Quantification of Uncertainty Associated with Evidence Layers in Mineral Prospectivity Mapping Using Direct Sampling and Convolutional Neural Network
Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid mode...
Saved in:
Published in | Natural resources research (New York, N.Y.) Vol. 32; no. 1; pp. 79 - 98 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid model combining a direct sampling algorithm and a convolutional neural network to quantify the uncertainty associated with the evidence layers in MPM. Specifically, a direct sampling algorithm was first used to simulate equiprobable evidence layers that followed the similar pattern of geological features. A convolutional neural network was then employed to produce mineral prospectivity maps by integrating the simulated evidence layers. The initial risk–return analysis was conducted based on the obtained mineral prospectivity maps to search for areas linked to high potential and low risk. Finally, a Markowitz mean–variance model was adopted to further outline prior prospective areas to support future mineral exploration in the high-potential areas. A case study of mapping mineral prospectivity for gold polymetallic deposits in the Middle–Lower Yangtze River Valley metallogenic belt in the southeastern Hubei Province of China was implemented. The comparative results indicated that the hybrid model of the direct sampling algorithm and convolutional neural network, which considered the uncertainty of evidence layers, achieved a higher success rate and prediction accuracy than the deterministic framework. |
---|---|
AbstractList | Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject to uncertainties originated from conceptual mineral deposit models, geoscience data, and prediction models. This study utilizes a hybrid model combining a direct sampling algorithm and a convolutional neural network to quantify the uncertainty associated with the evidence layers in MPM. Specifically, a direct sampling algorithm was first used to simulate equiprobable evidence layers that followed the similar pattern of geological features. A convolutional neural network was then employed to produce mineral prospectivity maps by integrating the simulated evidence layers. The initial risk–return analysis was conducted based on the obtained mineral prospectivity maps to search for areas linked to high potential and low risk. Finally, a Markowitz mean–variance model was adopted to further outline prior prospective areas to support future mineral exploration in the high-potential areas. A case study of mapping mineral prospectivity for gold polymetallic deposits in the Middle–Lower Yangtze River Valley metallogenic belt in the southeastern Hubei Province of China was implemented. The comparative results indicated that the hybrid model of the direct sampling algorithm and convolutional neural network, which considered the uncertainty of evidence layers, achieved a higher success rate and prediction accuracy than the deterministic framework. |
Author | Wang, Ziye Zuo, Renguang Zhou, Bao Yang, Fanfan Sun, Siquan |
Author_xml | – sequence: 1 givenname: Fanfan surname: Yang fullname: Yang, Fanfan organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences – sequence: 2 givenname: Ziye orcidid: 0000-0001-6538-5798 surname: Wang fullname: Wang, Ziye email: ziyewang@cug.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences – sequence: 3 givenname: Renguang surname: Zuo fullname: Zuo, Renguang email: zrguang@cug.edu.cn organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences – sequence: 4 givenname: Siquan surname: Sun fullname: Sun, Siquan organization: Hubei Geological Survey, Hubei Geological Exploration Engineering Technology Research Center – sequence: 5 givenname: Bao surname: Zhou fullname: Zhou, Bao organization: Hubei Geological Survey, Hubei Geological Exploration Engineering Technology Research Center |
BookMark | eNp9kcFu1DAQhi1UJNrCC3CyxIVLih07jnOslkKRttAK9mw59qS4ZO1gO1vtg_C-OLtISD304rFn_s8zmv8MnfjgAaG3lFxQQtoPiVLSsIrUdUUJ5bwSL9ApbVpWyU7Sk-Vek6rlrHuFzlJ6IAVisjlFf-5m7bMbnNHZBY_DgDfeQMza-bzHlykF43QGix9d_omvds5CqeO13kNM2Hl84zxEPeLbGNIEJrudK-CNnibn7_EmLedHF0sFf9fbaVze2lu8Cn4XxnnpWuivMMdDyI8h_nqNXg56TPDmXzxHm09XP1bX1frb5y-ry3VlWFPnyvYEejKAFZY3XArem6atiaWCMKpLhptBG0HAWkr7WpK2pYb2kvIOpNCEnaP3x3-nGH7PkLLaumRgHLWHMCdVS9l2UjCxSN89kT6EOZbRi6qjkrGW8K6o6qPKlG2kCIOaotvquFeUqMUpdXRKFafUwSklCiSfQMblgx05ajc-j7Ijmkoffw_x_1TPUH8BeY2seA |
CitedBy_id | crossref_primary_10_1016_j_oregeorev_2023_105787 crossref_primary_10_1007_s11004_024_10141_w crossref_primary_10_1007_s11053_023_10200_9 crossref_primary_10_3724_j_issn_1007_2802_20240164 crossref_primary_10_1007_s40808_024_02176_z crossref_primary_10_1007_s11004_023_10059_9 crossref_primary_10_1016_j_oregeorev_2023_105660 crossref_primary_10_1016_j_cageo_2025_105913 crossref_primary_10_1007_s11053_024_10349_x crossref_primary_10_1016_j_chemer_2024_126212 crossref_primary_10_1007_s11053_023_10286_1 crossref_primary_10_1016_j_chemer_2024_126155 crossref_primary_10_1016_j_apgeochem_2023_105722 crossref_primary_10_1080_27669645_2024_2418730 crossref_primary_10_1007_s11053_025_10464_3 crossref_primary_10_1007_s11004_024_10137_6 crossref_primary_10_1007_s12145_024_01278_7 crossref_primary_10_1007_s11053_024_10409_2 crossref_primary_10_1007_s11004_024_10153_6 crossref_primary_10_1016_j_oregeorev_2023_105651 crossref_primary_10_3389_feart_2023_1102640 crossref_primary_10_1007_s11053_023_10279_0 crossref_primary_10_1016_j_oregeorev_2023_105573 crossref_primary_10_3390_min15010071 crossref_primary_10_1007_s11004_023_10076_8 crossref_primary_10_1007_s11053_024_10322_8 crossref_primary_10_1007_s11053_024_10328_2 crossref_primary_10_1016_j_gexplo_2023_107274 crossref_primary_10_1007_s11053_024_10344_2 crossref_primary_10_1007_s11053_024_10386_6 crossref_primary_10_1007_s11004_023_10070_0 |
Cites_doi | 10.1007/s11053-021-09979-2 10.1007/978-94-009-4109-0 10.1007/s11053-020-09700-9 10.1016/j.oregeorev.2014.09.024 10.1007/s11004-014-9534-1 10.1007/s11053-022-10089-w 10.1038/nature14539 10.1007/s11053-008-9058-9 10.1007/s11004-021-09988-0 10.1016/j.gexplo.2011.06.012 10.1007/s11053-020-09692-6 10.1016/j.cageo.2012.09.019 10.1016/j.gexplo.2021.106838 10.1016/S0375-6742(97)00029-0 10.1016/j.oregeorev.2018.10.006 10.1016/j.oregeorev.2022.104693 10.1016/j.cageo.2007.04.002 10.1007/s11053-022-10071-6 10.1007/s001860200211 10.1016/j.oregeorev.2010.05.008 10.1007/s11053-021-09891-9 10.1016/j.earscirev.2019.02.023 10.1007/s11707-021-0897-6 10.1016/j.apgeochem.2021.104994 10.1016/j.cageo.2018.01.017 10.1007/s00521-019-04341-3 10.1016/j.oregeorev.2011.05.005 10.1007/s11053-021-09871-z 10.1016/j.apgeochem.2012.10.031 10.1016/j.apgeochem.2020.104843 10.1016/j.cageo.2018.10.013 10.1016/B978-0-12-810408-8.00003-1 10.1016/j.oregeorev.2021.104427 10.1007/s11053-018-9388-1 10.1023/A:1021677510649 10.1016/j.cageo.2013.01.020 10.1016/S0169-1368(99)00008-6 10.1007/s11004-022-10015-z 10.1007/s11430-018-9352-9 10.1016/j.scitotenv.2020.138428 10.1016/j.oregeorev.2006.10.002 10.1016/j.oregeorev.2010.02.001 10.1007/s11004-022-10023-z 10.1029/2008WR007621 10.21314/JOR.2010.212 10.1007/s11053-021-09984-5 10.3390/min10020102 10.1046/j.1440-0952.2000.00807.x 10.1007/s11004-011-9362-5 10.1002/9781119995920 10.1016/j.oregeorev.2020.103394 10.1016/j.cageo.2018.05.010 10.1016/j.geomorph.2010.10.004 10.1016/j.gsf.2019.01.009 10.1016/j.oregeorev.2014.09.007 10.1109/21.286385 10.1007/s11053-005-4678-9 10.1023/A:1021838618750 10.1016/j.gexplo.2018.07.014 10.2113/gsecongeo.103.4.829 10.1016/S0169-1368(99)00022-0 10.1016/j.gexplo.2021.106872 10.1016/j.oregeorev.2011.07.010 10.1023/A:1023818214614 10.1007/s11004-020-09867-0 10.1007/s11434-014-0358-7 10.1093/oso/9780195115383.001.0001 10.1007/s11004-021-09989-z 10.1029/SC010p0015 10.1016/j.earscirev.2019.102897 10.1016/j.gsf.2020.02.010 10.1007/s11053-020-09668-6 10.1016/j.spasta.2015.04.004 10.1016/j.oregeorev.2005.11.001 10.1016/j.apgeochem.2004.05.007 10.1016/j.patrec.2005.10.010 10.5194/hess-18-3015-2014 10.1007/s11053-008-9072-y 10.1016/j.cageo.2022.105075 10.1007/s11053-020-09742-z |
ContentType | Journal Article |
Copyright | International Association for Mathematical Geosciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: International Association for Mathematical Geosciences 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. PATMY PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6 |
DOI | 10.1007/s11053-022-10144-6 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Materials Science Database (NC LIVE) Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Central Student AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Geology Physics Computer Science |
EISSN | 1573-8981 |
EndPage | 98 |
ExternalDocumentID | 10_1007_s11053_022_10144_6 |
GeographicLocations | China Yangtze River |
GeographicLocations_xml | – name: Yangtze River – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41972303; 42102332; 42172326 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z81 Z85 Z86 Z8S Z8T Z8U Z8Z ZMTXR ~02 ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC D1I DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-db0eb0fed6d454864bc5720d16031a5484cfac60edd11b280771c1b8149e86a03 |
IEDL.DBID | U2A |
ISSN | 1520-7439 |
IngestDate | Thu Jul 10 23:08:49 EDT 2025 Fri Jul 25 10:55:49 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Tue Jul 01 04:16:51 EDT 2025 Fri Feb 21 02:45:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Direct sampling Mineral prospectivity mapping Uncertainty analysis Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-db0eb0fed6d454864bc5720d16031a5484cfac60edd11b280771c1b8149e86a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6538-5798 |
PQID | 2918337049 |
PQPubID | 2043663 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2887986360 proquest_journals_2918337049 crossref_primary_10_1007_s11053_022_10144_6 crossref_citationtrail_10_1007_s11053_022_10144_6 springer_journals_10_1007_s11053_022_10144_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230200 2023-02-00 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Official Journal of the International Association for Mathematical Geosciences |
PublicationTitle | Natural resources research (New York, N.Y.) |
PublicationTitleAbbrev | Nat Resour Res |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | HansenTMVuLTMosegaardKCorduaKSMultiple point statistical simulation using uncertain (soft) conditional dataComputers & Geosciences201811411010.1016/j.cageo.2018.01.017 PanYDongPThe lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag depostisOre Geology Reviews199915417724210.1016/S0169-1368(99)00022-0 ZuoRIdentifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)Journal of Geochemical Exploration20111111132210.1016/j.gexplo.2011.06.012 GoodchildMFScale in GIS: An overviewGeomorphology201113015910.1016/j.geomorph.2010.10.004 LiBLiuBWangGChenLGuoKUsing geostatistics and maximum entropy model to identify geochemical anomalies: A case study in Mila Mountain region, southern TibetApplied Geochemistry202112410484310.1016/j.apgeochem.2020.104843 LiTZuoRZhaoXZhaoKMapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented dataOre Geology Reviews202214210469310.1016/j.oregeorev.2022.104693 LiTZuoRXiongYPengYRandom-drop data augmentation of deep convolutional neural network for mineral prospectivity mappingNatural Resources Research2021301273810.1007/s11053-020-09742-z ZuoRGeodata science-based mineral prospectivity mapping: a reviewNatural Resources Research20202963415342410.1007/s11053-020-09700-9 ZhaoYZhangYBiCGeology of gold-bearing skarn deposits in the middle and lower Yangtze river valley and adjacent regionsOre Geology Reviews199914322724910.1016/S0169-1368(99)00008-6 GhezelbashRMaghsoudiACarranzaEJMSensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district, NW IranOre Geology Reviews202012010339410.1016/j.oregeorev.2020.103394 CaersJModeling uncertainty in the earth sciences2011Wiley10.1002/9781119995920 GoovaertsPGeostatistics for natural resource evaluation1997Oxford University Press MeerschmanEPirotGMariethozGStraubhaarJVan MeirvenneMRenardPA practical guide to performing multiple-point statistical simulations with the direct sampling algorithmComputers & Geosciences20135230732410.1016/j.cageo.2012.09.019 YinBZuoRXiongYLiYYangWKnowledge discovery of geochemical patterns from a data-driven perspectiveJournal of Geochemical Exploration202123110687210.1016/j.gexplo.2021.106872 LiSChenJXiangJApplications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big dataNeural Computing and Applications20203272037205310.1007/s00521-019-04341-3 ParsaMCarranzaEJMModulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivityNatural Resources Research20213053081309710.1007/s11053-021-09891-9 SrinivasMPatnaikLMAdaptive probabilities of crossover and mutation in genetic algorithmsIEEE Transactions on Systems, Man, and Cybernetics199424465666710.1109/21.286385 XieXMuXRenTGeochemical mapping in ChinaJournal of Geochemical Exploration19976019911310.1016/S0375-6742(97)00029-0 ChengQAgterbergFPFuzzy weights of evidence method and its application in mineral potential mappingNatural Resources Research199981273510.1023/A:1021677510649 Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 1097–1105). ChenWRuanQYangWLiJKeYFanZZhaiSThe geological characteristics of Jinjingzui skarn gold deposit and its causes in the east of Hubei provinceChina Mining Magazine201221045659(In Chinese with English abstract) YinBZuoRXiongYMineral prospectivity mapping via gated recurrent unit modelNatural Resources Research20223142065207910.1007/s11053-021-09979-2 OrianiFStraubhaarJRenardPMariethozGSimulation of rainfall time series from different climatic regions using the direct sampling techniqueHydrology and Earth System Sciences20141883015303110.5194/hess-18-3015-2014 MarkowitzHPortfolio selection*The Journal of Finance1952717791 AitchisonJThe statistical analysis of compositional data1986Chapman & Hall10.1007/978-94-009-4109-0 LuoSYaoHLiQWangWWanKMengYLiuBHigh-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River metallogenic belt and implications for its deep geodynamic settingScience China Earth Sciences20196291361137810.1007/s11430-018-9352-9 SrinivasSSarvadevabhatlaRKMopuriKRPrabhuNKruthiventiSSSBabuRVAn introduction to deep convolutional neural nets for computer visionDeep learning for medical image analysis2017Academic Press255210.1016/B978-0-12-810408-8.00003-1 XieGZhaoHZhaoCLiXHouKPanHRe–Os dating of molybdenite from Tonglushan ore district in southeastern Hubei Province, middle-lower Yangtze river belt and its geological significanceMineral Deposits20092803227239(In Chinese with English abstract) NykänenVLahtiINiiranenTKorhonenKReceiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern FinlandOre Geology Reviews20157185386010.1016/j.oregeorev.2014.09.007 SunWXieZChenJZhangXChaiZDuAZhaoJZhangCZhouTOs-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze river, ChinaEconomic Geology2003981175180 KirkwoodCEconomouTPugeaultNOdbertHBayesian deep learning for spatial interpolation in the presence of auxiliary informationMathematical Geosciences202254350753110.1007/s11004-021-09988-0 McCuaigTCBeresfordSHronskyJTranslating the mineral systems approach into an effective exploration targeting systemOre Geology Reviews201038312813810.1016/j.oregeorev.2010.05.008 ZuoRWangZEffects of random negative training samples on mineral prospectivity mappingNatural Resources Research20202963443345510.1007/s11053-020-09668-6 YaoYRuanQJinHHeJDiscussion on geological characteristics and prospecting direction of altered rock type gold deposit, Southeastern HubeiResources Environment & Engineering20142806823829(In Chinese with English abstract) HuQThe mesozoic diagenetic & metallogenic tectonic background and the temporal & spatial distribution in the southeast of Hubei ProvinceResources Environment & Engineering20142806767776(In Chinese with English abstract) GeYJinYSteinAChenYWangJWangJChengQBaiHLiuMAtkinsonPPrinciples and methods of scaling geospatial earth science dataEarth-Science Reviews201919710289710.1016/j.earscirev.2019.102897 MaoJXieGDuanCPirajnoFIshiyamaDChenYA tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the middle-lower Yangtze river valley, Eastern ChinaOre Geology Reviews201143129431410.1016/j.oregeorev.2011.07.010 WangQZhouLLittleSHLiuJFengLTongSThe geochemical behavior of Cu and its isotopes in the Yangtze riverScience of The Total Environment202072813842810.1016/j.scitotenv.2020.138428 LiuYChengQCarranzaEJMZhouKAssessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysisNatural Resources Research201928119921210.1007/s11053-018-9388-1 TalebiHMuellerUPeetersLJMOttoAde CaritatPTolosana-DelgadoRvan den BoogaartKGStochastic modelling of mineral exploration targetsMathematical Geosciences202254359362110.1007/s11004-021-09989-z CarranzaEJMWoldaiTChikambweEMApplication of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, ZambiaNatural Resources Research2005141476310.1007/s11053-005-4678-9 ParsaMCarranzaEJMAhmadiBDeep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral depositsNatural Resources Research2022311375010.1007/s11053-021-09984-5 LiLRomaryTCaersJUniversal kriging with training imagesSpatial Statistics20151424026810.1016/j.spasta.2015.04.004 TalebiHPeetersLJMMuellerUTolosana-DelgadoRvan den BoogaartKGTowards geostatistical learning for the geosciences: A case study in improving the spatial awareness of spectral clusteringMathematical Geosciences20205281035104810.1007/s11004-020-09867-0 ChengQMapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, ChinaOre Geology Reviews200732131432410.1016/j.oregeorev.2006.10.002 ZhangCZuoRXiongYDetection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature methodApplied Geochemistry202113010499410.1016/j.apgeochem.2021.104994 FawcettTAn introduction to ROC analysisPattern Recognition Letters200627886187410.1016/j.patrec.2005.10.010 SingerDAProgress in integrated quantitative mineral resource assessmentsOre Geology Reviews201038324225010.1016/j.oregeorev.2010.02.001 XiongYZuoRCarranzaEJMMapping mineral prospectivity through big data analytics and a deep learning algorithmOre Geology Reviews201810281181710.1016/j.oregeorev.2018.10.006 DaviranMParsaMMaghsoudiAGhezelbashRQuantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mappingNatural Resources Research20223152271228710.1007/s11053-022-10089-w HouWYangQChenXXiaoFChenYUncertainty analysis and visualization of geological subsurface and its application in metro station constructionFrontiers of Earth Science202115369270410.1007/s11707-021-0897-6 MaoJWangYLehmannBYuJDuAMeiYMolybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implicationsOre Geology Reviews200629330732410.1016/j.oregeorev.2005.11.001 SunTLiHWuKChenFZhuZHuZData-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, ChinaMinerals202010210210.3390/min10020102 YangNZhangZYangJHongZApplications of data augmentation in mineral prospectiv G Xie (10144_CR76) 2009; 28 Y Ke (10144_CR27) 2016; 30 Y Liu (10144_CR38) 2019; 28 M Parsa (10144_CR54) 2021; 30 VA Lisitsin (10144_CR37) 2014; 46 J Mao (10144_CR43) 2011; 43 Y Ge (10144_CR17) 2019; 197 Q Hu (10144_CR25) 2014; 28 G Mariethoz (10144_CR45) 2010; 46 10144_CR84 Y Yao (10144_CR80) 2014; 28 Y Zhao (10144_CR85) 1999; 14 TC McCuaig (10144_CR48) 2010; 38 P Goovaerts (10144_CR20) 1997 R Zuo (10144_CR90) 2020; 29 Y LeCun (10144_CR31) 2015; 521 J Mao (10144_CR44) 2005; 21 EJM Carranza (10144_CR8) 2005; 14 J Wang (10144_CR68) 2018; 118 Z Wang (10144_CR72) 2022 JN Burkin (10144_CR6) 2019; 10 T Sun (10144_CR62) 2020; 10 R Zuo (10144_CR88) 2020; 29 H Talebi (10144_CR64) 2022; 54 M Wang (10144_CR70) 2019; 41 M Parsa (10144_CR56) 2021; 229 DA Singer (10144_CR59) 1999; 8 H Rezaee (10144_CR57) 2013; 54 Q Cheng (10144_CR10) 2007; 32 R Zuo (10144_CR87) 2011; 111 J Aitchison (10144_CR1) 1986 M Daviran (10144_CR12) 2022; 31 R Zuo (10144_CR93) 2022 S Li (10144_CR34) 2020; 32 GF Bonham-Carter (10144_CR4) 1989 C Kirkwood (10144_CR28) 2022; 54 Z Wang (10144_CR71) 2020; 11 R Maller (10144_CR41) 2010; 12 Y van der Grijp (10144_CR67) 2021; 139 T Li (10144_CR36) 2022; 142 J Wei (10144_CR74) 2019; 11 R Ghezelbash (10144_CR18) 2020; 120 G Mariethoz (10144_CR46) 2011; 43 C Zhang (10144_CR83) 2021; 130 W Sun (10144_CR63) 2003; 98 R Zuo (10144_CR94) 2015; 71 MF Goodchild (10144_CR19) 2011; 130 TM Hansen (10144_CR23) 2018; 114 R Zuo (10144_CR91) 2013; 28 B Li (10144_CR32) 2021; 124 S Luo (10144_CR39) 2019; 62 L Wang (10144_CR69) 2014; 59 X Xie (10144_CR77) 1997; 60 Q Wang (10144_CR73) 2020; 728 JJ Egozcue (10144_CR13) 2003; 35 T Zhou (10144_CR86) 2008; 24 H Talebi (10144_CR65) 2020; 52 WM Brown (10144_CR5) 2000; 47 RA Maller (10144_CR40) 2003; 56 E Pardo-Igúzquiza (10144_CR53) 2005; 20 J Mao (10144_CR42) 2006; 29 DA Singer (10144_CR58) 2010; 38 N Yang (10144_CR79) 2022; 161 B Yin (10144_CR82) 2021; 231 M Garrido (10144_CR16) 2020; 29 M Parsa (10144_CR55) 2022; 31 J Caers (10144_CR7) 2011 Y Xiong (10144_CR78) 2018; 102 S Srinivas (10144_CR61) 2017 A Bistacchi (10144_CR2) 2008; 34 W Hou (10144_CR24) 2021; 15 L Li (10144_CR33) 2015; 14 J Guo (10144_CR22) 2022; 31 E Hua (10144_CR26) 2022; 36 T Li (10144_CR35) 2021; 30 B Yin (10144_CR81) 2022; 31 W Chen (10144_CR9) 2012; 21 10144_CR30 T Fawcett (10144_CR15) 2006; 27 H Markowitz (10144_CR47) 1952; 7 F Oriani (10144_CR51) 2014; 18 R Zuo (10144_CR92) 2019; 192 G Xie (10144_CR75) 2011; 43 OP Kreuzer (10144_CR29) 2008; 103 V Nykänen (10144_CR50) 2015; 71 JB Boisvert (10144_CR3) 2007; 16 H Talebi (10144_CR66) 2019; 122 E Meerschman (10144_CR49) 2013; 52 M Srinivas (10144_CR60) 1994; 24 AG Fabbri (10144_CR14) 2008; 17 J Graffelman (10144_CR21) 2018; 194 Y Pan (10144_CR52) 1999; 15 R Zuo (10144_CR89) 2021; 30 Q Cheng (10144_CR11) 1999; 8 |
References_xml | – reference: GeYJinYSteinAChenYWangJWangJChengQBaiHLiuMAtkinsonPPrinciples and methods of scaling geospatial earth science dataEarth-Science Reviews201919710289710.1016/j.earscirev.2019.102897 – reference: HuaESunFCenZXiaoDLuoHYuWLiLDiscussion on prospecting direction of copper and gold deposits in Southeast HubeiMineral Resources and Geology20223601913(In Chinese with English abstract) – reference: KirkwoodCEconomouTPugeaultNOdbertHBayesian deep learning for spatial interpolation in the presence of auxiliary informationMathematical Geosciences202254350753110.1007/s11004-021-09988-0 – reference: MaoJXieGDuanCPirajnoFIshiyamaDChenYA tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits along the middle-lower Yangtze river valley, Eastern ChinaOre Geology Reviews201143129431410.1016/j.oregeorev.2011.07.010 – reference: NykänenVLahtiINiiranenTKorhonenKReceiver operating characteristics (ROC) as validation tool for prospectivity models—a magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern FinlandOre Geology Reviews20157185386010.1016/j.oregeorev.2014.09.007 – reference: LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539 – reference: LiuYChengQCarranzaEJMZhouKAssessment of geochemical anomaly uncertainty through geostatistical simulation and singularity analysisNatural Resources Research201928119921210.1007/s11053-018-9388-1 – reference: WangLHuangJYuJGriffinWLWangRZhangSYangYZircon U–Pb dating and Lu–Hf isotope study of intermediate-mafic sub-volcanic and intrusive rocks in the Lishui Basin in the middle and lower reaches of Yangtze riverChinese Science Bulletin201459273427344010.1007/s11434-014-0358-7 – reference: HansenTMVuLTMosegaardKCorduaKSMultiple point statistical simulation using uncertain (soft) conditional dataComputers & Geosciences201811411010.1016/j.cageo.2018.01.017 – reference: WangMShangXWeiKLiuDZhangFElemental geochemical characteristics of tonglushan skarn-type Cu–Fe–Au Deposit in the Southeastern Hubei, China and their geological implicationsJournal of Earth Science and Environment20194104431444(In Chinese with English abstract) – reference: GhezelbashRMaghsoudiACarranzaEJMSensitivity analysis of prospectivity modeling to evidence maps: Enhancing success of targeting for epithermal gold, Takab district, NW IranOre Geology Reviews202012010339410.1016/j.oregeorev.2020.103394 – reference: ZuoRXiongYWangJCarranzaEJMDeep learning and its application in geochemical mappingEarth-Science Reviews201919211410.1016/j.earscirev.2019.02.023 – reference: FawcettTAn introduction to ROC analysisPattern Recognition Letters200627886187410.1016/j.patrec.2005.10.010 – reference: FabbriAGChungC-JOn blind tests and spatial prediction modelsNatural Resources Research200817210711810.1007/s11053-008-9072-y – reference: KeYCaiHDuKWuYYuanHAnalysis of geological characteristics and prospecting potential of Jiguanzui Cu-Au deposits in Daye city, Hubei ProvinceResources Environment & Engineering20163006817824(In Chinese with English abstract) – reference: LiSChenJXiangJApplications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big dataNeural Computing and Applications20203272037205310.1007/s00521-019-04341-3 – reference: MaoJWangYLehmannBYuJDuAMeiYMolybdenite Re–Os and albite 40Ar/39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implicationsOre Geology Reviews200629330732410.1016/j.oregeorev.2005.11.001 – reference: MallerRDurandRJafarpourHOptimal portfolio choice using the maximum Sharpe ratioJournal of Risk2010124497310.21314/JOR.2010.212 – reference: MariethozGRenardPStraubhaarJExtrapolating the fractal characteristics of an image using scale-invariant multiple-point statisticsMathematical Geosciences201143778310.1007/s11004-011-9362-5 – reference: LiBLiuBWangGChenLGuoKUsing geostatistics and maximum entropy model to identify geochemical anomalies: A case study in Mila Mountain region, southern TibetApplied Geochemistry202112410484310.1016/j.apgeochem.2020.104843 – reference: MallerRATurkingtonDANew light on the portfolio allocation problemMathematical Methods of Operations Research200356350151110.1007/s001860200211 – reference: MariethozGRenardPStraubhaarJThe direct sampling method to perform multiple-point geostatistical simulationsWater Resources Research201046W1153610.1029/2008WR007621 – reference: LiTZuoRXiongYPengYRandom-drop data augmentation of deep convolutional neural network for mineral prospectivity mappingNatural Resources Research2021301273810.1007/s11053-020-09742-z – reference: CarranzaEJMWoldaiTChikambweEMApplication of data-driven evidential belief functions to prospectivity mapping for aquamarine-bearing pegmatites, Lundazi district, ZambiaNatural Resources Research2005141476310.1007/s11053-005-4678-9 – reference: YangNZhangZYangJHongZApplications of data augmentation in mineral prospectivity prediction based on convolutional neural networksComputers & Geosciences202216110507510.1016/j.cageo.2022.105075 – reference: LuoSYaoHLiQWangWWanKMengYLiuBHigh-resolution 3D crustal S-wave velocity structure of the middle-lower Yangtze River metallogenic belt and implications for its deep geodynamic settingScience China Earth Sciences20196291361137810.1007/s11430-018-9352-9 – reference: ZuoRXuYGraph deep learning model for mapping mineral prospectivityMathematical Geosciences202210.1007/s11004-022-10015-z – reference: YaoYRuanQJinHHeJDiscussion on geological characteristics and prospecting direction of altered rock type gold deposit, Southeastern HubeiResources Environment & Engineering20142806823829(In Chinese with English abstract) – reference: BurkinJNLindsayMDOcchipintiSAHoldenE-JIncorporating conceptual and interpretation uncertainty to mineral prospectivity modellingGeoscience Frontiers20191041383139610.1016/j.gsf.2019.01.009 – reference: BoisvertJBPyrczMJDeutschCVMultiple-point statistics for training image selectionNatural Resources Research200716431332110.1007/s11053-008-9058-9 – reference: KreuzerOPEtheridgeMAGujPMcMahonMEHoldenDJLinking mineral deposit models to quantitative risk analysis and decision-making in explorationEconomic Geology2008103482985010.2113/gsecongeo.103.4.829 – reference: ChenWRuanQYangWLiJKeYFanZZhaiSThe geological characteristics of Jinjingzui skarn gold deposit and its causes in the east of Hubei provinceChina Mining Magazine201221045659(In Chinese with English abstract) – reference: LiTZuoRZhaoXZhaoKMapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented dataOre Geology Reviews202214210469310.1016/j.oregeorev.2022.104693 – reference: SunWXieZChenJZhangXChaiZDuAZhaoJZhangCZhouTOs-Os dating of copper and molybdenum deposits along the middle and lower reaches of the Yangtze river, ChinaEconomic Geology2003981175180 – reference: BrownWMGedeonTDGrovesDIBarnesRGArtificial neural networks: A new method for mineral prospectivity mappingAustralian Journal of Earth Sciences200047475777010.1046/j.1440-0952.2000.00807.x – reference: ZuoRKreuzerOPWangJXiongYZhangZWangZUncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutionsNatural Resources Research20213053059307910.1007/s11053-021-09871-z – reference: SrinivasSSarvadevabhatlaRKMopuriKRPrabhuNKruthiventiSSSBabuRVAn introduction to deep convolutional neural nets for computer visionDeep learning for medical image analysis2017Academic Press255210.1016/B978-0-12-810408-8.00003-1 – reference: TalebiHMuellerUTolosana-DelgadoRJoint simulation of compositional and categorical data via direct sampling technique—application to improve mineral resource confidenceComputers & Geosciences20191228710210.1016/j.cageo.2018.10.013 – reference: ZuoRXiaQWangHCompositional data analysis in the study of integrated geochemical anomalies associated with mineralizationApplied Geochemistry20132820221110.1016/j.apgeochem.2012.10.031 – reference: BistacchiAMassironiMDal PiazGVDal PiazGMonopoliBSchiavoAToffolonG3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case studyComputers & Geosciences200834435137210.1016/j.cageo.2007.04.002 – reference: MarkowitzHPortfolio selection*The Journal of Finance1952717791 – reference: Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (pp. 1097–1105). – reference: XieGZhaoHZhaoCLiXHouKPanHRe–Os dating of molybdenite from Tonglushan ore district in southeastern Hubei Province, middle-lower Yangtze river belt and its geological significanceMineral Deposits20092803227239(In Chinese with English abstract) – reference: ZuoRGeodata science-based mineral prospectivity mapping: a reviewNatural Resources Research20202963415342410.1007/s11053-020-09700-9 – reference: LiLRomaryTCaersJUniversal kriging with training imagesSpatial Statistics20151424026810.1016/j.spasta.2015.04.004 – reference: ParsaMPourABA simulation-based framework for modulating the effects of subjectivity in greenfield mineral prospectivity mapping with geochemical and geological dataJournal of Geochemical Exploration202122910683810.1016/j.gexplo.2021.106838 – reference: SingerDAKoudaRExamining risk in mineral explorationNatural Resources Research19998211112210.1023/A:1021838618750 – reference: GraffelmanJPawlowsky-GlahnVEgozcueJJBucciantiAExploration of geochemical data with compositional canonical biplotsJournal of Geochemical Exploration201819412013310.1016/j.gexplo.2018.07.014 – reference: ZhouTFanYYuanFAdvances on petrogensis and metallogeny study of the mineralization belt of the middle and lower reaches of the Yangtze river areaActa Petrologica Sinica2008240816651678(In Chinese with English abstract) – reference: SunTLiHWuKChenFZhuZHuZData-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, ChinaMinerals202010210210.3390/min10020102 – reference: WangQZhouLLittleSHLiuJFengLTongSThe geochemical behavior of Cu and its isotopes in the Yangtze riverScience of The Total Environment202072813842810.1016/j.scitotenv.2020.138428 – reference: CaersJModeling uncertainty in the earth sciences2011Wiley10.1002/9781119995920 – reference: Pardo-IgúzquizaEChica-OlmoMInterpolation and mapping of probabilities for geochemical variables exhibiting spatial intermittencyApplied Geochemistry200520115716810.1016/j.apgeochem.2004.05.007 – reference: TalebiHMuellerUPeetersLJMOttoAde CaritatPTolosana-DelgadoRvan den BoogaartKGStochastic modelling of mineral exploration targetsMathematical Geosciences202254359362110.1007/s11004-021-09989-z – reference: EgozcueJJPawlowsky-GlahnVMateu-FiguerasGBarceló-VidalCIsometric logratio transformations for compositional data analysisMathematical Geology200335327930010.1023/A:1023818214614 – reference: GarridoMSepúlvedaEOrtizJTownleyBSimulation of synthetic exploration and geometallurgical database of porphyry copper deposits for educational purposesNatural Resources Research20202963527354510.1007/s11053-020-09692-6 – reference: DaviranMParsaMMaghsoudiAGhezelbashRQuantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mappingNatural Resources Research20223152271228710.1007/s11053-022-10089-w – reference: WangJZuoRIdentification of geochemical anomalies through combined sequential Gaussian simulation and grid-based local singularity analysisComputers & Geosciences2018118526410.1016/j.cageo.2018.05.010 – reference: Zhang, W. (2015). Ore genesis of the Jiguanzui Cu-Au deposit in Southeastern Hubei Province, China. Wuhan of China (Doctoral dissertation, China University of Geosciences) p. 142. (In Chinese with English abstract). – reference: ZuoRZhangZZhangDCarranzaEJMWangHEvaluation of uncertainty in mineral prospectivity mapping due to missing evidence: A case study with skarn-type Fe deposits in southwestern Fujian Province, ChinaOre Geology Reviews20157150251510.1016/j.oregeorev.2014.09.024 – reference: MeerschmanEPirotGMariethozGStraubhaarJVan MeirvenneMRenardPA practical guide to performing multiple-point statistical simulations with the direct sampling algorithmComputers & Geosciences20135230732410.1016/j.cageo.2012.09.019 – reference: WeiJQiXZhouYWangFZhuDLuLCharacteristics of pyrite and deep metallogenic potential in Jiguanzui Cu–Au deposit, Southeast Hubei ProvinceMetal Mine201911132141(In Chinese with English abstract) – reference: YinBZuoRXiongYMineral prospectivity mapping via gated recurrent unit modelNatural Resources Research20223142065207910.1007/s11053-021-09979-2 – reference: XiongYZuoRCarranzaEJMMapping mineral prospectivity through big data analytics and a deep learning algorithmOre Geology Reviews201810281181710.1016/j.oregeorev.2018.10.006 – reference: SingerDAProgress in integrated quantitative mineral resource assessmentsOre Geology Reviews201038324225010.1016/j.oregeorev.2010.02.001 – reference: AitchisonJThe statistical analysis of compositional data1986Chapman & Hall10.1007/978-94-009-4109-0 – reference: Bonham-CarterGFAgterbergFPWrightDFIntegration of geological datasets for gold exploration in Nova ScotiaDigital geologic and geographic information systems1989American Geophysical Union (AGU)152310.1029/SC010p0015 – reference: PanYDongPThe lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: Intrusion- and wall rock-hosted Cu–Fe–Au, Mo, Zn, Pb, Ag depostisOre Geology Reviews199915417724210.1016/S0169-1368(99)00022-0 – reference: MaoJXieGZhangZLiXWangYZhangCLiYMesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settingActa Petrologica Sinica200521169188 – reference: McCuaigTCBeresfordSHronskyJTranslating the mineral systems approach into an effective exploration targeting systemOre Geology Reviews201038312813810.1016/j.oregeorev.2010.05.008 – reference: ChengQMapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, ChinaOre Geology Reviews200732131432410.1016/j.oregeorev.2006.10.002 – reference: ChengQAgterbergFPFuzzy weights of evidence method and its application in mineral potential mappingNatural Resources Research199981273510.1023/A:1021677510649 – reference: XieGMaoJZhaoHWeiKJinSPanHKeYTiming of skarn deposit formation of the Tonglushan ore district, southeastern Hubei Province, middle-lower Yangtze river valley metallogenic belt and its implicationsOre Geology Reviews2011431627710.1016/j.oregeorev.2011.05.005 – reference: van der GrijpYMinnittRRoseDModelling a complex gold deposit with multiple-point statisticsOre Geology Reviews202113910442710.1016/j.oregeorev.2021.104427 – reference: YinBZuoRXiongYLiYYangWKnowledge discovery of geochemical patterns from a data-driven perspectiveJournal of Geochemical Exploration202123110687210.1016/j.gexplo.2021.106872 – reference: ZhangCZuoRXiongYDetection of the multivariate geochemical anomalies associated with mineralization using a deep convolutional neural network and a pixel-pair feature methodApplied Geochemistry202113010499410.1016/j.apgeochem.2021.104994 – reference: ZhaoYZhangYBiCGeology of gold-bearing skarn deposits in the middle and lower Yangtze river valley and adjacent regionsOre Geology Reviews199914322724910.1016/S0169-1368(99)00008-6 – reference: TalebiHPeetersLJMMuellerUTolosana-DelgadoRvan den BoogaartKGTowards geostatistical learning for the geosciences: A case study in improving the spatial awareness of spectral clusteringMathematical Geosciences20205281035104810.1007/s11004-020-09867-0 – reference: XieXMuXRenTGeochemical mapping in ChinaJournal of Geochemical Exploration19976019911310.1016/S0375-6742(97)00029-0 – reference: ZuoRIdentifying geochemical anomalies associated with Cu and Pb–Zn skarn mineralization using principal component analysis and spectrum–area fractal modeling in the Gangdese Belt, Tibet (China)Journal of Geochemical Exploration20111111132210.1016/j.gexplo.2011.06.012 – reference: LisitsinVAPorwalAMcCuaigTCProbabilistic fuzzy logic modeling: Quantifying uncertainty of mineral prospectivity models using Monte Carlo simulationsMathematical Geosciences201446674776910.1007/s11004-014-9534-1 – reference: OrianiFStraubhaarJRenardPMariethozGSimulation of rainfall time series from different climatic regions using the direct sampling techniqueHydrology and Earth System Sciences20141883015303110.5194/hess-18-3015-2014 – reference: WangZYinZCaersJZuoRA Monte Carlo-based framework for risk-return analysis in mineral prospectivity mappingGeoscience Frontiers20201162297230810.1016/j.gsf.2020.02.010 – reference: WangZZuoRYangFGeological mapping using direct sampling and a convolutional neural network based on geochemical survey dataMathematical Geosciences202210.1007/s11004-022-10023-z – reference: GoodchildMFScale in GIS: An overviewGeomorphology201113015910.1016/j.geomorph.2010.10.004 – reference: GoovaertsPGeostatistics for natural resource evaluation1997Oxford University Press – reference: ZuoRWangZEffects of random negative training samples on mineral prospectivity mappingNatural Resources Research20202963443345510.1007/s11053-020-09668-6 – reference: HouWYangQChenXXiaoFChenYUncertainty analysis and visualization of geological subsurface and its application in metro station constructionFrontiers of Earth Science202115369270410.1007/s11707-021-0897-6 – reference: GuoJWangZLiCLiFJessellMWWuLWangJMultiple-point geostatistics-based three-dimensional automatic geological modeling and uncertainty analysis for borehole dataNatural Resources Research20223142347236710.1007/s11053-022-10071-6 – reference: ParsaMCarranzaEJMModulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivityNatural Resources Research20213053081309710.1007/s11053-021-09891-9 – reference: HuQThe mesozoic diagenetic & metallogenic tectonic background and the temporal & spatial distribution in the southeast of Hubei ProvinceResources Environment & Engineering20142806767776(In Chinese with English abstract) – reference: RezaeeHMariethozGKoneshlooMAsghariOMultiple-point geostatistical simulation using the bunch-pasting direct sampling methodComputers & Geosciences20135429330810.1016/j.cageo.2013.01.020 – reference: ParsaMCarranzaEJMAhmadiBDeep GMDH neural networks for predictive mapping of mineral prospectivity in terrains hosting few but large mineral depositsNatural Resources Research2022311375010.1007/s11053-021-09984-5 – reference: SrinivasMPatnaikLMAdaptive probabilities of crossover and mutation in genetic algorithmsIEEE Transactions on Systems, Man, and Cybernetics199424465666710.1109/21.286385 – volume: 31 start-page: 2065 issue: 4 year: 2022 ident: 10144_CR81 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09979-2 – volume-title: The statistical analysis of compositional data year: 1986 ident: 10144_CR1 doi: 10.1007/978-94-009-4109-0 – volume: 29 start-page: 3415 issue: 6 year: 2020 ident: 10144_CR88 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09700-9 – volume: 71 start-page: 502 year: 2015 ident: 10144_CR94 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2014.09.024 – volume: 46 start-page: 747 issue: 6 year: 2014 ident: 10144_CR37 publication-title: Mathematical Geosciences doi: 10.1007/s11004-014-9534-1 – volume: 31 start-page: 2271 issue: 5 year: 2022 ident: 10144_CR12 publication-title: Natural Resources Research doi: 10.1007/s11053-022-10089-w – volume: 521 start-page: 436 year: 2015 ident: 10144_CR31 publication-title: Nature doi: 10.1038/nature14539 – volume: 16 start-page: 313 issue: 4 year: 2007 ident: 10144_CR3 publication-title: Natural Resources Research doi: 10.1007/s11053-008-9058-9 – volume: 54 start-page: 507 issue: 3 year: 2022 ident: 10144_CR28 publication-title: Mathematical Geosciences doi: 10.1007/s11004-021-09988-0 – volume: 111 start-page: 13 issue: 1 year: 2011 ident: 10144_CR87 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2011.06.012 – volume: 29 start-page: 3527 issue: 6 year: 2020 ident: 10144_CR16 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09692-6 – volume: 52 start-page: 307 year: 2013 ident: 10144_CR49 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2012.09.019 – volume: 229 start-page: 106838 year: 2021 ident: 10144_CR56 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2021.106838 – volume: 60 start-page: 99 issue: 1 year: 1997 ident: 10144_CR77 publication-title: Journal of Geochemical Exploration doi: 10.1016/S0375-6742(97)00029-0 – volume: 102 start-page: 811 year: 2018 ident: 10144_CR78 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2018.10.006 – volume: 142 start-page: 104693 year: 2022 ident: 10144_CR36 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2022.104693 – volume: 34 start-page: 351 issue: 4 year: 2008 ident: 10144_CR2 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2007.04.002 – volume: 31 start-page: 2347 issue: 4 year: 2022 ident: 10144_CR22 publication-title: Natural Resources Research doi: 10.1007/s11053-022-10071-6 – volume: 56 start-page: 501 issue: 3 year: 2003 ident: 10144_CR40 publication-title: Mathematical Methods of Operations Research doi: 10.1007/s001860200211 – volume: 38 start-page: 128 issue: 3 year: 2010 ident: 10144_CR48 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2010.05.008 – volume: 30 start-page: 3081 issue: 5 year: 2021 ident: 10144_CR54 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09891-9 – volume: 192 start-page: 1 year: 2019 ident: 10144_CR92 publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2019.02.023 – volume: 15 start-page: 692 issue: 3 year: 2021 ident: 10144_CR24 publication-title: Frontiers of Earth Science doi: 10.1007/s11707-021-0897-6 – volume: 130 start-page: 104994 year: 2021 ident: 10144_CR83 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2021.104994 – volume: 114 start-page: 1 year: 2018 ident: 10144_CR23 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2018.01.017 – volume: 32 start-page: 2037 issue: 7 year: 2020 ident: 10144_CR34 publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04341-3 – volume: 43 start-page: 62 issue: 1 year: 2011 ident: 10144_CR75 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2011.05.005 – volume: 30 start-page: 3059 issue: 5 year: 2021 ident: 10144_CR89 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09871-z – volume: 28 start-page: 202 year: 2013 ident: 10144_CR91 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2012.10.031 – volume: 36 start-page: 9 issue: 01 year: 2022 ident: 10144_CR26 publication-title: Mineral Resources and Geology – volume: 124 start-page: 104843 year: 2021 ident: 10144_CR32 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2020.104843 – volume: 122 start-page: 87 year: 2019 ident: 10144_CR66 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2018.10.013 – start-page: 25 volume-title: Deep learning for medical image analysis year: 2017 ident: 10144_CR61 doi: 10.1016/B978-0-12-810408-8.00003-1 – volume: 139 start-page: 104427 year: 2021 ident: 10144_CR67 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2021.104427 – volume: 28 start-page: 199 issue: 1 year: 2019 ident: 10144_CR38 publication-title: Natural Resources Research doi: 10.1007/s11053-018-9388-1 – volume: 8 start-page: 27 issue: 1 year: 1999 ident: 10144_CR11 publication-title: Natural Resources Research doi: 10.1023/A:1021677510649 – volume: 54 start-page: 293 year: 2013 ident: 10144_CR57 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2013.01.020 – volume: 14 start-page: 227 issue: 3 year: 1999 ident: 10144_CR85 publication-title: Ore Geology Reviews doi: 10.1016/S0169-1368(99)00008-6 – year: 2022 ident: 10144_CR93 publication-title: Mathematical Geosciences doi: 10.1007/s11004-022-10015-z – volume: 62 start-page: 1361 issue: 9 year: 2019 ident: 10144_CR39 publication-title: Science China Earth Sciences doi: 10.1007/s11430-018-9352-9 – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 10144_CR47 publication-title: The Journal of Finance – volume: 728 start-page: 138428 year: 2020 ident: 10144_CR73 publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138428 – volume: 30 start-page: 817 issue: 06 year: 2016 ident: 10144_CR27 publication-title: Resources Environment & Engineering – volume: 32 start-page: 314 issue: 1 year: 2007 ident: 10144_CR10 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2006.10.002 – volume: 38 start-page: 242 issue: 3 year: 2010 ident: 10144_CR58 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2010.02.001 – year: 2022 ident: 10144_CR72 publication-title: Mathematical Geosciences doi: 10.1007/s11004-022-10023-z – volume: 46 start-page: W11536 year: 2010 ident: 10144_CR45 publication-title: Water Resources Research doi: 10.1029/2008WR007621 – volume: 12 start-page: 49 issue: 4 year: 2010 ident: 10144_CR41 publication-title: Journal of Risk doi: 10.21314/JOR.2010.212 – volume: 31 start-page: 37 issue: 1 year: 2022 ident: 10144_CR55 publication-title: Natural Resources Research doi: 10.1007/s11053-021-09984-5 – volume: 28 start-page: 767 issue: 06 year: 2014 ident: 10144_CR25 publication-title: Resources Environment & Engineering – volume: 10 start-page: 102 issue: 2 year: 2020 ident: 10144_CR62 publication-title: Minerals doi: 10.3390/min10020102 – volume: 47 start-page: 757 issue: 4 year: 2000 ident: 10144_CR5 publication-title: Australian Journal of Earth Sciences doi: 10.1046/j.1440-0952.2000.00807.x – volume: 43 start-page: 783 issue: 7 year: 2011 ident: 10144_CR46 publication-title: Mathematical Geosciences doi: 10.1007/s11004-011-9362-5 – volume-title: Modeling uncertainty in the earth sciences year: 2011 ident: 10144_CR7 doi: 10.1002/9781119995920 – volume: 120 start-page: 103394 year: 2020 ident: 10144_CR18 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2020.103394 – volume: 118 start-page: 52 year: 2018 ident: 10144_CR68 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2018.05.010 – volume: 130 start-page: 5 issue: 1 year: 2011 ident: 10144_CR19 publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.10.004 – volume: 10 start-page: 1383 issue: 4 year: 2019 ident: 10144_CR6 publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2019.01.009 – volume: 71 start-page: 853 year: 2015 ident: 10144_CR50 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2014.09.007 – volume: 21 start-page: 56 issue: 04 year: 2012 ident: 10144_CR9 publication-title: China Mining Magazine – volume: 24 start-page: 656 issue: 4 year: 1994 ident: 10144_CR60 publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.286385 – volume: 14 start-page: 47 issue: 1 year: 2005 ident: 10144_CR8 publication-title: Natural Resources Research doi: 10.1007/s11053-005-4678-9 – ident: 10144_CR84 – volume: 8 start-page: 111 issue: 2 year: 1999 ident: 10144_CR59 publication-title: Natural Resources Research doi: 10.1023/A:1021838618750 – volume: 194 start-page: 120 year: 2018 ident: 10144_CR21 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2018.07.014 – volume: 103 start-page: 829 issue: 4 year: 2008 ident: 10144_CR29 publication-title: Economic Geology doi: 10.2113/gsecongeo.103.4.829 – volume: 15 start-page: 177 issue: 4 year: 1999 ident: 10144_CR52 publication-title: Ore Geology Reviews doi: 10.1016/S0169-1368(99)00022-0 – volume: 41 start-page: 431 issue: 04 year: 2019 ident: 10144_CR70 publication-title: Journal of Earth Science and Environment – volume: 231 start-page: 106872 year: 2021 ident: 10144_CR82 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2021.106872 – volume: 98 start-page: 175 issue: 1 year: 2003 ident: 10144_CR63 publication-title: Economic Geology – volume: 43 start-page: 294 issue: 1 year: 2011 ident: 10144_CR43 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2011.07.010 – volume: 35 start-page: 279 issue: 3 year: 2003 ident: 10144_CR13 publication-title: Mathematical Geology doi: 10.1023/A:1023818214614 – volume: 11 start-page: 132 year: 2019 ident: 10144_CR74 publication-title: Metal Mine – volume: 24 start-page: 1665 issue: 08 year: 2008 ident: 10144_CR86 publication-title: Acta Petrologica Sinica – volume: 52 start-page: 1035 issue: 8 year: 2020 ident: 10144_CR65 publication-title: Mathematical Geosciences doi: 10.1007/s11004-020-09867-0 – ident: 10144_CR30 – volume: 59 start-page: 3427 issue: 27 year: 2014 ident: 10144_CR69 publication-title: Chinese Science Bulletin doi: 10.1007/s11434-014-0358-7 – volume: 28 start-page: 823 issue: 06 year: 2014 ident: 10144_CR80 publication-title: Resources Environment & Engineering – volume-title: Geostatistics for natural resource evaluation year: 1997 ident: 10144_CR20 doi: 10.1093/oso/9780195115383.001.0001 – volume: 54 start-page: 593 issue: 3 year: 2022 ident: 10144_CR64 publication-title: Mathematical Geosciences doi: 10.1007/s11004-021-09989-z – volume: 28 start-page: 227 issue: 03 year: 2009 ident: 10144_CR76 publication-title: Mineral Deposits – start-page: 15 volume-title: Digital geologic and geographic information systems year: 1989 ident: 10144_CR4 doi: 10.1029/SC010p0015 – volume: 197 start-page: 102897 year: 2019 ident: 10144_CR17 publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2019.102897 – volume: 11 start-page: 2297 issue: 6 year: 2020 ident: 10144_CR71 publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2020.02.010 – volume: 29 start-page: 3443 issue: 6 year: 2020 ident: 10144_CR90 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09668-6 – volume: 14 start-page: 240 year: 2015 ident: 10144_CR33 publication-title: Spatial Statistics doi: 10.1016/j.spasta.2015.04.004 – volume: 29 start-page: 307 issue: 3 year: 2006 ident: 10144_CR42 publication-title: Ore Geology Reviews doi: 10.1016/j.oregeorev.2005.11.001 – volume: 20 start-page: 157 issue: 1 year: 2005 ident: 10144_CR53 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2004.05.007 – volume: 21 start-page: 169 year: 2005 ident: 10144_CR44 publication-title: Acta Petrologica Sinica – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10144_CR15 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.10.010 – volume: 18 start-page: 3015 issue: 8 year: 2014 ident: 10144_CR51 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-18-3015-2014 – volume: 17 start-page: 107 issue: 2 year: 2008 ident: 10144_CR14 publication-title: Natural Resources Research doi: 10.1007/s11053-008-9072-y – volume: 161 start-page: 105075 year: 2022 ident: 10144_CR79 publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2022.105075 – volume: 30 start-page: 27 issue: 1 year: 2021 ident: 10144_CR35 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09742-z |
SSID | ssj0007385 |
Score | 2.4609187 |
Snippet | Mineral prospectivity mapping (MPM) mainly focuses on searching prospective areas for a particular type of mineral deposits. However, MPM is typically subject... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 79 |
SubjectTerms | Algorithms Artificial neural networks case studies Chemistry and Earth Sciences China Computer Science Computer simulation Earth and Environmental Science Earth Sciences Fossil Fuels (incl. Carbon Capture) Geography gold Mapping Mathematical Modeling and Industrial Mathematics Mineral deposits Mineral exploration Mineral Resources Neural networks Original Paper Physics prediction Prediction models risk Risk analysis river valleys Sampling Statistics for Engineering Sustainable Development Uncertainty Yangtze River |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bSsNAEB20IuiDeMV6YwXfdDFJ003yJCpeECveCr6F3exGCpKobYV-iP_rzGbTqqBPIXfITGbP7MyeA7CXGKrnYaYaBIngYTsTXHktwwNhTOJpP8xzWu_cuRGX3fDqqf3kJtz6rq2yjok2UOsyoznywyBB52tFCGiPXt84qUZRddVJaEzDDIbgOG7AzMnZze39OBYTV4tlTMUkiaC3WzZTLZ5DaEE1zICTXm3Ixc-haYI3f5VI7chzvggLDjKy48rGSzBlimWY_0YkuAyzF1agd7QCn3dDWfX_2E_Oypx10a627j8YsdoaRjOagWW1qCi7loS9Wa9gnZ4loma376VbholAnXUkETk8M9tiwKpAyR4k9aPjviw0Oy2LD-fHeDeRftiN7TJfhe752ePpJXfSCzxDRDbgWnlGebnRQoeY04hQZe0oQNuRKLXEI2GWy0x4RmvfV8SoE_mZr2LMt0wspNdag0ZRFmYdWGiIIi4XrQhTFz83Upq2kgpHzyBHLBM1wa-_epo5XnKSx3hJJ4zKZKkULZVaS6WiCfvje14rVo5_r96qjZm6P7SfTvypCbvj0_hvUcFEFqYc4jUYgZOYGNWacFA7weQRf79x4_83bsIcqdZXzd9b0Bi8D802YpuB2nEO_AX51vYm priority: 102 providerName: ProQuest |
Title | Quantification of Uncertainty Associated with Evidence Layers in Mineral Prospectivity Mapping Using Direct Sampling and Convolutional Neural Network |
URI | https://link.springer.com/article/10.1007/s11053-022-10144-6 https://www.proquest.com/docview/2918337049 https://www.proquest.com/docview/2887986360 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7xECoceKQgQmk0lXoDS7Zjr-NjipIgIIgWIsHJ2rXXbSRkI5Ig8UP4v8ys1wlUbaWenMd6ffh2Z7_xzHwD8DXWHM8jT9X3Y-EEYSoc5ba14wutYzfzgjzneufhpTgdBWe34a0tCpvU2e51SNJY6kWxG1EBjjn6DveXDRyxDKsh-e6cyDXyu3P7y_osRiWVHCOm27ZU5s9zvD-OFhzzt7CoOW3627BpaSJ2K1x3YEkXDdiqWzCg3ZEN2HijJ9iAD7al-a_nBqwNTM9e_mSyPNPJR3j5PpNVcpDBA8scRzSNSQqYPmMNlc6QX89i3XEULyQTcxwXOBwblWq8eixtjSaxeBxKVnn4iSb_ACsriteSk9XpuywyPCmLJ7vI6W5WBDEXk4K-C6N-7-bk1LF9GZyU6NrUyZSrlZvrTGQBOTwiUGkY-QQsd6yW9EuQ5jIVrs4yz1MstxN5qac65IzpjpBuew9WirLQ-4CBZv24XLQj8mu8XEupQyUVHa1-TkQnaoJXw5OkVrSce2fcJwu5ZYY0IUgTA2kimnA0v-ehkuz45-jDGvXEbt9J4sdk6doReU9N-DL_mzYeR1NkocsZjSHzHHdYbq0Jx_VqWUzx9yce_N_wT7DOLe6rTPFDWJk-zvRnIkJT1YLlTn_QgtXu4O68R9dvvcurHy2zG14BlEgCsw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgQ9ICggUgoMEpxghb3erONDhVAhTWlSgWik3syud40qIbu0CSgPwmv0GZlZ2wkg0VtPln_X8szOfuOZ-QbgeeY5nkeeqpSZFqpfaGGjxAupvc8iF6uy5HrnyaEeTdWH4_7xGlx0tTCcVtnZxGCoXV3wP_LXMiPlS1ICtG9OvwvuGsXR1a6FRqMWB37xk1y28539dyTfF1IO3x_tjkTbVUAUBDZmwtnI26j0TjtFcF0rW_RTSa_F_ZYNHVFFaQodeefi2DJZTBoXsR2QK-EH2kQJPfcaXFcJreRcmT7cW1p-ZoYJ_KzkkjHQb4t0mlI9AjIcMZWCu-Mqof9eCFfo9p-AbFjnhnfgdgtQ8W2jUXdhzVebsPEHbeEm3NgL7YAX9-DXp7lpso2CgLEucUpaFLIMZgvsZO8d8v9e7FqY4tgw0seTCicngfYaP57VbdEnuQU4MUwb8RVDQgM2Zhk_G85-p31TOdytqx_trKG7mWIkbEJO-32YXolIHsB6VVf-IaDyTEhX6iQlRykuvTG-b42ltVqWhJzSHsTdV8-LlgWdm3F8y1f8zSypnCSVB0nlugcvl_ecNhwgl1693Qkzb-3Beb7S3h48W56mmczhGVP5ek7XkL3PBszf1oNXnRKsHvH_EbcuH_Ep3BwdTcb5eP_w4BHckoTSmrTzbVifnc39Y0JVM_skqDLCl6ueO78BBi4xQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIv4O_AQQgQKDBCewam826_jAoWoJLW2qIojUm1l7d6ESsqvGAeVBeA8ekZn1OgEESBx6SuKs1yvNzuw3nplvAJ5mluN55KkKkalIDksVFfHARkJZm8Umkc5xvfPkUO1O5Zvj4fEafO9qYXy2exeSbGsamKWpajZPjdtcFb4RLOD4o4i416yMVEir3LeLr-S0zV7u7ZCEnwkxfvV-ezcKfQWikuBGE5kitkXsrFFGEmBXsiiHqaCFccdlTVdk6XSpYmtMkhRMF5MmZVKMyJmwI6XjAc17AS5Krj4mDZqKraXtZ24Yz9BKThlD_VCm8-c1_3oUrvDtbyFZf9KNb8L1AFFxq91Tt2DNVj240bV_wGANenDtJy7DHlwJ7dQ_LXpw6bXvF8zffIZpObsN397OdZuY5PcC1g6nNI1PSGgW2G0Ta5BfDWPX7RQPNDsFeFLh5MQzZOPRWR3qQ8mDwIlmhomP6HMfsLXg-E5zojz91pXB7br6EhSM7mY2Ev_h09_vwPRcZHcX1qu6svcApWXuOqcGKflUibNa22GhCzrWhSOQlfYh6cSTl4Ewnft2fM5XVM8s0pxEmnuR5qoPz5f3nLZ0If8cvdFJPQ-mY5aLjKzsICXPrQ9Pln-T0nMkR1e2ntMYOhqyEVO99eFFt1tWU_z9iff_b_hjuHy0M84P9g73H8BVQfiuTVjfgPXmbG4fEh5rikdeBRA-nLfO_QBlTD9j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+Uncertainty+Associated+with+Evidence+Layers+in+Mineral+Prospectivity+Mapping+Using+Direct+Sampling+and+Convolutional+Neural+Network&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Yang%2C+Fanfan&rft.au=Wang%2C+Ziye&rft.au=Zuo%2C+Renguang&rft.au=Sun%2C+Siquan&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=32&rft.issue=1&rft.spage=79&rft.epage=98&rft_id=info:doi/10.1007%2Fs11053-022-10144-6&rft.externalDocID=10_1007_s11053_022_10144_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |