Quantification of Uncertainty Associated with Evidence Layers in Mineral Prospectivity Mapping Using Direct Sampling and Convolutional Neural Network

Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid mode...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 32; no. 1; pp. 79 - 98
Main Authors Yang, Fanfan, Wang, Ziye, Zuo, Renguang, Sun, Siquan, Zhou, Bao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid model combining a direct sampling algorithm and a convolutional neural network to quantify the uncertainty associated with the evidence layers in MPM. Specifically, a direct sampling algorithm was first used to simulate equiprobable evidence layers that followed the similar pattern of geological features. A convolutional neural network was then employed to produce mineral prospectivity maps by integrating the simulated evidence layers. The initial risk–return analysis was conducted based on the obtained mineral prospectivity maps to search for areas linked to high potential and low risk. Finally, a Markowitz mean–variance model was adopted to further outline prior prospective areas to support future mineral exploration in the high-potential areas. A case study of mapping mineral prospectivity for gold polymetallic deposits in the Middle–Lower Yangtze River Valley metallogenic belt in the southeastern Hubei Province of China was implemented. The comparative results indicated that the hybrid model of the direct sampling algorithm and convolutional neural network, which considered the uncertainty of evidence layers, achieved a higher success rate and prediction accuracy than the deterministic framework.
AbstractList Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid model combining a direct sampling algorithm and a convolutional neural network to quantify the uncertainty associated with the evidence layers in MPM. Specifically, a direct sampling algorithm was first used to simulate equiprobable evidence layers that followed the similar pattern of geological features. A convolutional neural network was then employed to produce mineral prospectivity maps by integrating the simulated evidence layers. The initial risk–return analysis was conducted based on the obtained mineral prospectivity maps to search for areas linked to high potential and low risk. Finally, a Markowitz mean–variance model was adopted to further outline prior prospective areas to support future mineral exploration in the high-potential areas. A case study of mapping mineral prospectivity for gold polymetallic deposits in the Middle–Lower Yangtze River Valley metallogenic belt in the southeastern Hubei Province of China was implemented. The comparative results indicated that the hybrid model of the direct sampling algorithm and convolutional neural network, which considered the uncertainty of evidence layers, achieved a higher success rate and prediction accuracy than the deterministic framework.
Author Wang, Ziye
Zuo, Renguang
Zhou, Bao
Yang, Fanfan
Sun, Siquan
Author_xml – sequence: 1
  givenname: Fanfan
  surname: Yang
  fullname: Yang, Fanfan
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
– sequence: 2
  givenname: Ziye
  orcidid: 0000-0001-6538-5798
  surname: Wang
  fullname: Wang, Ziye
  email: ziyewang@cug.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
– sequence: 3
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
– sequence: 4
  givenname: Siquan
  surname: Sun
  fullname: Sun, Siquan
  organization: Hubei Geological Survey, Hubei Geological Exploration Engineering Technology Research Center
– sequence: 5
  givenname: Bao
  surname: Zhou
  fullname: Zhou, Bao
  organization: Hubei Geological Survey, Hubei Geological Exploration Engineering Technology Research Center
BookMark eNp9kcFu1DAQhi1UJNrCC3CyxIVLih07jnOslkKRttAK9mw59qS4ZO1gO1vtg_C-OLtISD304rFn_s8zmv8MnfjgAaG3lFxQQtoPiVLSsIrUdUUJ5bwSL9ApbVpWyU7Sk-Vek6rlrHuFzlJ6IAVisjlFf-5m7bMbnNHZBY_DgDfeQMza-bzHlykF43QGix9d_omvds5CqeO13kNM2Hl84zxEPeLbGNIEJrudK-CNnibn7_EmLedHF0sFf9fbaVze2lu8Cn4XxnnpWuivMMdDyI8h_nqNXg56TPDmXzxHm09XP1bX1frb5y-ry3VlWFPnyvYEejKAFZY3XArem6atiaWCMKpLhptBG0HAWkr7WpK2pYb2kvIOpNCEnaP3x3-nGH7PkLLaumRgHLWHMCdVS9l2UjCxSN89kT6EOZbRi6qjkrGW8K6o6qPKlG2kCIOaotvquFeUqMUpdXRKFafUwSklCiSfQMblgx05ajc-j7Ijmkoffw_x_1TPUH8BeY2seA
CitedBy_id crossref_primary_10_1016_j_oregeorev_2023_105787
crossref_primary_10_1007_s11004_024_10141_w
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_3724_j_issn_1007_2802_20240164
crossref_primary_10_1007_s40808_024_02176_z
crossref_primary_10_1007_s11004_023_10059_9
crossref_primary_10_1016_j_oregeorev_2023_105660
crossref_primary_10_1016_j_cageo_2025_105913
crossref_primary_10_1007_s11053_024_10349_x
crossref_primary_10_1016_j_chemer_2024_126212
crossref_primary_10_1007_s11053_023_10286_1
crossref_primary_10_1016_j_chemer_2024_126155
crossref_primary_10_1016_j_apgeochem_2023_105722
crossref_primary_10_1080_27669645_2024_2418730
crossref_primary_10_1007_s11053_025_10464_3
crossref_primary_10_1007_s11004_024_10137_6
crossref_primary_10_1007_s12145_024_01278_7
crossref_primary_10_1007_s11053_024_10409_2
crossref_primary_10_1007_s11004_024_10153_6
crossref_primary_10_1016_j_oregeorev_2023_105651
crossref_primary_10_3389_feart_2023_1102640
crossref_primary_10_1007_s11053_023_10279_0
crossref_primary_10_1016_j_oregeorev_2023_105573
crossref_primary_10_3390_min15010071
crossref_primary_10_1007_s11004_023_10076_8
crossref_primary_10_1007_s11053_024_10322_8
crossref_primary_10_1007_s11053_024_10328_2
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_1007_s11053_024_10344_2
crossref_primary_10_1007_s11053_024_10386_6
crossref_primary_10_1007_s11004_023_10070_0
Cites_doi 10.1007/s11053-021-09979-2
10.1007/978-94-009-4109-0
10.1007/s11053-020-09700-9
10.1016/j.oregeorev.2014.09.024
10.1007/s11004-014-9534-1
10.1007/s11053-022-10089-w
10.1038/nature14539
10.1007/s11053-008-9058-9
10.1007/s11004-021-09988-0
10.1016/j.gexplo.2011.06.012
10.1007/s11053-020-09692-6
10.1016/j.cageo.2012.09.019
10.1016/j.gexplo.2021.106838
10.1016/S0375-6742(97)00029-0
10.1016/j.oregeorev.2018.10.006
10.1016/j.oregeorev.2022.104693
10.1016/j.cageo.2007.04.002
10.1007/s11053-022-10071-6
10.1007/s001860200211
10.1016/j.oregeorev.2010.05.008
10.1007/s11053-021-09891-9
10.1016/j.earscirev.2019.02.023
10.1007/s11707-021-0897-6
10.1016/j.apgeochem.2021.104994
10.1016/j.cageo.2018.01.017
10.1007/s00521-019-04341-3
10.1016/j.oregeorev.2011.05.005
10.1007/s11053-021-09871-z
10.1016/j.apgeochem.2012.10.031
10.1016/j.apgeochem.2020.104843
10.1016/j.cageo.2018.10.013
10.1016/B978-0-12-810408-8.00003-1
10.1016/j.oregeorev.2021.104427
10.1007/s11053-018-9388-1
10.1023/A:1021677510649
10.1016/j.cageo.2013.01.020
10.1016/S0169-1368(99)00008-6
10.1007/s11004-022-10015-z
10.1007/s11430-018-9352-9
10.1016/j.scitotenv.2020.138428
10.1016/j.oregeorev.2006.10.002
10.1016/j.oregeorev.2010.02.001
10.1007/s11004-022-10023-z
10.1029/2008WR007621
10.21314/JOR.2010.212
10.1007/s11053-021-09984-5
10.3390/min10020102
10.1046/j.1440-0952.2000.00807.x
10.1007/s11004-011-9362-5
10.1002/9781119995920
10.1016/j.oregeorev.2020.103394
10.1016/j.cageo.2018.05.010
10.1016/j.geomorph.2010.10.004
10.1016/j.gsf.2019.01.009
10.1016/j.oregeorev.2014.09.007
10.1109/21.286385
10.1007/s11053-005-4678-9
10.1023/A:1021838618750
10.1016/j.gexplo.2018.07.014
10.2113/gsecongeo.103.4.829
10.1016/S0169-1368(99)00022-0
10.1016/j.gexplo.2021.106872
10.1016/j.oregeorev.2011.07.010
10.1023/A:1023818214614
10.1007/s11004-020-09867-0
10.1007/s11434-014-0358-7
10.1093/oso/9780195115383.001.0001
10.1007/s11004-021-09989-z
10.1029/SC010p0015
10.1016/j.earscirev.2019.102897
10.1016/j.gsf.2020.02.010
10.1007/s11053-020-09668-6
10.1016/j.spasta.2015.04.004
10.1016/j.oregeorev.2005.11.001
10.1016/j.apgeochem.2004.05.007
10.1016/j.patrec.2005.10.010
10.5194/hess-18-3015-2014
10.1007/s11053-008-9072-y
10.1016/j.cageo.2022.105075
10.1007/s11053-020-09742-z
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: International Association for Mathematical Geosciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOI 10.1007/s11053-022-10144-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Materials Science Database (NC LIVE)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student

AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 98
ExternalDocumentID 10_1007_s11053_022_10144_6
GeographicLocations China
Yangtze River
GeographicLocations_xml – name: Yangtze River
– name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41972303; 42102332; 42172326
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c352t-db0eb0fed6d454864bc5720d16031a5484cfac60edd11b280771c1b8149e86a03
IEDL.DBID U2A
ISSN 1520-7439
IngestDate Thu Jul 10 23:08:49 EDT 2025
Fri Jul 25 10:55:49 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Tue Jul 01 04:16:51 EDT 2025
Fri Feb 21 02:45:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Direct sampling
Mineral prospectivity mapping
Uncertainty analysis
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-db0eb0fed6d454864bc5720d16031a5484cfac60edd11b280771c1b8149e86a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6538-5798
PQID 2918337049
PQPubID 2043663
PageCount 20
ParticipantIDs proquest_miscellaneous_2887986360
proquest_journals_2918337049
crossref_primary_10_1007_s11053_022_10144_6
crossref_citationtrail_10_1007_s11053_022_10144_6
springer_journals_10_1007_s11053_022_10144_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Official Journal of the International Association for Mathematical Geosciences
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HansenTMVuLTMosegaardKCorduaKSMultiple point statistical simulation using uncertain (soft) conditional dataComputers & Geosciences201811411010.1016/j.cageo.2018.01.017
PanYDongPThe lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag depostisOre Geology Reviews199915417724210.1016/S0169-1368(99)00022-0
ZuoRIdentifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)Journal of Geochemical Exploration20111111132210.1016/j.gexplo.2011.06.012
GoodchildMFScale in GIS: An overviewGeomorphology201113015910.1016/j.geomorph.2010.10.004
LiBLiuBWangGChenLGuoKUsing geostatistics and maximum entropy model to identify geochemical anomalies: A case study in Mila Mountain region, southern TibetApplied Geochemistry202112410484310.1016/j.apgeochem.2020.104843
LiTZuoRZhaoXZhaoKMapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented dataOre Geology Reviews202214210469310.1016/j.oregeorev.2022.104693
LiTZuoRXiongYPengYRandom-drop data augmentation of deep convolutional neural network for mineral prospectivity mappingNatural Resources Research2021301273810.1007/s11053-020-09742-z
ZuoRGeodata science-based mineral prospectivity mapping: a reviewNatural Resources Research20202963415342410.1007/s11053-020-09700-9
ZhaoYZhangYBiCGeology of gold-bearing skarn deposits in the middle and lower Yangtze river valley and adjacent regionsOre Geology Reviews199914322724910.1016/S0169-1368(99)00008-6
GhezelbashRMaghsoudiACarranzaEJMSensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district, NW IranOre Geology Reviews202012010339410.1016/j.oregeorev.2020.103394
CaersJModeling uncertainty in the earth sciences2011Wiley10.1002/9781119995920
GoovaertsPGeostatistics for natural resource evaluation1997Oxford University Press
MeerschmanEPirotGMariethozGStraubhaarJVan MeirvenneMRenardPA practical guide to performing multiple-point statistical simulations with the direct sampling algorithmComputers & Geosciences20135230732410.1016/j.cageo.2012.09.019
YinBZuoRXiongYLiYYangWKnowledge discovery of geochemical patterns from a data-driven perspectiveJournal of Geochemical Exploration202123110687210.1016/j.gexplo.2021.106872
LiSChenJXiangJApplications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big dataNeural Computing and Applications20203272037205310.1007/s00521-019-04341-3
ParsaMCarranzaEJMModulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivityNatural Resources Research20213053081309710.1007/s11053-021-09891-9
SrinivasMPatnaikLMAdaptive probabilities of crossover and mutation in genetic algorithmsIEEE Transactions on Systems, Man, and Cybernetics199424465666710.1109/21.286385
XieXMuXRenTGeochemical mapping in ChinaJournal of Geochemical Exploration19976019911310.1016/S0375-6742(97)00029-0
ChengQAgterbergFPFuzzy weights of evidence method and its application in mineral potential mappingNatural Resources Research199981273510.1023/A:1021677510649
Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 1097–1105).
ChenWRuanQYangWLiJKeYFanZZhaiSThe geological characteristics of Jinjingzui skarn gold deposit and its causes in the east of Hubei provinceChina Mining Magazine201221045659(In Chinese with English abstract)
YinBZuoRXiongYMineral prospectivity mapping via gated recurrent unit modelNatural Resources Research20223142065207910.1007/s11053-021-09979-2
OrianiFStraubhaarJRenardPMariethozGSimulation of rainfall time series from different climatic regions using the direct sampling techniqueHydrology and Earth System Sciences20141883015303110.5194/hess-18-3015-2014
MarkowitzHPortfolio selection*The Journal of Finance1952717791
AitchisonJThe statistical analysis of compositional data1986Chapman & Hall10.1007/978-94-009-4109-0
LuoSYaoHLiQWangWWanKMengYLiuBHigh-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River metallogenic belt and implications for its deep geodynamic settingScience China Earth Sciences20196291361137810.1007/s11430-018-9352-9
SrinivasSSarvadevabhatlaRKMopuriKRPrabhuNKruthiventiSSSBabuRVAn introduction to deep convolutional neural nets for computer visionDeep learning for medical image analysis2017Academic Press255210.1016/B978-0-12-810408-8.00003-1
XieGZhaoHZhaoCLiXHouKPanHRe–Os dating of molybdenite from Tonglushan ore district in southeastern Hubei Province, middle-lower Yangtze river belt and its geological significanceMineral Deposits20092803227239(In Chinese with English abstract)
NykänenVLahtiINiiranenTKorhonenKReceiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern FinlandOre Geology Reviews20157185386010.1016/j.oregeorev.2014.09.007
SunWXieZChenJZhangXChaiZDuAZhaoJZhangCZhouTOs-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze river, ChinaEconomic Geology2003981175180
KirkwoodCEconomouTPugeaultNOdbertHBayesian deep learning for spatial interpolation in the presence of auxiliary informationMathematical Geosciences202254350753110.1007/s11004-021-09988-0
McCuaigTCBeresfordSHronskyJTranslating the mineral systems approach into an effective exploration targeting systemOre Geology Reviews201038312813810.1016/j.oregeorev.2010.05.008
ZuoRWangZEffects of random negative training samples on mineral prospectivity mappingNatural Resources Research20202963443345510.1007/s11053-020-09668-6
YaoYRuanQJinHHeJDiscussion on geological characteristics and prospecting direction of altered rock type gold deposit, Southeastern HubeiResources Environment & Engineering20142806823829(In Chinese with English abstract)
HuQThe mesozoic diagenetic & metallogenic tectonic background and the temporal & spatial distribution in the southeast of Hubei ProvinceResources Environment & Engineering20142806767776(In Chinese with English abstract)
GeYJinYSteinAChenYWangJWangJChengQBaiHLiuMAtkinsonPPrinciples and methods of scaling geospatial earth science dataEarth-Science Reviews201919710289710.1016/j.earscirev.2019.102897
MaoJXieGDuanCPirajnoFIshiyamaDChenYA tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the middle-lower Yangtze river valley, Eastern ChinaOre Geology Reviews201143129431410.1016/j.oregeorev.2011.07.010
WangQZhouLLittleSHLiuJFengLTongSThe geochemical behavior of Cu and its isotopes in the Yangtze riverScience of The Total Environment202072813842810.1016/j.scitotenv.2020.138428
LiuYChengQCarranzaEJMZhouKAssessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysisNatural Resources Research201928119921210.1007/s11053-018-9388-1
TalebiHMuellerUPeetersLJMOttoAde CaritatPTolosana-DelgadoRvan den BoogaartKGStochastic modelling of mineral exploration targetsMathematical Geosciences202254359362110.1007/s11004-021-09989-z
CarranzaEJMWoldaiTChikambweEMApplication of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, ZambiaNatural Resources Research2005141476310.1007/s11053-005-4678-9
ParsaMCarranzaEJMAhmadiBDeep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral depositsNatural Resources Research2022311375010.1007/s11053-021-09984-5
LiLRomaryTCaersJUniversal kriging with training imagesSpatial Statistics20151424026810.1016/j.spasta.2015.04.004
TalebiHPeetersLJMMuellerUTolosana-DelgadoRvan den BoogaartKGTowards geostatistical learning for the geosciences: A case study in improving the spatial awareness of spectral clusteringMathematical Geosciences20205281035104810.1007/s11004-020-09867-0
ChengQMapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, ChinaOre Geology Reviews200732131432410.1016/j.oregeorev.2006.10.002
ZhangCZuoRXiongYDetection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature methodApplied Geochemistry202113010499410.1016/j.apgeochem.2021.104994
FawcettTAn introduction to ROC analysisPattern Recognition Letters200627886187410.1016/j.patrec.2005.10.010
SingerDAProgress in integrated quantitative mineral resource assessmentsOre Geology Reviews201038324225010.1016/j.oregeorev.2010.02.001
XiongYZuoRCarranzaEJMMapping mineral prospectivity through big data analytics and a deep learning algorithmOre Geology Reviews201810281181710.1016/j.oregeorev.2018.10.006
DaviranMParsaMMaghsoudiAGhezelbashRQuantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mappingNatural Resources Research20223152271228710.1007/s11053-022-10089-w
HouWYangQChenXXiaoFChenYUncertainty analysis and visualization of geological subsurface and its application in metro station constructionFrontiers of Earth Science202115369270410.1007/s11707-021-0897-6
MaoJWangYLehmannBYuJDuAMeiYMolybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implicationsOre Geology Reviews200629330732410.1016/j.oregeorev.2005.11.001
SunTLiHWuKChenFZhuZHuZData-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, ChinaMinerals202010210210.3390/min10020102
YangNZhangZYangJHongZApplications of data augmentation in mineral prospectiv
G Xie (10144_CR76) 2009; 28
Y Ke (10144_CR27) 2016; 30
Y Liu (10144_CR38) 2019; 28
M Parsa (10144_CR54) 2021; 30
VA Lisitsin (10144_CR37) 2014; 46
J Mao (10144_CR43) 2011; 43
Y Ge (10144_CR17) 2019; 197
Q Hu (10144_CR25) 2014; 28
G Mariethoz (10144_CR45) 2010; 46
10144_CR84
Y Yao (10144_CR80) 2014; 28
Y Zhao (10144_CR85) 1999; 14
TC McCuaig (10144_CR48) 2010; 38
P Goovaerts (10144_CR20) 1997
R Zuo (10144_CR90) 2020; 29
Y LeCun (10144_CR31) 2015; 521
J Mao (10144_CR44) 2005; 21
EJM Carranza (10144_CR8) 2005; 14
J Wang (10144_CR68) 2018; 118
Z Wang (10144_CR72) 2022
JN Burkin (10144_CR6) 2019; 10
T Sun (10144_CR62) 2020; 10
R Zuo (10144_CR88) 2020; 29
H Talebi (10144_CR64) 2022; 54
M Wang (10144_CR70) 2019; 41
M Parsa (10144_CR56) 2021; 229
DA Singer (10144_CR59) 1999; 8
H Rezaee (10144_CR57) 2013; 54
Q Cheng (10144_CR10) 2007; 32
R Zuo (10144_CR87) 2011; 111
J Aitchison (10144_CR1) 1986
M Daviran (10144_CR12) 2022; 31
R Zuo (10144_CR93) 2022
S Li (10144_CR34) 2020; 32
GF Bonham-Carter (10144_CR4) 1989
C Kirkwood (10144_CR28) 2022; 54
Z Wang (10144_CR71) 2020; 11
R Maller (10144_CR41) 2010; 12
Y van der Grijp (10144_CR67) 2021; 139
T Li (10144_CR36) 2022; 142
J Wei (10144_CR74) 2019; 11
R Ghezelbash (10144_CR18) 2020; 120
G Mariethoz (10144_CR46) 2011; 43
C Zhang (10144_CR83) 2021; 130
W Sun (10144_CR63) 2003; 98
R Zuo (10144_CR94) 2015; 71
MF Goodchild (10144_CR19) 2011; 130
TM Hansen (10144_CR23) 2018; 114
R Zuo (10144_CR91) 2013; 28
B Li (10144_CR32) 2021; 124
S Luo (10144_CR39) 2019; 62
L Wang (10144_CR69) 2014; 59
X Xie (10144_CR77) 1997; 60
Q Wang (10144_CR73) 2020; 728
JJ Egozcue (10144_CR13) 2003; 35
T Zhou (10144_CR86) 2008; 24
H Talebi (10144_CR65) 2020; 52
WM Brown (10144_CR5) 2000; 47
RA Maller (10144_CR40) 2003; 56
E Pardo-Igúzquiza (10144_CR53) 2005; 20
J Mao (10144_CR42) 2006; 29
DA Singer (10144_CR58) 2010; 38
N Yang (10144_CR79) 2022; 161
B Yin (10144_CR82) 2021; 231
M Garrido (10144_CR16) 2020; 29
M Parsa (10144_CR55) 2022; 31
J Caers (10144_CR7) 2011
Y Xiong (10144_CR78) 2018; 102
S Srinivas (10144_CR61) 2017
A Bistacchi (10144_CR2) 2008; 34
W Hou (10144_CR24) 2021; 15
L Li (10144_CR33) 2015; 14
J Guo (10144_CR22) 2022; 31
E Hua (10144_CR26) 2022; 36
T Li (10144_CR35) 2021; 30
B Yin (10144_CR81) 2022; 31
W Chen (10144_CR9) 2012; 21
10144_CR30
T Fawcett (10144_CR15) 2006; 27
H Markowitz (10144_CR47) 1952; 7
F Oriani (10144_CR51) 2014; 18
R Zuo (10144_CR92) 2019; 192
G Xie (10144_CR75) 2011; 43
OP Kreuzer (10144_CR29) 2008; 103
V Nykänen (10144_CR50) 2015; 71
JB Boisvert (10144_CR3) 2007; 16
H Talebi (10144_CR66) 2019; 122
E Meerschman (10144_CR49) 2013; 52
M Srinivas (10144_CR60) 1994; 24
AG Fabbri (10144_CR14) 2008; 17
J Graffelman (10144_CR21) 2018; 194
Y Pan (10144_CR52) 1999; 15
R Zuo (10144_CR89) 2021; 30
Q Cheng (10144_CR11) 1999; 8
References_xml – reference: GeYJinYSteinAChenYWangJWangJChengQBaiHLiuMAtkinsonPPrinciples and methods of scaling geospatial earth science dataEarth-Science Reviews201919710289710.1016/j.earscirev.2019.102897
– reference: HuaESunFCenZXiaoDLuoHYuWLiLDiscussion on prospecting direction of copper and gold deposits in Southeast HubeiMineral Resources and Geology20223601913(In Chinese with English abstract)
– reference: KirkwoodCEconomouTPugeaultNOdbertHBayesian deep learning for spatial interpolation in the presence of auxiliary informationMathematical Geosciences202254350753110.1007/s11004-021-09988-0
– reference: MaoJXieGDuanCPirajnoFIshiyamaDChenYA tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the middle-lower Yangtze river valley, Eastern ChinaOre Geology Reviews201143129431410.1016/j.oregeorev.2011.07.010
– reference: NykänenVLahtiINiiranenTKorhonenKReceiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern FinlandOre Geology Reviews20157185386010.1016/j.oregeorev.2014.09.007
– reference: LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539
– reference: LiuYChengQCarranzaEJMZhouKAssessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysisNatural Resources Research201928119921210.1007/s11053-018-9388-1
– reference: WangLHuangJYuJGriffinWLWangRZhangSYangYZircon U–Pb dating and Lu–Hf isotope study of intermediate-mafic sub-volcanic and intrusive rocks in the Lishui Basin in the middle and lower reaches of Yangtze riverChinese Science Bulletin201459273427344010.1007/s11434-014-0358-7
– reference: HansenTMVuLTMosegaardKCorduaKSMultiple point statistical simulation using uncertain (soft) conditional dataComputers & Geosciences201811411010.1016/j.cageo.2018.01.017
– reference: WangMShangXWeiKLiuDZhangFElemental geochemical characteristics of tonglushan skarn-type Cu–Fe–Au Deposit in the Southeastern Hubei, China and their geological implicationsJournal of Earth Science and Environment20194104431444(In Chinese with English abstract)
– reference: GhezelbashRMaghsoudiACarranzaEJMSensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district, NW IranOre Geology Reviews202012010339410.1016/j.oregeorev.2020.103394
– reference: ZuoRXiongYWangJCarranzaEJMDeep learning and its application in geochemical mappingEarth-Science Reviews201919211410.1016/j.earscirev.2019.02.023
– reference: FawcettTAn introduction to ROC analysisPattern Recognition Letters200627886187410.1016/j.patrec.2005.10.010
– reference: FabbriAGChungC-JOn blind tests and spatial prediction modelsNatural Resources Research200817210711810.1007/s11053-008-9072-y
– reference: KeYCaiHDuKWuYYuanHAnalysis of geological characteristics and prospecting potential of Jiguanzui Cu-Au deposits in Daye city, Hubei ProvinceResources Environment & Engineering20163006817824(In Chinese with English abstract)
– reference: LiSChenJXiangJApplications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big dataNeural Computing and Applications20203272037205310.1007/s00521-019-04341-3
– reference: MaoJWangYLehmannBYuJDuAMeiYMolybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implicationsOre Geology Reviews200629330732410.1016/j.oregeorev.2005.11.001
– reference: MallerRDurandRJafarpourHOptimal portfolio choice using the maximum Sharpe ratioJournal of Risk2010124497310.21314/JOR.2010.212
– reference: MariethozGRenardPStraubhaarJExtrapolating the fractal characteristics of an image using scale-invariant multiple-point statisticsMathematical Geosciences201143778310.1007/s11004-011-9362-5
– reference: LiBLiuBWangGChenLGuoKUsing geostatistics and maximum entropy model to identify geochemical anomalies: A case study in Mila Mountain region, southern TibetApplied Geochemistry202112410484310.1016/j.apgeochem.2020.104843
– reference: MallerRATurkingtonDANew light on the portfolio allocation problemMathematical Methods of Operations Research200356350151110.1007/s001860200211
– reference: MariethozGRenardPStraubhaarJThe direct sampling method to perform multiple-point geostatistical simulationsWater Resources Research201046W1153610.1029/2008WR007621
– reference: LiTZuoRXiongYPengYRandom-drop data augmentation of deep convolutional neural network for mineral prospectivity mappingNatural Resources Research2021301273810.1007/s11053-020-09742-z
– reference: CarranzaEJMWoldaiTChikambweEMApplication of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, ZambiaNatural Resources Research2005141476310.1007/s11053-005-4678-9
– reference: YangNZhangZYangJHongZApplications of data augmentation in mineral prospectivity prediction based on convolutional neural networksComputers & Geosciences202216110507510.1016/j.cageo.2022.105075
– reference: LuoSYaoHLiQWangWWanKMengYLiuBHigh-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River metallogenic belt and implications for its deep geodynamic settingScience China Earth Sciences20196291361137810.1007/s11430-018-9352-9
– reference: ZuoRXuYGraph deep learning model for mapping mineral prospectivityMathematical Geosciences202210.1007/s11004-022-10015-z
– reference: YaoYRuanQJinHHeJDiscussion on geological characteristics and prospecting direction of altered rock type gold deposit, Southeastern HubeiResources Environment & Engineering20142806823829(In Chinese with English abstract)
– reference: BurkinJNLindsayMDOcchipintiSAHoldenE-JIncorporating conceptual and interpretation uncertainty to mineral prospectivity modellingGeoscience Frontiers20191041383139610.1016/j.gsf.2019.01.009
– reference: BoisvertJBPyrczMJDeutschCVMultiple-point statistics for training image selectionNatural Resources Research200716431332110.1007/s11053-008-9058-9
– reference: KreuzerOPEtheridgeMAGujPMcMahonMEHoldenDJLinking mineral deposit models to quantitative risk analysis and decision-making in explorationEconomic Geology2008103482985010.2113/gsecongeo.103.4.829
– reference: ChenWRuanQYangWLiJKeYFanZZhaiSThe geological characteristics of Jinjingzui skarn gold deposit and its causes in the east of Hubei provinceChina Mining Magazine201221045659(In Chinese with English abstract)
– reference: LiTZuoRZhaoXZhaoKMapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented dataOre Geology Reviews202214210469310.1016/j.oregeorev.2022.104693
– reference: SunWXieZChenJZhangXChaiZDuAZhaoJZhangCZhouTOs-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze river, ChinaEconomic Geology2003981175180
– reference: BrownWMGedeonTDGrovesDIBarnesRGArtificial neural networks: A new method for mineral prospectivity mappingAustralian Journal of Earth Sciences200047475777010.1046/j.1440-0952.2000.00807.x
– reference: ZuoRKreuzerOPWangJXiongYZhangZWangZUncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutionsNatural Resources Research20213053059307910.1007/s11053-021-09871-z
– reference: SrinivasSSarvadevabhatlaRKMopuriKRPrabhuNKruthiventiSSSBabuRVAn introduction to deep convolutional neural nets for computer visionDeep learning for medical image analysis2017Academic Press255210.1016/B978-0-12-810408-8.00003-1
– reference: TalebiHMuellerUTolosana-DelgadoRJoint simulation of compositional and categorical data via direct sampling technique—application to improve mineral resource confidenceComputers & Geosciences20191228710210.1016/j.cageo.2018.10.013
– reference: ZuoRXiaQWangHCompositional data analysis in the study of integrated geochemical anomalies associated with mineralizationApplied Geochemistry20132820221110.1016/j.apgeochem.2012.10.031
– reference: BistacchiAMassironiMDal PiazGVDal PiazGMonopoliBSchiavoAToffolonG3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case studyComputers & Geosciences200834435137210.1016/j.cageo.2007.04.002
– reference: MarkowitzHPortfolio selection*The Journal of Finance1952717791
– reference: Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 1097–1105).
– reference: XieGZhaoHZhaoCLiXHouKPanHRe–Os dating of molybdenite from Tonglushan ore district in southeastern Hubei Province, middle-lower Yangtze river belt and its geological significanceMineral Deposits20092803227239(In Chinese with English abstract)
– reference: ZuoRGeodata science-based mineral prospectivity mapping: a reviewNatural Resources Research20202963415342410.1007/s11053-020-09700-9
– reference: LiLRomaryTCaersJUniversal kriging with training imagesSpatial Statistics20151424026810.1016/j.spasta.2015.04.004
– reference: ParsaMPourABA simulation-based framework for modulating the effects of subjectivity in greenfield mineral prospectivity mapping with geochemical and geological dataJournal of Geochemical Exploration202122910683810.1016/j.gexplo.2021.106838
– reference: SingerDAKoudaRExamining risk in mineral explorationNatural Resources Research19998211112210.1023/A:1021838618750
– reference: GraffelmanJPawlowsky-GlahnVEgozcueJJBucciantiAExploration of geochemical data with compositional canonical biplotsJournal of Geochemical Exploration201819412013310.1016/j.gexplo.2018.07.014
– reference: ZhouTFanYYuanFAdvances on petrogensis and metallogeny study of the mineralization belt of the middle and lower reaches of the Yangtze river areaActa Petrologica Sinica2008240816651678(In Chinese with English abstract)
– reference: SunTLiHWuKChenFZhuZHuZData-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, ChinaMinerals202010210210.3390/min10020102
– reference: WangQZhouLLittleSHLiuJFengLTongSThe geochemical behavior of Cu and its isotopes in the Yangtze riverScience of The Total Environment202072813842810.1016/j.scitotenv.2020.138428
– reference: CaersJModeling uncertainty in the earth sciences2011Wiley10.1002/9781119995920
– reference: Pardo-IgúzquizaEChica-OlmoMInterpolation and mapping of probabilities for geochemical variables exhibiting spatial intermittencyApplied Geochemistry200520115716810.1016/j.apgeochem.2004.05.007
– reference: TalebiHMuellerUPeetersLJMOttoAde CaritatPTolosana-DelgadoRvan den BoogaartKGStochastic modelling of mineral exploration targetsMathematical Geosciences202254359362110.1007/s11004-021-09989-z
– reference: EgozcueJJPawlowsky-GlahnVMateu-FiguerasGBarceló-VidalCIsometric logratio transformations for compositional data analysisMathematical Geology200335327930010.1023/A:1023818214614
– reference: GarridoMSepúlvedaEOrtizJTownleyBSimulation of synthetic exploration and geometallurgical database of porphyry copper deposits for educational purposesNatural Resources Research20202963527354510.1007/s11053-020-09692-6
– reference: DaviranMParsaMMaghsoudiAGhezelbashRQuantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mappingNatural Resources Research20223152271228710.1007/s11053-022-10089-w
– reference: WangJZuoRIdentification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysisComputers & Geosciences2018118526410.1016/j.cageo.2018.05.010
– reference: Zhang, W. (2015). Ore genesis of the Jiguanzui Cu-Au deposit in Southeastern Hubei Province, China. Wuhan of China (Doctoral dissertation, China University of Geosciences) p. 142. (In Chinese with English abstract).
– reference: ZuoRZhangZZhangDCarranzaEJMWangHEvaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in southwestern Fujian Province, ChinaOre Geology Reviews20157150251510.1016/j.oregeorev.2014.09.024
– reference: MeerschmanEPirotGMariethozGStraubhaarJVan MeirvenneMRenardPA practical guide to performing multiple-point statistical simulations with the direct sampling algorithmComputers & Geosciences20135230732410.1016/j.cageo.2012.09.019
– reference: WeiJQiXZhouYWangFZhuDLuLCharacteristics of pyrite and deep metallogenic potential in Jiguanzui Cu–Au deposit, Southeast Hubei ProvinceMetal Mine201911132141(In Chinese with English abstract)
– reference: YinBZuoRXiongYMineral prospectivity mapping via gated recurrent unit modelNatural Resources Research20223142065207910.1007/s11053-021-09979-2
– reference: XiongYZuoRCarranzaEJMMapping mineral prospectivity through big data analytics and a deep learning algorithmOre Geology Reviews201810281181710.1016/j.oregeorev.2018.10.006
– reference: SingerDAProgress in integrated quantitative mineral resource assessmentsOre Geology Reviews201038324225010.1016/j.oregeorev.2010.02.001
– reference: AitchisonJThe statistical analysis of compositional data1986Chapman & Hall10.1007/978-94-009-4109-0
– reference: Bonham-CarterGFAgterbergFPWrightDFIntegration of geological datasets for gold exploration in Nova ScotiaDigital geologic and geographic information systems1989American Geophysical Union (AGU)152310.1029/SC010p0015
– reference: PanYDongPThe lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag depostisOre Geology Reviews199915417724210.1016/S0169-1368(99)00022-0
– reference: MaoJXieGZhangZLiXWangYZhangCLiYMesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settingActa Petrologica Sinica200521169188
– reference: McCuaigTCBeresfordSHronskyJTranslating the mineral systems approach into an effective exploration targeting systemOre Geology Reviews201038312813810.1016/j.oregeorev.2010.05.008
– reference: ChengQMapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, ChinaOre Geology Reviews200732131432410.1016/j.oregeorev.2006.10.002
– reference: ChengQAgterbergFPFuzzy weights of evidence method and its application in mineral potential mappingNatural Resources Research199981273510.1023/A:1021677510649
– reference: XieGMaoJZhaoHWeiKJinSPanHKeYTiming of skarn deposit formation of the Tonglushan ore district, southeastern Hubei Province, middle-lower Yangtze river valley metallogenic belt and its implicationsOre Geology Reviews2011431627710.1016/j.oregeorev.2011.05.005
– reference: van der GrijpYMinnittRRoseDModelling a complex gold deposit with multiple-point statisticsOre Geology Reviews202113910442710.1016/j.oregeorev.2021.104427
– reference: YinBZuoRXiongYLiYYangWKnowledge discovery of geochemical patterns from a data-driven perspectiveJournal of Geochemical Exploration202123110687210.1016/j.gexplo.2021.106872
– reference: ZhangCZuoRXiongYDetection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature methodApplied Geochemistry202113010499410.1016/j.apgeochem.2021.104994
– reference: ZhaoYZhangYBiCGeology of gold-bearing skarn deposits in the middle and lower Yangtze river valley and adjacent regionsOre Geology Reviews199914322724910.1016/S0169-1368(99)00008-6
– reference: TalebiHPeetersLJMMuellerUTolosana-DelgadoRvan den BoogaartKGTowards geostatistical learning for the geosciences: A case study in improving the spatial awareness of spectral clusteringMathematical Geosciences20205281035104810.1007/s11004-020-09867-0
– reference: XieXMuXRenTGeochemical mapping in ChinaJournal of Geochemical Exploration19976019911310.1016/S0375-6742(97)00029-0
– reference: ZuoRIdentifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)Journal of Geochemical Exploration20111111132210.1016/j.gexplo.2011.06.012
– reference: LisitsinVAPorwalAMcCuaigTCProbabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulationsMathematical Geosciences201446674776910.1007/s11004-014-9534-1
– reference: OrianiFStraubhaarJRenardPMariethozGSimulation of rainfall time series from different climatic regions using the direct sampling techniqueHydrology and Earth System Sciences20141883015303110.5194/hess-18-3015-2014
– reference: WangZYinZCaersJZuoRA Monte Carlo-based framework for risk-return analysis in mineral prospectivity mappingGeoscience Frontiers20201162297230810.1016/j.gsf.2020.02.010
– reference: WangZZuoRYangFGeological mapping using direct sampling and a convolutional neural network based on geochemical survey dataMathematical Geosciences202210.1007/s11004-022-10023-z
– reference: GoodchildMFScale in GIS: An overviewGeomorphology201113015910.1016/j.geomorph.2010.10.004
– reference: GoovaertsPGeostatistics for natural resource evaluation1997Oxford University Press
– reference: ZuoRWangZEffects of random negative training samples on mineral prospectivity mappingNatural Resources Research20202963443345510.1007/s11053-020-09668-6
– reference: HouWYangQChenXXiaoFChenYUncertainty analysis and visualization of geological subsurface and its application in metro station constructionFrontiers of Earth Science202115369270410.1007/s11707-021-0897-6
– reference: GuoJWangZLiCLiFJessellMWWuLWangJMultiple-point geostatistics-based three-dimensional automatic geological modeling and uncertainty analysis for borehole dataNatural Resources Research20223142347236710.1007/s11053-022-10071-6
– reference: ParsaMCarranzaEJMModulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivityNatural Resources Research20213053081309710.1007/s11053-021-09891-9
– reference: HuQThe mesozoic diagenetic & metallogenic tectonic background and the temporal & spatial distribution in the southeast of Hubei ProvinceResources Environment & Engineering20142806767776(In Chinese with English abstract)
– reference: RezaeeHMariethozGKoneshlooMAsghariOMultiple-point geostatistical simulation using the bunch-pasting direct sampling methodComputers & Geosciences20135429330810.1016/j.cageo.2013.01.020
– reference: ParsaMCarranzaEJMAhmadiBDeep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral depositsNatural Resources Research2022311375010.1007/s11053-021-09984-5
– reference: SrinivasMPatnaikLMAdaptive probabilities of crossover and mutation in genetic algorithmsIEEE Transactions on Systems, Man, and Cybernetics199424465666710.1109/21.286385
– volume: 31
  start-page: 2065
  issue: 4
  year: 2022
  ident: 10144_CR81
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09979-2
– volume-title: The statistical analysis of compositional data
  year: 1986
  ident: 10144_CR1
  doi: 10.1007/978-94-009-4109-0
– volume: 29
  start-page: 3415
  issue: 6
  year: 2020
  ident: 10144_CR88
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09700-9
– volume: 71
  start-page: 502
  year: 2015
  ident: 10144_CR94
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.024
– volume: 46
  start-page: 747
  issue: 6
  year: 2014
  ident: 10144_CR37
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-014-9534-1
– volume: 31
  start-page: 2271
  issue: 5
  year: 2022
  ident: 10144_CR12
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-022-10089-w
– volume: 521
  start-page: 436
  year: 2015
  ident: 10144_CR31
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 16
  start-page: 313
  issue: 4
  year: 2007
  ident: 10144_CR3
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-008-9058-9
– volume: 54
  start-page: 507
  issue: 3
  year: 2022
  ident: 10144_CR28
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-021-09988-0
– volume: 111
  start-page: 13
  issue: 1
  year: 2011
  ident: 10144_CR87
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2011.06.012
– volume: 29
  start-page: 3527
  issue: 6
  year: 2020
  ident: 10144_CR16
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09692-6
– volume: 52
  start-page: 307
  year: 2013
  ident: 10144_CR49
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2012.09.019
– volume: 229
  start-page: 106838
  year: 2021
  ident: 10144_CR56
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106838
– volume: 60
  start-page: 99
  issue: 1
  year: 1997
  ident: 10144_CR77
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 102
  start-page: 811
  year: 2018
  ident: 10144_CR78
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 142
  start-page: 104693
  year: 2022
  ident: 10144_CR36
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2022.104693
– volume: 34
  start-page: 351
  issue: 4
  year: 2008
  ident: 10144_CR2
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2007.04.002
– volume: 31
  start-page: 2347
  issue: 4
  year: 2022
  ident: 10144_CR22
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-022-10071-6
– volume: 56
  start-page: 501
  issue: 3
  year: 2003
  ident: 10144_CR40
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/s001860200211
– volume: 38
  start-page: 128
  issue: 3
  year: 2010
  ident: 10144_CR48
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2010.05.008
– volume: 30
  start-page: 3081
  issue: 5
  year: 2021
  ident: 10144_CR54
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09891-9
– volume: 192
  start-page: 1
  year: 2019
  ident: 10144_CR92
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.02.023
– volume: 15
  start-page: 692
  issue: 3
  year: 2021
  ident: 10144_CR24
  publication-title: Frontiers of Earth Science
  doi: 10.1007/s11707-021-0897-6
– volume: 130
  start-page: 104994
  year: 2021
  ident: 10144_CR83
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.104994
– volume: 114
  start-page: 1
  year: 2018
  ident: 10144_CR23
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2018.01.017
– volume: 32
  start-page: 2037
  issue: 7
  year: 2020
  ident: 10144_CR34
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04341-3
– volume: 43
  start-page: 62
  issue: 1
  year: 2011
  ident: 10144_CR75
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2011.05.005
– volume: 30
  start-page: 3059
  issue: 5
  year: 2021
  ident: 10144_CR89
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09871-z
– volume: 28
  start-page: 202
  year: 2013
  ident: 10144_CR91
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2012.10.031
– volume: 36
  start-page: 9
  issue: 01
  year: 2022
  ident: 10144_CR26
  publication-title: Mineral Resources and Geology
– volume: 124
  start-page: 104843
  year: 2021
  ident: 10144_CR32
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2020.104843
– volume: 122
  start-page: 87
  year: 2019
  ident: 10144_CR66
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2018.10.013
– start-page: 25
  volume-title: Deep learning for medical image analysis
  year: 2017
  ident: 10144_CR61
  doi: 10.1016/B978-0-12-810408-8.00003-1
– volume: 139
  start-page: 104427
  year: 2021
  ident: 10144_CR67
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2021.104427
– volume: 28
  start-page: 199
  issue: 1
  year: 2019
  ident: 10144_CR38
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-018-9388-1
– volume: 8
  start-page: 27
  issue: 1
  year: 1999
  ident: 10144_CR11
  publication-title: Natural Resources Research
  doi: 10.1023/A:1021677510649
– volume: 54
  start-page: 293
  year: 2013
  ident: 10144_CR57
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2013.01.020
– volume: 14
  start-page: 227
  issue: 3
  year: 1999
  ident: 10144_CR85
  publication-title: Ore Geology Reviews
  doi: 10.1016/S0169-1368(99)00008-6
– year: 2022
  ident: 10144_CR93
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-022-10015-z
– volume: 62
  start-page: 1361
  issue: 9
  year: 2019
  ident: 10144_CR39
  publication-title: Science China Earth Sciences
  doi: 10.1007/s11430-018-9352-9
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 10144_CR47
  publication-title: The Journal of Finance
– volume: 728
  start-page: 138428
  year: 2020
  ident: 10144_CR73
  publication-title: Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.138428
– volume: 30
  start-page: 817
  issue: 06
  year: 2016
  ident: 10144_CR27
  publication-title: Resources Environment & Engineering
– volume: 32
  start-page: 314
  issue: 1
  year: 2007
  ident: 10144_CR10
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2006.10.002
– volume: 38
  start-page: 242
  issue: 3
  year: 2010
  ident: 10144_CR58
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2010.02.001
– year: 2022
  ident: 10144_CR72
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-022-10023-z
– volume: 46
  start-page: W11536
  year: 2010
  ident: 10144_CR45
  publication-title: Water Resources Research
  doi: 10.1029/2008WR007621
– volume: 12
  start-page: 49
  issue: 4
  year: 2010
  ident: 10144_CR41
  publication-title: Journal of Risk
  doi: 10.21314/JOR.2010.212
– volume: 31
  start-page: 37
  issue: 1
  year: 2022
  ident: 10144_CR55
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09984-5
– volume: 28
  start-page: 767
  issue: 06
  year: 2014
  ident: 10144_CR25
  publication-title: Resources Environment & Engineering
– volume: 10
  start-page: 102
  issue: 2
  year: 2020
  ident: 10144_CR62
  publication-title: Minerals
  doi: 10.3390/min10020102
– volume: 47
  start-page: 757
  issue: 4
  year: 2000
  ident: 10144_CR5
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1046/j.1440-0952.2000.00807.x
– volume: 43
  start-page: 783
  issue: 7
  year: 2011
  ident: 10144_CR46
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-011-9362-5
– volume-title: Modeling uncertainty in the earth sciences
  year: 2011
  ident: 10144_CR7
  doi: 10.1002/9781119995920
– volume: 120
  start-page: 103394
  year: 2020
  ident: 10144_CR18
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2020.103394
– volume: 118
  start-page: 52
  year: 2018
  ident: 10144_CR68
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2018.05.010
– volume: 130
  start-page: 5
  issue: 1
  year: 2011
  ident: 10144_CR19
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.10.004
– volume: 10
  start-page: 1383
  issue: 4
  year: 2019
  ident: 10144_CR6
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2019.01.009
– volume: 71
  start-page: 853
  year: 2015
  ident: 10144_CR50
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2014.09.007
– volume: 21
  start-page: 56
  issue: 04
  year: 2012
  ident: 10144_CR9
  publication-title: China Mining Magazine
– volume: 24
  start-page: 656
  issue: 4
  year: 1994
  ident: 10144_CR60
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.286385
– volume: 14
  start-page: 47
  issue: 1
  year: 2005
  ident: 10144_CR8
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-005-4678-9
– ident: 10144_CR84
– volume: 8
  start-page: 111
  issue: 2
  year: 1999
  ident: 10144_CR59
  publication-title: Natural Resources Research
  doi: 10.1023/A:1021838618750
– volume: 194
  start-page: 120
  year: 2018
  ident: 10144_CR21
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2018.07.014
– volume: 103
  start-page: 829
  issue: 4
  year: 2008
  ident: 10144_CR29
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.103.4.829
– volume: 15
  start-page: 177
  issue: 4
  year: 1999
  ident: 10144_CR52
  publication-title: Ore Geology Reviews
  doi: 10.1016/S0169-1368(99)00022-0
– volume: 41
  start-page: 431
  issue: 04
  year: 2019
  ident: 10144_CR70
  publication-title: Journal of Earth Science and Environment
– volume: 231
  start-page: 106872
  year: 2021
  ident: 10144_CR82
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2021.106872
– volume: 98
  start-page: 175
  issue: 1
  year: 2003
  ident: 10144_CR63
  publication-title: Economic Geology
– volume: 43
  start-page: 294
  issue: 1
  year: 2011
  ident: 10144_CR43
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2011.07.010
– volume: 35
  start-page: 279
  issue: 3
  year: 2003
  ident: 10144_CR13
  publication-title: Mathematical Geology
  doi: 10.1023/A:1023818214614
– volume: 11
  start-page: 132
  year: 2019
  ident: 10144_CR74
  publication-title: Metal Mine
– volume: 24
  start-page: 1665
  issue: 08
  year: 2008
  ident: 10144_CR86
  publication-title: Acta Petrologica Sinica
– volume: 52
  start-page: 1035
  issue: 8
  year: 2020
  ident: 10144_CR65
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-020-09867-0
– ident: 10144_CR30
– volume: 59
  start-page: 3427
  issue: 27
  year: 2014
  ident: 10144_CR69
  publication-title: Chinese Science Bulletin
  doi: 10.1007/s11434-014-0358-7
– volume: 28
  start-page: 823
  issue: 06
  year: 2014
  ident: 10144_CR80
  publication-title: Resources Environment & Engineering
– volume-title: Geostatistics for natural resource evaluation
  year: 1997
  ident: 10144_CR20
  doi: 10.1093/oso/9780195115383.001.0001
– volume: 54
  start-page: 593
  issue: 3
  year: 2022
  ident: 10144_CR64
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-021-09989-z
– volume: 28
  start-page: 227
  issue: 03
  year: 2009
  ident: 10144_CR76
  publication-title: Mineral Deposits
– start-page: 15
  volume-title: Digital geologic and geographic information systems
  year: 1989
  ident: 10144_CR4
  doi: 10.1029/SC010p0015
– volume: 197
  start-page: 102897
  year: 2019
  ident: 10144_CR17
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.102897
– volume: 11
  start-page: 2297
  issue: 6
  year: 2020
  ident: 10144_CR71
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2020.02.010
– volume: 29
  start-page: 3443
  issue: 6
  year: 2020
  ident: 10144_CR90
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09668-6
– volume: 14
  start-page: 240
  year: 2015
  ident: 10144_CR33
  publication-title: Spatial Statistics
  doi: 10.1016/j.spasta.2015.04.004
– volume: 29
  start-page: 307
  issue: 3
  year: 2006
  ident: 10144_CR42
  publication-title: Ore Geology Reviews
  doi: 10.1016/j.oregeorev.2005.11.001
– volume: 20
  start-page: 157
  issue: 1
  year: 2005
  ident: 10144_CR53
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2004.05.007
– volume: 21
  start-page: 169
  year: 2005
  ident: 10144_CR44
  publication-title: Acta Petrologica Sinica
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10144_CR15
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 18
  start-page: 3015
  issue: 8
  year: 2014
  ident: 10144_CR51
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-18-3015-2014
– volume: 17
  start-page: 107
  issue: 2
  year: 2008
  ident: 10144_CR14
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-008-9072-y
– volume: 161
  start-page: 105075
  year: 2022
  ident: 10144_CR79
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2022.105075
– volume: 30
  start-page: 27
  issue: 1
  year: 2021
  ident: 10144_CR35
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09742-z
SSID ssj0007385
Score 2.4609187
Snippet Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Algorithms
Artificial neural networks
case studies
Chemistry and Earth Sciences
China
Computer Science
Computer simulation
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Geography
gold
Mapping
Mathematical Modeling and Industrial Mathematics
Mineral deposits
Mineral exploration
Mineral Resources
Neural networks
Original Paper
Physics
prediction
Prediction models
risk
Risk analysis
river valleys
Sampling
Statistics for Engineering
Sustainable Development
Uncertainty
Yangtze River
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bSsNAEB20IuiDeMV6YwXfdDFJ003yJCpeECveCr6F3exGCpKobYV-iP_rzGbTqqBPIXfITGbP7MyeA7CXGKrnYaYaBIngYTsTXHktwwNhTOJpP8xzWu_cuRGX3fDqqf3kJtz6rq2yjok2UOsyoznywyBB52tFCGiPXt84qUZRddVJaEzDDIbgOG7AzMnZze39OBYTV4tlTMUkiaC3WzZTLZ5DaEE1zICTXm3Ixc-haYI3f5VI7chzvggLDjKy48rGSzBlimWY_0YkuAyzF1agd7QCn3dDWfX_2E_Oypx10a627j8YsdoaRjOagWW1qCi7loS9Wa9gnZ4loma376VbholAnXUkETk8M9tiwKpAyR4k9aPjviw0Oy2LD-fHeDeRftiN7TJfhe752ePpJXfSCzxDRDbgWnlGebnRQoeY04hQZe0oQNuRKLXEI2GWy0x4RmvfV8SoE_mZr2LMt0wspNdag0ZRFmYdWGiIIi4XrQhTFz83Upq2kgpHzyBHLBM1wa-_epo5XnKSx3hJJ4zKZKkULZVaS6WiCfvje14rVo5_r96qjZm6P7SfTvypCbvj0_hvUcFEFqYc4jUYgZOYGNWacFA7weQRf79x4_83bsIcqdZXzd9b0Bi8D802YpuB2nEO_AX51vYm
  priority: 102
  providerName: ProQuest
Title Quantification of Uncertainty Associated with Evidence Layers in Mineral Prospectivity Mapping Using Direct Sampling and Convolutional Neural Network
URI https://link.springer.com/article/10.1007/s11053-022-10144-6
https://www.proquest.com/docview/2918337049
https://www.proquest.com/docview/2887986360
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xECoceKQgQmk0lXoDS7Zjr-NjipIgIIgWIsHJ2rXXbSRkI5Ig8UP4v8ys1wlUbaWenMd6ffh2Z7_xzHwD8DXWHM8jT9X3Y-EEYSoc5ba14wutYzfzgjzneufhpTgdBWe34a0tCpvU2e51SNJY6kWxG1EBjjn6DveXDRyxDKsh-e6cyDXyu3P7y_osRiWVHCOm27ZU5s9zvD-OFhzzt7CoOW3627BpaSJ2K1x3YEkXDdiqWzCg3ZEN2HijJ9iAD7al-a_nBqwNTM9e_mSyPNPJR3j5PpNVcpDBA8scRzSNSQqYPmMNlc6QX89i3XEULyQTcxwXOBwblWq8eixtjSaxeBxKVnn4iSb_ACsriteSk9XpuywyPCmLJ7vI6W5WBDEXk4K-C6N-7-bk1LF9GZyU6NrUyZSrlZvrTGQBOTwiUGkY-QQsd6yW9EuQ5jIVrs4yz1MstxN5qac65IzpjpBuew9WirLQ-4CBZv24XLQj8mu8XEupQyUVHa1-TkQnaoJXw5OkVrSce2fcJwu5ZYY0IUgTA2kimnA0v-ehkuz45-jDGvXEbt9J4sdk6doReU9N-DL_mzYeR1NkocsZjSHzHHdYbq0Jx_VqWUzx9yce_N_wT7DOLe6rTPFDWJk-zvRnIkJT1YLlTn_QgtXu4O68R9dvvcurHy2zG14BlEgCsw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgQ9ICggUgoMEpxghb3erONDhVAhTWlSgWik3syud40qIbu0CSgPwmv0GZlZ2wkg0VtPln_X8szOfuOZ-QbgeeY5nkeeqpSZFqpfaGGjxAupvc8iF6uy5HrnyaEeTdWH4_7xGlx0tTCcVtnZxGCoXV3wP_LXMiPlS1ICtG9OvwvuGsXR1a6FRqMWB37xk1y28539dyTfF1IO3x_tjkTbVUAUBDZmwtnI26j0TjtFcF0rW_RTSa_F_ZYNHVFFaQodeefi2DJZTBoXsR2QK-EH2kQJPfcaXFcJreRcmT7cW1p-ZoYJ_KzkkjHQb4t0mlI9AjIcMZWCu-Mqof9eCFfo9p-AbFjnhnfgdgtQ8W2jUXdhzVebsPEHbeEm3NgL7YAX9-DXp7lpso2CgLEucUpaFLIMZgvsZO8d8v9e7FqY4tgw0seTCicngfYaP57VbdEnuQU4MUwb8RVDQgM2Zhk_G85-p31TOdytqx_trKG7mWIkbEJO-32YXolIHsB6VVf-IaDyTEhX6iQlRykuvTG-b42ltVqWhJzSHsTdV8-LlgWdm3F8y1f8zSypnCSVB0nlugcvl_ecNhwgl1693Qkzb-3Beb7S3h48W56mmczhGVP5ek7XkL3PBszf1oNXnRKsHvH_EbcuH_Ep3BwdTcb5eP_w4BHckoTSmrTzbVifnc39Y0JVM_skqDLCl6ueO78BBi4xQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIv4O_AQQgQKDBCewam826_jAoWoJLW2qIojUm1l7d6ESsqvGAeVBeA8ekZn1OgEESBx6SuKs1yvNzuw3nplvAJ5mluN55KkKkalIDksVFfHARkJZm8Umkc5xvfPkUO1O5Zvj4fEafO9qYXy2exeSbGsamKWpajZPjdtcFb4RLOD4o4i416yMVEir3LeLr-S0zV7u7ZCEnwkxfvV-ezcKfQWikuBGE5kitkXsrFFGEmBXsiiHqaCFccdlTVdk6XSpYmtMkhRMF5MmZVKMyJmwI6XjAc17AS5Krj4mDZqKraXtZ24Yz9BKThlD_VCm8-c1_3oUrvDtbyFZf9KNb8L1AFFxq91Tt2DNVj240bV_wGANenDtJy7DHlwJ7dQ_LXpw6bXvF8zffIZpObsN397OdZuY5PcC1g6nNI1PSGgW2G0Ta5BfDWPX7RQPNDsFeFLh5MQzZOPRWR3qQ8mDwIlmhomP6HMfsLXg-E5zojz91pXB7br6EhSM7mY2Ev_h09_vwPRcZHcX1qu6svcApWXuOqcGKflUibNa22GhCzrWhSOQlfYh6cSTl4Ewnft2fM5XVM8s0pxEmnuR5qoPz5f3nLZ0If8cvdFJPQ-mY5aLjKzsICXPrQ9Pln-T0nMkR1e2ntMYOhqyEVO99eFFt1tWU_z9iff_b_hjuHy0M84P9g73H8BVQfiuTVjfgPXmbG4fEh5rikdeBRA-nLfO_QBlTD9j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Uncertainty+Associated+with+Evidence+Layers+in+Mineral+Prospectivity+Mapping+Using+Direct+Sampling+and+Convolutional+Neural+Network&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Yang%2C+Fanfan&rft.au=Wang%2C+Ziye&rft.au=Zuo%2C+Renguang&rft.au=Sun%2C+Siquan&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=32&rft.issue=1&rft.spage=79&rft.epage=98&rft_id=info:doi/10.1007%2Fs11053-022-10144-6&rft.externalDocID=10_1007_s11053_022_10144_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon