Object detection in factory based on deep learning approach

Manufacturing systems need to be highly adaptive and flexible to meet heterogeneous customer requirements and require fast and accurate object identification. This paper presents the implementation of deep learning for the object detection in a factory in which images of machines are used to train f...

Full description

Saved in:
Bibliographic Details
Published inProcedia CIRP Vol. 104; pp. 1029 - 1034
Main Authors Yi, Li, Siedler, Carina, Kinkel, Yann, Glatt, Moritz, Kölsch, Patrick, Aurich, Jan C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Manufacturing systems need to be highly adaptive and flexible to meet heterogeneous customer requirements and require fast and accurate object identification. This paper presents the implementation of deep learning for the object detection in a factory in which images of machines are used to train four models. For each model, three trials with different hyperparameter configurations are performed. After the training, evaluations based on the loss curves, mean average precision curves, and performance metrics are carried out. Finally, the trained models are tested with a video in order to select the model with the best detection performance and accuracy.
AbstractList Manufacturing systems need to be highly adaptive and flexible to meet heterogeneous customer requirements and require fast and accurate object identification. This paper presents the implementation of deep learning for the object detection in a factory in which images of machines are used to train four models. For each model, three trials with different hyperparameter configurations are performed. After the training, evaluations based on the loss curves, mean average precision curves, and performance metrics are carried out. Finally, the trained models are tested with a video in order to select the model with the best detection performance and accuracy.
Author Aurich, Jan C.
Yi, Li
Siedler, Carina
Kölsch, Patrick
Glatt, Moritz
Kinkel, Yann
Author_xml – sequence: 1
  givenname: Li
  surname: Yi
  fullname: Yi, Li
  email: li.yi@mv.uni-kl.de
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
– sequence: 2
  givenname: Carina
  surname: Siedler
  fullname: Siedler, Carina
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
– sequence: 3
  givenname: Yann
  surname: Kinkel
  fullname: Kinkel, Yann
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
– sequence: 4
  givenname: Moritz
  surname: Glatt
  fullname: Glatt, Moritz
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
– sequence: 5
  givenname: Patrick
  surname: Kölsch
  fullname: Kölsch, Patrick
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
– sequence: 6
  givenname: Jan C.
  surname: Aurich
  fullname: Aurich, Jan C.
  organization: Institute for Manufacturing Technology and Production Systems (FBK) of TU Kaiserslautern, P.O. Box 3049 Kaiserslautern, Germany
BookMark eNqFUMtKBDEQDLKC67p_4CE_MGMe81JBkMVVYWEveg6ZTkczjJkhGYT9e7OMB_GgTUE3DVVdXedk4QePhFxylnPGq6suH8MALuSCCZ7zhFqekKUQXGSNqPnix3xG1jF2LFVdMMnFktzu2w5hogan1NzgqfPUapiGcKCtjmho2hnEkfaog3f-jeoxXdTwfkFOre4jrr_7irxuH142T9lu__i8ud9lIEsxZcALYFUyp6GqrG2NAWHKSgDURcFZU7bMikYCa7W9tkaYVmosbWMlAwuSyxW5mXUhDDEGtArcpI9mp6BdrzhTxyRUp-Yk1DEJxRNqmcjFL_IY3IcOh_9odzMN02OfDoOK4NADGhdSUMoM7m-BLyX4fRM
CitedBy_id crossref_primary_10_1007_s10845_024_02411_5
Cites_doi 10.1007/s11465-018-0499-5
10.1007/s00170-016-8628-y
10.1007/s00170-006-0897-4
10.1016/j.promfg.2020.01.052
10.1016/j.procir.2017.03.078
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procir.2021.11.173
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-8271
EndPage 1034
ExternalDocumentID 10_1016_j_procir_2021_11_173
S2212827121010714
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-c14c06021ac66ffbddc2d562cc7441085b0f283c0baf9fd2db3ae5f8f30cfc313
IEDL.DBID IXB
ISSN 2212-8271
IngestDate Thu Apr 24 22:56:22 EDT 2025
Tue Jul 01 02:31:25 EDT 2025
Wed May 17 00:08:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
manufacturing systems
object detection
supervised learning
convolutional neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c14c06021ac66ffbddc2d562cc7441085b0f283c0baf9fd2db3ae5f8f30cfc313
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2212827121010714
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_procir_2021_11_173
crossref_primary_10_1016_j_procir_2021_11_173
elsevier_sciencedirect_doi_10_1016_j_procir_2021_11_173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia CIRP
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hirano, Garcia, Sukthankar, Hoogs (bib00010) 2006
Huang, Zhang, Jiang (bib0007) 2008; 36
Zheng, wang, Sang, Zhong, Liu, Liu, Mubarok, Yu, Xu (bib0002) 2018; 13
Liu, Xu (bib0003) 2017; 63
Wang, Ma, Zhang, Gao, Wu (bib0005) 2018; 48
Tzutalin. LabelImg: Git code.
Liukkonen, Tsai (bib0008) 2016; 87
VDI 4416 (bib0004) 2015
Accessed 3 March 2020.
Tensorflow. TensorFlow Model Garden.
Accessed 9 December 2020.
Mourtzis, Milas, Athinaios (bib0001) 2018; 78
Jansen (bib0006) 1993
Riordan, Toal, Newe, Dooly (bib0009) 2019; 38
Zheng (10.1016/j.procir.2021.11.173_bib0002) 2018; 13
10.1016/j.procir.2021.11.173_bib00011
Hirano (10.1016/j.procir.2021.11.173_bib00010) 2006
Mourtzis (10.1016/j.procir.2021.11.173_bib0001) 2018; 78
10.1016/j.procir.2021.11.173_bib00012
Jansen (10.1016/j.procir.2021.11.173_bib0006) 1993
VDI 4416 (10.1016/j.procir.2021.11.173_bib0004) 2015
Riordan (10.1016/j.procir.2021.11.173_bib0009) 2019; 38
Wang (10.1016/j.procir.2021.11.173_bib0005) 2018; 48
Liukkonen (10.1016/j.procir.2021.11.173_bib0008) 2016; 87
Liu (10.1016/j.procir.2021.11.173_bib0003) 2017; 63
Huang (10.1016/j.procir.2021.11.173_bib0007) 2008; 36
References_xml – volume: 38
  start-page: 408
  year: 2019
  end-page: 414
  ident: bib0009
  article-title: Object recognition within smart manufacturing
  publication-title: Procedia Manufacturing
– year: 2015
  ident: bib0004
  publication-title: Production data acquisition and identification (germ: Betriebsdatenerfassung und-identifikation): Identification systems
– volume: 87
  start-page: 2509
  year: 2016
  end-page: 2531
  ident: bib0008
  article-title: Toward decentralized intelligence in manufacturing: recent trends in automatic identification of things
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1993
  ident: bib0006
  publication-title: Rechnergestützte Betriebsorganisation: CA-Techniken in der Fertigung
– reference: Tzutalin. LabelImg: Git code.
– volume: 78
  start-page: 301
  year: 2018
  end-page: 306
  ident: bib0001
  publication-title: Towards Machine Shop 4.0: A General Machine Model for CNC machine-tools through OPC-UA
– volume: 63
  start-page: 70
  year: 2017
  end-page: 75
  ident: bib0003
  article-title: Cyber-physical Machine Tool-The Era of Machine Tool 4.0
  publication-title: CIRP Procedia
– volume: 13
  start-page: 137
  year: 2018
  end-page: 150
  ident: bib0002
  article-title: Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives
  publication-title: Front. Mech. Eng.
– volume: 36
  start-page: 752
  year: 2008
  end-page: 764
  ident: bib0007
  article-title: RFID-based wireless manufacturing for real-time management of job shop WIP inventories
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 48
  start-page: 144
  year: 2018
  end-page: 156
  ident: bib0005
  publication-title: Deep learning for smart manufacturing: Methods and applications
– reference: . Accessed 3 March 2020.
– start-page: 49
  year: 2006
  end-page: 64
  ident: bib00010
  article-title: Industry and Object Recognition: Applications, Applied Research and Challenges
  publication-title: Toward Category-Level Object Recognition
– reference: . Accessed 9 December 2020.
– reference: Tensorflow. TensorFlow Model Garden.
– start-page: 49
  year: 2006
  ident: 10.1016/j.procir.2021.11.173_bib00010
  article-title: Industry and Object Recognition: Applications, Applied Research and Challenges
– volume: 13
  start-page: 137
  year: 2018
  ident: 10.1016/j.procir.2021.11.173_bib0002
  article-title: Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0499-5
– year: 2015
  ident: 10.1016/j.procir.2021.11.173_bib0004
– volume: 87
  start-page: 2509
  year: 2016
  ident: 10.1016/j.procir.2021.11.173_bib0008
  article-title: Toward decentralized intelligence in manufacturing: recent trends in automatic identification of things
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8628-y
– volume: 48
  start-page: 144
  year: 2018
  ident: 10.1016/j.procir.2021.11.173_bib0005
  publication-title: Deep learning for smart manufacturing: Methods and applications
– volume: 36
  start-page: 752
  year: 2008
  ident: 10.1016/j.procir.2021.11.173_bib0007
  article-title: RFID-based wireless manufacturing for real-time management of job shop WIP inventories
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0897-4
– volume: 38
  start-page: 408
  year: 2019
  ident: 10.1016/j.procir.2021.11.173_bib0009
  article-title: Object recognition within smart manufacturing
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2020.01.052
– volume: 78
  start-page: 301
  year: 2018
  ident: 10.1016/j.procir.2021.11.173_bib0001
  publication-title: Towards Machine Shop 4.0: A General Machine Model for CNC machine-tools through OPC-UA
– ident: 10.1016/j.procir.2021.11.173_bib00012
– year: 1993
  ident: 10.1016/j.procir.2021.11.173_bib0006
– volume: 63
  start-page: 70
  year: 2017
  ident: 10.1016/j.procir.2021.11.173_bib0003
  article-title: Cyber-physical Machine Tool-The Era of Machine Tool 4.0
  publication-title: CIRP Procedia
  doi: 10.1016/j.procir.2017.03.078
– ident: 10.1016/j.procir.2021.11.173_bib00011
SSID ssj0000740312
Score 2.138336
Snippet Manufacturing systems need to be highly adaptive and flexible to meet heterogeneous customer requirements and require fast and accurate object identification....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1029
SubjectTerms convolutional neural network
deep learning
manufacturing systems
object detection
supervised learning
Title Object detection in factory based on deep learning approach
URI https://dx.doi.org/10.1016/j.procir.2021.11.173
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvehBfGJ9lBy8xu5u0n3gqRZLsaigFntbspNEVmQtsh789072IRVEweOGDITZ8M2XZOYbgFNPDY30UPEEA8llYHyuEiu4FRJDpVWUxK52-PomnM7l1WK46MC4rYVxaZUN9teYXqF1MzJovDlY5vngPiDUjYPIKWD5rgyHcFjIuCriW1x83bNQiKR96x4T3HzuDNoKuirNy8WJ3AmDBj7Bx5kfiZ8j1ErUmWzBZkMX2ahe0TZ0TLEDGysigrtwfpu5uxSmTVmlVRUsL1jdRueDuSClGY1pY5asaRHxxFol8T2YTy4fxlPetETgSEyp5OhL9EJaq8IwtDbTGgNNFAYxIl5D9CnzLBEG9DJlE6sDnQllhja2wkOLwhf70C1eC3MALMwsKs8IQUdAKdDEmoJYFMU6lsqGRvZAtG5IsdELd20rXtI2Mew5rZ2XOufRUSIl5_WAf1kta72MP-ZHrYfTb_89JUj_1fLw35ZHsO6-6ouUY-iWb-_mhKhFmfVhbTS7e5z1qz30CcIIzo0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LSsNAFL3UulAX4hPrcxa6HJvMTJMUceGT1ra60EJ3cTIPqUgsWpF-lz_onSaRCqIgdDvJDcPJ5J4zk_sA2PdkzQhPSVpXTFDBjE9l3XJquVCB1DKsRy53uHMdNLriqlfrleCjyIVxYZW57898-thb5yPVHM3qoN-v3jL0uhELXQUs36Xh5JGVLTN6x33b63HzHF_yAWOXF3dnDZq3FqAKFceQKl8oL0B-kyoIrE20VkyjFFAqRH2AMiTxLBKv8hJp61YznXBpajay3FNWcZ_jc2dgFtVH6LxBs3f6dbCDnIwfivt74SZI3QyLlL1xXJkjpr6rRMp89FeHfsh_psQJmrtcgsVcn5KTDIJlKJl0BRYmqhauwtFN4g5viDbDcRxXSvopyfr2jIhjRU1wTBszIHlPigdSlC5fg-5UgFqHcvqcmg0gQWKV9AznuOcUXJlII2uGYaQjIW1gRAV4AUOs8gLlrk_GU1xEoj3GGXixAw_3LjGCVwH6ZTXICnT8cX9YIBx_W2gxcsivlpv_ttyDucZdpx23m9etLZh3V7JTnG0oD1_ezA7qmmGyO15HBO6nvXA_AWGSC-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+detection+in+factory+based+on+deep+learning+approach&rft.jtitle=Procedia+CIRP&rft.au=Yi%2C+Li&rft.au=Siedler%2C+Carina&rft.au=Kinkel%2C+Yann&rft.au=Glatt%2C+Moritz&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=104&rft.spage=1029&rft.epage=1034&rft_id=info:doi/10.1016%2Fj.procir.2021.11.173&rft.externalDocID=S2212827121010714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon