Crosslinked oxidized-nanocellulose/chitosan hydrogels as a scaffold matrix for mesenchymal stem cell growth

Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-em...

Full description

Saved in:
Bibliographic Details
Published inCellulose (London) Vol. 31; no. 1; pp. 363 - 379
Main Authors Mariño, Mayra A., Oyarce, Karina, Tobar, Catalina, del Río, Rodrigo Segura, Paredes, Maria G., Pavez, Paulina, Sarabia, Mauricio, Amoroso, Alejandro, Concha, Jose L., Norambuena-Contreras, Jose, Barjas, Gustavo Cabrera, Castaño, Johanna
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0969-0239
1572-882X
DOI10.1007/s10570-023-05591-0

Cover

Abstract Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation. Graphical abstract
AbstractList Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation.
Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation. Graphical abstract
Author Paredes, Maria G.
Pavez, Paulina
Sarabia, Mauricio
Castaño, Johanna
Barjas, Gustavo Cabrera
Amoroso, Alejandro
Mariño, Mayra A.
Tobar, Catalina
del Río, Rodrigo Segura
Concha, Jose L.
Oyarce, Karina
Norambuena-Contreras, Jose
Author_xml – sequence: 1
  givenname: Mayra A.
  surname: Mariño
  fullname: Mariño, Mayra A.
  email: mmarino@udec.cl
  organization: Department of Chemical Engineering, Universidad de Concepción
– sequence: 2
  givenname: Karina
  surname: Oyarce
  fullname: Oyarce, Karina
  organization: Laboratorio de Neuro-Inmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián
– sequence: 3
  givenname: Catalina
  surname: Tobar
  fullname: Tobar, Catalina
  organization: Laboratorio de Neuro-Inmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián
– sequence: 4
  givenname: Rodrigo Segura
  surname: del Río
  fullname: del Río, Rodrigo Segura
  organization: Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso
– sequence: 5
  givenname: Maria G.
  surname: Paredes
  fullname: Paredes, Maria G.
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile
– sequence: 6
  givenname: Paulina
  surname: Pavez
  fullname: Pavez, Paulina
  organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile
– sequence: 7
  givenname: Mauricio
  surname: Sarabia
  fullname: Sarabia, Mauricio
  organization: Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián
– sequence: 8
  givenname: Alejandro
  surname: Amoroso
  fullname: Amoroso, Alejandro
  organization: Departamento de Ciencias Básicas, Facultad de Medicina y Ciencias, Universidad San Sebastián
– sequence: 9
  givenname: Jose L.
  surname: Concha
  fullname: Concha, Jose L.
  organization: LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío
– sequence: 10
  givenname: Jose
  surname: Norambuena-Contreras
  fullname: Norambuena-Contreras, Jose
  organization: LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío
– sequence: 11
  givenname: Gustavo Cabrera
  surname: Barjas
  fullname: Barjas, Gustavo Cabrera
  organization: Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián
– sequence: 12
  givenname: Johanna
  surname: Castaño
  fullname: Castaño, Johanna
  email: jcastano@udec.cl
  organization: Department of Chemical Engineering, Universidad de Concepción
BookMark eNp9kE2LFDEQhoOs4OzqH_AU8OKl3UrS6SRHGfyCBS8K3kImqZ7JbjpZkx7c8dfb7QjCHhYKcqj3qbw8l-Qil4yEvGbwjgGo68ZAKuiAiw6kNKyDZ2TDpOKd1vzHBdmAGcy6Ni_IZWu3AGAUZxtyt62ltRTzHQZaHmKIvzF02eXiMaVjKg2v_SHOpblMD6dQyx5To24Z2rwbx5ICndxc4wMdS6UTNsz-cJpcom3Gia5n6L6WX_PhJXk-utTw1b_3inz_-OHb9nN38_XTl-37m84Lyecu9CC1MLugDZpeceU982MvNPqhF3K3Q74buBlN4Fo4xRFwNL12g_E9uNCLK_L2fPe-lp9HbLOdYlt7uIzl2KxgUshByoEv0TePorflWPPSznLDuDZKgVxS_Jzyq6yKo72vcXL1ZBnY1b89-7eLYPvXv4UF0o8gH2c3x5Ln6mJ6GhVntC3_5D3W_62eoP4ABLSdvA
CitedBy_id crossref_primary_10_1039_D4TB00397G
crossref_primary_10_1016_j_ijbiomac_2024_134015
crossref_primary_10_1007_s00289_024_05346_2
Cites_doi 10.3390/polym13071105
10.1016/j.matchemphys.2013.09.012
10.3389/fbioe.2021.621748
10.1039/d0cc01850c
10.1016/j.carbpol.2010.12.026
10.1016/j.carbpol.2018.10.037
10.3390/gels9010028
10.1016/j.mimet.2010.02.004
10.1021/acs.chemmater.7b02995
10.1007/s10570-019-02417-w
10.1016/j.carbpol.2016.06.022
10.1021/acssuschemeng.8b01062
10.3389/fchem.2020.00392
10.1002/pat.5263
10.1007/s10570-017-1228-7
10.1007/s10570-017-1528-y
10.1007/s10570-017-1251-8
10.1039/c0nr00583e
10.1016/j.carbpol.2016.12.007
10.1016/j.ijbiomac.2019.02.086
10.1007/s10570-010-9405-y
10.1016/j.ijbiomac.2019.10.273
10.3390/nano10030406
10.1021/acssuschemeng.1c01774
10.1016/j.eurpolymj.2009.04.033
10.3390/nano9020253
10.1016/j.carbpol.2021.118741
10.1073/pnas.1819415116
10.1016/j.carbpol.2023.120603
10.1016/j.carbpol.2018.08.097
10.1021/acs.biomac.9b00322
10.1039/c6ra12517d
10.1186/s13287-018-1130-8
10.1016/j.carbpol.2019.114977
10.1016/j.compscitech.2012.06.010
10.1038/s41427-019-0124-z
10.1089/ten.tea.2010.0590
10.1016/j.carbpol.2017.10.032
10.1007/s10570-015-0551-0
10.1016/j.polymer.2017.09.043
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.1007/s10570-023-05591-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-882X
EndPage 379
ExternalDocumentID 10_1007_s10570_023_05591_0
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  grantid: FONDECYT 3220462; FONDECYT 3220462
  funderid: http://dx.doi.org/10.13039/501100002850
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIZAD
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
N~3
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TTC
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z87
Z8N
Z8P
Z8Q
ZMTXR
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c352t-d405839bd89e94727cc1cf438ec6435bbe2b629f9d283a72e0ef948a69c40ad43
IEDL.DBID 8FG
ISSN 0969-0239
IngestDate Thu Sep 04 20:25:26 EDT 2025
Fri Jul 25 11:03:30 EDT 2025
Tue Jul 01 02:11:01 EDT 2025
Thu Apr 24 22:58:51 EDT 2025
Fri Feb 21 02:41:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Oxidized nanocellulose
Crosslinked hydrogel
Mesenchymal stem cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-d405839bd89e94727cc1cf438ec6435bbe2b629f9d283a72e0ef948a69c40ad43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2912897705
PQPubID 2043866
PageCount 17
ParticipantIDs proquest_miscellaneous_3153565562
proquest_journals_2912897705
crossref_primary_10_1007_s10570_023_05591_0
crossref_citationtrail_10_1007_s10570_023_05591_0
springer_journals_10_1007_s10570_023_05591_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Cellulose (London)
PublicationTitleAbbrev Cellulose
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Salminen, Reza, Pääkkönen, Peyre, Kontturi (CR34) 2017; 24
Hu, Zhi, Shan, Ni (CR12) 2022; 275
Isogai, Saito, Fukuzumi (CR14) 2011; 3
Park, Shin, Cheng, Hyun (CR31) 2017; 158
Zheng, Zhang, Liu, Pei, Tang (CR42) 2016; 6
Amini, Salehi, Setayeshmehr, Ghorbani (CR2) 2021; 32
Kim, Kim, Choi, Kimura, Wada (CR19) 2017; 24
Qiu, Netravali (CR32) 2012; 72
Lin, Zheng, Chen, Su, Dong, Lin, Huang, Lu (CR26) 2019; 205
Tong, Chen, Pan, Qi, Li, Tian, Lu, He (CR39) 2019; 20
Alam, Christopher (CR1) 2018; 6
Kouroupis, Correa (CR23) 2021; 9
Li, Wu, Mu, Lin (CR25) 2011; 84
Huang, Wang, Mcmullen, Mcdermott, Deng, Du, Chen, Zhang (CR13) 2019; 22
Haugh, Murphy, McKiernan, Altenbuchner, O’Brien (CR11) 2011; 17
Khanjani, Kosonen, Ristolainen, Virtanen, Vuorinen (CR18) 2019; 26
Mendes, Gómez-Florit, Osório, Vilaça, Domingues, Reis, Gomes (CR29) 2020; 56
Nguyen, Abueva, Ho, Lee, Lee (CR30) 2018; 180
Fan, Li, Li, Wu, Tang, Liu, Zheng, Wan (CR9) 2020; 154
Kim, Bae, Kook, Koh, Lee, Park (CR20) 2019; 10
Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse, Hussin (CR40) 2020
Klančnik, Piskernik, Jeršek, Možina (CR21) 2010; 81
Reddy, Ponnamma, Choudhary, Sadasivuni (CR33) 2021
Siró, Plackett (CR36) 2010; 17
Ghavimi, Lungren, Faulkner, Josselet, Wu, Sun, Pfeiffer, Goldstein, Wan, Ulery (CR10) 2019; 130
Kokol, Novak, Kononenko, Kos, Vivod, Gunde-Cimerman, Drobne (CR22) 2023; 311
Cheng, Huang, Wei, Hsu (CR6) 2019
Soni, Hassan, Schilling, Mahmoud (CR37) 2016; 151
Leite, Pham, Bilatto, Azeredo, Cranston, Moreira, Mattoso, Bras (CR24) 2021
Atay (CR3) 2020; 111
Luo, Xiong, Hu, Ren, Yao, Zhu, Gao, Wan (CR27) 2013; 143
Sampath, Ching, Chuah, Singh, Lin (CR35) 2017; 24
Xu, Ji, Sun, Fu, Xu, Jin (CR41) 2019
Kargarzadeh, Mariano, Huang, Lin, Ahmad, Dufresne, Thomas (CR17) 2017; 132
Biemer (CR4) 1973; 3
Tang, Yu, Renneckar, Zhang (CR38) 2018; 202
Choi, Shin (CR7) 2020
Mao, Özkale, Shah, Vining, Descombes, Zhang, Tringides, Wong, Shin, Scadden, Weitz, Mooney (CR28) 2019; 116
Chang, Duan, Cai, Zhang (CR5) 2010; 46
Clevenger, Jimenez-Vergara, Tsai, de Barros, Díaz-Lasprilla, Ramírez-Caballero, Munoz-Pinto (CR8) 2023; 9
Jonoobi, Oladi, Davoudpour, Oksman, Dufresne, Hamzeh, Davoodi (CR16) 2015; 22
Jeon, Shin, Marks, Hopkins, Kim, Park, Alsberg (CR15) 2017; 29
SM Choi (5591_CR7) 2020
I Siró (5591_CR36) 2010; 17
BB Mendes (5591_CR29) 2020; 56
A Klančnik (5591_CR21) 2010; 81
B Soni (5591_CR37) 2016; 151
R Tang (5591_CR38) 2018; 202
F Lin (5591_CR26) 2019; 205
MG Haugh (5591_CR11) 2011; 17
AS Mao (5591_CR28) 2019; 116
D Trache (5591_CR40) 2020
HY Atay (5591_CR3) 2020; 111
S Hu (5591_CR12) 2022; 275
R Salminen (5591_CR34) 2017; 24
MN Alam (5591_CR1) 2018; 6
THM Nguyen (5591_CR30) 2018; 180
LSF Leite (5591_CR24) 2021
H Luo (5591_CR27) 2013; 143
MSB Reddy (5591_CR33) 2021
UJ Kim (5591_CR19) 2017; 24
A Isogai (5591_CR14) 2011; 3
K Qiu (5591_CR32) 2012; 72
UGTM Sampath (5591_CR35) 2017; 24
P Khanjani (5591_CR18) 2019; 26
KC Cheng (5591_CR6) 2019
W Huang (5591_CR13) 2019; 22
C Chang (5591_CR5) 2010; 46
M Jonoobi (5591_CR16) 2015; 22
H Li (5591_CR25) 2011; 84
R Tong (5591_CR39) 2019; 20
H Kim (5591_CR20) 2019; 10
D Kouroupis (5591_CR23) 2021; 9
AJ Clevenger (5591_CR8) 2023; 9
X Zheng (5591_CR42) 2016; 6
V Kokol (5591_CR22) 2023; 311
O Jeon (5591_CR15) 2017; 29
SAA Ghavimi (5591_CR10) 2019; 130
JJ Biemer (5591_CR4) 1973; 3
H Kargarzadeh (5591_CR17) 2017; 132
Q Xu (5591_CR41) 2019
S Amini (5591_CR2) 2021; 32
M Park (5591_CR31) 2017; 158
X Fan (5591_CR9) 2020; 154
References_xml – year: 2021
  ident: CR33
  article-title: A comparative review of natural and synthetic biopolymer composite scaffolds
  publication-title: Polymers (Basel)
  doi: 10.3390/polym13071105
– volume: 3
  start-page: 135
  year: 1973
  end-page: 140
  ident: CR4
  article-title: Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method
  publication-title: Ann Clin Lab Sci
– volume: 143
  start-page: 373
  year: 2013
  end-page: 379
  ident: CR27
  article-title: Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2013.09.012
– volume: 9
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR23
  article-title: Increased mesenchymal stem cell functionalization in three-dimensional manufacturing settings for enhanced therapeutic applications
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.621748
– volume: 56
  start-page: 6882
  year: 2020
  end-page: 6885
  ident: CR29
  article-title: Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response
  publication-title: Chem Commun
  doi: 10.1039/d0cc01850c
– volume: 84
  start-page: 881
  year: 2011
  end-page: 886
  ident: CR25
  article-title: Concomitant degradation in periodate oxidation of carboxymethyl cellulose
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2010.12.026
– volume: 205
  start-page: 244
  year: 2019
  end-page: 254
  ident: CR26
  article-title: Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2018.10.037
– volume: 111
  start-page: 457
  year: 2020
  end-page: 4893
  ident: CR3
  article-title: Antibacterial activity of chitosan-based systems
  publication-title: Funct Chitosan: Drug Deliv Biomed Appl
– volume: 9
  start-page: 28
  year: 2023
  ident: CR8
  article-title: Growth factor binding peptides in poly (ethylene glycol) diacrylate (pegda)- based hydrogels for an improved healing response of human dermal fibroblasts
  publication-title: Gels
  doi: 10.3390/gels9010028
– volume: 81
  start-page: 121
  year: 2010
  end-page: 126
  ident: CR21
  article-title: Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2010.02.004
– volume: 29
  start-page: 8425
  year: 2017
  end-page: 8432
  ident: CR15
  article-title: Highly elastic and tough interpenetrating polymer network-structured hybrid hydrogels for cyclic mechanical loading-enhanced tissue engineering
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b02995
– volume: 26
  start-page: 4841
  year: 2019
  end-page: 4851
  ident: CR18
  article-title: Interaction of divalent cations with carboxylate group in TEMPO-oxidized microfibrillated cellulose systems
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02417-w
– volume: 151
  start-page: 779
  year: 2016
  end-page: 789
  ident: CR37
  article-title: Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.06.022
– volume: 6
  start-page: 8736
  year: 2018
  end-page: 8742
  ident: CR1
  article-title: Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01062
– year: 2020
  ident: CR40
  article-title: Nanocellulose: from fundamentals to advanced applications
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.00392
– volume: 32
  start-page: 2267
  year: 2021
  end-page: 2289
  ident: CR2
  article-title: Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.5263
– volume: 24
  start-page: 1657
  year: 2017
  end-page: 1667
  ident: CR34
  article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1228-7
– volume: 24
  start-page: 5517
  year: 2017
  end-page: 5528
  ident: CR19
  article-title: Cellulose-chitosan beads crosslinked by dialdehyde cellulose
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1528-y
– volume: 24
  start-page: 2215
  year: 2017
  end-page: 2228
  ident: CR35
  article-title: Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1251-8
– volume: 3
  start-page: 71
  year: 2011
  end-page: 85
  ident: CR14
  article-title: TEMPO-Oxidized Cellulose Nanofibers
  publication-title: Nanoscale
  doi: 10.1039/c0nr00583e
– volume: 158
  start-page: 133
  year: 2017
  end-page: 140
  ident: CR31
  article-title: Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.12.007
– volume: 130
  start-page: 88
  year: 2019
  end-page: 98
  ident: CR10
  article-title: Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.086
– volume: 17
  start-page: 459
  year: 2010
  end-page: 494
  ident: CR36
  article-title: Microfibrillated cellulose and new nanocomposite materials: A review
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9405-y
– volume: 154
  start-page: 1185
  year: 2020
  end-page: 1193
  ident: CR9
  article-title: Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.10.273
– year: 2020
  ident: CR7
  article-title: The nanofication and functionalization of bacterial cellulose and its applications
  publication-title: Nanomaterials
  doi: 10.3390/nano10030406
– year: 2021
  ident: CR24
  article-title: Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c01774
– volume: 46
  start-page: 92
  year: 2010
  end-page: 100
  ident: CR5
  article-title: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2009.04.033
– year: 2019
  ident: CR41
  article-title: Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release
  publication-title: Nanomaterials
  doi: 10.3390/nano9020253
– volume: 275
  year: 2022
  ident: CR12
  article-title: Research progress of smart response composite hydrogels based on nanocellulose
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.118741
– volume: 116
  start-page: 15392
  year: 2019
  end-page: 15397
  ident: CR28
  article-title: Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1819415116
– volume: 311
  year: 2023
  ident: CR22
  article-title: Antibacterial and degradation properties of dialdehyded and aminohexamethylated nanocelluloses
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2023.120603
– volume: 202
  start-page: 84
  year: 2018
  end-page: 90
  ident: CR38
  article-title: Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2018.08.097
– volume: 20
  start-page: 2096
  year: 2019
  end-page: 2104
  ident: CR39
  article-title: Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.9b00322
– volume: 6
  start-page: 71999
  year: 2016
  end-page: 72007
  ident: CR42
  article-title: A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure
  publication-title: RSC Adv
  doi: 10.1039/c6ra12517d
– volume: 10
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR20
  article-title: Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1130-8
– volume: 22
  start-page: 114977
  year: 2019
  ident: CR13
  article-title: Nanocrystals/Polyacrylamide Hybrid Hydrogels
  publication-title: Carbohydr Polymers
  doi: 10.1016/j.carbpol.2019.114977
– volume: 72
  start-page: 1588
  year: 2012
  end-page: 1594
  ident: CR32
  article-title: Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2012.06.010
– year: 2019
  ident: CR6
  article-title: Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-019-0124-z
– volume: 17
  start-page: 1201
  year: 2011
  end-page: 1208
  ident: CR11
  article-title: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds
  publication-title: Tissue Eng - Part A
  doi: 10.1089/ten.tea.2010.0590
– volume: 180
  start-page: 246
  year: 2018
  end-page: 255
  ident: CR30
  article-title: In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2017.10.032
– volume: 22
  start-page: 935
  year: 2015
  end-page: 969
  ident: CR16
  article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0551-0
– volume: 132
  start-page: 368
  year: 2017
  end-page: 393
  ident: CR17
  article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: a review
  publication-title: Polymer (guildf)
  doi: 10.1016/j.polymer.2017.09.043
– volume: 9
  start-page: 28
  year: 2023
  ident: 5591_CR8
  publication-title: Gels
  doi: 10.3390/gels9010028
– volume: 311
  year: 2023
  ident: 5591_CR22
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2023.120603
– volume: 10
  start-page: 1
  year: 2019
  ident: 5591_CR20
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1130-8
– volume: 17
  start-page: 459
  year: 2010
  ident: 5591_CR36
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9405-y
– volume: 6
  start-page: 71999
  year: 2016
  ident: 5591_CR42
  publication-title: RSC Adv
  doi: 10.1039/c6ra12517d
– volume: 72
  start-page: 1588
  year: 2012
  ident: 5591_CR32
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2012.06.010
– volume: 17
  start-page: 1201
  year: 2011
  ident: 5591_CR11
  publication-title: Tissue Eng - Part A
  doi: 10.1089/ten.tea.2010.0590
– volume: 151
  start-page: 779
  year: 2016
  ident: 5591_CR37
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.06.022
– volume: 32
  start-page: 2267
  year: 2021
  ident: 5591_CR2
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.5263
– volume: 205
  start-page: 244
  year: 2019
  ident: 5591_CR26
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2018.10.037
– volume: 20
  start-page: 2096
  year: 2019
  ident: 5591_CR39
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.9b00322
– volume: 143
  start-page: 373
  year: 2013
  ident: 5591_CR27
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2013.09.012
– year: 2021
  ident: 5591_CR24
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.1c01774
– volume: 56
  start-page: 6882
  year: 2020
  ident: 5591_CR29
  publication-title: Chem Commun
  doi: 10.1039/d0cc01850c
– volume: 22
  start-page: 114977
  year: 2019
  ident: 5591_CR13
  publication-title: Carbohydr Polymers
  doi: 10.1016/j.carbpol.2019.114977
– volume: 24
  start-page: 1657
  year: 2017
  ident: 5591_CR34
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1228-7
– volume: 275
  year: 2022
  ident: 5591_CR12
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2021.118741
– volume: 202
  start-page: 84
  year: 2018
  ident: 5591_CR38
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2018.08.097
– year: 2019
  ident: 5591_CR6
  publication-title: NPG Asia Mater
  doi: 10.1038/s41427-019-0124-z
– volume: 130
  start-page: 88
  year: 2019
  ident: 5591_CR10
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.086
– volume: 26
  start-page: 4841
  year: 2019
  ident: 5591_CR18
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02417-w
– volume: 111
  start-page: 457
  year: 2020
  ident: 5591_CR3
  publication-title: Funct Chitosan: Drug Deliv Biomed Appl
– volume: 29
  start-page: 8425
  year: 2017
  ident: 5591_CR15
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b02995
– volume: 132
  start-page: 368
  year: 2017
  ident: 5591_CR17
  publication-title: Polymer (guildf)
  doi: 10.1016/j.polymer.2017.09.043
– volume: 24
  start-page: 2215
  year: 2017
  ident: 5591_CR35
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1251-8
– volume: 6
  start-page: 8736
  year: 2018
  ident: 5591_CR1
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b01062
– volume: 3
  start-page: 71
  year: 2011
  ident: 5591_CR14
  publication-title: Nanoscale
  doi: 10.1039/c0nr00583e
– volume: 180
  start-page: 246
  year: 2018
  ident: 5591_CR30
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2017.10.032
– volume: 84
  start-page: 881
  year: 2011
  ident: 5591_CR25
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2010.12.026
– volume: 9
  start-page: 1
  year: 2021
  ident: 5591_CR23
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2021.621748
– year: 2021
  ident: 5591_CR33
  publication-title: Polymers (Basel)
  doi: 10.3390/polym13071105
– year: 2020
  ident: 5591_CR40
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.00392
– volume: 154
  start-page: 1185
  year: 2020
  ident: 5591_CR9
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.10.273
– volume: 22
  start-page: 935
  year: 2015
  ident: 5591_CR16
  publication-title: Cellulose
  doi: 10.1007/s10570-015-0551-0
– volume: 24
  start-page: 5517
  year: 2017
  ident: 5591_CR19
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1528-y
– volume: 158
  start-page: 133
  year: 2017
  ident: 5591_CR31
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.12.007
– year: 2019
  ident: 5591_CR41
  publication-title: Nanomaterials
  doi: 10.3390/nano9020253
– volume: 46
  start-page: 92
  year: 2010
  ident: 5591_CR5
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2009.04.033
– volume: 116
  start-page: 15392
  year: 2019
  ident: 5591_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1819415116
– volume: 3
  start-page: 135
  year: 1973
  ident: 5591_CR4
  publication-title: Ann Clin Lab Sci
– year: 2020
  ident: 5591_CR7
  publication-title: Nanomaterials
  doi: 10.3390/nano10030406
– volume: 81
  start-page: 121
  year: 2010
  ident: 5591_CR21
  publication-title: J Microbiol Methods
  doi: 10.1016/j.mimet.2010.02.004
SSID ssj0009721
Score 2.4236915
Snippet Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 363
SubjectTerms Aldehydes
antibacterial properties
Biocompatibility
Bioorganic Chemistry
Cell adhesion
cell growth
Cellulose
Cellulose fibers
cellulose microfibrils
cellulose nanofibers
Ceramics
Chemistry
Chemistry and Materials Science
Chitosan
Composites
Compression tests
Crosslinking
drugs
durability
Glass
Hydrogels
mesenchymal stromal cells
nanocrystals
Natural Materials
Organic Chemistry
Original Research
Oxidation
Pharmacology
Physical Chemistry
Polymer Sciences
Stability analysis
Stem cells
Sustainable Development
Swelling
therapeutics
Thermal stability
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eHtQH8YrzRgTftNClSbs8ylDEB58c-FZy3YZbK-sGm7_ec7p2m6KC0IdC09M0X5LzJTkXQq4TmygvTRT4KDIBt1wHmsGdZ9ZLFSptfGlt8Rw_dvjTq3itnMKK2tq9PpIsZ-oVZzeBSVIY2psJtNdZJ5sC1u44HDvsbhlqNym9rYCbSywtK1eZn2V8VUdLjvntWLTUNg97ZLeiifRujus-WXPZAdlq19nZDsjOSiDBQ_LWRun4V87SfNq3_Q9ng0xlOW7MTwY5-t71YPAWKqO9mR3lXdCJVMFFC6O8zweWDjFa_5QCi6VD9EkyvdkQ6oCRnimKoV1Yso97R6TzcP_SfgyqNAqBAXY1DixwMqBB2rakkxz4ijFN43nUcgboiNDaMR0z6aUFqqES5kLnJW-pWBoeKsujY7KR5Zk7IVQInxjvY4cOrE0WtryxwjLjYtE02ooGadatmZoqxjimuhiky-jIiEAKCKQlAmnYIDeLd97nETb-LH1eg5RWo61ImQQtC0Q2hApcLR4DINg4KnP5pEgjmNqBvALda5DbGtyliN-_ePq_4mdkG_okn-_SnJON8WjiLoC3jPVl2U0_AVyj5aE
  priority: 102
  providerName: Springer Nature
Title Crosslinked oxidized-nanocellulose/chitosan hydrogels as a scaffold matrix for mesenchymal stem cell growth
URI https://link.springer.com/article/10.1007/s10570-023-05591-0
https://www.proquest.com/docview/2912897705
https://www.proquest.com/docview/3153565562
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fVAfilbF01pW8E0Xk002yT7Jedy1KBQRD-pT2OxHr3iX1OYO2v71zuQ2jQoWAgn52A3728z8MjsfAG9zm2uvTMJ9khie2rTilcAjL6xXOtKV8Z23xUl2PE8_n8rTYHBrg1tlLxM7QW0bQzbyD0KhJEWyEsmPF784VY2i1dVQQuM-7MaoaWieF7OjIelu3sVdIUtXnII4Q9BMCJ2TVHJFkPeaJO-fvxXTwDb_WSDt9M7sMewFwsjGW4SfwD1X78ODSV-nbR8e_ZFS8Cn8nFDrtCzrLGuuzu35jbO81nVDJvrNsqEovAV-xq2u2eLaXjZnqB2Zxo21RnvfLC1bUd7-K4Z8lq0oOsksrlf4DpTzmVEz7Ax_3teLZzCfTb9PjnkoqMAN8qw1t8jOkBBVtlBOpchcjImNT5PCGSQmsqqcqDKhvLJIOnQuXOS8SgudKZNG2qbJc9ipm9q9ACalz433maNQ1lhEhTdWWmFcJmNTWTmCuB_N0oRs41T0YlkOeZIJgRIRKDsEymgE726fudjm2rjz7oMepDJ8d205zJIRvLm9jIDQ4OjaNZu2TFDII41F4jeC9z24QxP_7_Hl3T2-gocCGc_WPnMAO-vLjXuNjGVdHXbT8hB2x0c_vkxx_2l68vUbnp2L8W8jmezt
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9FA4ICggQgssEpzAwll77ewBIQitUloihFqpN7OfTUVit3GiNvwofiMzjl0DEr1V8sGS7VlrZ3bn7c6-GYCXqU2VlyYKfBSZILaxDjTHO8-tlypU2vjqtMUoGR7Fn4_F8Rr8argwdKyymROridoWhvbI33KJMymClVC8PzsPqGoURVebEhors9h3ywtcspXv9j6hfl9xvrtzOBgGdVWBwCDYmAcWIQqiAm370skY3bcxPePjqO8MemehteM64dJLi55XpdyFzsu4rxJp4lDZOEK5t2A9JkZrB9Y_7oy-fmvT_KYV0wvXBTIg2mhN06nJeoKKvHA6LyfovNHfrrDFt_-EZCtPt3sP7tYQlX1Y2dR9WHP5JmwMmspwm3DnjySGD-DHgKRTINhZVlye2tOfzga5ygsKCiwmBfH-xjhxlCpn46WdFSfoj5nCi5VGeV9MLJtSpYBLhgiaTYkPZcbLKf4DZZlmJIadzIqL-fghHN1IZz-CTl7k7jEwIXxqvE8ckWd7POx7Y4XlxiWiZ7QVXeg1vZmZOr85ldmYZG1mZtJAhhrIKg1kYRdeX31ztsruce3b242Ssnqkl1lrl114cfUYFUKdo3JXLMosQreCwBmhZhfeNMptRfy_xSfXt_gcNoaHXw6yg73R_hbc5oi3VrtD29CZzxbuKeKluX5WGymD7zc9Ln4DQ4cnMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VGrhgAptxfJojdRbG5E4cbI-om1X9CHEgZW4WX6yqLsJYrMS8OuZySbstiqVKuUQKc7E8djxF3u-bwA-Fq7QQdo0Cmlqo8xlJjIczwJ3QepYGxuaaIvT_GSUfb8QFyss_ibavduSXHAaSKWprI-uXThaIb4JSpjCKfZMUOzOc3iBn-OEevqIHy9ld4uGeYU4XVJp2dJm_m7j96lpiTf_2CJtZp7ha9hsISM7Xvh4C575chteDbpMbduwsSIq-AZ-Dcg6vaF3rLq9clf33kWlLitapJ9PKuLhjXEgz3TJxnfuprrE-ZFpPNjM6hCqiWNTUu6_ZYho2ZT4SXZ8N8U6kOozIzPsEn_f6_FbGA2_ng9OojalQmQRadWRQ3yGkMi4vvQyQ-xibWJDlva9RWgijPHc5FwG6RB26IL72AeZ9XUubRZrl6XvYK2sSr8DTIhQ2BByT2TWhMf9YJ1w3PpcJNY40YOka01lW71xSnsxUUulZPKAQg-oxgMq7sGnx3uuF2ob_yy93zlJtSNvprjEGRdBbYwVOHy8jA6hxtGlr-YzleJnHoEsQr8efO6cuzTx9BN3_6_4B3h59mWofn47_bEH6xzh0GLxZh_W6pu5P0A4U5v3TY99AMLc7NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinked+oxidized-nanocellulose%2Fchitosan+hydrogels+as+a+scaffold+matrix+for+mesenchymal+stem+cell+growth&rft.jtitle=Cellulose+%28London%29&rft.au=Mari%C3%B1o%2C+Mayra+A&rft.au=Oyarce%2C+Karina&rft.au=Tobar%2C+Catalina&rft.au=del+R%C3%ADo%2C+Rodrigo+Segura&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0969-0239&rft.eissn=1572-882X&rft.volume=31&rft.issue=1&rft.spage=363&rft.epage=379&rft_id=info:doi/10.1007%2Fs10570-023-05591-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon