Crosslinked oxidized-nanocellulose/chitosan hydrogels as a scaffold matrix for mesenchymal stem cell growth
Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-em...
Saved in:
Published in | Cellulose (London) Vol. 31; no. 1; pp. 363 - 379 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0969-0239 1572-882X |
DOI | 10.1007/s10570-023-05591-0 |
Cover
Abstract | Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation.
Graphical abstract |
---|---|
AbstractList | Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation. Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range of diseases. To ensure a localized effect of MSC in the organism biobased hydrogels have been tested for their ability to act as a matrix-embedded to improve MSC targeted delivery. In this context, nanocellulose (NC) has been used for drug delivery, showing biocompatibility and durability in time, but until now NC has not been tested for MSC growth exploiting the size and aldehyde content of NC. In this study, cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and microfibrillated cellulose (MFC) were studied after one-pot oxidation and further crosslinking with chitosan (mass ratio 1:5). Size and aldehyde content of oxidized NC samples were evaluated to analyze their influence on the hydrogel’s properties. The crosslinked hydrogels were analyzed by FESEM, swelling ability, FTIR, compression tests, thermal stability, and stability in culture cell conditions. Oxidized-MFC hydrogel improved the mechanical stability and swelling behavior, but it lacks stability at cell conditions possibly due to its low aldehyde content (0.54 mmol/g). Conversely, oxidized CNF and oxidized CNC formed suitable crosslinked hydrogels for cell adhesion, and for growing and proliferating of MSC 3D spheroids after 120 h. However, only hydrogel with PO-CNF/chitosan shows antibacterial activity as well as MSC proliferation. Graphical abstract |
Author | Paredes, Maria G. Pavez, Paulina Sarabia, Mauricio Castaño, Johanna Barjas, Gustavo Cabrera Amoroso, Alejandro Mariño, Mayra A. Tobar, Catalina del Río, Rodrigo Segura Concha, Jose L. Oyarce, Karina Norambuena-Contreras, Jose |
Author_xml | – sequence: 1 givenname: Mayra A. surname: Mariño fullname: Mariño, Mayra A. email: mmarino@udec.cl organization: Department of Chemical Engineering, Universidad de Concepción – sequence: 2 givenname: Karina surname: Oyarce fullname: Oyarce, Karina organization: Laboratorio de Neuro-Inmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián – sequence: 3 givenname: Catalina surname: Tobar fullname: Tobar, Catalina organization: Laboratorio de Neuro-Inmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián – sequence: 4 givenname: Rodrigo Segura surname: del Río fullname: del Río, Rodrigo Segura organization: Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso – sequence: 5 givenname: Maria G. surname: Paredes fullname: Paredes, Maria G. organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile – sequence: 6 givenname: Paulina surname: Pavez fullname: Pavez, Paulina organization: Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile – sequence: 7 givenname: Mauricio surname: Sarabia fullname: Sarabia, Mauricio organization: Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián – sequence: 8 givenname: Alejandro surname: Amoroso fullname: Amoroso, Alejandro organization: Departamento de Ciencias Básicas, Facultad de Medicina y Ciencias, Universidad San Sebastián – sequence: 9 givenname: Jose L. surname: Concha fullname: Concha, Jose L. organization: LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío – sequence: 10 givenname: Jose surname: Norambuena-Contreras fullname: Norambuena-Contreras, Jose organization: LabMAT, Department of Civil and Environmental Engineering, University of Bío-Bío – sequence: 11 givenname: Gustavo Cabrera surname: Barjas fullname: Barjas, Gustavo Cabrera organization: Facultad de Ciencias para el Cuidado de La Salud, Universidad San Sebastián – sequence: 12 givenname: Johanna surname: Castaño fullname: Castaño, Johanna email: jcastano@udec.cl organization: Department of Chemical Engineering, Universidad de Concepción |
BookMark | eNp9kE2LFDEQhoOs4OzqH_AU8OKl3UrS6SRHGfyCBS8K3kImqZ7JbjpZkx7c8dfb7QjCHhYKcqj3qbw8l-Qil4yEvGbwjgGo68ZAKuiAiw6kNKyDZ2TDpOKd1vzHBdmAGcy6Ni_IZWu3AGAUZxtyt62ltRTzHQZaHmKIvzF02eXiMaVjKg2v_SHOpblMD6dQyx5To24Z2rwbx5ICndxc4wMdS6UTNsz-cJpcom3Gia5n6L6WX_PhJXk-utTw1b_3inz_-OHb9nN38_XTl-37m84Lyecu9CC1MLugDZpeceU982MvNPqhF3K3Q74buBlN4Fo4xRFwNL12g_E9uNCLK_L2fPe-lp9HbLOdYlt7uIzl2KxgUshByoEv0TePorflWPPSznLDuDZKgVxS_Jzyq6yKo72vcXL1ZBnY1b89-7eLYPvXv4UF0o8gH2c3x5Ln6mJ6GhVntC3_5D3W_62eoP4ABLSdvA |
CitedBy_id | crossref_primary_10_1039_D4TB00397G crossref_primary_10_1016_j_ijbiomac_2024_134015 crossref_primary_10_1007_s00289_024_05346_2 |
Cites_doi | 10.3390/polym13071105 10.1016/j.matchemphys.2013.09.012 10.3389/fbioe.2021.621748 10.1039/d0cc01850c 10.1016/j.carbpol.2010.12.026 10.1016/j.carbpol.2018.10.037 10.3390/gels9010028 10.1016/j.mimet.2010.02.004 10.1021/acs.chemmater.7b02995 10.1007/s10570-019-02417-w 10.1016/j.carbpol.2016.06.022 10.1021/acssuschemeng.8b01062 10.3389/fchem.2020.00392 10.1002/pat.5263 10.1007/s10570-017-1228-7 10.1007/s10570-017-1528-y 10.1007/s10570-017-1251-8 10.1039/c0nr00583e 10.1016/j.carbpol.2016.12.007 10.1016/j.ijbiomac.2019.02.086 10.1007/s10570-010-9405-y 10.1016/j.ijbiomac.2019.10.273 10.3390/nano10030406 10.1021/acssuschemeng.1c01774 10.1016/j.eurpolymj.2009.04.033 10.3390/nano9020253 10.1016/j.carbpol.2021.118741 10.1073/pnas.1819415116 10.1016/j.carbpol.2023.120603 10.1016/j.carbpol.2018.08.097 10.1021/acs.biomac.9b00322 10.1039/c6ra12517d 10.1186/s13287-018-1130-8 10.1016/j.carbpol.2019.114977 10.1016/j.compscitech.2012.06.010 10.1038/s41427-019-0124-z 10.1089/ten.tea.2010.0590 10.1016/j.carbpol.2017.10.032 10.1007/s10570-015-0551-0 10.1016/j.polymer.2017.09.043 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.1007/s10570-023-05591-0 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-882X |
EndPage | 379 |
ExternalDocumentID | 10_1007_s10570_023_05591_0 |
GrantInformation_xml | – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico grantid: FONDECYT 3220462; FONDECYT 3220462 funderid: http://dx.doi.org/10.13039/501100002850 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIZAD AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 N~3 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TTC TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 Y6R YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z87 Z8N Z8P Z8Q ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c352t-d405839bd89e94727cc1cf438ec6435bbe2b629f9d283a72e0ef948a69c40ad43 |
IEDL.DBID | 8FG |
ISSN | 0969-0239 |
IngestDate | Thu Sep 04 20:25:26 EDT 2025 Fri Jul 25 11:03:30 EDT 2025 Tue Jul 01 02:11:01 EDT 2025 Thu Apr 24 22:58:51 EDT 2025 Fri Feb 21 02:41:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Oxidized nanocellulose Crosslinked hydrogel Mesenchymal stem cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-d405839bd89e94727cc1cf438ec6435bbe2b629f9d283a72e0ef948a69c40ad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2912897705 |
PQPubID | 2043866 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3153565562 proquest_journals_2912897705 crossref_primary_10_1007_s10570_023_05591_0 crossref_citationtrail_10_1007_s10570_023_05591_0 springer_journals_10_1007_s10570_023_05591_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240100 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Cellulose (London) |
PublicationTitleAbbrev | Cellulose |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Salminen, Reza, Pääkkönen, Peyre, Kontturi (CR34) 2017; 24 Hu, Zhi, Shan, Ni (CR12) 2022; 275 Isogai, Saito, Fukuzumi (CR14) 2011; 3 Park, Shin, Cheng, Hyun (CR31) 2017; 158 Zheng, Zhang, Liu, Pei, Tang (CR42) 2016; 6 Amini, Salehi, Setayeshmehr, Ghorbani (CR2) 2021; 32 Kim, Kim, Choi, Kimura, Wada (CR19) 2017; 24 Qiu, Netravali (CR32) 2012; 72 Lin, Zheng, Chen, Su, Dong, Lin, Huang, Lu (CR26) 2019; 205 Tong, Chen, Pan, Qi, Li, Tian, Lu, He (CR39) 2019; 20 Alam, Christopher (CR1) 2018; 6 Kouroupis, Correa (CR23) 2021; 9 Li, Wu, Mu, Lin (CR25) 2011; 84 Huang, Wang, Mcmullen, Mcdermott, Deng, Du, Chen, Zhang (CR13) 2019; 22 Haugh, Murphy, McKiernan, Altenbuchner, O’Brien (CR11) 2011; 17 Khanjani, Kosonen, Ristolainen, Virtanen, Vuorinen (CR18) 2019; 26 Mendes, Gómez-Florit, Osório, Vilaça, Domingues, Reis, Gomes (CR29) 2020; 56 Nguyen, Abueva, Ho, Lee, Lee (CR30) 2018; 180 Fan, Li, Li, Wu, Tang, Liu, Zheng, Wan (CR9) 2020; 154 Kim, Bae, Kook, Koh, Lee, Park (CR20) 2019; 10 Trache, Tarchoun, Derradji, Hamidon, Masruchin, Brosse, Hussin (CR40) 2020 Klančnik, Piskernik, Jeršek, Možina (CR21) 2010; 81 Reddy, Ponnamma, Choudhary, Sadasivuni (CR33) 2021 Siró, Plackett (CR36) 2010; 17 Ghavimi, Lungren, Faulkner, Josselet, Wu, Sun, Pfeiffer, Goldstein, Wan, Ulery (CR10) 2019; 130 Kokol, Novak, Kononenko, Kos, Vivod, Gunde-Cimerman, Drobne (CR22) 2023; 311 Cheng, Huang, Wei, Hsu (CR6) 2019 Soni, Hassan, Schilling, Mahmoud (CR37) 2016; 151 Leite, Pham, Bilatto, Azeredo, Cranston, Moreira, Mattoso, Bras (CR24) 2021 Atay (CR3) 2020; 111 Luo, Xiong, Hu, Ren, Yao, Zhu, Gao, Wan (CR27) 2013; 143 Sampath, Ching, Chuah, Singh, Lin (CR35) 2017; 24 Xu, Ji, Sun, Fu, Xu, Jin (CR41) 2019 Kargarzadeh, Mariano, Huang, Lin, Ahmad, Dufresne, Thomas (CR17) 2017; 132 Biemer (CR4) 1973; 3 Tang, Yu, Renneckar, Zhang (CR38) 2018; 202 Choi, Shin (CR7) 2020 Mao, Özkale, Shah, Vining, Descombes, Zhang, Tringides, Wong, Shin, Scadden, Weitz, Mooney (CR28) 2019; 116 Chang, Duan, Cai, Zhang (CR5) 2010; 46 Clevenger, Jimenez-Vergara, Tsai, de Barros, Díaz-Lasprilla, Ramírez-Caballero, Munoz-Pinto (CR8) 2023; 9 Jonoobi, Oladi, Davoudpour, Oksman, Dufresne, Hamzeh, Davoodi (CR16) 2015; 22 Jeon, Shin, Marks, Hopkins, Kim, Park, Alsberg (CR15) 2017; 29 SM Choi (5591_CR7) 2020 I Siró (5591_CR36) 2010; 17 BB Mendes (5591_CR29) 2020; 56 A Klančnik (5591_CR21) 2010; 81 B Soni (5591_CR37) 2016; 151 R Tang (5591_CR38) 2018; 202 F Lin (5591_CR26) 2019; 205 MG Haugh (5591_CR11) 2011; 17 AS Mao (5591_CR28) 2019; 116 D Trache (5591_CR40) 2020 HY Atay (5591_CR3) 2020; 111 S Hu (5591_CR12) 2022; 275 R Salminen (5591_CR34) 2017; 24 MN Alam (5591_CR1) 2018; 6 THM Nguyen (5591_CR30) 2018; 180 LSF Leite (5591_CR24) 2021 H Luo (5591_CR27) 2013; 143 MSB Reddy (5591_CR33) 2021 UJ Kim (5591_CR19) 2017; 24 A Isogai (5591_CR14) 2011; 3 K Qiu (5591_CR32) 2012; 72 UGTM Sampath (5591_CR35) 2017; 24 P Khanjani (5591_CR18) 2019; 26 KC Cheng (5591_CR6) 2019 W Huang (5591_CR13) 2019; 22 C Chang (5591_CR5) 2010; 46 M Jonoobi (5591_CR16) 2015; 22 H Li (5591_CR25) 2011; 84 R Tong (5591_CR39) 2019; 20 H Kim (5591_CR20) 2019; 10 D Kouroupis (5591_CR23) 2021; 9 AJ Clevenger (5591_CR8) 2023; 9 X Zheng (5591_CR42) 2016; 6 V Kokol (5591_CR22) 2023; 311 O Jeon (5591_CR15) 2017; 29 SAA Ghavimi (5591_CR10) 2019; 130 JJ Biemer (5591_CR4) 1973; 3 H Kargarzadeh (5591_CR17) 2017; 132 Q Xu (5591_CR41) 2019 S Amini (5591_CR2) 2021; 32 M Park (5591_CR31) 2017; 158 X Fan (5591_CR9) 2020; 154 |
References_xml | – year: 2021 ident: CR33 article-title: A comparative review of natural and synthetic biopolymer composite scaffolds publication-title: Polymers (Basel) doi: 10.3390/polym13071105 – volume: 3 start-page: 135 year: 1973 end-page: 140 ident: CR4 article-title: Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method publication-title: Ann Clin Lab Sci – volume: 143 start-page: 373 year: 2013 end-page: 379 ident: CR27 article-title: Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2013.09.012 – volume: 9 start-page: 1 year: 2021 end-page: 15 ident: CR23 article-title: Increased mesenchymal stem cell functionalization in three-dimensional manufacturing settings for enhanced therapeutic applications publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.621748 – volume: 56 start-page: 6882 year: 2020 end-page: 6885 ident: CR29 article-title: Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response publication-title: Chem Commun doi: 10.1039/d0cc01850c – volume: 84 start-page: 881 year: 2011 end-page: 886 ident: CR25 article-title: Concomitant degradation in periodate oxidation of carboxymethyl cellulose publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2010.12.026 – volume: 205 start-page: 244 year: 2019 end-page: 254 ident: CR26 article-title: Microfibrillated cellulose enhancement to mechanical and conductive properties of biocompatible hydrogels publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.10.037 – volume: 111 start-page: 457 year: 2020 end-page: 4893 ident: CR3 article-title: Antibacterial activity of chitosan-based systems publication-title: Funct Chitosan: Drug Deliv Biomed Appl – volume: 9 start-page: 28 year: 2023 ident: CR8 article-title: Growth factor binding peptides in poly (ethylene glycol) diacrylate (pegda)- based hydrogels for an improved healing response of human dermal fibroblasts publication-title: Gels doi: 10.3390/gels9010028 – volume: 81 start-page: 121 year: 2010 end-page: 126 ident: CR21 article-title: Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2010.02.004 – volume: 29 start-page: 8425 year: 2017 end-page: 8432 ident: CR15 article-title: Highly elastic and tough interpenetrating polymer network-structured hybrid hydrogels for cyclic mechanical loading-enhanced tissue engineering publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b02995 – volume: 26 start-page: 4841 year: 2019 end-page: 4851 ident: CR18 article-title: Interaction of divalent cations with carboxylate group in TEMPO-oxidized microfibrillated cellulose systems publication-title: Cellulose doi: 10.1007/s10570-019-02417-w – volume: 151 start-page: 779 year: 2016 end-page: 789 ident: CR37 article-title: Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.06.022 – volume: 6 start-page: 8736 year: 2018 end-page: 8742 ident: CR1 article-title: Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01062 – year: 2020 ident: CR40 article-title: Nanocellulose: from fundamentals to advanced applications publication-title: Front Chem doi: 10.3389/fchem.2020.00392 – volume: 32 start-page: 2267 year: 2021 end-page: 2289 ident: CR2 article-title: Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages publication-title: Polym Adv Technol doi: 10.1002/pat.5263 – volume: 24 start-page: 1657 year: 2017 end-page: 1667 ident: CR34 article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield publication-title: Cellulose doi: 10.1007/s10570-017-1228-7 – volume: 24 start-page: 5517 year: 2017 end-page: 5528 ident: CR19 article-title: Cellulose-chitosan beads crosslinked by dialdehyde cellulose publication-title: Cellulose doi: 10.1007/s10570-017-1528-y – volume: 24 start-page: 2215 year: 2017 end-page: 2228 ident: CR35 article-title: Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel publication-title: Cellulose doi: 10.1007/s10570-017-1251-8 – volume: 3 start-page: 71 year: 2011 end-page: 85 ident: CR14 article-title: TEMPO-Oxidized Cellulose Nanofibers publication-title: Nanoscale doi: 10.1039/c0nr00583e – volume: 158 start-page: 133 year: 2017 end-page: 140 ident: CR31 article-title: Nanocellulose based asymmetric composite membrane for the multiple functions in cell encapsulation publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.12.007 – volume: 130 start-page: 88 year: 2019 end-page: 98 ident: CR10 article-title: Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.086 – volume: 17 start-page: 459 year: 2010 end-page: 494 ident: CR36 article-title: Microfibrillated cellulose and new nanocomposite materials: A review publication-title: Cellulose doi: 10.1007/s10570-010-9405-y – volume: 154 start-page: 1185 year: 2020 end-page: 1193 ident: CR9 article-title: Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.10.273 – year: 2020 ident: CR7 article-title: The nanofication and functionalization of bacterial cellulose and its applications publication-title: Nanomaterials doi: 10.3390/nano10030406 – year: 2021 ident: CR24 article-title: Effect of tannic acid and cellulose nanocrystals on antioxidant and antimicrobial properties of gelatin films publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c01774 – volume: 46 start-page: 92 year: 2010 end-page: 100 ident: CR5 article-title: Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2009.04.033 – year: 2019 ident: CR41 article-title: Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release publication-title: Nanomaterials doi: 10.3390/nano9020253 – volume: 275 year: 2022 ident: CR12 article-title: Research progress of smart response composite hydrogels based on nanocellulose publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.118741 – volume: 116 start-page: 15392 year: 2019 end-page: 15397 ident: CR28 article-title: Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1819415116 – volume: 311 year: 2023 ident: CR22 article-title: Antibacterial and degradation properties of dialdehyded and aminohexamethylated nanocelluloses publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2023.120603 – volume: 202 start-page: 84 year: 2018 end-page: 90 ident: CR38 article-title: Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.08.097 – volume: 20 start-page: 2096 year: 2019 end-page: 2104 ident: CR39 article-title: Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors publication-title: Biomacromol doi: 10.1021/acs.biomac.9b00322 – volume: 6 start-page: 71999 year: 2016 end-page: 72007 ident: CR42 article-title: A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure publication-title: RSC Adv doi: 10.1039/c6ra12517d – volume: 10 start-page: 1 year: 2019 end-page: 14 ident: CR20 article-title: Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1130-8 – volume: 22 start-page: 114977 year: 2019 ident: CR13 article-title: Nanocrystals/Polyacrylamide Hybrid Hydrogels publication-title: Carbohydr Polymers doi: 10.1016/j.carbpol.2019.114977 – volume: 72 start-page: 1588 year: 2012 end-page: 1594 ident: CR32 article-title: Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2012.06.010 – year: 2019 ident: CR6 article-title: Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects publication-title: NPG Asia Mater doi: 10.1038/s41427-019-0124-z – volume: 17 start-page: 1201 year: 2011 end-page: 1208 ident: CR11 article-title: Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds publication-title: Tissue Eng - Part A doi: 10.1089/ten.tea.2010.0590 – volume: 180 start-page: 246 year: 2018 end-page: 255 ident: CR30 article-title: In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2017.10.032 – volume: 22 start-page: 935 year: 2015 end-page: 969 ident: CR16 article-title: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review publication-title: Cellulose doi: 10.1007/s10570-015-0551-0 – volume: 132 start-page: 368 year: 2017 end-page: 393 ident: CR17 article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: a review publication-title: Polymer (guildf) doi: 10.1016/j.polymer.2017.09.043 – volume: 9 start-page: 28 year: 2023 ident: 5591_CR8 publication-title: Gels doi: 10.3390/gels9010028 – volume: 311 year: 2023 ident: 5591_CR22 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2023.120603 – volume: 10 start-page: 1 year: 2019 ident: 5591_CR20 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1130-8 – volume: 17 start-page: 459 year: 2010 ident: 5591_CR36 publication-title: Cellulose doi: 10.1007/s10570-010-9405-y – volume: 6 start-page: 71999 year: 2016 ident: 5591_CR42 publication-title: RSC Adv doi: 10.1039/c6ra12517d – volume: 72 start-page: 1588 year: 2012 ident: 5591_CR32 publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2012.06.010 – volume: 17 start-page: 1201 year: 2011 ident: 5591_CR11 publication-title: Tissue Eng - Part A doi: 10.1089/ten.tea.2010.0590 – volume: 151 start-page: 779 year: 2016 ident: 5591_CR37 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.06.022 – volume: 32 start-page: 2267 year: 2021 ident: 5591_CR2 publication-title: Polym Adv Technol doi: 10.1002/pat.5263 – volume: 205 start-page: 244 year: 2019 ident: 5591_CR26 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.10.037 – volume: 20 start-page: 2096 year: 2019 ident: 5591_CR39 publication-title: Biomacromol doi: 10.1021/acs.biomac.9b00322 – volume: 143 start-page: 373 year: 2013 ident: 5591_CR27 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2013.09.012 – year: 2021 ident: 5591_CR24 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.1c01774 – volume: 56 start-page: 6882 year: 2020 ident: 5591_CR29 publication-title: Chem Commun doi: 10.1039/d0cc01850c – volume: 22 start-page: 114977 year: 2019 ident: 5591_CR13 publication-title: Carbohydr Polymers doi: 10.1016/j.carbpol.2019.114977 – volume: 24 start-page: 1657 year: 2017 ident: 5591_CR34 publication-title: Cellulose doi: 10.1007/s10570-017-1228-7 – volume: 275 year: 2022 ident: 5591_CR12 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.118741 – volume: 202 start-page: 84 year: 2018 ident: 5591_CR38 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.08.097 – year: 2019 ident: 5591_CR6 publication-title: NPG Asia Mater doi: 10.1038/s41427-019-0124-z – volume: 130 start-page: 88 year: 2019 ident: 5591_CR10 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.086 – volume: 26 start-page: 4841 year: 2019 ident: 5591_CR18 publication-title: Cellulose doi: 10.1007/s10570-019-02417-w – volume: 111 start-page: 457 year: 2020 ident: 5591_CR3 publication-title: Funct Chitosan: Drug Deliv Biomed Appl – volume: 29 start-page: 8425 year: 2017 ident: 5591_CR15 publication-title: Chem Mater doi: 10.1021/acs.chemmater.7b02995 – volume: 132 start-page: 368 year: 2017 ident: 5591_CR17 publication-title: Polymer (guildf) doi: 10.1016/j.polymer.2017.09.043 – volume: 24 start-page: 2215 year: 2017 ident: 5591_CR35 publication-title: Cellulose doi: 10.1007/s10570-017-1251-8 – volume: 6 start-page: 8736 year: 2018 ident: 5591_CR1 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01062 – volume: 3 start-page: 71 year: 2011 ident: 5591_CR14 publication-title: Nanoscale doi: 10.1039/c0nr00583e – volume: 180 start-page: 246 year: 2018 ident: 5591_CR30 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2017.10.032 – volume: 84 start-page: 881 year: 2011 ident: 5591_CR25 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2010.12.026 – volume: 9 start-page: 1 year: 2021 ident: 5591_CR23 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2021.621748 – year: 2021 ident: 5591_CR33 publication-title: Polymers (Basel) doi: 10.3390/polym13071105 – year: 2020 ident: 5591_CR40 publication-title: Front Chem doi: 10.3389/fchem.2020.00392 – volume: 154 start-page: 1185 year: 2020 ident: 5591_CR9 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.10.273 – volume: 22 start-page: 935 year: 2015 ident: 5591_CR16 publication-title: Cellulose doi: 10.1007/s10570-015-0551-0 – volume: 24 start-page: 5517 year: 2017 ident: 5591_CR19 publication-title: Cellulose doi: 10.1007/s10570-017-1528-y – volume: 158 start-page: 133 year: 2017 ident: 5591_CR31 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.12.007 – year: 2019 ident: 5591_CR41 publication-title: Nanomaterials doi: 10.3390/nano9020253 – volume: 46 start-page: 92 year: 2010 ident: 5591_CR5 publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2009.04.033 – volume: 116 start-page: 15392 year: 2019 ident: 5591_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1819415116 – volume: 3 start-page: 135 year: 1973 ident: 5591_CR4 publication-title: Ann Clin Lab Sci – year: 2020 ident: 5591_CR7 publication-title: Nanomaterials doi: 10.3390/nano10030406 – volume: 81 start-page: 121 year: 2010 ident: 5591_CR21 publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2010.02.004 |
SSID | ssj0009721 |
Score | 2.4236915 |
Snippet | Mesenchymal stem cells (MSC) are recognized for their immunomodulatory effects and regenerative properties, being promising therapeutic agents for a wide range... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 363 |
SubjectTerms | Aldehydes antibacterial properties Biocompatibility Bioorganic Chemistry Cell adhesion cell growth Cellulose Cellulose fibers cellulose microfibrils cellulose nanofibers Ceramics Chemistry Chemistry and Materials Science Chitosan Composites Compression tests Crosslinking drugs durability Glass Hydrogels mesenchymal stromal cells nanocrystals Natural Materials Organic Chemistry Original Research Oxidation Pharmacology Physical Chemistry Polymer Sciences Stability analysis Stem cells Sustainable Development Swelling therapeutics Thermal stability |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eHtQH8YrzRgTftNClSbs8ylDEB58c-FZy3YZbK-sGm7_ec7p2m6KC0IdC09M0X5LzJTkXQq4TmygvTRT4KDIBt1wHmsGdZ9ZLFSptfGlt8Rw_dvjTq3itnMKK2tq9PpIsZ-oVZzeBSVIY2psJtNdZJ5sC1u44HDvsbhlqNym9rYCbSywtK1eZn2V8VUdLjvntWLTUNg97ZLeiifRujus-WXPZAdlq19nZDsjOSiDBQ_LWRun4V87SfNq3_Q9ng0xlOW7MTwY5-t71YPAWKqO9mR3lXdCJVMFFC6O8zweWDjFa_5QCi6VD9EkyvdkQ6oCRnimKoV1Yso97R6TzcP_SfgyqNAqBAXY1DixwMqBB2rakkxz4ijFN43nUcgboiNDaMR0z6aUFqqES5kLnJW-pWBoeKsujY7KR5Zk7IVQInxjvY4cOrE0WtryxwjLjYtE02ooGadatmZoqxjimuhiky-jIiEAKCKQlAmnYIDeLd97nETb-LH1eg5RWo61ImQQtC0Q2hApcLR4DINg4KnP5pEgjmNqBvALda5DbGtyliN-_ePq_4mdkG_okn-_SnJON8WjiLoC3jPVl2U0_AVyj5aE priority: 102 providerName: Springer Nature |
Title | Crosslinked oxidized-nanocellulose/chitosan hydrogels as a scaffold matrix for mesenchymal stem cell growth |
URI | https://link.springer.com/article/10.1007/s10570-023-05591-0 https://www.proquest.com/docview/2912897705 https://www.proquest.com/docview/3153565562 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB-0fVAfilbF01pW8E0Xk002yT7Jedy1KBQRD-pT2OxHr3iX1OYO2v71zuQ2jQoWAgn52A3728z8MjsfAG9zm2uvTMJ9khie2rTilcAjL6xXOtKV8Z23xUl2PE8_n8rTYHBrg1tlLxM7QW0bQzbyD0KhJEWyEsmPF784VY2i1dVQQuM-7MaoaWieF7OjIelu3sVdIUtXnII4Q9BMCJ2TVHJFkPeaJO-fvxXTwDb_WSDt9M7sMewFwsjGW4SfwD1X78ODSV-nbR8e_ZFS8Cn8nFDrtCzrLGuuzu35jbO81nVDJvrNsqEovAV-xq2u2eLaXjZnqB2Zxo21RnvfLC1bUd7-K4Z8lq0oOsksrlf4DpTzmVEz7Ax_3teLZzCfTb9PjnkoqMAN8qw1t8jOkBBVtlBOpchcjImNT5PCGSQmsqqcqDKhvLJIOnQuXOS8SgudKZNG2qbJc9ipm9q9ACalz433maNQ1lhEhTdWWmFcJmNTWTmCuB_N0oRs41T0YlkOeZIJgRIRKDsEymgE726fudjm2rjz7oMepDJ8d205zJIRvLm9jIDQ4OjaNZu2TFDII41F4jeC9z24QxP_7_Hl3T2-gocCGc_WPnMAO-vLjXuNjGVdHXbT8hB2x0c_vkxx_2l68vUbnp2L8W8jmezt |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9FA4ICggQgssEpzAwll77ewBIQitUloihFqpN7OfTUVit3GiNvwofiMzjl0DEr1V8sGS7VlrZ3bn7c6-GYCXqU2VlyYKfBSZILaxDjTHO8-tlypU2vjqtMUoGR7Fn4_F8Rr8argwdKyymROridoWhvbI33KJMymClVC8PzsPqGoURVebEhors9h3ywtcspXv9j6hfl9xvrtzOBgGdVWBwCDYmAcWIQqiAm370skY3bcxPePjqO8MemehteM64dJLi55XpdyFzsu4rxJp4lDZOEK5t2A9JkZrB9Y_7oy-fmvT_KYV0wvXBTIg2mhN06nJeoKKvHA6LyfovNHfrrDFt_-EZCtPt3sP7tYQlX1Y2dR9WHP5JmwMmspwm3DnjySGD-DHgKRTINhZVlye2tOfzga5ygsKCiwmBfH-xjhxlCpn46WdFSfoj5nCi5VGeV9MLJtSpYBLhgiaTYkPZcbLKf4DZZlmJIadzIqL-fghHN1IZz-CTl7k7jEwIXxqvE8ckWd7POx7Y4XlxiWiZ7QVXeg1vZmZOr85ldmYZG1mZtJAhhrIKg1kYRdeX31ztsruce3b242Ssnqkl1lrl114cfUYFUKdo3JXLMosQreCwBmhZhfeNMptRfy_xSfXt_gcNoaHXw6yg73R_hbc5oi3VrtD29CZzxbuKeKluX5WGymD7zc9Ln4DQ4cnMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VGrhgAptxfJojdRbG5E4cbI-om1X9CHEgZW4WX6yqLsJYrMS8OuZySbstiqVKuUQKc7E8djxF3u-bwA-Fq7QQdo0Cmlqo8xlJjIczwJ3QepYGxuaaIvT_GSUfb8QFyss_ibavduSXHAaSKWprI-uXThaIb4JSpjCKfZMUOzOc3iBn-OEevqIHy9ld4uGeYU4XVJp2dJm_m7j96lpiTf_2CJtZp7ha9hsISM7Xvh4C575chteDbpMbduwsSIq-AZ-Dcg6vaF3rLq9clf33kWlLitapJ9PKuLhjXEgz3TJxnfuprrE-ZFpPNjM6hCqiWNTUu6_ZYho2ZT4SXZ8N8U6kOozIzPsEn_f6_FbGA2_ng9OojalQmQRadWRQ3yGkMi4vvQyQ-xibWJDlva9RWgijPHc5FwG6RB26IL72AeZ9XUubRZrl6XvYK2sSr8DTIhQ2BByT2TWhMf9YJ1w3PpcJNY40YOka01lW71xSnsxUUulZPKAQg-oxgMq7sGnx3uuF2ob_yy93zlJtSNvprjEGRdBbYwVOHy8jA6hxtGlr-YzleJnHoEsQr8efO6cuzTx9BN3_6_4B3h59mWofn47_bEH6xzh0GLxZh_W6pu5P0A4U5v3TY99AMLc7NA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crosslinked+oxidized-nanocellulose%2Fchitosan+hydrogels+as+a+scaffold+matrix+for+mesenchymal+stem+cell+growth&rft.jtitle=Cellulose+%28London%29&rft.au=Mari%C3%B1o%2C+Mayra+A&rft.au=Oyarce%2C+Karina&rft.au=Tobar%2C+Catalina&rft.au=del+R%C3%ADo%2C+Rodrigo+Segura&rft.date=2024-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0969-0239&rft.eissn=1572-882X&rft.volume=31&rft.issue=1&rft.spage=363&rft.epage=379&rft_id=info:doi/10.1007%2Fs10570-023-05591-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon |