mK9r84i_33jw_xsPYT10qkS-Z0ewMh3P7DGSlak6cRqJ17R3dwKr7c5tp0ft3ftjF9tO9_nlFXv7YfsbFkrsKw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVCpcEBSqGgJspXJqV4131xv7gBCiTdNHemql3lzvwyfkhDyE8qf4jcys7URFam89WbL3Ic3M7jfjeQEcpAW-1jrjUgrHVan73GSqRFl2BSKcKeLgMR1f69GturhL7jrwt82FobDK9k4MF7WbWPpHfiwUip4mfff79DenrlHkXW1baNRicelXf9Bkm387P0H-fhVieHrzc8SbrgLcorKx4F5aJZSl69kiliVpjDDhSuFMHGtfGOW9Sr3PEoO6ROIGHhWexBCM6sxIN5C47gvYUlJmdKLS4dnawEMsVOuQSdTcmySdOlUPoXXAyVhD1IwTnj4Ewo12-59DNuDc8A28bhRU9qOWqLfQ8dUObI8bF_w7WIY2mhRgFHjKJiWbLmeeoV1NpWOZa8p5MkpcYXWa5Yo1EfFzRqjpGM4jXzneUTTfUJsKVtUB6XNWZ04yahpCz5Dy9B5un4XKu9CtJpXfA0aeUG-1jTPjVFnYLE4KX1qjy741UsgI4paQuW0Km1N_jV_5piQzET9H4ueB-HkaweF6zrQu6_Hk6F7Ln7w54vN8I5AR7K8_4-Ekj0tR-cmSxqCFlwyUEhEctXzdLPH4jh-e3vELvBzdjK_yq_Pry4_wSgSxori3HnQXs6X_hIrSwnwO0sng_rmPwz-uwCJh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJsQXowLxFHVN8Ek2sNvdbftgjBEvIEJ8gOTeavejT6R3cnch_Gv8dc5st9dAIm88NWn3I5md2d9M5wtgt6jxtTElzzLpuWrMAbelapCXfY0IZ2sRPaanZ-boQv2c6Mka3Pa5MBRW2d-J8aL2U0f_yPelQtYzpO_uNyks4vfh-OvsL6cOUuRp7dtpdCxyEm6u0Xybfzk-xLP-JOX4x_n3I546DHCHiseCh8wpqRxd1Q5xTRcCIcM30lshTKitCkEVIZTaol6hfR5Q-dGWINWUNvN5hus-gad5pgXJWD4ZjD3ERbUKn0QtPiXsdGl7CLM5J8MNEVRoXtwFxUHTveecjZg3fgHPk7LKvnXc9RLWQvsKNk6TO34TlrGlJgUbxfNl04bNlleBoY1NZWSZT6U9GSWxsC7l8oal6Pg5IwT1DOeR3xzvK5pvqWUFa7vg9DnrsigZNRChZ0x_2oKLR6HyNqy30za8BkZe0eCME6X1qqldKXQdGmdNc-BsJrMRiJ6QlUtFzqnXxmU1lGcm4ldI_CoSvypG8Hk1Z9aV-Hhw9E5_PlUS93k1MOcIPq4-o6CS96Vuw3RJY9Da07lScgR7_bkOS_x_xzcP7_gBNlAQql_HZydv4ZmMXEUhcDuwvrhahneoMy3s-8icDP48tjT8AxfrJo4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+pure+conduct+disorder+from+healthy+controls+based+on+indices+of+brain+networks+during+resting+state&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zhang%2C+Jiang&rft.au=Liu%2C+Yuyan&rft.au=Luo+Ruisen&rft.au=Du+Zhengcong&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=9&rft.spage=2071&rft.epage=2082&rft_id=info:doi/10.1007%2Fs11517-020-02215-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |