Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state

Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developin...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 58; no. 9; pp. 2071 - 2082
Main Authors Zhang, Jiang, Liu, Yuyan, Luo, Ruisen, Du, Zhengcong, Lu, Fengmei, Yuan, Zhen, Zhou, Jiansong, Li, Shasha
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F -score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract
AbstractList Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers.
Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers-least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)-for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract.Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F-score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers-least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)-for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract.
Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using measures of brain networks. This study goes further by presenting a classification scheme to distinguish subjects with CD from typically developing healthy subjects based on measures of small-world networks. In this study, small-world networks were constructed, and feature data were generated for both the CD and healthy control (HC) groups. Two methods of feature selection, including the F -score and feature projection with singular value decomposition (SVD), were used to extract the feature data. Furthermore, and importantly, the classification performances were compared between the results from the two methods of feature selection. The selected feature data by SVD were employed to train three classifiers—least squares support vector machine (LS-SVM), naive Bayes and K-nearest neighbour (KNN)—for CD classification. Cross-validation results from 36 subjects showed that CD patients can be separated from HC with a sensitivity, specificity and overall accuracy of 88.89%, 100% and 94.44%, respectively, by using the LS-SVM classifier. These findings suggest that the combination of the LS-SVM classifier with SVD can achieve a higher degree of accuracy for CD diagnosis than the naive Bayes and KNN classifiers. Graphical abstract
Author Li, Shasha
Yuan, Zhen
Zhou, Jiansong
Lu, Fengmei
Zhang, Jiang
Du, Zhengcong
Luo, Ruisen
Liu, Yuyan
Author_xml – sequence: 1
  givenname: Jiang
  orcidid: 0000-0002-0783-3705
  surname: Zhang
  fullname: Zhang, Jiang
  organization: College of Electrical Engineering, Sichuan University
– sequence: 2
  givenname: Yuyan
  surname: Liu
  fullname: Liu, Yuyan
  organization: College of Electrical Engineering, Sichuan University
– sequence: 3
  givenname: Ruisen
  surname: Luo
  fullname: Luo, Ruisen
  email: rsluo@scu.edu.cn
  organization: College of Electrical Engineering, Sichuan University
– sequence: 4
  givenname: Zhengcong
  surname: Du
  fullname: Du, Zhengcong
  organization: School of Information Science and Technology, Xichang University
– sequence: 5
  givenname: Fengmei
  surname: Lu
  fullname: Lu, Fengmei
  organization: The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China
– sequence: 6
  givenname: Zhen
  surname: Yuan
  fullname: Yuan, Zhen
  organization: Bioimaging Core, Faculty of Health Sciences, University of Macau
– sequence: 7
  givenname: Jiansong
  surname: Zhou
  fullname: Zhou, Jiansong
  organization: Mental Health Institute, Second Xiangya Hospital, Hunan Province Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University
– sequence: 8
  givenname: Shasha
  surname: Li
  fullname: Li, Shasha
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School
BookMark eNp9kUtrHDEQhEVwIOtN_kBOglxymUStx8z4GJa8wOCLcxYaqSeWMytt1BqC_3003kDABx9EHbo-Ud11yS5STsjYWxAfQIjhIwEYGDohRXsSTDe-YDsYNHRCa33BdgJ0GwGMr9gl0b0QzST1jq2HxRHFOXpXY048z_y0FuQ-p7D6ykOkXAIWPpd85Hfolnr3sE1ryQvxyREG3riYQvRIGz8VFxNPWP_k8ot4WEtMP3lBqptSdRVfs5ezWwjf_NM9-_Hl8-3hW3d98_X74dN155WRtUPltdReCBh8D8qMgBjCLMME0KObNKIeEa_MZECbMKDpezNJKVV_NakwqD17f_73VPLvtSWwx0gel8UlzCtZqaUSZtBN9uzdE-t9Xktq6ZpLSdkL0yLs2Xh2-ZKJCs7Wx_p4udq2XiwIu_Vhz33Y1od97MOODZVP0FOJR1cenofUGaLTdkUs_1M9Q_0F-higeA
CitedBy_id crossref_primary_10_1016_j_bpsc_2022_02_004
crossref_primary_10_1016_j_copsyc_2022_101356
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1097_DBP_0000000000001049
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_neubiorev_2022_104995
Cites_doi 10.1016/j.neucom.2014.09.102
10.1142/5089
10.3389/fphys.2012.00123
10.1016/j.neuroimage.2009.06.026
10.1177/1073858406293182
10.1103/PhysRevLett.104.025701
10.1006/nimg.2001.0978
10.1371/journal.pone.0064704
10.1007/s10549-010-1317-x
10.1016/j.neuroimage.2005.06.070
10.1371/journal.pone.0048789
10.1016/j.plrev.2014.03.005
10.1073/pnas.1106612109
10.1016/j.neuroimage.2011.12.052
10.1073/pnas.0504136102
10.1126/science.1065103
10.1109/ACCESS.2014.2325029
10.1023/A:1018628609742
10.1038/30918
10.1016/j.neuroimage.2009.12.051
10.1016/j.psychres.2014.01.024
10.1212/WNL.0000000000002940
10.3389/fpsyt.2015.00021
10.1093/cercor/bhl149
10.1371/journal.pone.0002051
10.1016/j.pnpbp.2015.06.014
10.1016/j.eswa.2008.01.009
10.1176/appi.books.9780890425596
10.1016/j.neuroimage.2009.10.003
10.1111/j.1469-7610.1987.tb00651.x
10.1371/journal.pone.0008525
10.1177/0081246316628455
10.1080/14789949.2012.727452
10.1016/j.neuroimage.2010.08.007
10.1002/hbm.22610
10.1016/j.patrec.2016.06.023
10.1007/s00787-014-0639-3
10.1038/nphys3081
10.1016/j.janxdis.2007.05.011
10.1002/hbm.20517
10.1016/j.comppsych.2014.03.022
10.1016/j.eswa.2006.07.007
10.1126/science.298.5594.824
10.1016/j.eswa.2014.09.019
10.1016/j.neuroimage.2008.08.010
10.1038/srep25297
10.1007/978-1-4757-2440-0
10.1093/cercor/bht004
10.1097/00004583-199707000-00021
10.18632/oncotarget.19098
10.3233/XST-2011-0312
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2020
International Federation for Medical and Biological Engineering 2020.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2020
– notice: International Federation for Medical and Biological Engineering 2020.
DBID AAYXX
CITATION
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s11517-020-02215-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 2082
ExternalDocumentID 10_1007_s11517_020_02215_8
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c352t-e3c424c0017c613581eeddf2db116eab4ee48ee95b5145d7e5665b222369b3d73
IEDL.DBID 7X7
ISSN 0140-0118
1741-0444
IngestDate Tue Aug 05 09:37:00 EDT 2025
Fri Jul 25 19:13:00 EDT 2025
Tue Jul 01 02:58:31 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Fri Feb 21 02:31:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Conduct disorder
Functional magnetic resonance imaging
Classification scheme
Feature selection
Small-world networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-e3c424c0017c613581eeddf2db116eab4ee48ee95b5145d7e5665b222369b3d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0783-3705
PQID 2432260561
PQPubID 54161
PageCount 12
ParticipantIDs proquest_miscellaneous_2423057442
proquest_journals_2432260561
crossref_citationtrail_10_1007_s11517_020_02215_8
crossref_primary_10_1007_s11517_020_02215_8
springer_journals_10_1007_s11517_020_02215_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200900
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References VapnikVThe nature of statistical learning theory1995New YorkSpringer Verlag
ZhouJWittKZhangYChenCQiuCCaoLWangXAnxiety, depression, impulsivity and substance misuse in violent and non-violent adolescent boys in detention in ChinaPsychiatry Res2014216337938424612970
HuangC-LChenM-CWangC-JCredit scoring with a data mining approach based on support vector machinesExpert Syst Appl2007334847856
HeYChenZJEvansACSmall-world anatomical networks in the human brain revealed by cortical thickness from MRICereb Cortex200717102407241917204824
ZhouJChenCWangXCaiWZhangSQiuCWangHLuoYFazelSPsychiatric disorders in adolescent boys in detention: a preliminary prevalence and case–control study in two Chinese provincesJ Forensic Psychiatry Psychol2012235–6664675
Tzourio-MazoyerNLandeauBPapathanassiouDCrivelloaFEtardaODelcroixaNMazoyercBJoliotaMAutomated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brainNeuroimage.2002152732891:STN:280:DC%2BD38%2FltFCntw%3D%3D11771995
RubinovMSpornsOComplex network measures of brain connectivity: uses and interpretationsNeuroimage201052105910691981933719819337
HumphriesMGurneyKPrescottTThe brainstem reticular formation is a small-world, not scale-free, networkPhilos Trans RSocLond B BiolSci20062735035111:STN:280:DC%2BD283gvVKktw%3D%3D
ChenXWLinXBig data deep learning: challenges and perspectivesIEEE access20142514525
AkayMFSupport vector machines combined with feature selection for breast cancer diagnosisExpert Syst Appl200936232403247
ChenHDuanXLiuFLuFMaXZhangYUddinLQChenHFMultivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center studyProg Neuro-Psychopharmacol Biol Psychiatry20166419
WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature199839366844404421:CAS:528:DyaK1cXjs1Khsrk%3D96239989623998
ZhangJLinXFuGSaiLChenHYangJWangMLiuQYangGZhangJYuanZMapping the small-world properties of brain networks in deception by functional near-infrared spectroscopySci Rep20166252971:CAS:528:DC%2BC28XmvFegs7Y%3D10.1038/srep25297271261454850450
John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. the Eleventh Conference on Uncertainty in Artificial Intelligence
Mourão-MirandaJBokdeALWBornCHampelHStetterMClassifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI dataNeuroImage.20052898099516275139
MaurerCWLaFaverKAmeliREpsteinSAHallettMHorovitzSGImpaired self-agency in functional movement disorders: a resting-state fMRI studyNeurology.2016876564570273857464977370
Li P, Dong L, Xiao H, Xu M2015. A cloud image detection method based on SVM vector machine. Neurocomputing, 169: 34–42
MitchellTMachine learning, McGraw Hill1997
SuLWangKFanFSuYGaoXReliability and validity of the screen for child anxiety related emotional disorders (SCARED) in Chinese childrenJournal of anxiety disorders200822461262117628391
SarkarSDalyEFengYEckerCCraigMCReduced cortical surface area in adolescents with conduct disorderEuropean child & Adolescent Psychiatry2015248909917
Chen YW, Lin CJ2005. Combining SVMs with various feature selection strategies Available fromhttp://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf
WittenIHFrankEData mining: practical machine learning tools and techniques20052San FranciscoMorgan Kaufmann
LuFMZhouJSZhangJWangXPYuanZDisrupted small-world brain network topology in pure conduct disorderOncotarget.20178396550665524290294495630349
RubinovMKnockSAStamCJMicheloyannisSHarrisAWFWilliams LeanneMBreakspearMSmall-world properties of nonlinear brain activity in schizophreniaHum Brain Mapp200930240341618072237
SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999293300
GallosLKSigmanMMakseHAThe conundrum of functional brain networks: small-world efficiency or fractal modularityFront Physiology20123123
American Psychiatric Association2013. The diagnostic and statistical manual of mental disorders (5th ed.).Washington, DC: Author 2013
GallosLKMakseHSigmanAMA small world of weak ties provides optimal global integration of self-similar modules in functional brain networksProc Nat Acad Sci2012109282528301:CAS:528:DC%2BC38XjsFyisrs%3D22308319
WuJPanSZhuXCaiZZhangPZhangCSelf-adaptive attribute weighting for Naive Bayes classificationExpert Syst Appl20154214871502
ZhangJWangJZYuanZSobelESJiangHComputer-aided classification of optical images for diagnosis of osteoarthritis in the finger jointsJournal of X-Ray Science and Technology20111953154425214385
GaoJWangZYangYZhangWTaoCGuanJRaoNA novel approach for lie detection based on F-score and extreme learning machinePLoS One2013861:CAS:528:DC%2BC3sXpvVKhtrk%3D10.1371/journal.pone.0064704237551363670874
ShusterGGallimidiZReissAHDovgolevskyEBillanSAbdah-BortnyakRKutenAEngelAShibanATischUHaickHClassification of breast cancer precursors through exhaled breathBreast Cancer Res Treat201112679179621190078
SuthaharanSDeep learning models2016Boston, MAMachine Learning Models and Algorithms for Big Data Classification. Springer289307
FrickPJCurrent research on conduct disorder in children and adolescentsS Afr J Psychol20164611510.1177/0081246316628455
SuykensJAKVan GestelTDe BrabanterJDe MoorBVandewalleJLeast squares support vector machines2002SingaporeWorld Scientific
MaslovSSneppenKSpecificity and stability in topology of protein networksScience.20022969109131:CAS:528:DC%2BD38XjsFymsr8%3D11988575
MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience.200229855948248271:CAS:528:DC%2BD38XotFSntb4%3D12399590
KaufmanJBirmaherBBrentDRaoUFlynnCMoreciPWilliamsonDRyanNSchedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity dataJ Am Acad Child Adolesc Psychiatry19973679809881:STN:280:DyaK2szkvVKqsQ%3D%3D9204677
AchardSBullmoreEEfficiency and cost of economical brain functional networksPLoS ComputBiol200732
DingJRLiaoWZhangZMantiniDXuQWuGRLuGMChenHFTopological fractionation of resting-state networksPLoS One20116101:CAS:528:DC%2BC3MXhsVGltbbP220289173197522
ZhouJWittKChenCZhangSZhangYQiuCCaoLWangXHigh impulsivity as a risk factor for the development of internalizing disorders in detained juvenile offendersCompr Psychiatry201455(511571164
ReisSDSHuYBabinoAAndradeJSJrCanalsSSigmanMMakseHAAvoiding catastrophic failure in correlated networks of networksNature Phys2014107627671:CAS:528:DC%2BC2cXhsFOlt7bF
WangJZLiangXZhangQFajardoLLJiangHAutomated breast cancer classification using near-infrared optical tomographic imagesJ Biomed Opt20081319021329
XiaMWangJHeYBrain Netviewer: a network visualization tool for human brain connectomicsPLoS One201381:CAS:528:DC%2BC3sXhtFOmtL%2FI238619513701683
BirlesonPHudsonIBuchananDGWolffSClinical evaluation of a self-rating scale for depressive disorder in childhood (Depression Self-Rating Scale)J Child Psychol Psychiatry198728143601:STN:280:DyaL2s7ms1aquw%3D%3D3558538
LiaoWZhangZQPanZYMantiniDDingJRDuanXJLuoCLuGMChenHFAltered functional connectivity and small-world in mesial temporal lobe epilepsyPLoS One201051200726162799523
BassettDSBullmoreEDSmall-world brain networksNeuroscientist20061251252317079517
Vangelis M, Ion A, Geogios P (2006) Spam filtering with naive Bayes - which naive Bayes? Third Conference on Email and Anti-Spam
PassamontiLFairchildGFornitoAGoodyerIMNimmo-SmithIHaganCCCalderAJAbnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorderPLoS One20127111:CAS:528:DC%2BC38XhslCju7zM231449703492256
Shanee N, Apter A, Weizman A. Psychometric properties of the K-SADS-PL in an Israeli adolescent clinical population. Israel Journal of Psychiatry and Related Sciences.1997
CortesCVapnikVSupport-vector networksMach Learn199520273297
HayasakaSLaurientiPJComparison of characteristics between region-and voxel-based network analyses in resting-state fMRI dataNeuroimage.20105049950820026219
SacchetMDPrasadGFoland-RossLCThompsonPMGotlibIHSupport vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theoryFront Psychiatry201562110.3389/fpsyt.2015.00021257629414332161
ChenHYangQLiaoWGongQShenSEvaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mappingNeuroimage.2009471844185319540349
PessoaLUnderstanding brain networks and brain organizationPhys Life Rev201411 (3400435
RozenfeldHDSongCMakseHASmall world-fractal transition in complex networks: renormalization group approachPhys Rev Lett201010420366610
UeharaTYamasakiTOkamotoTKoikeTKanSMiyauchiSKiraJTobimatsuSEfficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI studyCereb Cortex20142461529153923349223
DattaSMisraDDasSA feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing featuresPattern Recogn Lett201680231237
SitaramRLeeSRuizSRanaMVeitRBirbaumerNReal-time support vector classification and feedback of multiple emotional brain statesNeuroimage.201156 (2753765
van den HeuvelMPStamCJBoersmaMHulshoff PolHESmall-world and scale-free organization of voxel-based resting-state functional connectivity in the human brainNeuroimage.20084352853918786642
FoxMDSnyderAZVincentJLCorbettaMVan EssenDCRaichleMEThe human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad SciU S A2005102967396781:CAS:528:DC%2BD2MXmsVaktb8%3D
SchlaffkeLLissekSLenzMJuckelGSchultzTTegenthoffMSchmidt-WilckeTShared and nonshared neural networks of cognitive and affective theory-of-mind: a neuroimaging study using cartoon picture storiesHum Brain Mapp201536293925131828
Meier TB, Desphande AS, Vergun S, Nair VA , Song J 2012. et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage., 1 (60):601-613
HumphriesMDGurneyKNetwor
S Datta (2215_CR60) 2016; 80
JR Ding (2215_CR5) 2011; 6
T Uehara (2215_CR9) 2014; 24
W Liao (2215_CR42) 2010; 5
CW Maurer (2215_CR6) 2016; 87
M Rubinov (2215_CR43) 2010; 52
J Zhou (2215_CR34) 2014; 55(5
2215_CR48
LK Gallos (2215_CR11) 2012; 3
L Su (2215_CR33) 2008; 22
P Birleson (2215_CR32) 1987; 28
S Maslov (2215_CR46) 2002; 296
G Shuster (2215_CR61) 2011; 126
J Zhang (2215_CR41) 2016; 6
S Achard (2215_CR7) 2007; 3
JZ Wang (2215_CR54) 2008; 13
R Milo (2215_CR47) 2002; 298
MD Fox (2215_CR37) 2005; 102
DS Bassett (2215_CR57) 2006; 12
CW Hsu (2215_CR55) 2004
H Chen (2215_CR19) 2016; 64
J Kaufman (2215_CR29) 1997; 36
MP van den Heuvel (2215_CR39) 2008; 43
IH Witten (2215_CR56) 2005
2215_CR30
HD Rozenfeld (2215_CR14) 2010; 104
FM Lu (2215_CR23) 2017; 8
XW Chen (2215_CR64) 2014; 2
J Zhou (2215_CR35) 2014; 216
2215_CR28
V Vapnik (2215_CR17) 1995
M Xia (2215_CR63) 2013; 8
S Hayasaka (2215_CR38) 2010; 50
PJ Frick (2215_CR2) 2016; 46
JAK Suykens (2215_CR25) 1999; 9
J Mourão-Miranda (2215_CR52) 2005; 28
R Sitaram (2215_CR21) 2011; 56 (2
M Humphries (2215_CR58) 2006; 273
L Schlaffke (2215_CR51) 2015; 36
J Gao (2215_CR50) 2013; 8
LK Gallos (2215_CR13) 2012; 109
2215_CR27
S Sarkar (2215_CR4) 2015; 24
L Pessoa (2215_CR8) 2014; 11 (3
2215_CR20
2215_CR1
S Suthaharan (2215_CR65) 2016
C Cortes (2215_CR18) 1995; 20
SDS Reis (2215_CR12) 2014; 10
Y He (2215_CR15) 2007; 17
MD Humphries (2215_CR45) 2008; 3
J Wu (2215_CR59) 2015; 42
JAK Suykens (2215_CR24) 2002
MF Akay (2215_CR22) 2009; 36
C-L Huang (2215_CR49) 2007; 33
J Zhou (2215_CR31) 2012; 23
M Rubinov (2215_CR10) 2009; 30
2215_CR16
T Mitchell (2215_CR26) 1997
J Zhang (2215_CR53) 2011; 19
DJ Watts (2215_CR44) 1998; 393
H Chen (2215_CR36) 2009; 47
L Passamonti (2215_CR3) 2012; 7
N Tzourio-Mazoyer (2215_CR40) 2002; 15
MD Sacchet (2215_CR62) 2015; 6
References_xml – reference: HayasakaSLaurientiPJComparison of characteristics between region-and voxel-based network analyses in resting-state fMRI dataNeuroimage.20105049950820026219
– reference: Li P, Dong L, Xiao H, Xu M2015. A cloud image detection method based on SVM vector machine. Neurocomputing, 169: 34–42
– reference: van den HeuvelMPStamCJBoersmaMHulshoff PolHESmall-world and scale-free organization of voxel-based resting-state functional connectivity in the human brainNeuroimage.20084352853918786642
– reference: Meier TB, Desphande AS, Vergun S, Nair VA , Song J 2012. et al. Support vector machine classification and characterization of age-related reorganization of functional brain networks. Neuroimage., 1 (60):601-613
– reference: SacchetMDPrasadGFoland-RossLCThompsonPMGotlibIHSupport vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theoryFront Psychiatry201562110.3389/fpsyt.2015.00021257629414332161
– reference: ChenHDuanXLiuFLuFMaXZhangYUddinLQChenHFMultivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center studyProg Neuro-Psychopharmacol Biol Psychiatry20166419
– reference: KaufmanJBirmaherBBrentDRaoUFlynnCMoreciPWilliamsonDRyanNSchedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity dataJ Am Acad Child Adolesc Psychiatry19973679809881:STN:280:DyaK2szkvVKqsQ%3D%3D9204677
– reference: GallosLKMakseHSigmanAMA small world of weak ties provides optimal global integration of self-similar modules in functional brain networksProc Nat Acad Sci2012109282528301:CAS:528:DC%2BC38XjsFyisrs%3D22308319
– reference: ZhouJChenCWangXCaiWZhangSQiuCWangHLuoYFazelSPsychiatric disorders in adolescent boys in detention: a preliminary prevalence and case–control study in two Chinese provincesJ Forensic Psychiatry Psychol2012235–6664675
– reference: WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature199839366844404421:CAS:528:DyaK1cXjs1Khsrk%3D96239989623998
– reference: HeYChenZJEvansACSmall-world anatomical networks in the human brain revealed by cortical thickness from MRICereb Cortex200717102407241917204824
– reference: FrickPJCurrent research on conduct disorder in children and adolescentsS Afr J Psychol20164611510.1177/0081246316628455
– reference: ChenXWLinXBig data deep learning: challenges and perspectivesIEEE access20142514525
– reference: ShusterGGallimidiZReissAHDovgolevskyEBillanSAbdah-BortnyakRKutenAEngelAShibanATischUHaickHClassification of breast cancer precursors through exhaled breathBreast Cancer Res Treat201112679179621190078
– reference: BirlesonPHudsonIBuchananDGWolffSClinical evaluation of a self-rating scale for depressive disorder in childhood (Depression Self-Rating Scale)J Child Psychol Psychiatry198728143601:STN:280:DyaL2s7ms1aquw%3D%3D3558538
– reference: PessoaLUnderstanding brain networks and brain organizationPhys Life Rev201411 (3400435
– reference: UeharaTYamasakiTOkamotoTKoikeTKanSMiyauchiSKiraJTobimatsuSEfficiency of a “small-world” brain network depends on consciousness level: a resting-state fMRI studyCereb Cortex20142461529153923349223
– reference: AchardSBullmoreEEfficiency and cost of economical brain functional networksPLoS ComputBiol200732
– reference: SarkarSDalyEFengYEckerCCraigMCReduced cortical surface area in adolescents with conduct disorderEuropean child & Adolescent Psychiatry2015248909917
– reference: ZhouJWittKZhangYChenCQiuCCaoLWangXAnxiety, depression, impulsivity and substance misuse in violent and non-violent adolescent boys in detention in ChinaPsychiatry Res2014216337938424612970
– reference: WuJPanSZhuXCaiZZhangPZhangCSelf-adaptive attribute weighting for Naive Bayes classificationExpert Syst Appl20154214871502
– reference: SitaramRLeeSRuizSRanaMVeitRBirbaumerNReal-time support vector classification and feedback of multiple emotional brain statesNeuroimage.201156 (2753765
– reference: WittenIHFrankEData mining: practical machine learning tools and techniques20052San FranciscoMorgan Kaufmann
– reference: VapnikVThe nature of statistical learning theory1995New YorkSpringer Verlag
– reference: FoxMDSnyderAZVincentJLCorbettaMVan EssenDCRaichleMEThe human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad SciU S A2005102967396781:CAS:528:DC%2BD2MXmsVaktb8%3D
– reference: ZhouJWittKChenCZhangSZhangYQiuCCaoLWangXHigh impulsivity as a risk factor for the development of internalizing disorders in detained juvenile offendersCompr Psychiatry201455(511571164
– reference: American Psychiatric Association2013. The diagnostic and statistical manual of mental disorders (5th ed.).Washington, DC: Author 2013
– reference: ZhangJWangJZYuanZSobelESJiangHComputer-aided classification of optical images for diagnosis of osteoarthritis in the finger jointsJournal of X-Ray Science and Technology20111953154425214385
– reference: Tzourio-MazoyerNLandeauBPapathanassiouDCrivelloaFEtardaODelcroixaNMazoyercBJoliotaMAutomated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brainNeuroimage.2002152732891:STN:280:DC%2BD38%2FltFCntw%3D%3D11771995
– reference: WangJZLiangXZhangQFajardoLLJiangHAutomated breast cancer classification using near-infrared optical tomographic imagesJ Biomed Opt20081319021329
– reference: HumphriesMDGurneyKNetwork ‘small-world-ness’: a quantitative method for determining canonical network equivalencePLoS One2008318446219
– reference: LiaoWZhangZQPanZYMantiniDDingJRDuanXJLuoCLuGMChenHFAltered functional connectivity and small-world in mesial temporal lobe epilepsyPLoS One201051200726162799523
– reference: Mourão-MirandaJBokdeALWBornCHampelHStetterMClassifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI dataNeuroImage.20052898099516275139
– reference: PassamontiLFairchildGFornitoAGoodyerIMNimmo-SmithIHaganCCCalderAJAbnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorderPLoS One20127111:CAS:528:DC%2BC38XhslCju7zM231449703492256
– reference: Vangelis M, Ion A, Geogios P (2006) Spam filtering with naive Bayes - which naive Bayes? Third Conference on Email and Anti-Spam
– reference: MiloRShen-OrrSItzkovitzSKashtanNChklovskiiDAlonUNetwork motifs: simple building blocks of complex networksScience.200229855948248271:CAS:528:DC%2BD38XotFSntb4%3D12399590
– reference: GallosLKSigmanMMakseHAThe conundrum of functional brain networks: small-world efficiency or fractal modularityFront Physiology20123123
– reference: John GH, Langley P (1995) Estimating continuous distributions in bayesian classifiers. the Eleventh Conference on Uncertainty in Artificial Intelligence
– reference: BassettDSBullmoreEDSmall-world brain networksNeuroscientist20061251252317079517
– reference: SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999293300
– reference: DingJRLiaoWZhangZMantiniDXuQWuGRLuGMChenHFTopological fractionation of resting-state networksPLoS One20116101:CAS:528:DC%2BC3MXhsVGltbbP220289173197522
– reference: SuLWangKFanFSuYGaoXReliability and validity of the screen for child anxiety related emotional disorders (SCARED) in Chinese childrenJournal of anxiety disorders200822461262117628391
– reference: LuFMZhouJSZhangJWangXPYuanZDisrupted small-world brain network topology in pure conduct disorderOncotarget.20178396550665524290294495630349
– reference: ReisSDSHuYBabinoAAndradeJSJrCanalsSSigmanMMakseHAAvoiding catastrophic failure in correlated networks of networksNature Phys2014107627671:CAS:528:DC%2BC2cXhsFOlt7bF
– reference: HumphriesMGurneyKPrescottTThe brainstem reticular formation is a small-world, not scale-free, networkPhilos Trans RSocLond B BiolSci20062735035111:STN:280:DC%2BD283gvVKktw%3D%3D
– reference: MitchellTMachine learning, McGraw Hill1997
– reference: RubinovMKnockSAStamCJMicheloyannisSHarrisAWFWilliams LeanneMBreakspearMSmall-world properties of nonlinear brain activity in schizophreniaHum Brain Mapp200930240341618072237
– reference: CortesCVapnikVSupport-vector networksMach Learn199520273297
– reference: ZhangJLinXFuGSaiLChenHYangJWangMLiuQYangGZhangJYuanZMapping the small-world properties of brain networks in deception by functional near-infrared spectroscopySci Rep20166252971:CAS:528:DC%2BC28XmvFegs7Y%3D10.1038/srep25297271261454850450
– reference: DattaSMisraDDasSA feature weighted penalty based dissimilarity measure for k-nearest neighbor classification with missing featuresPattern Recogn Lett201680231237
– reference: Chen YW, Lin CJ2005. Combining SVMs with various feature selection strategies Available fromhttp://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf
– reference: MaurerCWLaFaverKAmeliREpsteinSAHallettMHorovitzSGImpaired self-agency in functional movement disorders: a resting-state fMRI studyNeurology.2016876564570273857464977370
– reference: SchlaffkeLLissekSLenzMJuckelGSchultzTTegenthoffMSchmidt-WilckeTShared and nonshared neural networks of cognitive and affective theory-of-mind: a neuroimaging study using cartoon picture storiesHum Brain Mapp201536293925131828
– reference: MaslovSSneppenKSpecificity and stability in topology of protein networksScience.20022969109131:CAS:528:DC%2BD38XjsFymsr8%3D11988575
– reference: XiaMWangJHeYBrain Netviewer: a network visualization tool for human brain connectomicsPLoS One201381:CAS:528:DC%2BC3sXhtFOmtL%2FI238619513701683
– reference: HuangC-LChenM-CWangC-JCredit scoring with a data mining approach based on support vector machinesExpert Syst Appl2007334847856
– reference: SuykensJAKVan GestelTDe BrabanterJDe MoorBVandewalleJLeast squares support vector machines2002SingaporeWorld Scientific
– reference: RozenfeldHDSongCMakseHASmall world-fractal transition in complex networks: renormalization group approachPhys Rev Lett201010420366610
– reference: ChenHYangQLiaoWGongQShenSEvaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mappingNeuroimage.2009471844185319540349
– reference: AkayMFSupport vector machines combined with feature selection for breast cancer diagnosisExpert Syst Appl200936232403247
– reference: Shanee N, Apter A, Weizman A. Psychometric properties of the K-SADS-PL in an Israeli adolescent clinical population. Israel Journal of Psychiatry and Related Sciences.1997
– reference: SuthaharanSDeep learning models2016Boston, MAMachine Learning Models and Algorithms for Big Data Classification. Springer289307
– reference: GaoJWangZYangYZhangWTaoCGuanJRaoNA novel approach for lie detection based on F-score and extreme learning machinePLoS One2013861:CAS:528:DC%2BC3sXpvVKhtrk%3D10.1371/journal.pone.0064704237551363670874
– reference: RubinovMSpornsOComplex network measures of brain connectivity: uses and interpretationsNeuroimage201052105910691981933719819337
– reference: HsuCWChangCCLinCJA practical guide to support vector classification2004Technical ReportDepartment of Computer Science and Information Engineering. National Taiwan University
– volume: 8
  year: 2013
  ident: 2215_CR63
  publication-title: PLoS One
– ident: 2215_CR16
  doi: 10.1016/j.neucom.2014.09.102
– volume: 20
  start-page: 273
  year: 1995
  ident: 2215_CR18
  publication-title: Mach Learn
– volume-title: Least squares support vector machines
  year: 2002
  ident: 2215_CR24
  doi: 10.1142/5089
– volume: 3
  start-page: 123
  year: 2012
  ident: 2215_CR11
  publication-title: Front Physiology
  doi: 10.3389/fphys.2012.00123
– volume: 47
  start-page: 1844
  year: 2009
  ident: 2215_CR36
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2009.06.026
– volume: 12
  start-page: 512
  year: 2006
  ident: 2215_CR57
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 104
  year: 2010
  ident: 2215_CR14
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.104.025701
– volume: 15
  start-page: 273
  year: 2002
  ident: 2215_CR40
  publication-title: Neuroimage.
  doi: 10.1006/nimg.2001.0978
– volume: 8
  issue: 6
  year: 2013
  ident: 2215_CR50
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064704
– volume: 126
  start-page: 791
  year: 2011
  ident: 2215_CR61
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-010-1317-x
– ident: 2215_CR27
– volume: 28
  start-page: 980
  year: 2005
  ident: 2215_CR52
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2005.06.070
– volume: 7
  issue: 11
  year: 2012
  ident: 2215_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048789
– volume: 11 (3
  start-page: 400
  year: 2014
  ident: 2215_CR8
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2014.03.005
– volume: 109
  start-page: 2825
  year: 2012
  ident: 2215_CR13
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1106612109
– ident: 2215_CR20
  doi: 10.1016/j.neuroimage.2011.12.052
– volume: 102
  start-page: 9673
  year: 2005
  ident: 2215_CR37
  publication-title: U S A
  doi: 10.1073/pnas.0504136102
– volume: 296
  start-page: 910
  year: 2002
  ident: 2215_CR46
  publication-title: Science.
  doi: 10.1126/science.1065103
– volume: 2
  start-page: 514
  year: 2014
  ident: 2215_CR64
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2014.2325029
– volume: 3
  issue: 2
  year: 2007
  ident: 2215_CR7
  publication-title: PLoS ComputBiol
– volume: 9
  start-page: 293
  year: 1999
  ident: 2215_CR25
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 393
  start-page: 440
  issue: 6684
  year: 1998
  ident: 2215_CR44
  publication-title: Nature
  doi: 10.1038/30918
– volume: 50
  start-page: 499
  year: 2010
  ident: 2215_CR38
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2009.12.051
– start-page: 289
  volume-title: Deep learning models
  year: 2016
  ident: 2215_CR65
– volume: 216
  start-page: 379
  issue: 3
  year: 2014
  ident: 2215_CR35
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2014.01.024
– volume-title: Data mining: practical machine learning tools and techniques
  year: 2005
  ident: 2215_CR56
– volume: 87
  start-page: 564
  issue: 6
  year: 2016
  ident: 2215_CR6
  publication-title: Neurology.
  doi: 10.1212/WNL.0000000000002940
– volume: 273
  start-page: 503
  year: 2006
  ident: 2215_CR58
  publication-title: Philos Trans RSocLond B BiolSci
– volume: 6
  start-page: 21
  year: 2015
  ident: 2215_CR62
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2015.00021
– volume: 17
  start-page: 2407
  issue: 10
  year: 2007
  ident: 2215_CR15
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhl149
– volume-title: A practical guide to support vector classification
  year: 2004
  ident: 2215_CR55
– ident: 2215_CR28
– volume: 3
  year: 2008
  ident: 2215_CR45
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002051
– ident: 2215_CR30
– volume: 64
  start-page: 1
  year: 2016
  ident: 2215_CR19
  publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2015.06.014
– volume: 36
  start-page: 3240
  issue: 2
  year: 2009
  ident: 2215_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.009
– ident: 2215_CR1
  doi: 10.1176/appi.books.9780890425596
– volume: 52
  start-page: 1059
  year: 2010
  ident: 2215_CR43
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 28
  start-page: 43
  issue: 1
  year: 1987
  ident: 2215_CR32
  publication-title: J Child Psychol Psychiatry
  doi: 10.1111/j.1469-7610.1987.tb00651.x
– volume: 5
  issue: 1
  year: 2010
  ident: 2215_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008525
– volume: 6
  issue: 10
  year: 2011
  ident: 2215_CR5
  publication-title: PLoS One
– volume-title: Machine learning, McGraw Hill
  year: 1997
  ident: 2215_CR26
– volume: 46
  start-page: 1
  year: 2016
  ident: 2215_CR2
  publication-title: S Afr J Psychol
  doi: 10.1177/0081246316628455
– volume: 23
  start-page: 664
  issue: 5–6
  year: 2012
  ident: 2215_CR31
  publication-title: J Forensic Psychiatry Psychol
  doi: 10.1080/14789949.2012.727452
– volume: 56 (2
  start-page: 753
  year: 2011
  ident: 2215_CR21
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2010.08.007
– volume: 36
  start-page: 29
  year: 2015
  ident: 2215_CR51
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22610
– volume: 80
  start-page: 231
  year: 2016
  ident: 2215_CR60
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2016.06.023
– volume: 24
  start-page: 909
  issue: 8
  year: 2015
  ident: 2215_CR4
  publication-title: European child & Adolescent Psychiatry
  doi: 10.1007/s00787-014-0639-3
– volume: 10
  start-page: 762
  year: 2014
  ident: 2215_CR12
  publication-title: Nature Phys
  doi: 10.1038/nphys3081
– ident: 2215_CR48
– volume: 22
  start-page: 612
  issue: 4
  year: 2008
  ident: 2215_CR33
  publication-title: Journal of anxiety disorders
  doi: 10.1016/j.janxdis.2007.05.011
– volume: 30
  start-page: 403
  issue: 2
  year: 2009
  ident: 2215_CR10
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20517
– volume: 55(5
  start-page: 1157
  year: 2014
  ident: 2215_CR34
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2014.03.022
– volume: 33
  start-page: 847
  issue: 4
  year: 2007
  ident: 2215_CR49
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2006.07.007
– volume: 298
  start-page: 824
  issue: 5594
  year: 2002
  ident: 2215_CR47
  publication-title: Science.
  doi: 10.1126/science.298.5594.824
– volume: 13
  year: 2008
  ident: 2215_CR54
  publication-title: J Biomed Opt
– volume: 42
  start-page: 1487
  year: 2015
  ident: 2215_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.09.019
– volume: 43
  start-page: 528
  year: 2008
  ident: 2215_CR39
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2008.08.010
– volume: 6
  start-page: 25297
  year: 2016
  ident: 2215_CR41
  publication-title: Sci Rep
  doi: 10.1038/srep25297
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 2215_CR17
  doi: 10.1007/978-1-4757-2440-0
– volume: 24
  start-page: 1529
  issue: 6
  year: 2014
  ident: 2215_CR9
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bht004
– volume: 36
  start-page: 980
  issue: 7
  year: 1997
  ident: 2215_CR29
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1097/00004583-199707000-00021
– volume: 8
  start-page: 65506
  issue: 39
  year: 2017
  ident: 2215_CR23
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.19098
– volume: 19
  start-page: 531
  year: 2011
  ident: 2215_CR53
  publication-title: Journal of X-Ray Science and Technology
  doi: 10.3233/XST-2011-0312
SSID ssj0021524
Score 2.3169453
Snippet Conduct disorder (CD) is an important mental health problem in childhood and adolescence. There is presently a trend of revealing neural mechanisms using...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2071
SubjectTerms Bayesian analysis
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Children
Classification
Classifiers
Computer Applications
Conduct disorder
Control methods
Emotional disorders
Feature extraction
Feature selection
Human Physiology
Imaging
Mental health
Networks
Original Article
Radiology
Singular value decomposition
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLyIT6yuEsGbFrZpkrbHRVwWYT25sLfSPHqS7rLdHvz3zqRpi6KCp0KbpDCZ5PuGeRFynxbwWsosjGNmQl7KcagyXoIumwIQThWR85jOX-VswV-WYumTwuou2r1zSbqbekh2A3BKQjR3AHciEaa7ZF-g7Q5avGCT3swCROJ94CLwZ58q8_MaX-Fo4Jjf3KIObabH5MjTRDpp9_WE7NjqlBzMvSP8jDSumSWG-TjJ0lVJ183GUrBusYArNb6oJsX0EdomO35QH5deU8QuQ2EeeqzhpsD5CptF0KoNC69pm79IsXUHPl3i0TlZTJ_fnmah76AQaiBW29DGmjOuEYo04LZII4BEUzKjokjaQnFreWptJhTwJmESC-ROKKQMMlOxSeILsletKntJKPojrZY6ypThZaGzSBS21EqWY61iFgck6gSZa19eHLtcvOdDYWQUfg7Cz53w8zQgD_2cdVtc48_Ro25_cn_Q6pxxuJEkmkEBues_wxFBv0dR2VWDY8DOEgnnLCCP3b4OS_z-x6v_Db8mh8ypFkagjcjedtPYG6AsW3XrNPQT627ipQ
  priority: 102
  providerName: Springer Nature
Title Classification of pure conduct disorder from healthy controls based on indices of brain networks during resting state
URI https://link.springer.com/article/10.1007/s11517-020-02215-8
https://www.proquest.com/docview/2432260561
https://www.proquest.com/docview/2423057442
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFH64gHgRVxw3InjToG3TtD3JjM4oiiLiwHgqzdKTdMZZDv5730szUxT00kCTtPDymu9L3wZwlhZ4W8qMR1FouCjlFVeZKFGXTYEIp4rAWUyfnuV9XzwM4oH_4TbxbpXzPdFt1Gao6R_5ZShQ9STx3evRJ6eqUWRd9SU0lmGVUpeRS1cyaA5ciE1i4cKITNoHzdShcwh1CafDE6JYEPP0JzA1bPOXgdThTm8TNjxhZO16hbdgyVbbsPbkTeI7MHNlLcnhx8mYDUs2mo0tw3MupXJlxqfXZBRIwuqwxy_mPdQnjFDMMJxHtmvcM2i-orIRrKodxCesjmRkVMSDWheCtAv9Xvft5p77WgpcI8WachtpEQpNoKQRweM0QHA0ZWhUEEhbKGGtSK3NYoUMKjaJRZoXKyIPMlORSaI9WKmGld0HRpZJq6UOMmVEWegsiAtbaiXLK62iMGpBMBdkrn2icap38ZE3KZJJ-DkKP3fCz9MWnC_mjOo0G_-OPpqvT-4_uUneKEgLThfd-LGQBaSo7HBGY_DEFSdChC24mK9r84i_33jw_xsPYT10qkS-Z0ewMh3P7DGSlak6cRqJ17R3dwKr7c5tp0ft3ftjF9tO9_nlFXv7YfsbFkrsKw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FVCpcEBSqGgJspXJqV4131xv7gBCiTdNHemql3lzvwyfkhDyE8qf4jcys7URFam89WbL3Ic3M7jfjeQEcpAW-1jrjUgrHVan73GSqRFl2BSKcKeLgMR1f69GturhL7jrwt82FobDK9k4MF7WbWPpHfiwUip4mfff79DenrlHkXW1baNRicelXf9Bkm387P0H-fhVieHrzc8SbrgLcorKx4F5aJZSl69kiliVpjDDhSuFMHGtfGOW9Sr3PEoO6ROIGHhWexBCM6sxIN5C47gvYUlJmdKLS4dnawEMsVOuQSdTcmySdOlUPoXXAyVhD1IwTnj4Ewo12-59DNuDc8A28bhRU9qOWqLfQ8dUObI8bF_w7WIY2mhRgFHjKJiWbLmeeoV1NpWOZa8p5MkpcYXWa5Yo1EfFzRqjpGM4jXzneUTTfUJsKVtUB6XNWZ04yahpCz5Dy9B5un4XKu9CtJpXfA0aeUG-1jTPjVFnYLE4KX1qjy741UsgI4paQuW0Km1N_jV_5piQzET9H4ueB-HkaweF6zrQu6_Hk6F7Ln7w54vN8I5AR7K8_4-Ekj0tR-cmSxqCFlwyUEhEctXzdLPH4jh-e3vELvBzdjK_yq_Pry4_wSgSxori3HnQXs6X_hIrSwnwO0sng_rmPwz-uwCJh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJsQXowLxFHVN8Ek2sNvdbftgjBEvIEJ8gOTeavejT6R3cnch_Gv8dc5st9dAIm88NWn3I5md2d9M5wtgt6jxtTElzzLpuWrMAbelapCXfY0IZ2sRPaanZ-boQv2c6Mka3Pa5MBRW2d-J8aL2U0f_yPelQtYzpO_uNyks4vfh-OvsL6cOUuRp7dtpdCxyEm6u0Xybfzk-xLP-JOX4x_n3I546DHCHiseCh8wpqRxd1Q5xTRcCIcM30lshTKitCkEVIZTaol6hfR5Q-dGWINWUNvN5hus-gad5pgXJWD4ZjD3ERbUKn0QtPiXsdGl7CLM5J8MNEVRoXtwFxUHTveecjZg3fgHPk7LKvnXc9RLWQvsKNk6TO34TlrGlJgUbxfNl04bNlleBoY1NZWSZT6U9GSWxsC7l8oal6Pg5IwT1DOeR3xzvK5pvqWUFa7vg9DnrsigZNRChZ0x_2oKLR6HyNqy30za8BkZe0eCME6X1qqldKXQdGmdNc-BsJrMRiJ6QlUtFzqnXxmU1lGcm4ldI_CoSvypG8Hk1Z9aV-Hhw9E5_PlUS93k1MOcIPq4-o6CS96Vuw3RJY9Da07lScgR7_bkOS_x_xzcP7_gBNlAQql_HZydv4ZmMXEUhcDuwvrhahneoMy3s-8icDP48tjT8AxfrJo4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+pure+conduct+disorder+from+healthy+controls+based+on+indices+of+brain+networks+during+resting+state&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Zhang%2C+Jiang&rft.au=Liu%2C+Yuyan&rft.au=Luo+Ruisen&rft.au=Du+Zhengcong&rft.date=2020-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0140-0118&rft.eissn=1741-0444&rft.volume=58&rft.issue=9&rft.spage=2071&rft.epage=2082&rft_id=info:doi/10.1007%2Fs11517-020-02215-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon