Fuzzy pattern tree for edge malware detection and categorization in IoT
The surging pace of Internet of Things (IoT) development and its applications has resulted in significantly large amounts of data (commonly known as big data) being communicated and processed across IoT networks. While cloud computing has led to several possibilities in regard to this computational...
Saved in:
Published in | Journal of systems architecture Vol. 97; pp. 1 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The surging pace of Internet of Things (IoT) development and its applications has resulted in significantly large amounts of data (commonly known as big data) being communicated and processed across IoT networks. While cloud computing has led to several possibilities in regard to this computational challenge, there are several security risks and concerns associated with it. Edge computing is a state-of-the-art subject in IoT that attempts to decentralize, distribute and transfer computation to IoT nodes. Furthermore, IoT nodes that perform applications are the primary target vectors which allow cybercriminals to threaten an IoT network. Hence, providing applied and robust methods to detect malicious activities by nodes is a big step to protect all of the network.
In this study, we transmute the programs’ OpCodes into a vector space and employ fuzzy and fast fuzzy pattern tree methods for malware detection and categorization. We obtained a high degree of accuracy during reasonable run-times especially for the fast fuzzy pattern tree. Both utilized feature extraction and fuzzy classification, which were robust, led to more powerful edge computing malware detection and categorization method. |
---|---|
AbstractList | The surging pace of Internet of Things (IoT) development and its applications has resulted in significantly large amounts of data (commonly known as big data) being communicated and processed across IoT networks. While cloud computing has led to several possibilities in regard to this computational challenge, there are several security risks and concerns associated with it. Edge computing is a state-of-the-art subject in IoT that attempts to decentralize, distribute and transfer computation to IoT nodes. Furthermore, IoT nodes that perform applications are the primary target vectors which allow cybercriminals to threaten an IoT network. Hence, providing applied and robust methods to detect malicious activities by nodes is a big step to protect all of the network.
In this study, we transmute the programs’ OpCodes into a vector space and employ fuzzy and fast fuzzy pattern tree methods for malware detection and categorization. We obtained a high degree of accuracy during reasonable run-times especially for the fast fuzzy pattern tree. Both utilized feature extraction and fuzzy classification, which were robust, led to more powerful edge computing malware detection and categorization method. |
Author | Parizi, Reza M. Karimipour, Hadis Dovom, Ensieh Modiri Azmoodeh, Amin Dehghantanha, Ali Newton, David Ellis |
Author_xml | – sequence: 1 givenname: Ensieh Modiri surname: Dovom fullname: Dovom, Ensieh Modiri organization: School of Engineering, Azad University of Mashhad, Iran – sequence: 2 givenname: Amin orcidid: 0000-0002-4109-4395 surname: Azmoodeh fullname: Azmoodeh, Amin organization: Cyber Science Lab, School of Computer Science, University of Guelph, Ontario, Canada – sequence: 3 givenname: Ali orcidid: 0000-0002-9294-7554 surname: Dehghantanha fullname: Dehghantanha, Ali email: ali@cybersciencelab.org organization: Cyber Science Lab, School of Computer Science, University of Guelph, Ontario, Canada – sequence: 4 givenname: David Ellis surname: Newton fullname: Newton, David Ellis organization: School of Computer Science, University of Salford, UK – sequence: 5 givenname: Reza M. surname: Parizi fullname: Parizi, Reza M. organization: Department of Software Engineering and Game Development, Kennesaw State University, GA, USA – sequence: 6 givenname: Hadis orcidid: 0000-0001-7948-4033 surname: Karimipour fullname: Karimipour, Hadis organization: School of Engineering, University of Guelph, Guelph, Canada |
BookMark | eNqFkFFLwzAQx4NMcJt-Ax_yBVpzSdO0Pggy3BwMfJnPIU2vI2NrRxKV9dPbbT75oHBwx8Hvz91vQkZt1yIh98BSYJA_bNNwDMbblDMoUwZDqSsyhkKJJIdcjoZZFCJROYcbMglhyxiTEviYLOYffX-kBxMj-pZGj0ibzlOsN0j3ZvdlPNIaI9roupaatqbWRNx03vXmvHItXXbrW3LdmF3Au58-Je_zl_XsNVm9LZaz51ViheQxsVgAZLxgomFlLtCoTAJwW1cooSpEiZnNQKhKNbUVjIOVGXBV5EqCtVUppuTxkmt9F4LHRlsXz4dEb9xOA9MnJXqrL0r0SYlmMJQa4OwXfPBub_zxP-zpguHw2KdDr4N12FqsnR-86Lpzfwd8A_-Hf4g |
CitedBy_id | crossref_primary_10_1108_DTA_10_2020_0239 crossref_primary_10_1007_s00521_020_04772_3 crossref_primary_10_1016_j_jnca_2023_103809 crossref_primary_10_1007_s00607_022_01070_9 crossref_primary_10_1007_s42979_022_01543_w crossref_primary_10_1016_j_cose_2022_102779 crossref_primary_10_1109_ACCESS_2023_3235389 crossref_primary_10_1145_3409265 crossref_primary_10_1016_j_comnet_2021_108394 crossref_primary_10_4236_jcc_2024_124015 crossref_primary_10_1016_j_iot_2024_101469 crossref_primary_10_1007_s11277_022_10063_y crossref_primary_10_1142_S0218194023500444 crossref_primary_10_1007_s13042_021_01323_7 crossref_primary_10_54691_sjt_v5i4_4738 crossref_primary_10_1016_j_cose_2023_103339 crossref_primary_10_1016_j_cose_2019_101655 crossref_primary_10_1007_s13198_022_01727_w crossref_primary_10_3390_app11167518 crossref_primary_10_1109_JIOT_2020_3026660 crossref_primary_10_3390_s23177470 crossref_primary_10_1016_j_engappai_2023_107231 crossref_primary_10_32604_cmc_2023_047323 crossref_primary_10_32604_iasc_2023_041130 crossref_primary_10_1109_ACCESS_2024_3495635 crossref_primary_10_3390_s23063060 crossref_primary_10_1016_j_icte_2020_04_005 crossref_primary_10_1007_s42979_023_01914_x crossref_primary_10_3390_electronics10212723 crossref_primary_10_1016_j_dcan_2022_09_010 crossref_primary_10_1109_ACCESS_2023_3247344 crossref_primary_10_1016_j_aej_2024_05_038 crossref_primary_10_1109_ACCESS_2024_3450180 crossref_primary_10_1186_s40537_020_00363_0 crossref_primary_10_1016_j_sysarc_2020_101707 crossref_primary_10_1111_exsy_12753 crossref_primary_10_1016_j_comcom_2020_05_020 crossref_primary_10_1111_exsy_13684 crossref_primary_10_3390_en14092385 crossref_primary_10_1016_j_iot_2019_100129 crossref_primary_10_1016_j_comnet_2023_110072 crossref_primary_10_3390_s22239074 crossref_primary_10_1080_0952813X_2021_1970824 crossref_primary_10_1109_JIOT_2021_3100063 crossref_primary_10_1016_j_iot_2024_101258 crossref_primary_10_1109_ACCESS_2021_3091427 crossref_primary_10_1016_j_asoc_2021_107783 crossref_primary_10_1109_JIOT_2020_2996425 crossref_primary_10_1016_j_simpat_2019_102031 crossref_primary_10_3233_JCS_220131 crossref_primary_10_1038_s41598_024_74017_z crossref_primary_10_1002_spy2_444 crossref_primary_10_3390_jsan9020021 crossref_primary_10_1088_1757_899X_1128_1_012010 crossref_primary_10_1016_j_scs_2021_103041 crossref_primary_10_32604_cmc_2023_032969 crossref_primary_10_3390_info15100631 crossref_primary_10_1007_s12083_023_01597_4 crossref_primary_10_1109_ACCESS_2020_3012907 crossref_primary_10_1080_17517575_2021_2023764 crossref_primary_10_1109_ACCESS_2023_3285289 crossref_primary_10_1109_TSC_2022_3178471 crossref_primary_10_1109_ACCESS_2024_3418995 crossref_primary_10_1016_j_adhoc_2019_102053 crossref_primary_10_1007_s12083_023_01478_w crossref_primary_10_1093_comjnl_bxaa087 crossref_primary_10_1109_ACCESS_2024_3394617 crossref_primary_10_1109_ACCESS_2023_3262614 crossref_primary_10_3233_JCS_210057 crossref_primary_10_1016_j_sysarc_2019_101699 crossref_primary_10_1007_s10586_022_03618_y crossref_primary_10_1016_j_ins_2021_10_080 crossref_primary_10_31202_ecjse_967919 crossref_primary_10_1109_ACCESS_2020_2992249 crossref_primary_10_3390_app14114645 crossref_primary_10_1109_TCSS_2022_3198123 crossref_primary_10_1186_s13677_020_00200_y crossref_primary_10_1007_s11082_023_05781_x crossref_primary_10_3390_electronics11020198 crossref_primary_10_1109_ACCESS_2021_3089681 crossref_primary_10_1109_TII_2023_3245681 crossref_primary_10_1007_s10207_023_00790_z crossref_primary_10_1007_s10462_024_10776_5 crossref_primary_10_1109_ACCESS_2023_3284135 crossref_primary_10_3390_math11163477 crossref_primary_10_1155_2019_4073940 crossref_primary_10_3390_s22239305 crossref_primary_10_1007_s40747_021_00498_4 crossref_primary_10_1016_j_engappai_2023_106432 crossref_primary_10_1016_j_sysarc_2020_101861 crossref_primary_10_1016_j_sysarc_2021_102212 crossref_primary_10_1093_jigpal_jzae068 crossref_primary_10_1109_TFUZZ_2020_3016023 crossref_primary_10_3390_app13042172 crossref_primary_10_1016_j_cose_2019_101592 crossref_primary_10_1016_j_comcom_2021_01_013 crossref_primary_10_1007_s11042_020_08804_x crossref_primary_10_1002_ett_4840 |
Cites_doi | 10.1007/s11036-017-0954-2 10.1145/3003816 10.1016/j.future.2013.01.010 10.1016/j.future.2018.03.007 10.1109/JIOT.2016.2579198 10.1016/j.compeleceng.2017.06.031 10.1109/MCC.2017.5 10.1016/j.adhoc.2012.02.016 10.1371/journal.pone.0162627 10.1109/21.87068 10.1016/S0165-0114(02)00114-8 10.1109/COMST.2016.2636078 10.1109/JIOT.2016.2569094 10.1016/S1361-3723(15)30045-2 10.1109/TFUZZ.2015.2396078 10.1007/978-3-319-73951-9_2 10.1109/TWC.2018.2845360 10.1016/j.cose.2017.10.007 10.1109/ACCESS.2018.2815660 10.1016/j.future.2017.04.012 10.1016/j.compeleceng.2017.02.013 10.1016/j.fss.2005.05.036 10.1007/s11416-016-0278-y 10.1007/s12652-017-0558-5 10.1016/j.clsr.2010.05.005 10.1109/TFUZZ.2010.2093532 10.1016/j.jnca.2016.06.012 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sysarc.2019.01.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6165 |
EndPage | 7 |
ExternalDocumentID | 10_1016_j_sysarc_2019_01_017 S1383762118305265 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 U5U UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-ce81142803f0963ea745112cdbe51b839e4c4137b7fdc3021c5412786751ccb93 |
IEDL.DBID | .~1 |
ISSN | 1383-7621 |
IngestDate | Tue Jul 01 00:29:16 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 23 02:28:01 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy pattern tree Malware detection Cyber security Machine learning Edge computing IoT |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-ce81142803f0963ea745112cdbe51b839e4c4137b7fdc3021c5412786751ccb93 |
ORCID | 0000-0001-7948-4033 0000-0002-9294-7554 0000-0002-4109-4395 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1383762118305265 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sysarc_2019_01_017 crossref_primary_10_1016_j_sysarc_2019_01_017 elsevier_sciencedirect_doi_10_1016_j_sysarc_2019_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of systems architecture |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gardiner, Nagaraja (bib0016) 2016; 49 You, Choo, Ho (bib0002) 2018; 65 Watson, Dehghantanha (bib0014) 2016; 2016 Santos, Brezo, Nieves, Penya, Sanz, Laorden, Bringas (bib0045) 2010 Catteddu (bib0010) 2010 Ren, Yu, Cai, He (bib0012) 2018; 17 Roopaei, Rad, Choo (bib0003) 2017; 4 Schweizer, Sklar (bib0038) 2011 Senge, Huellermeier (bib0028) 2015; 23 Tan (bib0046) 2016 Afifi, Anuar, Shamshirband, Choo (bib0025) 2016; 11 Nataraj, Karthikeyan, Jacob, Manjunath (bib0042) 2011 Bazrafshan, Hashemi, Fard, Hamzeh (bib0021) 2013 Miorandi, Sicari, De Pellegrini, Chlamtac (bib0005) 2012; 10 Homayoun, Dehghantanha, Ahmadzadeh, Hashemi, Khayami (bib0040) 2018 Hüllermeier (bib0024) 2005; 156 Fadlullah, Pathan, Singh (bib0006) 2018; 23 HaddadPajouh, Dehghantanha, Khayami, Choo (bib0019) 2017 Azmoodeh, Dehghantanha, Choo (bib0031) 2018 HaddadPajouh, Dehghantanha, Khayami, Choo (bib0034) 2018; 85 Su, Vasconcellos, Prasad, Daniele, Feng, Sakurai (bib0035) 2018; 02 Milosevic, Dehghantanha, Choo (bib0022) 2017; 61 Bengio, Grandvalet (bib0030) 2004; 5 Ahmadi, Ulyanov, Semenov, Trofimov, Giacinto (bib0041) 2016 Klement, Mesiar, Pap (bib0037) 2002; 131 Heiser, Nicolett (bib0011) 2008; 27 Gubbi, Buyya, Marusic, Palaniswami (bib0001) 2013; 29 Bernardi, Cimitile, Martinelli, Mercaldo (bib0027) 2017 Shalaginov, Banin, Dehghantanha, Franke (bib0023) 2018 Ding, Xia, Chen, Li (bib0032) 2018; 73 Sami, Yadegari, Rahimi, Peiravian, Hashemi, Hamze (bib0043) 2010 Sharmeen, Huda, Abawajy, Ismail, Hassan (bib0036) 2018; 6 Hashemi, Azmoodeh, Hamzeh, Hashemi (bib0033) 2017; 13 Azmoodeh, Dehghantanha, Conti (bib0044) 2018; 9 Li, Niu, Kumari, Wu, Choo (bib0004) 2018; 83 Svantesson, Clarke (bib0009) 2010; 26 Kolbitsch, Comparetti, Kruegel, Kirda, Zhou, Wang (bib0013) 2009; 4 Rudd, Rozsa, Gnther, Boult (bib0018) 2017; 19 Peng, Choo, Ashman (bib0017) 2016; 72 Senge, Hüllermeier (bib0029) 2011; 19 Conti, Dehghantanha, Franke, Watson (bib0007) 2018; 78 Li, Sundaramurthy, Bardas, Ou, Caragea, Hu, Jang (bib0026) 2015 Yager (bib0039) 1988; 18 DâOrazio, Choo, Yang (bib0015) 2017; 4 Shi, Cao, Zhang, Li, Xu (bib0008) 2016; 3 Dezfouli, Dehghantanha, Mahmod, Sani, Shamsuddin, Daryabar (bib0020) 2013; 5 Watson (10.1016/j.sysarc.2019.01.017_bib0014) 2016; 2016 Tan (10.1016/j.sysarc.2019.01.017_bib0046) 2016 Fadlullah (10.1016/j.sysarc.2019.01.017_bib0006) 2018; 23 Kolbitsch (10.1016/j.sysarc.2019.01.017_bib0013) 2009; 4 Gubbi (10.1016/j.sysarc.2019.01.017_bib0001) 2013; 29 Schweizer (10.1016/j.sysarc.2019.01.017_bib0038) 2011 Hashemi (10.1016/j.sysarc.2019.01.017_bib0033) 2017; 13 Shalaginov (10.1016/j.sysarc.2019.01.017_bib0023) 2018 Conti (10.1016/j.sysarc.2019.01.017_bib0007) 2018; 78 Catteddu (10.1016/j.sysarc.2019.01.017_bib0010) 2010 Bernardi (10.1016/j.sysarc.2019.01.017_bib0027) 2017 Homayoun (10.1016/j.sysarc.2019.01.017_bib0040) 2018 Santos (10.1016/j.sysarc.2019.01.017_bib0045) 2010 Nataraj (10.1016/j.sysarc.2019.01.017_bib0042) 2011 Peng (10.1016/j.sysarc.2019.01.017_bib0017) 2016; 72 Roopaei (10.1016/j.sysarc.2019.01.017_bib0003) 2017; 4 Rudd (10.1016/j.sysarc.2019.01.017_bib0018) 2017; 19 Afifi (10.1016/j.sysarc.2019.01.017_bib0025) 2016; 11 DâOrazio (10.1016/j.sysarc.2019.01.017_bib0015) 2017; 4 Yager (10.1016/j.sysarc.2019.01.017_bib0039) 1988; 18 Su (10.1016/j.sysarc.2019.01.017_bib0035) 2018; 02 Ahmadi (10.1016/j.sysarc.2019.01.017_bib0041) 2016 Senge (10.1016/j.sysarc.2019.01.017_bib0028) 2015; 23 Li (10.1016/j.sysarc.2019.01.017_sbref0025) 2015 Li (10.1016/j.sysarc.2019.01.017_bib0004) 2018; 83 Gardiner (10.1016/j.sysarc.2019.01.017_bib0016) 2016; 49 Milosevic (10.1016/j.sysarc.2019.01.017_bib0022) 2017; 61 Azmoodeh (10.1016/j.sysarc.2019.01.017_bib0031) 2018 HaddadPajouh (10.1016/j.sysarc.2019.01.017_bib0034) 2018; 85 Sharmeen (10.1016/j.sysarc.2019.01.017_bib0036) 2018; 6 Miorandi (10.1016/j.sysarc.2019.01.017_bib0005) 2012; 10 Shi (10.1016/j.sysarc.2019.01.017_bib0008) 2016; 3 Bengio (10.1016/j.sysarc.2019.01.017_bib0030) 2004; 5 Svantesson (10.1016/j.sysarc.2019.01.017_bib0009) 2010; 26 Senge (10.1016/j.sysarc.2019.01.017_bib0029) 2011; 19 Azmoodeh (10.1016/j.sysarc.2019.01.017_bib0044) 2018; 9 Ren (10.1016/j.sysarc.2019.01.017_bib0012) 2018; 17 Heiser (10.1016/j.sysarc.2019.01.017_bib0011) 2008; 27 Bazrafshan (10.1016/j.sysarc.2019.01.017_bib0021) 2013 You (10.1016/j.sysarc.2019.01.017_bib0002) 2018; 65 Hüllermeier (10.1016/j.sysarc.2019.01.017_bib0024) 2005; 156 Sami (10.1016/j.sysarc.2019.01.017_bib0043) 2010 Klement (10.1016/j.sysarc.2019.01.017_bib0037) 2002; 131 Dezfouli (10.1016/j.sysarc.2019.01.017_bib0020) 2013; 5 Ding (10.1016/j.sysarc.2019.01.017_bib0032) 2018; 73 HaddadPajouh (10.1016/j.sysarc.2019.01.017_bib0019) 2017 |
References_xml | – volume: 3 start-page: 637 year: 2016 end-page: 646 ident: bib0008 article-title: Edge computing: vision and challenges publication-title: IEEE Internet Things J. – volume: 4 start-page: 351 year: 2009 end-page: 366 ident: bib0013 article-title: Effective and efficient malware detection at the end host. publication-title: USENIX security symposium – start-page: 1020 year: 2010 end-page: 1025 ident: bib0043 article-title: Malware detection based on mining api calls publication-title: Proceedings of the 2010 ACM Symposium on Applied Computing – volume: 10 start-page: 1497 year: 2012 end-page: 1516 ident: bib0005 article-title: Internet of things: vision, applications and research challenges publication-title: Ad Hoc Netw – year: 2015 ident: bib0026 article-title: Experimental study of fuzzy hashing in malware clustering analysis publication-title: 8th Workshop on Cyber Security Experimentation and Test (CSET 15) – volume: 27 start-page: 29 year: 2008 end-page: 52 ident: bib0011 article-title: Assessing the security risks of cloud computing publication-title: Gartner Rep. – volume: 11 start-page: e0162627 year: 2016 ident: bib0025 article-title: Dyhap: dynamic hybrid anfis-pso approach for predicting mobile malware publication-title: PLoS ONE – volume: 18 start-page: 183 year: 1988 end-page: 190 ident: bib0039 article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking publication-title: IEEE Trans. Syst. Man. Cybern. – volume: 73 start-page: 73 year: 2018 end-page: 86 ident: bib0032 article-title: A malware detection method based on family behavior graph publication-title: Comput. Secur. – start-page: 183 year: 2016 end-page: 194 ident: bib0041 article-title: Novel feature extraction, selection and fusion for effective malware family classification publication-title: Proceedings of the sixth ACM conference on data and application security and privacy – start-page: 7 year: 2018 end-page: 45 ident: bib0023 article-title: Machine learning aided static malware analysis: a survey and tutorial publication-title: Cyber Threat Intell. – volume: 19 start-page: 1145 year: 2017 end-page: 1172 ident: bib0018 article-title: A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open world solutions publication-title: IEEE Commun. Surv. Tutor. – volume: 19 start-page: 241 year: 2011 end-page: 252 ident: bib0029 article-title: Top-down induction of fuzzy pattern trees publication-title: IEEE Trans. Fuzzy Syst. – start-page: 4 year: 2011 ident: bib0042 article-title: Malware images: visualization and automatic classification publication-title: Proceedings of the 8th international symposium on visualization for cyber security – volume: 65 start-page: 376 year: 2018 end-page: 392 ident: bib0002 article-title: A smartphone-based wearable sensors for monitoring real-time physiological data publication-title: Comput. Electr. Eng. – volume: 23 start-page: 879 year: 2018 end-page: 880 ident: bib0006 article-title: Smart grid internet of things publication-title: Mob. Netw. Appl. – start-page: 17 year: 2010 ident: bib0010 article-title: Cloud computing: Benefits, risks and recommendations for information security publication-title: Web Application Security – year: 2017 ident: bib0019 article-title: Intelligent os x malware threat detection publication-title: J. Comput. Virol. Hack. Techn. – volume: 131 start-page: 409 year: 2002 end-page: 413 ident: bib0037 article-title: On the order of triangular norms: comments on “a triangular norm hierarchy” by e. cretu publication-title: Fuzzy Sets Syst. – year: 2011 ident: bib0038 publication-title: Probabilistic Metric Spaces – volume: 9 start-page: 1141 year: 2018 ident: bib0044 publication-title: J Ambient Intell Human Comput – volume: 26 start-page: 391 year: 2010 end-page: 397 ident: bib0009 article-title: Privacy and consumer risks in cloud computing publication-title: Comput. Law Secur. Rev. – volume: 78 start-page: 544 year: 2018 end-page: 546 ident: bib0007 article-title: Internet of things security and forensics: Challenges and opportunities – year: 2016 ident: bib0046 publication-title: Artificial Immune System: applications in Computer Security – volume: 29 start-page: 1645 year: 2013 end-page: 1660 ident: bib0001 article-title: Internet of things (iot): a vision, architectural elements, and future directions publication-title: Futu. Gener. comput. syst. – volume: 2016 start-page: 5 year: 2016 end-page: 8 ident: bib0014 article-title: Digital forensics: the missing piece of the internet of things promise publication-title: Comput. Fraud Secur. – start-page: 1 year: 2018 ident: bib0040 article-title: Know abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 5 start-page: 1089 year: 2004 end-page: 1105 ident: bib0030 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. – year: 2018 ident: bib0031 article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning publication-title: IEEE Trans. Sustain. Comput. – volume: 83 start-page: 607 year: 2018 end-page: 618 ident: bib0004 article-title: A robust biometrics based three-factor authentication scheme for global mobility networks in smart city publication-title: Futu. Gener. comput. syst. – start-page: 113 year: 2013 end-page: 120 ident: bib0021 article-title: A survey on heuristic malware detection techniques publication-title: Information and Knowledge Technology (IKT), 2013 5th Conference on – volume: 5 start-page: 42 year: 2013 ident: bib0020 article-title: A survey on malware analysis and detection techniques publication-title: Int J Adv Comput Technol – volume: 156 start-page: 387 year: 2005 end-page: 406 ident: bib0024 article-title: Fuzzy methods in machine learning and data mining: status and prospects publication-title: Fuzzy Sets Syst. – volume: 4 start-page: 10 year: 2017 end-page: 15 ident: bib0003 article-title: Cloud of things in smart agriculture: intelligent irrigation monitoring by thermal imaging publication-title: IEEE Cloud Comput. – volume: 17 start-page: 5506 year: 2018 end-page: 5519 ident: bib0012 article-title: Latency optimization for resource allocation in mobile-edge computation offloading publication-title: IEEE Trans. Wireless Commun. – volume: 72 start-page: 14 year: 2016 end-page: 27 ident: bib0017 article-title: User profiling in intrusion detection: a review publication-title: J. Netw. Comput. Appl. – volume: 13 start-page: 153 year: 2017 end-page: 166 ident: bib0033 article-title: Graph embedding as a new approach for unknown malware detection publication-title: J. Comput. Virol. Hack. Techn. – volume: 6 start-page: 15941 year: 2018 end-page: 15957 ident: bib0036 article-title: Malware threats and detection for industrial mobile-iot networks publication-title: IEEE Access – start-page: 35 year: 2010 end-page: 43 ident: bib0045 article-title: Idea: Opcode-sequence-based malware detection publication-title: International Symposium on Engineering Secure Software and Systems – volume: 4 start-page: 524 year: 2017 end-page: 535 ident: bib0015 article-title: Data exfiltration from internet of things devices: ios devices as case studies publication-title: IEEE Internet Things J. – volume: 02 start-page: 664 year: 2018 end-page: 669 ident: bib0035 article-title: Lightweight classification of iot malware based on image recognition publication-title: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) – volume: 49 start-page: 59 year: 2016 ident: bib0016 article-title: On the security of machine learning in malware c&c detection: a survey publication-title: ACM Comput. Surv. (CSUR) – start-page: 1 year: 2017 end-page: 8 ident: bib0027 article-title: A fuzzy-based process mining approach for dynamic malware detection publication-title: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) – volume: 23 start-page: 2024 year: 2015 end-page: 2033 ident: bib0028 article-title: Fast fuzzy pattern tree learning for classification publication-title: IEEE Trans. Fuzzy Syst. – volume: 85 start-page: 88 year: 2018 end-page: 96 ident: bib0034 article-title: A deep recurrent neural network based approach for internet of things malware threat hunting publication-title: Futu. Gener. comput. syst. – volume: 61 start-page: 266 year: 2017 end-page: 274 ident: bib0022 article-title: Machine learning aided android malware classification publication-title: Comput. Elect. Eng. – volume: 23 start-page: 879 issue: 4 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0006 article-title: Smart grid internet of things publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-017-0954-2 – volume: 49 start-page: 59 issue: 3 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0016 article-title: On the security of machine learning in malware c&c detection: a survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3003816 – volume: 29 start-page: 1645 issue: 7 year: 2013 ident: 10.1016/j.sysarc.2019.01.017_bib0001 article-title: Internet of things (iot): a vision, architectural elements, and future directions publication-title: Futu. Gener. comput. syst. doi: 10.1016/j.future.2013.01.010 – volume: 85 start-page: 88 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0034 article-title: A deep recurrent neural network based approach for internet of things malware threat hunting publication-title: Futu. Gener. comput. syst. doi: 10.1016/j.future.2018.03.007 – volume: 02 start-page: 664 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0035 article-title: Lightweight classification of iot malware based on image recognition – start-page: 4 year: 2011 ident: 10.1016/j.sysarc.2019.01.017_bib0042 article-title: Malware images: visualization and automatic classification – year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0046 – volume: 3 start-page: 637 issue: 5 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0008 article-title: Edge computing: vision and challenges publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2579198 – volume: 65 start-page: 376 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0002 article-title: A smartphone-based wearable sensors for monitoring real-time physiological data publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2017.06.031 – volume: 4 start-page: 10 issue: 1 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0003 article-title: Cloud of things in smart agriculture: intelligent irrigation monitoring by thermal imaging publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2017.5 – start-page: 113 year: 2013 ident: 10.1016/j.sysarc.2019.01.017_bib0021 article-title: A survey on heuristic malware detection techniques – volume: 10 start-page: 1497 issue: 7 year: 2012 ident: 10.1016/j.sysarc.2019.01.017_bib0005 article-title: Internet of things: vision, applications and research challenges publication-title: Ad Hoc Netw doi: 10.1016/j.adhoc.2012.02.016 – volume: 78 start-page: 544 issue: 2 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0007 article-title: Internet of things security and forensics: Challenges and opportunities – volume: 11 start-page: e0162627 issue: 9 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0025 article-title: Dyhap: dynamic hybrid anfis-pso approach for predicting mobile malware publication-title: PLoS ONE doi: 10.1371/journal.pone.0162627 – volume: 18 start-page: 183 issue: 1 year: 1988 ident: 10.1016/j.sysarc.2019.01.017_bib0039 article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/21.87068 – volume: 131 start-page: 409 issue: 3 year: 2002 ident: 10.1016/j.sysarc.2019.01.017_bib0037 article-title: On the order of triangular norms: comments on “a triangular norm hierarchy” by e. cretu publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(02)00114-8 – volume: 19 start-page: 1145 issue: 2 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0018 article-title: A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open world solutions publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2016.2636078 – volume: 4 start-page: 524 issue: 2 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0015 article-title: Data exfiltration from internet of things devices: ios devices as case studies publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2569094 – start-page: 183 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0041 article-title: Novel feature extraction, selection and fusion for effective malware family classification – start-page: 35 year: 2010 ident: 10.1016/j.sysarc.2019.01.017_bib0045 article-title: Idea: Opcode-sequence-based malware detection – volume: 5 start-page: 42 issue: 14 year: 2013 ident: 10.1016/j.sysarc.2019.01.017_bib0020 article-title: A survey on malware analysis and detection techniques publication-title: Int J Adv Comput Technol – start-page: 1020 year: 2010 ident: 10.1016/j.sysarc.2019.01.017_bib0043 article-title: Malware detection based on mining api calls – year: 2011 ident: 10.1016/j.sysarc.2019.01.017_bib0038 – volume: 2016 start-page: 5 issue: 6 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0014 article-title: Digital forensics: the missing piece of the internet of things promise publication-title: Comput. Fraud Secur. doi: 10.1016/S1361-3723(15)30045-2 – volume: 5 start-page: 1089 issue: Sep year: 2004 ident: 10.1016/j.sysarc.2019.01.017_bib0030 article-title: No unbiased estimator of the variance of k-fold cross-validation publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 2024 issue: 6 year: 2015 ident: 10.1016/j.sysarc.2019.01.017_bib0028 article-title: Fast fuzzy pattern tree learning for classification publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2396078 – volume: 27 start-page: 29 year: 2008 ident: 10.1016/j.sysarc.2019.01.017_bib0011 article-title: Assessing the security risks of cloud computing publication-title: Gartner Rep. – start-page: 17 year: 2010 ident: 10.1016/j.sysarc.2019.01.017_bib0010 article-title: Cloud computing: Benefits, risks and recommendations for information security – volume: 4 start-page: 351 year: 2009 ident: 10.1016/j.sysarc.2019.01.017_bib0013 article-title: Effective and efficient malware detection at the end host. – year: 2015 ident: 10.1016/j.sysarc.2019.01.017_sbref0025 article-title: Experimental study of fuzzy hashing in malware clustering analysis – start-page: 7 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0023 article-title: Machine learning aided static malware analysis: a survey and tutorial publication-title: Cyber Threat Intell. doi: 10.1007/978-3-319-73951-9_2 – volume: 17 start-page: 5506 issue: 8 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0012 article-title: Latency optimization for resource allocation in mobile-edge computation offloading publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2018.2845360 – volume: 73 start-page: 73 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0032 article-title: A malware detection method based on family behavior graph publication-title: Comput. Secur. doi: 10.1016/j.cose.2017.10.007 – volume: 6 start-page: 15941 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0036 article-title: Malware threats and detection for industrial mobile-iot networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2815660 – volume: 83 start-page: 607 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0004 article-title: A robust biometrics based three-factor authentication scheme for global mobility networks in smart city publication-title: Futu. Gener. comput. syst. doi: 10.1016/j.future.2017.04.012 – volume: 61 start-page: 266 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0022 article-title: Machine learning aided android malware classification publication-title: Comput. Elect. Eng. doi: 10.1016/j.compeleceng.2017.02.013 – start-page: 1 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0040 article-title: Know abnormal, find evil: frequent pattern mining for ransomware threat hunting and intelligence publication-title: IEEE Trans. Emerg. Top. Comput. – year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0031 article-title: Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning publication-title: IEEE Trans. Sustain. Comput. – volume: 156 start-page: 387 issue: 3 year: 2005 ident: 10.1016/j.sysarc.2019.01.017_bib0024 article-title: Fuzzy methods in machine learning and data mining: status and prospects publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2005.05.036 – volume: 13 start-page: 153 issue: 3 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0033 article-title: Graph embedding as a new approach for unknown malware detection publication-title: J. Comput. Virol. Hack. Techn. doi: 10.1007/s11416-016-0278-y – volume: 9 start-page: 1141 year: 2018 ident: 10.1016/j.sysarc.2019.01.017_bib0044 publication-title: J Ambient Intell Human Comput doi: 10.1007/s12652-017-0558-5 – volume: 26 start-page: 391 issue: 4 year: 2010 ident: 10.1016/j.sysarc.2019.01.017_bib0009 article-title: Privacy and consumer risks in cloud computing publication-title: Comput. Law Secur. Rev. doi: 10.1016/j.clsr.2010.05.005 – volume: 19 start-page: 241 issue: 2 year: 2011 ident: 10.1016/j.sysarc.2019.01.017_bib0029 article-title: Top-down induction of fuzzy pattern trees publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2093532 – volume: 72 start-page: 14 year: 2016 ident: 10.1016/j.sysarc.2019.01.017_bib0017 article-title: User profiling in intrusion detection: a review publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2016.06.012 – year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0019 article-title: Intelligent os x malware threat detection publication-title: J. Comput. Virol. Hack. Techn. – start-page: 1 year: 2017 ident: 10.1016/j.sysarc.2019.01.017_bib0027 article-title: A fuzzy-based process mining approach for dynamic malware detection |
SSID | ssj0005512 |
Score | 2.5645607 |
Snippet | The surging pace of Internet of Things (IoT) development and its applications has resulted in significantly large amounts of data (commonly known as big data)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Cyber security Edge computing Fuzzy pattern tree IoT Machine learning Malware detection |
Title | Fuzzy pattern tree for edge malware detection and categorization in IoT |
URI | https://dx.doi.org/10.1016/j.sysarc.2019.01.017 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLT7LHrzGdrOb3eRYirVV7MUWegubzUYqNS1tirQHf7szeUgFURBySZiBMEzmkf3mG0JuWjLikAUQqcY8RyRJ7AQyMI4rFWOJNG5icVD4aSB7I_Ew9sY10qlmYRBWWcb-Iqbn0bp80iyt2ZxPJs1nhs2VhAbG50hagoPmQij08tuPLZiHV5x4grCD0tX4XI7xWq6X4E4I8Apy8s58bdkP6Wkr5XQPyF5ZK9J28TqHpGbTI7Jf7WGg5Wd5TO67q81mTec5VWZK8ZyZQi1K8VcZfdPTd72wNLZZjrpKqU5jijiol9miHMKkk5T2Z8MTMureDTs9p1yQ4BiomzLHWB9HYf0WT6AT4VYrZBtzTRxZj0VQ-lhhIEmpSCWx4ZDNjSeYq3xoEpgxUcBPST2dpfaMUOiauDCaQ0EjoWcyWkptmG_dlohjzdQ54ZVdQlOyh-MSi2lYwcRew8KaIVozbDG4QMv50poX7Bl_yKvK5OE3LwghwP-qefFvzUuyi3cFqO-K1LPFyl5DoZFFjdyTGmSn3X_sDT4BtgbRuA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOMCFN-JNDlzDlqZN2yOaGBtsu7BJu0VpmqKh0U1bJ7Qd-O04bYqGhEBC6imNpcpybH_NZxuhmzqPGEQBw1SjHnGTJCYhDxVxuE9pwpWTaFMo3O3x1sB9HHrDCmqUtTCGVml9f-HTc29tV2pWm7XpaFR7pgZccQAwATNNS7wNtOnC8TVjDG4_1ngeXnHlCbuJ2V7Wz-Ukr_lyDvZkGF5h3r0zn1v2Q3xaiznNPbRjk0V8V3zPPqro9ADtloMYsD2Xh-ihuVitlnia98pMsbloxpCMYvOvDL_J8bucaRzrLKddpVimMTZEqJfJzFZh4lGK25P-ERo07_uNFrETEoiCxCkjSgemFjaoswSgCNPSN-3GHBVH2qMR5D7aVRCl_MhPYsUgnCvPpY4fAEqgSkUhO0bVdJLqE4QBNjFXSQYZDQfQpCTnUtFAO3U3jiX1TxEr9SKUbR9upliMRckTexWFNoXRpqhTeECKfElNi_YZf-z3S5WLb2YgwMP_Knn2b8lrtNXqdzui0-49naNt86Zg-F2gajZb6EvIOrLoKreqT6wd00Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+pattern+tree+for+edge+malware+detection+and+categorization+in+IoT&rft.jtitle=Journal+of+systems+architecture&rft.au=Dovom%2C+Ensieh+Modiri&rft.au=Azmoodeh%2C+Amin&rft.au=Dehghantanha%2C+Ali&rft.au=Newton%2C+David+Ellis&rft.date=2019-08-01&rft.issn=1383-7621&rft.volume=97&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1016%2Fj.sysarc.2019.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sysarc_2019_01_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon |