Formation of polynuclear iron(III) complexes of N-(2-pyridylmethyl)iminodipropanol depending on pseudohalide ions: synthesis, crystal structure, and magnetic properties
[Display omitted] •Multinuclear iron(III) coordination complexes that have structural geometries depending on pseudohalide ions were synthesized.•In the cases of NCSe– and NCBH3–, dimeric structures are formed, whereas in the cases of N3– and NCO–, hexameric complexes are formed.•As using NCS- ion,...
Saved in:
Published in | Journal of industrial and engineering chemistry (Seoul, Korea) Vol. 110; pp. 345 - 356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.06.2022
한국공업화학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-086X 1876-794X |
DOI | 10.1016/j.jiec.2022.03.007 |
Cover
Loading…
Abstract | [Display omitted]
•Multinuclear iron(III) coordination complexes that have structural geometries depending on pseudohalide ions were synthesized.•In the cases of NCSe– and NCBH3–, dimeric structures are formed, whereas in the cases of N3– and NCO–, hexameric complexes are formed.•As using NCS- ion, the bent trimeric complex is obtained.•Dimeric and trimeric complexes show moderate antiferromagnetic interactions, whereas, hexameric complexes show both ferromagnetic and antiferromagnetic couplings.
Five polynuclear iron(III) complexes, [(pmidp)Fe(NCSe)]2 (1), [(pmidp)Fe(NCBH3)]2 (2), [(Hpmidp/pmidp)Fe3(CH3O)2(NCS)4]∙H2O (3), [(pmidp)2Fe6(CH3O)4(N3)4(CH3COO)2O2] (4), and [(pmidp)2Fe6(CH3O)4(NCO)4(CH3COO)2O2]∙2MeOH (5) were isolated through the reactions of N-(2-pyridylmethyl)iminodipropanol (H2pmidp) and iron(III) ions with different pseudohalide ions. The complexes were studied via X-ray crystal diffraction, Mössbauer spectra, and magnetochemistry. The molecular structures of 1 and 2 were formed as the {Fe2(µ2-Opropoxo)2}2+ cores with pmidp2− and NCSe−/NCBH3−. The structure of 3 was formed as a {Fe3(µ2-OCH3)2(µ2-Opropoxo)4}5+ core with Hpmidp−/pmidp2− and NCS−. The structures of 4 and 5 were formed as {Fe6(µ4-O)2(µ2-OCH3)2(η2-OAc)2(µ2-Opropoxo)4} cores with pmidp2− and NCO−/N3−. Structural analyses revealed that the formation of various multinuclear iron(III) moieties depends on the auxiliary ligands. The oxidation states of all the complexes were confirmed as + 3 using the bond valence sum (BVS) calculations and Mössbauer spectral data. The susceptibility data for 1–5 fitted using each spin coupling (J) model indicated that 1–3 showed antiferromagnetic exchange interactions, and 4 and 5 showed the ferromagnetic and antiferromagnetic couplings, simultaneously. |
---|---|
AbstractList | [Display omitted]
•Multinuclear iron(III) coordination complexes that have structural geometries depending on pseudohalide ions were synthesized.•In the cases of NCSe– and NCBH3–, dimeric structures are formed, whereas in the cases of N3– and NCO–, hexameric complexes are formed.•As using NCS- ion, the bent trimeric complex is obtained.•Dimeric and trimeric complexes show moderate antiferromagnetic interactions, whereas, hexameric complexes show both ferromagnetic and antiferromagnetic couplings.
Five polynuclear iron(III) complexes, [(pmidp)Fe(NCSe)]2 (1), [(pmidp)Fe(NCBH3)]2 (2), [(Hpmidp/pmidp)Fe3(CH3O)2(NCS)4]∙H2O (3), [(pmidp)2Fe6(CH3O)4(N3)4(CH3COO)2O2] (4), and [(pmidp)2Fe6(CH3O)4(NCO)4(CH3COO)2O2]∙2MeOH (5) were isolated through the reactions of N-(2-pyridylmethyl)iminodipropanol (H2pmidp) and iron(III) ions with different pseudohalide ions. The complexes were studied via X-ray crystal diffraction, Mössbauer spectra, and magnetochemistry. The molecular structures of 1 and 2 were formed as the {Fe2(µ2-Opropoxo)2}2+ cores with pmidp2− and NCSe−/NCBH3−. The structure of 3 was formed as a {Fe3(µ2-OCH3)2(µ2-Opropoxo)4}5+ core with Hpmidp−/pmidp2− and NCS−. The structures of 4 and 5 were formed as {Fe6(µ4-O)2(µ2-OCH3)2(η2-OAc)2(µ2-Opropoxo)4} cores with pmidp2− and NCO−/N3−. Structural analyses revealed that the formation of various multinuclear iron(III) moieties depends on the auxiliary ligands. The oxidation states of all the complexes were confirmed as + 3 using the bond valence sum (BVS) calculations and Mössbauer spectral data. The susceptibility data for 1–5 fitted using each spin coupling (J) model indicated that 1–3 showed antiferromagnetic exchange interactions, and 4 and 5 showed the ferromagnetic and antiferromagnetic couplings, simultaneously. Five polynuclear iron(III) complexes, [(pmidp)Fe(NCSe)]2 (1), [(pmidp)Fe(NCBH3)]2 (2), [(Hpmidp/pmidp)Fe3(CH3O)2(NCS)4]∙H2O (3), [(pmidp)2Fe6(CH3O)4(N3)4(CH3COO)2O2] (4), and[(pmidp)2Fe6(CH3O)4(NCO)4(CH3COO)2O2]∙2MeOH (5) were isolated through the reactions of N-(2-pyridylmethyl)iminodipropanol (H2pmidp) and iron(III) ions with different pseudohalide ions. The complexeswere studied via X-ray crystal diffraction, Mössbauer spectra, and magnetochemistry. The molecularstructures of 1 and 2 were formed as the {Fe2(m2-Opropoxo)2}2+ cores with pmidp2 and NCSe/NCBH3.The structure of 3 was formed as a {Fe3(m2-OCH3)2(m2-Opropoxo)4}5+ core with Hpmidp/pmidp2 andNCS. The structures of 4 and 5 were formed as {Fe6(m4-O)2(m2-OCH3)2(g2-OAc)2(m2-Opropoxo)4} cores withpmidp2 and NCO/N3. Structural analyses revealed that the formation of various multinuclear iron(III)moieties depends on the auxiliary ligands. The oxidation states of all the complexes were confirmedas + 3 using the bond valence sum (BVS) calculations and Mössbauer spectral data. The susceptibility datafor 1–5 fitted using each spin coupling (J) model indicated that 1–3 showed antiferromagnetic exchangeinteractions, and 4 and 5 showed the ferromagnetic and antiferromagnetic couplings, simultaneously. KCI Citation Count: 0 |
Author | Min, Kil Sik Shin, Hye Jin Zenno, Hikaru Jang, Yoon Jung Hayami, Shinya |
Author_xml | – sequence: 1 givenname: Hye Jin surname: Shin fullname: Shin, Hye Jin organization: Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea – sequence: 2 givenname: Yoon Jung surname: Jang fullname: Jang, Yoon Jung organization: College of Basis Education, Yeungnam University, Gyeongsan, Gyeong-buk 38541, Republic of Korea – sequence: 3 givenname: Hikaru surname: Zenno fullname: Zenno, Hikaru organization: Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan – sequence: 4 givenname: Shinya surname: Hayami fullname: Hayami, Shinya organization: Department of Chemistry, Kumamoto University, Kumamoto 860-8555, Japan – sequence: 5 givenname: Kil Sik surname: Min fullname: Min, Kil Sik email: minks@knu.ac.kr organization: Department of Chemistry Education, Kyungpook National University, Daegu 41566, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855921$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kcFq3DAQhk1JoUnaF-hJx6TEjiTbkl16CaFpDSGBkkJuQiuNd2djS0bSlvqN-pi1uz3nNHP4_n8YvrPsxHkHWfaR0YJRJq73xR7BFJxyXtCyoFS-yU5ZI0Uu2-r5ZNk5FzltxPO77CzGPaWClo04zf7c-TDqhN4R35PJD7M7mAF0IBi8u-i67pIYP04D_Ia4Ig_5Bc-nOaCdhxHSbh4ucUTnLU7BT9r5gViYwFl0W7K0ThEO1u_0gBbIciZ-JnF2aQcR4xUxYY5JDySmcDDpEOCKaGfJqLcOEhqydkJICPF99rbXQ4QP_-d59vPu69Pt9_z-8Vt3e3Ofm7LmKTetqO2G9XJTayZlDVZuwIhK842RBkxdUUt7W-m6bWkDRlZU2pL2TQPCljWU59mnY68LvXoxqLzGf3Pr1UtQNz-eOsUoZW3FqgXmR9gEH2OAXk0BRx3mBVGrGLVXqxi1ilG0VIuYJfTlGILljV8IQUWD4AxYDGCSsh5fi_8FIcGdvQ |
Cites_doi | 10.3390/inorganics8060039 10.1021/ic00071a023 10.1021/acs.inorgchem.6b01739 10.1107/S1600576714022985 10.1039/D0RA00732C 10.1039/c1dt10696a 10.1021/acs.inorgchem.7b00686 10.1021/ic7011809 10.1021/ja000642m 10.1039/C8DT00822A 10.1021/cg500717n 10.1107/S0108768190011041 10.1021/ic902360x 10.1039/C8SC00987B 10.1021/acs.cgd.1c00640 10.1039/c3dt53376j 10.1002/jcc.23234 10.1039/C6DT01059H 10.1021/jacs.9b04389 10.5012/bkcs.2014.35.1.273 10.1021/ic9003092 10.1039/C6DT02701F 10.1021/ja906137y 10.1039/C7RA08704G 10.1021/ed085p532 10.1016/S1389-5567(02)00004-7 10.1021/acs.inorgchem.8b00994 10.1021/acs.inorgchem.6b00246 10.1107/S1600536810051779 10.1021/ic5029542 10.1038/s41570-020-0199-7 10.1002/1521-3765(20010518)7:10<2059::AID-CHEM2059>3.0.CO;2-I 10.1002/chem.201604498 10.1039/C6DT04830G 10.1016/j.poly.2020.114374 10.1021/acs.chemrev.1c00253 10.1016/j.poly.2005.02.004 10.1039/C9DT03232K 10.1039/D1CC90215F 10.1021/acsomega.1c02255 10.1016/j.ica.2020.119789 10.1021/acs.inorgchem.0c02503 10.1039/C6CE00112B 10.1007/s10876-010-0283-0 10.1021/ic301241s 10.1039/C9DT01968E 10.1039/D1CC90006D 10.1021/acs.inorgchem.0c01625 10.1039/C8DT01329B 10.1021/ic301923x 10.1039/c000412j 10.1039/C1DT11656H 10.1039/C7DT04634K 10.1007/s10562-015-1616-2 10.1016/S0020-1693(01)00604-1 10.1039/C7DT03040A 10.1021/acs.inorgchem.0c02887 10.1039/D1QI00006C 10.1021/acs.inorgchem.6b00769 10.1021/acsami.9b01761 10.1039/C5DT03711E 10.1107/S0108768185002063 10.1016/j.inoche.2014.11.005 10.1039/c1dt10028a 10.3389/fchem.2018.00461 10.1107/S0108767390000277 10.1016/j.tetlet.2013.05.125 10.1002/chem.201804280 10.1039/D1QI00750E 10.1021/ic9809456 10.1016/j.poly.2014.01.012 10.1107/S0021889812004979 10.1021/ja00248a019 10.1021/ic990982c 10.1021/ic9804420 10.1021/cg901332m |
ContentType | Journal Article |
Copyright | 2022 The Korean Society of Industrial and Engineering Chemistry |
Copyright_xml | – notice: 2022 The Korean Society of Industrial and Engineering Chemistry |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.jiec.2022.03.007 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1876-794X |
EndPage | 356 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10019414 10_1016_j_jiec_2022_03_007 S1226086X22001289 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9ZL AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO9 EP2 EP3 FDB FIRID FNPLU FYGXN GBLVA HH5 IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SSG SSZ T5K ~G- 2WC AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION EJD HZ~ MZR OK1 RIG SSH ZY4 ZZE 85H ABPIF ABTAH ACYCR AJBFU |
ID | FETCH-LOGICAL-c352t-c965db1f7b5a1775ed7bec64a2bc7cec540d0fd4a59908ec7407d30f88e6d35e3 |
IEDL.DBID | AIKHN |
ISSN | 1226-086X |
IngestDate | Tue Nov 21 21:43:50 EST 2023 Tue Jul 01 03:34:24 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crystal engineering Iron(III) ion Multinuclear compound Pseudohalide ion Magnetic properties |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-c965db1f7b5a1775ed7bec64a2bc7cec540d0fd4a59908ec7407d30f88e6d35e3 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10019414 crossref_primary_10_1016_j_jiec_2022_03_007 elsevier_sciencedirect_doi_10_1016_j_jiec_2022_03_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-25 |
PublicationDateYYYYMMDD | 2022-06-25 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Journal of industrial and engineering chemistry (Seoul, Korea) |
PublicationYear | 2022 |
Publisher | Elsevier B.V 한국공업화학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국공업화학회 |
References | Shin, Bae, Kim, Min (b0040) 2014; 43 Murali, Nayak, Costa, Ribas, Mutikainen, Turpeinen, Clémancey, Garcia-Serres, Latour, Gamez, Blondin, Reedijk (b0025) 2010; 49 (a) X.-D. Chen, M. Du, F. He, X.-M. Chen, T.C.W. Mak, Polyhedron 24 (2005) 1047-1053; (b) E.V. Eames, T.A. Betley, Inorg. Chem. 51 (2012) 10274-10278; (c) N. Hoshino, T.A. Akutagawa, Chem. Eur. J. 4 (2018) 19323-19331; (d) L.F. Jones, C.A. Kilner, M.A. Halcrow, J. Clust. Sci. 21 (2010) 279-290. (a) L. Xu, L. Sun, J. Feng, L. Qi, I. Muhammad, J. Maher, X. Cheng, W. Song, RSC Adv. 7 (2017) 44619-44625; (b) R. Grissa, A. Abramova, S.-J. Tambio, M. Lecuyer, M. Deschamps, V. Fernandez, J.-M. Greneche, D. Guyomard, B. Lestriez, P. Moreau, ACS Appl. Mater. Interfaces 11 (2019) 18368-18376. (a) K.S. Min, M.P. Suh, J. Am. Chem. Soc. 122 (2000) 6834–6840; (b) A.R. Jeong, J.W. Shin, B.G. Kim, K.S. Min, Bull. Korean Chem. Soc. 35 (2014) 273–276; (c) A.R. Jeong, J.W. Shin, J.H. Jeong, S. Jeoung, H.R. Moon, S. Kang, K.S. Min, Inorg. Chem. 59 (2020) 15987–15999; (d) P. Chakraborty, J. Adhikary, S. Samanta, D. Escudero, A.C. Castro, M. Swart, S. Ghosh, A. Bauzá, A. Frontera, E. Zangrando, D. Das, Cryst. Growth Des. 14 (2014) 4111–4123; (e) H.-Y. Bai, J.-F. Ma, J. Yang, Y.-Y. Liu, H. Wu, J.-C. Ma, Cryst. Growth Des. 10 (2010) 995–1016; (f) A. Mandal, S. Dasgupta, S. Ganguly, A. Bauzá, A. Frontera, D. Das, Dalton Trans. 46 (2017) 15257–15268; (g) I. Nawrot Fondo, Doejo, García-Deibe, Sanmartín-Matalobos, Vicente, El-Fallah, Amoza, Ruiz (b0175) 2016; 55 Prescher, McCammon, Dubrovinsky (b0070) 2012; 45 (a) A.K. Hicky, S.M. Greer, J.A. Valdez-Moreira, S.A. Lutz, M. Pink, J.A. DeGayner, T.D. Harris, S. Hill, J. Tesler, J.M. Smith, J. Am. Chem. Soc. 141 (2019) 11970-11975; (b) G.L. Guillet, K.Y. Arpin, A.M. Boltin, J.B. Gordon, J.A. Rave, P.C. Hillesheim, Inorg. Chem. 59 (2020) 11238–11243. Bain, Berry (b0055) 2008; 85 (a) SADABS, version 2016/2; Bruker-AXS: Madison, WI, USA, 2016; (b) L. Krause, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 48 (2015) 3-10. (a) X.-R. Wu, H.-Y. Shi, R.-J. Wei, J. Li, L.-S. Zheng, J. Tao, Inorg. Chem. 54 (2015) 3773-3780; (b) A. Arroyave, A. Lennartson, A. Dragulescu-Andrasi, K. S. Pedersen, S. Piligkos, S. A. Stoian, S. M. Greer, C. Pak, O. Hietsoi, H. Phan, S. Hill, C. J. McKenzie, M. Shatruk, Inorg. Chem. 55 (2016) 5904-5913. (a) J.W. Shin, S.R. Rowthu, B.G. Kim, K.S. Min, Dalton Trans. 39 (2010) 2765-2767; (b) J. W. Shin, A.R. Jeong, K.S. Min, S. Hayami, D. Moon, Inorg. Chem. Comm. 51 (2015) 46-49; (c) J.W. Shin, A.R. Jeong, S.Y. Lee, C. Kim, S. Hayami, K.S. Min, Dalton Trans. 45 (2016) 14089-14100. Li, Wang, Wang, Wang, Wang, Gao (b0170) 2009; 48 (a) Y. Chen, T. Hoang, S. Ma, Inorg. Chem. 51 (2012) 12600–12602; (b) H. Kitagishi, K. Kano, Chem. Commun. 57 (2021) 139–260; (c) D.N.T. De Silva, T.N. Dais, G.B. Jameson, D.J. Cutler, E.K. Brechin, C.G. Davies, G.N. L. Jameson, P.G. Plieger, ACS Omega 6 (2021) 16661–16669; (d) T. Shiga, G.N. Newton, H. Oshio, Dalton Trans. 47 (2018) 7384–7394; (e) T. Shiga, N. Okawa, H. Oshio, Dalton Trans. 48 (2019) 17437–17440. (a) W. Liu, H.H. Thorp, Inorg. Chem. 32 (1993) 4102-4105; (b) I.D. Brown, D. Altermatt, Acta Crystallogr. Sect. B: Struct. Sci. 41 (1985) 244-247; (c) N.E. Brese, M. O’Keeffe, Acta Crystallogr. Sect. B: Struct. Sci. 47 (1991) 192-197; (d) R.M. Wood, K.A. Abboud, R.C. Palenik, G.J. Palenik, Inorg. Chem. 39 (2000) 2065-2068; (e) J. Zachara, Inorg. Chem. 46 (2007) 9760-9767; (f) H.H. Thorp, Inorg. Chem. 37 (1998) 5690-5692. Jeong, Shin, Jeong, Bok, Kim, Jeong, Cho, Hayami, Min (b0045) 2017; 23 Kabya, Gök (b0050) 2013; 131 Li, Guisado-Barrios, Lawin, Richens, Gass, Murray, Yellowlees, Brechin (b0165) 2008 Kitos, Papatriantafyllopoulou, Tasiopoulos, Perlepes, Escuer, Nastopoulos (b0140) 2017; 46 (a) T. Chachiyo, J.H. Rodriguez, Dalton Trans. 41 (2012) 995–1003; (b) T. Shiga, N. Okawa, H. Oshio, Dalton Trans. 48 (2019) 17437–17440; (c) F. Li, R.L. Meyer, S.H. Carpenter, L.E. VanGelder, A.W. Nichols, C.W. Machan, M.L. Neidig, E.M. Matson, Chem. Sci. 9 (2018) 6379–6389; (d) H. Auerbach, G.E. Giammanco, V. Schünemann, A.D. Ostrowski, C.J. Carrano, Inorg. Chem. 56 (2017) 11524–11531. Nemec, Herchel, Boča, Trávíček, Svoboda, Fuess, Linert (b0155) 2011; 40 Chilton, Anderson, Turner, Sonicini, Murray (b0065) 2013; 34 Sheldrick (b0085) 1990; 46 Shin, Rowthu, Hyun, Song, Kim, Kim, Min (b0145) 2011; 40 R. Kruszynski, CrystEngComm 18 (2016) 2650–2663; (h) S. Ghosh, S. Kamilya, M. Rouzières, R. Herchel, S. Mehta, A. Mondal, Inorg. Chem. 59 (2020) 17638–17649. Saleem, Kobielska, Harms, Katsikogianni, Telford, Novitchi, Nayak (b0030) 2018; 47 (a) M. Mauro, Chem. Commun. 57 (2021) 5847–5988; (b) Y. Liu, Y. Li, K.S. Schanze, J. Photochem. Photobiol. C: Photochem. Rev. 3 (2002) 1–23; (c) V.W.-W. Yam, A.K.-W. Chan, E.Y.-H. Hong, Nat. Rev. Chem. 4 (2020) 528–541; (d) H. Auerbach, G.E. Giammanco, V. Schünemann, A.D. Ostrowski, C.J. Carrano, Inorg. Chem. 56 (2017) 11524–11531; (e) Z. Zhou, M.-X. Li, Y. Sui, E.N. Nfor, Z.-X. Wang, RSC Adv. 10 (2020) 7004–7010. (a) S.M. Gorun, G.C. Papaefthymiou, R.B. Frankel, S.J. Lippard, J. Am. Chem. Soc. 109 (1987) 4244-4255; (b) R. Werner, S. Ostrovsky, K. Griesar, W. Haase, Inorg. Chim. Acta 326 (2001) 78-88; (c) S. Naiya, S. Giri, S. Biswas, M.G.B. Drew, A. Ghosh, Polyhedron 73 (2014) 139-145; (d) D. Maniaki, E. Pilichos, S.P. Perlepes, Front. Chem. 6 (2018) 461-489; (e) S.S. Woodhouse, D.N.T. De Silva, G.B. Jameson, D.J. Cutler, S. Sanz, E.K. Brechin, C.G. Davies, G.N.L. Jameson, P.G. Plieger, Dalton Trans. 48 (2019) 11872-11881; (f) X.-Y. Li, Y. Zou, S.-D. Han, G.-M. Wang, Inorg. Chem. Front. 8 (2021) 4186-4191. Sheldrick (b0090) 2015; 71 E. Bill, 2008, http://ewww.mpi-muelheim.mpg.de/bac/logins/bill/julX_en.php. (a) S. Kita, H. Furutachi, H. Ōkawa, Inorg. Chem. 38 (1999) 4038-4045; (b) S. Friedle, J.J. Kodanko, A.J. Morys, T. Hayashi, P. Moënne-Loccoz, S.J. Lippard, J. Am. Chem. Soc. 131 (2009) 14508-14520. Nist (b0100) 2012 Kahn (b0160) 1993 APEX3, v2019.1-0; Bruker: Madison, WI, USA, 2019. Nakamoto (b0095) 2009 (a) K.J. Mitchell, K.A. Abboud, G. Christou, Inorg. Chem. 55 (2016) 6597–6608; (b) W. Cañón-Mancisidor, P. Hermosilla-Ibáñez, E. Spodine, V. Paredes-García, C.J. Gómez-García, G.M. Espallargas, D. Venegas-Yazigi, Cryst. Growth Des. 21 (2021) 6213–6222; (c) N. Lehnert, E. Kim, H.T. Dong, J.B. Harland, A.P. Hunt, E.C. Manickas, K.M. Oakley, J. Pham, G.C. Reed, V.S. Alfaro, Chem. Rev. 121 (2021) 14682–14905; (d) A. Karmakar, L.M.D. R.S. Martins, M.F.C.G. da Silva, S. Hazra, A.J.L. Pombeiro, Catal. Lett. 145 (2015) 2066–2076; (e) M. Balamurugan, E. Suresh, M. Palaniandavar, Dalton Trans. 45 (2016) 11422-11436; (f) J.M. Harrington, M.M. Mysore, A.L. Crumbliss, Dalton Trans. 47 (2018) 6954-6964; (g) J.B.H. Strautmann, S. Dammers, T. Limpke, J. Parthier, T.P. Zimmermann, S. Walleck, G. Heinze-Brückner, A. Stammler, H. Bögge, T. Glaser, Dalton Trans. 45 (2016) 3340-3361; (h) P.S. Perlepe, D. Maniaki, E. Pilichos, E. Katsoulakou, S.P. Perlepes, Inorganics 8 (2020) 39; (i) A. Hobballah, F. Arrigoni, C. Elleouet, C. Greco, M. Laurans, F.Y. Pétillon, P. Schollhammer, Inorg. Chem. Front. 8 (2021) 3659-3674. (a) E.A. Archer, A.E. Sochia, M.J. Krische, Chem. Eur. J. 7 (2001) 2059-2066; (b) S.R. Rowthu, J.W. Shin, Y.R. Seo, K.S. Min, Acta Cryst. E67 (2011) m85; (c) M. Cho, H.J. Shin, D.K.A. Kusumahastuti, H. Yeo, K.S. Min, Inorg. Chim. Acta, 511 (2020) 119789-119795; (d) S. Mirdya, M.G.B. Drew, A.K. Chandra, A. Banerjee, A. Frontera, S. Chattopadhyay, Polyhedron, 179 (2020) 114374. Botezat, van Leusen, Kögerler, Baca (b0035) 2018; 57 B. Machura cr-split#-10.1016/j.jiec.2022.03.007_b0125.2 cr-split#-10.1016/j.jiec.2022.03.007_b0125.3 cr-split#-10.1016/j.jiec.2022.03.007_b0125.4 cr-split#-10.1016/j.jiec.2022.03.007_b0125.1 Nist (10.1016/j.jiec.2022.03.007_b0100) 2012 Li (10.1016/j.jiec.2022.03.007_b0165) 2008 cr-split#-10.1016/j.jiec.2022.03.007_b0180.3 cr-split#-10.1016/j.jiec.2022.03.007_b0180.4 10.1016/j.jiec.2022.03.007_b0080 cr-split#-10.1016/j.jiec.2022.03.007_b0180.1 cr-split#-10.1016/j.jiec.2022.03.007_b0180.2 Prescher (10.1016/j.jiec.2022.03.007_b0070) 2012; 45 10.1016/j.jiec.2022.03.007_b0075 cr-split#-10.1016/j.jiec.2022.03.007_b0130.4 cr-split#-10.1016/j.jiec.2022.03.007_b0115.2 cr-split#-10.1016/j.jiec.2022.03.007_b0115.1 cr-split#-10.1016/j.jiec.2022.03.007_b0130.1 Sheldrick (10.1016/j.jiec.2022.03.007_b0090) 2015; 71 Nakamoto (10.1016/j.jiec.2022.03.007_b0095) 2009 cr-split#-10.1016/j.jiec.2022.03.007_b0130.2 cr-split#-10.1016/j.jiec.2022.03.007_b0130.3 Kitos (10.1016/j.jiec.2022.03.007_b0140) 2017; 46 Li (10.1016/j.jiec.2022.03.007_b0170) 2009; 48 cr-split#-10.1016/j.jiec.2022.03.007_b0015.3 cr-split#-10.1016/j.jiec.2022.03.007_b0015.2 cr-split#-10.1016/j.jiec.2022.03.007_b0015.5 cr-split#-10.1016/j.jiec.2022.03.007_b0015.4 Kabya (10.1016/j.jiec.2022.03.007_b0050) 2013; 131 cr-split#-10.1016/j.jiec.2022.03.007_b0015.1 Kahn (10.1016/j.jiec.2022.03.007_b0160) 1993 10.1016/j.jiec.2022.03.007_b0060 cr-split#-10.1016/j.jiec.2022.03.007_b0120.3 cr-split#-10.1016/j.jiec.2022.03.007_b0105.2 cr-split#-10.1016/j.jiec.2022.03.007_b0105.1 Bain (10.1016/j.jiec.2022.03.007_b0055) 2008; 85 cr-split#-10.1016/j.jiec.2022.03.007_b0185.2 Fondo (10.1016/j.jiec.2022.03.007_b0175) 2016; 55 cr-split#-10.1016/j.jiec.2022.03.007_b0185.1 cr-split#-10.1016/j.jiec.2022.03.007_b0120.2 cr-split#-10.1016/j.jiec.2022.03.007_b0120.1 Chilton (10.1016/j.jiec.2022.03.007_b0065) 2013; 34 cr-split#-10.1016/j.jiec.2022.03.007_b0005.2 cr-split#-10.1016/j.jiec.2022.03.007_b0005.1 cr-split#-10.1016/j.jiec.2022.03.007_b0005.4 cr-split#-10.1016/j.jiec.2022.03.007_b0005.3 cr-split#-10.1016/j.jiec.2022.03.007_b0020.5 cr-split#-10.1016/j.jiec.2022.03.007_b0020.4 cr-split#-10.1016/j.jiec.2022.03.007_b0020.6 cr-split#-10.1016/j.jiec.2022.03.007_b0020.1 Shin (10.1016/j.jiec.2022.03.007_b0040) 2014; 43 cr-split#-10.1016/j.jiec.2022.03.007_b0020.3 Jeong (10.1016/j.jiec.2022.03.007_b0045) 2017; 23 cr-split#-10.1016/j.jiec.2022.03.007_b0020.2 cr-split#-10.1016/j.jiec.2022.03.007_b0110.5 cr-split#-10.1016/j.jiec.2022.03.007_b0110.4 cr-split#-10.1016/j.jiec.2022.03.007_b0110.3 cr-split#-10.1016/j.jiec.2022.03.007_b0110.2 cr-split#-10.1016/j.jiec.2022.03.007_b0150.7 cr-split#-10.1016/j.jiec.2022.03.007_b0150.6 cr-split#-10.1016/j.jiec.2022.03.007_b0135.1 Murali (10.1016/j.jiec.2022.03.007_b0025) 2010; 49 cr-split#-10.1016/j.jiec.2022.03.007_b0110.6 cr-split#-10.1016/j.jiec.2022.03.007_b0135.2 cr-split#-10.1016/j.jiec.2022.03.007_b0150.8 Shin (10.1016/j.jiec.2022.03.007_b0145) 2011; 40 cr-split#-10.1016/j.jiec.2022.03.007_b0150.3 cr-split#-10.1016/j.jiec.2022.03.007_b0005.9 cr-split#-10.1016/j.jiec.2022.03.007_b0150.2 cr-split#-10.1016/j.jiec.2022.03.007_b0150.5 cr-split#-10.1016/j.jiec.2022.03.007_b0150.4 cr-split#-10.1016/j.jiec.2022.03.007_b0005.6 cr-split#-10.1016/j.jiec.2022.03.007_b0110.1 cr-split#-10.1016/j.jiec.2022.03.007_b0005.5 cr-split#-10.1016/j.jiec.2022.03.007_b0005.8 cr-split#-10.1016/j.jiec.2022.03.007_b0150.1 cr-split#-10.1016/j.jiec.2022.03.007_b0005.7 Saleem (10.1016/j.jiec.2022.03.007_b0030) 2018; 47 cr-split#-10.1016/j.jiec.2022.03.007_b0010.4 Sheldrick (10.1016/j.jiec.2022.03.007_b0085) 1990; 46 cr-split#-10.1016/j.jiec.2022.03.007_b0010.3 cr-split#-10.1016/j.jiec.2022.03.007_b0010.5 Botezat (10.1016/j.jiec.2022.03.007_b0035) 2018; 57 cr-split#-10.1016/j.jiec.2022.03.007_b0010.2 Nemec (10.1016/j.jiec.2022.03.007_b0155) 2011; 40 cr-split#-10.1016/j.jiec.2022.03.007_b0010.1 |
References_xml | – year: 2012 ident: b0100 article-title: X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology publication-title: Gaithersburg – volume: 45 start-page: 329 year: 2012 end-page: 331 ident: b0070 publication-title: J. Appl. Crystallogr. – volume: 40 start-page: 5762 year: 2011 end-page: 5773 ident: b0145 publication-title: Dalton Trans. – volume: 55 start-page: 11707 year: 2016 end-page: 11715 ident: b0175 publication-title: Inorg. Chem. – reference: (a) M. Mauro, Chem. Commun. 57 (2021) 5847–5988; (b) Y. Liu, Y. Li, K.S. Schanze, J. Photochem. Photobiol. C: Photochem. Rev. 3 (2002) 1–23; (c) V.W.-W. Yam, A.K.-W. Chan, E.Y.-H. Hong, Nat. Rev. Chem. 4 (2020) 528–541; (d) H. Auerbach, G.E. Giammanco, V. Schünemann, A.D. Ostrowski, C.J. Carrano, Inorg. Chem. 56 (2017) 11524–11531; (e) Z. Zhou, M.-X. Li, Y. Sui, E.N. Nfor, Z.-X. Wang, RSC Adv. 10 (2020) 7004–7010. – reference: APEX3, v2019.1-0; Bruker: Madison, WI, USA, 2019. – reference: (a) S.M. Gorun, G.C. Papaefthymiou, R.B. Frankel, S.J. Lippard, J. Am. Chem. Soc. 109 (1987) 4244-4255; (b) R. Werner, S. Ostrovsky, K. Griesar, W. Haase, Inorg. Chim. Acta 326 (2001) 78-88; (c) S. Naiya, S. Giri, S. Biswas, M.G.B. Drew, A. Ghosh, Polyhedron 73 (2014) 139-145; (d) D. Maniaki, E. Pilichos, S.P. Perlepes, Front. Chem. 6 (2018) 461-489; (e) S.S. Woodhouse, D.N.T. De Silva, G.B. Jameson, D.J. Cutler, S. Sanz, E.K. Brechin, C.G. Davies, G.N.L. Jameson, P.G. Plieger, Dalton Trans. 48 (2019) 11872-11881; (f) X.-Y. Li, Y. Zou, S.-D. Han, G.-M. Wang, Inorg. Chem. Front. 8 (2021) 4186-4191. – reference: (a) Y. Chen, T. Hoang, S. Ma, Inorg. Chem. 51 (2012) 12600–12602; (b) H. Kitagishi, K. Kano, Chem. Commun. 57 (2021) 139–260; (c) D.N.T. De Silva, T.N. Dais, G.B. Jameson, D.J. Cutler, E.K. Brechin, C.G. Davies, G.N. L. Jameson, P.G. Plieger, ACS Omega 6 (2021) 16661–16669; (d) T. Shiga, G.N. Newton, H. Oshio, Dalton Trans. 47 (2018) 7384–7394; (e) T. Shiga, N. Okawa, H. Oshio, Dalton Trans. 48 (2019) 17437–17440. – volume: 131 start-page: 4086 year: 2013 end-page: 4090 ident: b0050 publication-title: Tetrahedron Lett. – reference: (a) SADABS, version 2016/2; Bruker-AXS: Madison, WI, USA, 2016; (b) L. Krause, R. Herbst-Irmer, G.M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 48 (2015) 3-10. – volume: 46 start-page: 467 year: 1990 end-page: 473 ident: b0085 publication-title: Acta Cryst. – year: 1993 ident: b0160 article-title: Mol. Magnet. – start-page: 120 year: 2009 end-page: 131 ident: b0095 publication-title: Infrared and Raman Spectra of Inorganic and Coordination Compounds – reference: (a) X.-D. Chen, M. Du, F. He, X.-M. Chen, T.C.W. Mak, Polyhedron 24 (2005) 1047-1053; (b) E.V. Eames, T.A. Betley, Inorg. Chem. 51 (2012) 10274-10278; (c) N. Hoshino, T.A. Akutagawa, Chem. Eur. J. 4 (2018) 19323-19331; (d) L.F. Jones, C.A. Kilner, M.A. Halcrow, J. Clust. Sci. 21 (2010) 279-290. – reference: R. Kruszynski, CrystEngComm 18 (2016) 2650–2663; (h) S. Ghosh, S. Kamilya, M. Rouzières, R. Herchel, S. Mehta, A. Mondal, Inorg. Chem. 59 (2020) 17638–17649. – reference: (a) L. Xu, L. Sun, J. Feng, L. Qi, I. Muhammad, J. Maher, X. Cheng, W. Song, RSC Adv. 7 (2017) 44619-44625; (b) R. Grissa, A. Abramova, S.-J. Tambio, M. Lecuyer, M. Deschamps, V. Fernandez, J.-M. Greneche, D. Guyomard, B. Lestriez, P. Moreau, ACS Appl. Mater. Interfaces 11 (2019) 18368-18376. – volume: 34 start-page: 1164 year: 2013 end-page: 1175 ident: b0065 publication-title: J. Comput. Chem. – reference: (a) X.-R. Wu, H.-Y. Shi, R.-J. Wei, J. Li, L.-S. Zheng, J. Tao, Inorg. Chem. 54 (2015) 3773-3780; (b) A. Arroyave, A. Lennartson, A. Dragulescu-Andrasi, K. S. Pedersen, S. Piligkos, S. A. Stoian, S. M. Greer, C. Pak, O. Hietsoi, H. Phan, S. Hill, C. J. McKenzie, M. Shatruk, Inorg. Chem. 55 (2016) 5904-5913. – volume: 49 start-page: 2427 year: 2010 end-page: 2434 ident: b0025 publication-title: Inorg. Chem. – reference: (a) K.J. Mitchell, K.A. Abboud, G. Christou, Inorg. Chem. 55 (2016) 6597–6608; (b) W. Cañón-Mancisidor, P. Hermosilla-Ibáñez, E. Spodine, V. Paredes-García, C.J. Gómez-García, G.M. Espallargas, D. Venegas-Yazigi, Cryst. Growth Des. 21 (2021) 6213–6222; (c) N. Lehnert, E. Kim, H.T. Dong, J.B. Harland, A.P. Hunt, E.C. Manickas, K.M. Oakley, J. Pham, G.C. Reed, V.S. Alfaro, Chem. Rev. 121 (2021) 14682–14905; (d) A. Karmakar, L.M.D. R.S. Martins, M.F.C.G. da Silva, S. Hazra, A.J.L. Pombeiro, Catal. Lett. 145 (2015) 2066–2076; (e) M. Balamurugan, E. Suresh, M. Palaniandavar, Dalton Trans. 45 (2016) 11422-11436; (f) J.M. Harrington, M.M. Mysore, A.L. Crumbliss, Dalton Trans. 47 (2018) 6954-6964; (g) J.B.H. Strautmann, S. Dammers, T. Limpke, J. Parthier, T.P. Zimmermann, S. Walleck, G. Heinze-Brückner, A. Stammler, H. Bögge, T. Glaser, Dalton Trans. 45 (2016) 3340-3361; (h) P.S. Perlepe, D. Maniaki, E. Pilichos, E. Katsoulakou, S.P. Perlepes, Inorganics 8 (2020) 39; (i) A. Hobballah, F. Arrigoni, C. Elleouet, C. Greco, M. Laurans, F.Y. Pétillon, P. Schollhammer, Inorg. Chem. Front. 8 (2021) 3659-3674. – volume: 47 start-page: 6156 year: 2018 end-page: 6165 ident: b0030 publication-title: Dalton Trans. – reference: (a) T. Chachiyo, J.H. Rodriguez, Dalton Trans. 41 (2012) 995–1003; (b) T. Shiga, N. Okawa, H. Oshio, Dalton Trans. 48 (2019) 17437–17440; (c) F. Li, R.L. Meyer, S.H. Carpenter, L.E. VanGelder, A.W. Nichols, C.W. Machan, M.L. Neidig, E.M. Matson, Chem. Sci. 9 (2018) 6379–6389; (d) H. Auerbach, G.E. Giammanco, V. Schünemann, A.D. Ostrowski, C.J. Carrano, Inorg. Chem. 56 (2017) 11524–11531. – reference: (a) A.K. Hicky, S.M. Greer, J.A. Valdez-Moreira, S.A. Lutz, M. Pink, J.A. DeGayner, T.D. Harris, S. Hill, J. Tesler, J.M. Smith, J. Am. Chem. Soc. 141 (2019) 11970-11975; (b) G.L. Guillet, K.Y. Arpin, A.M. Boltin, J.B. Gordon, J.A. Rave, P.C. Hillesheim, Inorg. Chem. 59 (2020) 11238–11243. – volume: 57 start-page: 7904 year: 2018 end-page: 7913 ident: b0035 publication-title: Inorg. Chem. – volume: 71 start-page: 3 year: 2015 end-page: 8 ident: b0090 publication-title: Acta Cryst. – reference: (a) S. Kita, H. Furutachi, H. Ōkawa, Inorg. Chem. 38 (1999) 4038-4045; (b) S. Friedle, J.J. Kodanko, A.J. Morys, T. Hayashi, P. Moënne-Loccoz, S.J. Lippard, J. Am. Chem. Soc. 131 (2009) 14508-14520. – volume: 43 start-page: 3999 year: 2014 end-page: 4008 ident: b0040 publication-title: Dalton Trans. – reference: B. Machura, – reference: (a) W. Liu, H.H. Thorp, Inorg. Chem. 32 (1993) 4102-4105; (b) I.D. Brown, D. Altermatt, Acta Crystallogr. Sect. B: Struct. Sci. 41 (1985) 244-247; (c) N.E. Brese, M. O’Keeffe, Acta Crystallogr. Sect. B: Struct. Sci. 47 (1991) 192-197; (d) R.M. Wood, K.A. Abboud, R.C. Palenik, G.J. Palenik, Inorg. Chem. 39 (2000) 2065-2068; (e) J. Zachara, Inorg. Chem. 46 (2007) 9760-9767; (f) H.H. Thorp, Inorg. Chem. 37 (1998) 5690-5692. – volume: 46 start-page: 3240 year: 2017 end-page: 3251 ident: b0140 publication-title: Dalton Trans. – reference: (a) J.W. Shin, S.R. Rowthu, B.G. Kim, K.S. Min, Dalton Trans. 39 (2010) 2765-2767; (b) J. W. Shin, A.R. Jeong, K.S. Min, S. Hayami, D. Moon, Inorg. Chem. Comm. 51 (2015) 46-49; (c) J.W. Shin, A.R. Jeong, S.Y. Lee, C. Kim, S. Hayami, K.S. Min, Dalton Trans. 45 (2016) 14089-14100. – reference: (a) E.A. Archer, A.E. Sochia, M.J. Krische, Chem. Eur. J. 7 (2001) 2059-2066; (b) S.R. Rowthu, J.W. Shin, Y.R. Seo, K.S. Min, Acta Cryst. E67 (2011) m85; (c) M. Cho, H.J. Shin, D.K.A. Kusumahastuti, H. Yeo, K.S. Min, Inorg. Chim. Acta, 511 (2020) 119789-119795; (d) S. Mirdya, M.G.B. Drew, A.K. Chandra, A. Banerjee, A. Frontera, S. Chattopadhyay, Polyhedron, 179 (2020) 114374. – start-page: 551 year: 2008 end-page: 558 ident: b0165 publication-title: Dalton Trans. – volume: 23 start-page: 3023 year: 2017 end-page: 3033 ident: b0045 publication-title: Chem. Eur. J. – volume: 85 start-page: 532 year: 2008 end-page: 536 ident: b0055 publication-title: J. Chem. Educ. – reference: E. Bill, 2008, http://ewww.mpi-muelheim.mpg.de/bac/logins/bill/julX_en.php. – reference: (a) K.S. Min, M.P. Suh, J. Am. Chem. Soc. 122 (2000) 6834–6840; (b) A.R. Jeong, J.W. Shin, B.G. Kim, K.S. Min, Bull. Korean Chem. Soc. 35 (2014) 273–276; (c) A.R. Jeong, J.W. Shin, J.H. Jeong, S. Jeoung, H.R. Moon, S. Kang, K.S. Min, Inorg. Chem. 59 (2020) 15987–15999; (d) P. Chakraborty, J. Adhikary, S. Samanta, D. Escudero, A.C. Castro, M. Swart, S. Ghosh, A. Bauzá, A. Frontera, E. Zangrando, D. Das, Cryst. Growth Des. 14 (2014) 4111–4123; (e) H.-Y. Bai, J.-F. Ma, J. Yang, Y.-Y. Liu, H. Wu, J.-C. Ma, Cryst. Growth Des. 10 (2010) 995–1016; (f) A. Mandal, S. Dasgupta, S. Ganguly, A. Bauzá, A. Frontera, D. Das, Dalton Trans. 46 (2017) 15257–15268; (g) I. Nawrot, – volume: 40 start-page: 10090 year: 2011 end-page: 10099 ident: b0155 publication-title: Dalton Trans. – volume: 48 start-page: 7174 year: 2009 end-page: 7180 ident: b0170 publication-title: Inorg. Chem. – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.8 doi: 10.3390/inorganics8060039 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.1 doi: 10.1021/ic00071a023 – volume: 55 start-page: 11707 year: 2016 ident: 10.1016/j.jiec.2022.03.007_b0175 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01739 – ident: 10.1016/j.jiec.2022.03.007_b0080 doi: 10.1107/S1600576714022985 – year: 1993 ident: 10.1016/j.jiec.2022.03.007_b0160 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0015.5 doi: 10.1039/D0RA00732C – volume: 40 start-page: 10090 year: 2011 ident: 10.1016/j.jiec.2022.03.007_b0155 publication-title: Dalton Trans. doi: 10.1039/c1dt10696a – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0180.4 doi: 10.1021/acs.inorgchem.7b00686 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.5 doi: 10.1021/ic7011809 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.1 doi: 10.1021/ja000642m – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0010.4 doi: 10.1039/C8DT00822A – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.4 doi: 10.1021/cg500717n – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.3 doi: 10.1107/S0108768190011041 – volume: 49 start-page: 2427 year: 2010 ident: 10.1016/j.jiec.2022.03.007_b0025 publication-title: Inorg. Chem. doi: 10.1021/ic902360x – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0180.3 doi: 10.1039/C8SC00987B – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.2 doi: 10.1021/acs.cgd.1c00640 – volume: 43 start-page: 3999 year: 2014 ident: 10.1016/j.jiec.2022.03.007_b0040 publication-title: Dalton Trans. doi: 10.1039/c3dt53376j – volume: 34 start-page: 1164 year: 2013 ident: 10.1016/j.jiec.2022.03.007_b0065 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23234 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.5 doi: 10.1039/C6DT01059H – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0185.1 doi: 10.1021/jacs.9b04389 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.2 doi: 10.5012/bkcs.2014.35.1.273 – volume: 48 start-page: 7174 year: 2009 ident: 10.1016/j.jiec.2022.03.007_b0170 publication-title: Inorg. Chem. doi: 10.1021/ic9003092 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0120.3 doi: 10.1039/C6DT02701F – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0135.2 doi: 10.1021/ja906137y – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0105.1 doi: 10.1039/C7RA08704G – start-page: 551 year: 2008 ident: 10.1016/j.jiec.2022.03.007_b0165 publication-title: Dalton Trans. – volume: 85 start-page: 532 year: 2008 ident: 10.1016/j.jiec.2022.03.007_b0055 publication-title: J. Chem. Educ. doi: 10.1021/ed085p532 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0015.2 doi: 10.1016/S1389-5567(02)00004-7 – volume: 57 start-page: 7904 year: 2018 ident: 10.1016/j.jiec.2022.03.007_b0035 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00994 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0115.2 doi: 10.1021/acs.inorgchem.6b00246 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0125.2 doi: 10.1107/S1600536810051779 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0115.1 doi: 10.1021/ic5029542 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0015.3 doi: 10.1038/s41570-020-0199-7 – ident: 10.1016/j.jiec.2022.03.007_b0060 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0125.1 doi: 10.1002/1521-3765(20010518)7:10<2059::AID-CHEM2059>3.0.CO;2-I – volume: 23 start-page: 3023 year: 2017 ident: 10.1016/j.jiec.2022.03.007_b0045 publication-title: Chem. Eur. J. doi: 10.1002/chem.201604498 – volume: 46 start-page: 3240 year: 2017 ident: 10.1016/j.jiec.2022.03.007_b0140 publication-title: Dalton Trans. doi: 10.1039/C6DT04830G – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0125.4 doi: 10.1016/j.poly.2020.114374 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.3 doi: 10.1021/acs.chemrev.1c00253 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0130.1 doi: 10.1016/j.poly.2005.02.004 – volume: 71 start-page: 3 year: 2015 ident: 10.1016/j.jiec.2022.03.007_b0090 publication-title: Acta Cryst. – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0180.2 doi: 10.1039/C9DT03232K – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0015.1 doi: 10.1039/D1CC90215F – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0010.3 doi: 10.1021/acsomega.1c02255 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0125.3 doi: 10.1016/j.ica.2020.119789 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.3 doi: 10.1021/acs.inorgchem.0c02503 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.7 doi: 10.1039/C6CE00112B – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0130.4 doi: 10.1007/s10876-010-0283-0 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0130.2 doi: 10.1021/ic301241s – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.5 doi: 10.1039/C9DT01968E – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0015.4 doi: 10.1021/acs.inorgchem.7b00686 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0010.2 doi: 10.1039/D1CC90006D – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0185.2 doi: 10.1021/acs.inorgchem.0c01625 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.6 doi: 10.1039/C8DT01329B – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0010.1 doi: 10.1021/ic301923x – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0120.1 doi: 10.1039/c000412j – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0180.1 doi: 10.1039/C1DT11656H – volume: 47 start-page: 6156 year: 2018 ident: 10.1016/j.jiec.2022.03.007_b0030 publication-title: Dalton Trans. doi: 10.1039/C7DT04634K – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.4 doi: 10.1007/s10562-015-1616-2 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.2 doi: 10.1016/S0020-1693(01)00604-1 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.6 doi: 10.1039/C7DT03040A – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.8 doi: 10.1021/acs.inorgchem.0c02887 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.9 doi: 10.1039/D1QI00006C – year: 2012 ident: 10.1016/j.jiec.2022.03.007_b0100 article-title: X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and Technology publication-title: Gaithersburg – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.1 doi: 10.1021/acs.inorgchem.6b00769 – ident: 10.1016/j.jiec.2022.03.007_b0075 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0105.2 doi: 10.1021/acsami.9b01761 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0005.7 doi: 10.1039/C5DT03711E – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.2 doi: 10.1107/S0108768185002063 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0120.2 doi: 10.1016/j.inoche.2014.11.005 – volume: 40 start-page: 5762 year: 2011 ident: 10.1016/j.jiec.2022.03.007_b0145 publication-title: Dalton Trans. doi: 10.1039/c1dt10028a – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.4 doi: 10.3389/fchem.2018.00461 – volume: 46 start-page: 467 year: 1990 ident: 10.1016/j.jiec.2022.03.007_b0085 publication-title: Acta Cryst. doi: 10.1107/S0108767390000277 – volume: 131 start-page: 4086 year: 2013 ident: 10.1016/j.jiec.2022.03.007_b0050 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2013.05.125 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0010.5 doi: 10.1039/C9DT03232K – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0130.3 doi: 10.1002/chem.201804280 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.6 doi: 10.1039/D1QI00750E – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0135.1 doi: 10.1021/ic9809456 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.3 doi: 10.1016/j.poly.2014.01.012 – volume: 45 start-page: 329 year: 2012 ident: 10.1016/j.jiec.2022.03.007_b0070 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889812004979 – start-page: 120 year: 2009 ident: 10.1016/j.jiec.2022.03.007_b0095 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0020.1 doi: 10.1021/ja00248a019 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.4 doi: 10.1021/ic990982c – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0110.6 doi: 10.1021/ic9804420 – ident: #cr-split#-10.1016/j.jiec.2022.03.007_b0150.5 doi: 10.1021/cg901332m |
SSID | ssj0060386 ssib009049966 |
Score | 2.2990878 |
Snippet | [Display omitted]
•Multinuclear iron(III) coordination complexes that have structural geometries depending on pseudohalide ions were synthesized.•In the cases... Five polynuclear iron(III) complexes, [(pmidp)Fe(NCSe)]2 (1), [(pmidp)Fe(NCBH3)]2 (2), [(Hpmidp/pmidp)Fe3(CH3O)2(NCS)4]∙H2O (3),... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 345 |
SubjectTerms | Crystal engineering Iron(III) ion Magnetic properties Multinuclear compound Pseudohalide ion 화학공학 |
Title | Formation of polynuclear iron(III) complexes of N-(2-pyridylmethyl)iminodipropanol depending on pseudohalide ions: synthesis, crystal structure, and magnetic properties |
URI | https://dx.doi.org/10.1016/j.jiec.2022.03.007 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002855921 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Industrial and Engineering Chemistry, 2022, 110(0), , pp.345-356 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa62wscEE9RHpUlOLSiYTeOnQe3qmK1AbEXqLQ3K7YnbdqQREkrkQu_h5_JzCaRygEOXBIlskfWjDXzWZ75hrG3Ya4AcjzkGJc4DyOE9WKw1N_EBMrJwEifCoW_bML1ufy0Vds9djbVwlBa5ej7B5--89bjn8WozUVTFIuvPiIHBORbIXb3QcmM7YsgCdWc7Z-mn9ebySGHy2DX8JHGezRhrJ0Z0ryuCiAmQyEGrtPob_FpVrX5ncizesgejJCRnw6resT2oHrM7t8hEnzCfq2mGkRe57ypy74inuKs5VTFdpSm6THfJY_DD-hoyMY7El7Tt4XrS2oi3ZfH1N6rdgV6VHQQdcmH9rgonqPUpoNbV18iaHfAaad-4F1fIXjsiu6E27ZHkFnygYz2toUTnlWOf88uKqqR5CST8rehe8rOVx-_na29sQeDZxGa3XgWFeqMn0dGZX4UKXARWj2UmTA2smAR8Lll7mSmMKyhlSM8ILpgmccxhC5QEDxj86qu4DnjYZyBFbmVdLWorIydMSpw0joZ4yM5YO8mzetmoNrQUw7alSY7abKTXgYa7XTA1GQc_ceG0RgL_jnvDVpSX9tCE7M2vS9qfd1qPD-kxODsJ9KXL_5T-kt2j74ol0yoV2yOaofXiFpuzCGbvf_pH4578zfKUPCv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacgAOqLxEgYIlOLSi6W4SOw9uqGK1gXYvtNLerNielLQhiZJWIhd-T39mZ_JA5QAHLomUOKPIY818lr_5hrH3QSYBMtzkaBtbBzOEcSIw1N9E-9IKXwuXCoVPVsHyTHxZy_UGO5pqYYhWOcb-Iab30Xp8Mhtnc1bn-eybi8gBAfna8_rzoHiT3RPSD4nXd_jrN88jmPt9u0ca7dDwsXJmIHld5EA6hp43KJ2Gf8tOm2WT3ck7i232aASM_NPwT4_ZBpRP2MM7MoJP2c1iqkDkVcbrquhKUilOG041bHtJkuzznjoOP6GlIStnz3PqrsltV1AL6a7Yp-Zelc0xnmJ4qAo-NMdF8xyt1i1c2-o7QnYLnNbpR952JULHNm8PuGk6hJgFH6Rorxs44Glp-Y_0vKQKSU42ib0N7TN2tvh8erR0xg4MjkFgduWYOJBWu1moZeqGoQQbos8DkXrahAYMwj07z6xIJSY19HGI20Prz7MogsD6EvznbKusSnjBeBClYLzMCDpYlEZEVmvpW2GsiPAS77AP08yrehDaUBMD7UKRnxT5Sc19hX7aYXJyjvpjuSjMBP_87h16Ul2aXJGuNt3PK3XZKNw9JKTf7MbCFS__0_pbdn95enKsjpPV11fsAb0hVpknX7MtdAHsIn650m_69XkL2dHxeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+polynuclear+iron%28III%29+complexes+of+N-%282-pyridylmethyl%29iminodipropanol+depending+on+pseudohalide+ions%3A+synthesis%2C+crystal+structure%2C+and+magnetic+properties&rft.jtitle=Journal+of+industrial+and+engineering+chemistry+%28Seoul%2C+Korea%29&rft.au=Shin%2C+Hye+Jin&rft.au=Jang%2C+Yoon+Jung&rft.au=Zenno%2C+Hikaru&rft.au=Hayami%2C+Shinya&rft.date=2022-06-25&rft.issn=1226-086X&rft.volume=110&rft.spage=345&rft.epage=356&rft_id=info:doi/10.1016%2Fj.jiec.2022.03.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jiec_2022_03_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-086X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-086X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-086X&client=summon |