FedStack: Personalized activity monitoring using stacked federated learning

Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 257; p. 109929
Main Authors Shaik, Thanveer, Tao, Xiaohui, Higgins, Niall, Gururajan, Raj, Li, Yuefeng, Zhou, Xujuan, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations and challenges such as predicting and classifying vital signs and physical movements, which are considered crucial tasks. Federated learning is a relatively new AI technique designed to enhance data privacy by decentralizing traditional machine learning modeling. However, traditional federated learning requires identical architectural models to be trained across the local clients and global servers. This limits global model architecture due to the lack of local models’ heterogeneity. To overcome this, a novel federated learning architecture, FedStack, which supports ensembling heterogeneous architectural client models was proposed in this study. This work offers a protected privacy system for hospitalized in-patients in a decentralized approach and identifies optimum sensor placement. The proposed architecture was applied to a mobile health sensor benchmark dataset from 10 different subjects to classify 12 routine activities. Three AI models, artificial neural network (ANN), convolutional neural network (CNN), and bidirectional long short-term memory (Bi-LSTM) were trained on individual subject data. The federated learning architecture was applied to these models to build local and global models capable of state-of-the-art performances. The local CNN model outperformed ANN and Bi-LSTM models on each subject data. Our proposed work has demonstrated better performance for heterogeneous stacking of the local models compared to homogeneous stacking. Further analysis of the global heterogeneous CNN model determined that the optimum placement of the sensors on human limbs resulted in better activity recognition. This work sets the stage to build an enhanced RPM system that incorporates client privacy to assist with clinical observations for patients in an acute mental health facility and ultimately help to prevent unexpected death. •A novel federated architecture, FedStack, is proposed to overcome the heterogeneity limitation in traditional federated learning.•Enhanced personalized patient monitoring by adopting the proposed novel federated architecture to classify physical activities.•FedStack framework outperformed the baseline models’ performance in federated learning.
AbstractList Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations and challenges such as predicting and classifying vital signs and physical movements, which are considered crucial tasks. Federated learning is a relatively new AI technique designed to enhance data privacy by decentralizing traditional machine learning modeling. However, traditional federated learning requires identical architectural models to be trained across the local clients and global servers. This limits global model architecture due to the lack of local models’ heterogeneity. To overcome this, a novel federated learning architecture, FedStack, which supports ensembling heterogeneous architectural client models was proposed in this study. This work offers a protected privacy system for hospitalized in-patients in a decentralized approach and identifies optimum sensor placement. The proposed architecture was applied to a mobile health sensor benchmark dataset from 10 different subjects to classify 12 routine activities. Three AI models, artificial neural network (ANN), convolutional neural network (CNN), and bidirectional long short-term memory (Bi-LSTM) were trained on individual subject data. The federated learning architecture was applied to these models to build local and global models capable of state-of-the-art performances. The local CNN model outperformed ANN and Bi-LSTM models on each subject data. Our proposed work has demonstrated better performance for heterogeneous stacking of the local models compared to homogeneous stacking. Further analysis of the global heterogeneous CNN model determined that the optimum placement of the sensors on human limbs resulted in better activity recognition. This work sets the stage to build an enhanced RPM system that incorporates client privacy to assist with clinical observations for patients in an acute mental health facility and ultimately help to prevent unexpected death. •A novel federated architecture, FedStack, is proposed to overcome the heterogeneity limitation in traditional federated learning.•Enhanced personalized patient monitoring by adopting the proposed novel federated architecture to classify physical activities.•FedStack framework outperformed the baseline models’ performance in federated learning.
ArticleNumber 109929
Author Gururajan, Raj
Shaik, Thanveer
Higgins, Niall
Tao, Xiaohui
Acharya, U. Rajendra
Li, Yuefeng
Zhou, Xujuan
Author_xml – sequence: 1
  givenname: Thanveer
  orcidid: 0000-0002-9730-665X
  surname: Shaik
  fullname: Shaik, Thanveer
  email: thanveer.shaik@usq.edu.au
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba 4350, Australia
– sequence: 2
  givenname: Xiaohui
  orcidid: 0000-0002-0020-077X
  surname: Tao
  fullname: Tao, Xiaohui
  email: Xiaohui.Tao@usq.edu.au
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba 4350, Australia
– sequence: 3
  givenname: Niall
  orcidid: 0000-0002-3260-1711
  surname: Higgins
  fullname: Higgins, Niall
  email: Niall.Higgins@health.qld.gov.au
  organization: Metro North Hospital and Health Service, Royal Brisbane and Women’s Hospital, Herston 4029, Australia
– sequence: 4
  givenname: Raj
  surname: Gururajan
  fullname: Gururajan, Raj
  email: Raj.Gururajan@usq.edu.au
  organization: School of Business, University of Southern Queensland, Springfield 4300, Australia
– sequence: 5
  givenname: Yuefeng
  surname: Li
  fullname: Li, Yuefeng
  email: y2.li@qut.edu.au
  organization: School of Computer Science, Queensland University of Technology, Brisbane, Australia
– sequence: 6
  givenname: Xujuan
  orcidid: 0000-0002-1736-739X
  surname: Zhou
  fullname: Zhou, Xujuan
  email: Xujuan.Zhou@usq.edu.au
  organization: School of Business, University of Southern Queensland, Springfield 4300, Australia
– sequence: 7
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: Rajendra_Udyavara_ACHARYA@np.edu.sg
  organization: Singapore University of Social Sciences, Singapore
BookMark eNqFkMFKAzEQhoNUsK2-gYd9ga1JNttsehCkWBULCuo5pMlE0m4TSWKhPr27rCcPepkZZv7_h_kmaOSDB4QuCZ4RTOZX29nOh3RMM4op7VZCUHGCxqThtOQMixEaY1HjkuOanKFJSluMOyVpxuhxBeYlK71bFM8QU_CqdV9gCqWzO7h8LPbBuxyi8-_FZ-pr6tWdwoKBqHI3taCi707n6NSqNsHFT5-it9Xt6_K-XD_dPSxv1qWuappLTbAVSnDBNlYzK7QRpuKNBj5XtKGVVgKwqVhVWdIw2ABrTM2FYdgabhWtpogNuTqGlCJY-RHdXsWjJFj2QORWDkBkD0QOQDrb4pdNu6yyCz5H5dr_zNeDGbrHDg6iTNqB12BcBJ2lCe7vgG9qL4Ml
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110815
crossref_primary_10_1016_j_envdev_2024_101002
crossref_primary_10_1109_TETCI_2024_3398024
crossref_primary_10_1016_j_caeai_2023_100187
crossref_primary_10_1016_j_knosys_2025_113237
crossref_primary_10_1109_TNNLS_2023_3269062
crossref_primary_10_1109_OJCOMS_2024_3484228
crossref_primary_10_1016_j_egyai_2023_100303
crossref_primary_10_1016_j_patrec_2023_12_004
crossref_primary_10_3390_mti7070067
crossref_primary_10_1109_JBHI_2024_3428512
crossref_primary_10_1109_TCE_2024_3460469
crossref_primary_10_53759_7669_jmc202303034
crossref_primary_10_1016_j_inffus_2023_102040
crossref_primary_10_1109_TEM_2024_3386580
crossref_primary_10_1016_j_media_2025_103497
crossref_primary_10_1016_j_softx_2024_101885
crossref_primary_10_1109_TKDE_2024_3382726
crossref_primary_10_1007_s10586_024_04285_x
crossref_primary_10_1016_j_patter_2024_101006
crossref_primary_10_1016_j_asoc_2025_112747
crossref_primary_10_1002_widm_1485
crossref_primary_10_1016_j_iot_2023_100845
crossref_primary_10_1016_j_knosys_2023_110872
crossref_primary_10_1016_j_nlp_2022_100003
crossref_primary_10_1080_00401706_2024_2327341
Cites_doi 10.1109/JSEN.2020.2964278
10.1016/j.arth.2019.05.021
10.3233/WEB-160348
10.1109/JSEN.2021.3085362
10.3390/s18041055
10.1109/ACCESS.2022.3177752
10.1007/s00521-021-06007-5
10.1186/1475-925X-14-S2-S6
10.1016/j.eswa.2016.04.032
10.1145/3494834.3500240
10.1016/j.trc.2020.102674
10.1007/s11227-020-03361-4
10.3390/s21030776
10.1007/s12525-021-00475-2
10.1016/j.knosys.2019.104939
10.1109/ACCESS.2021.3078184
10.3390/electronics8070768
10.1016/j.ymssp.2021.108113
10.1016/j.array.2022.100167
10.1109/MPRV.2017.3971131
10.1016/j.asoc.2017.09.027
10.3390/s17112556
10.3233/WEB-210476
10.1109/MSP.2020.2975749
10.1016/j.array.2022.100190
10.1016/j.inffus.2019.08.004
10.1007/s11280-021-00877-4
10.1007/s00521-018-3437-x
10.23915/distill.00030
10.1007/s11277-021-08641-7
10.3389/fdgth.2020.00008
10.5121/ijdkp.2015.5201
10.1145/3387107
10.1016/j.knosys.2021.107338
10.1186/s40708-022-00153-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2022.109929
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_109929
S095070512201022X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
UHS
WUQ
ID FETCH-LOGICAL-c352t-c10f9a9794bfc4f9cd9d378ce76a2823ca9e0d3433f184ebe48d579d40fd7fa23
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Tue Jul 01 00:20:23 EDT 2025
Thu Apr 24 23:12:16 EDT 2025
Fri Feb 23 02:38:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Bi-LSTM
HAR
ANN
CNN
Federated learning
RPM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c10f9a9794bfc4f9cd9d378ce76a2823ca9e0d3433f184ebe48d579d40fd7fa23
ORCID 0000-0002-3260-1711
0000-0002-1736-739X
0000-0002-9730-665X
0000-0002-0020-077X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S095070512201022X
ParticipantIDs crossref_primary_10_1016_j_knosys_2022_109929
crossref_citationtrail_10_1016_j_knosys_2022_109929
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109929
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bulbul, Cetin, Dogru (b15) 2018
Ek, Portet, Lalanda, Vega (b37) 2021
Tkachenko, Izonin (b44) 2018
Blais, Couellan, Munin (b8) 2022; 14
Wu, Redouté, Yuce (b2) 2018
Zhu, Chen, Ye (b48) 2020
Class-Peters, Adoni, Nahhal, Byed, Krichen, Kimpolo, Kalala (b7) 2021
Ronao, Cho (b40) 2015
Vaizman, Ellis, Lanckriet (b17) 2017; 16
Chen, Cheng, Wang, Tao, Xie, Xu (b6) 2022; 9
Suto, Oniga, Lung, Orha (b22) 2018; 32
Ronao, Cho (b39) 2016; 59
M., M.N. (b56) 2015; 5
Lafta, Zhang, Tao, Li, Tseng, Luo, Chen (b3) 2016; 14
Jiang, Yin (b41) 2015
Dang, Piran, Han, Min, Moon (b24) 2019; 8
Liaqat, Dashtipour, Shah, Rizwan, Alotaibi, Althobaiti, Arshad, Assaleh, Ramzan (b33) 2021; 21
Russell, Norvig (b45) 2016
Banos, Villalonga, Garcia, Saez, Damas, Holgado-Terriza, Lee, Pomares, Rojas (b54) 2015; 14
Ignatov (b43) 2018; 62
Ronald, Poulose, Han (b49) 2021; 9
Li, Sahu, Talwalkar, Smith (b31) 2020; 37
Tao, Shaik, Higgins, Gururajan, Zhou (b12) 2021; 21
Xiao, Xu, Xing, Song, Wang, Zhao (b28) 2021; 229
Zhang, Sawchuk (b21) 2012
Zhang, Ren, Zhu, Zhou, Liu, Lu, Ning (b29) 2022
Ek, Portet, Lalanda, Vega (b26) 2020
Hassan, Ullah, Hossain, Alelaiwi (b52) 2020; 77
Cheng, Liu, Chen, Yang (b57) 2020; 63
Ramkumar, Haeberle, Ramanathan, Cantrell, Navarro, Mont, Bloomfield, Patterson (b4) 2019; 34
Essien, Petrounias, Sampaio, Sampaio (b19) 2020
Cui, Ke, Pu, Wang (b51) 2020; 118
Banos, Garcia, Holgado-Terriza, Damas, Pomares, Rojas, Saez, Villalonga (b53) 2014
Seshadri, Davies, Harlow, Hsu, Knighton, Walker, Voos, Drummond (b1) 2020; 2
Wang, Xu, Liu, Zhou, Zhao (b18) 2021; 24
Valizadeh, Parde (b32) 2022
Janiesch, Zschech, Heinrich (b35) 2021; 31
Almaslukh, AlMuhtadi, Artoli (b42) 2017; 17
Sofi, Regita, Rane, Lau (b10) 2022; 163
Zhao, Liu, Li, Barnaghi, Haddadi (b27) 2020
Murad, Pyun (b20) 2017; 17
Asim, Azam, Ehatisham-ul Haq, Naeem, Khalid (b16) 2020; 20
Li, Long, Bi, Wang, Zhang, Tao (b25) 2022; 19
Wang, Chen, Yang, Xu (b47) 2021
Uddin, Hassan, Alsanad, Savaglio (b5) 2020; 55
Alam, Qazi, Iqbal, Raza (b23) 2020
Harsha, Anudeep, Vikash, Ratnam (b13) 2021; 121
Ouyang, Xie, Zhou, Huang, Xing (b30) 2021
Bonawitz, Kairouz, McMahan, Ramage (b11) 2021; 19
Goh, Cammarata, Voss, Carter, Petrov, Schubert, Radford, Olah (b46) 2021; 6
Halim (b14) 2022; 15
Galán-Mercant, Ortiz, Herrera-Viedma, Tomas, Fernandes, Moral-Munoz (b36) 2019; 185
Cho, Yoon (b38) 2018; 18
Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (b55) 2013
Alawneh, Al-Ayyoub, Al-Sharif, Shatnawi (b34) 2022
Hamad, Kimura, Yang, Woo, Wei (b50) 2021; 33
Shaik, Tao, Li, Dann, McDonald, Redmond, Galligan (b9) 2022; 10
Bonawitz (10.1016/j.knosys.2022.109929_b11) 2021; 19
Anguita (10.1016/j.knosys.2022.109929_b55) 2013
Tkachenko (10.1016/j.knosys.2022.109929_b44) 2018
Lafta (10.1016/j.knosys.2022.109929_b3) 2016; 14
Ramkumar (10.1016/j.knosys.2022.109929_b4) 2019; 34
Banos (10.1016/j.knosys.2022.109929_b54) 2015; 14
Cho (10.1016/j.knosys.2022.109929_b38) 2018; 18
Zhu (10.1016/j.knosys.2022.109929_b48) 2020
Murad (10.1016/j.knosys.2022.109929_b20) 2017; 17
Hamad (10.1016/j.knosys.2022.109929_b50) 2021; 33
Class-Peters (10.1016/j.knosys.2022.109929_b7) 2021
Alawneh (10.1016/j.knosys.2022.109929_b34) 2022
Asim (10.1016/j.knosys.2022.109929_b16) 2020; 20
Goh (10.1016/j.knosys.2022.109929_b46) 2021; 6
Ek (10.1016/j.knosys.2022.109929_b26) 2020
Bulbul (10.1016/j.knosys.2022.109929_b15) 2018
Blais (10.1016/j.knosys.2022.109929_b8) 2022; 14
Liaqat (10.1016/j.knosys.2022.109929_b33) 2021; 21
Jiang (10.1016/j.knosys.2022.109929_b41) 2015
Ek (10.1016/j.knosys.2022.109929_b37) 2021
Ouyang (10.1016/j.knosys.2022.109929_b30) 2021
Valizadeh (10.1016/j.knosys.2022.109929_b32) 2022
Cui (10.1016/j.knosys.2022.109929_b51) 2020; 118
Alam (10.1016/j.knosys.2022.109929_b23) 2020
Ronao (10.1016/j.knosys.2022.109929_b40) 2015
Ronald (10.1016/j.knosys.2022.109929_b49) 2021; 9
Ignatov (10.1016/j.knosys.2022.109929_b43) 2018; 62
Dang (10.1016/j.knosys.2022.109929_b24) 2019; 8
Galán-Mercant (10.1016/j.knosys.2022.109929_b36) 2019; 185
Ronao (10.1016/j.knosys.2022.109929_b39) 2016; 59
Wang (10.1016/j.knosys.2022.109929_b47) 2021
Uddin (10.1016/j.knosys.2022.109929_b5) 2020; 55
Shaik (10.1016/j.knosys.2022.109929_b9) 2022; 10
Russell (10.1016/j.knosys.2022.109929_b45) 2016
Cheng (10.1016/j.knosys.2022.109929_b57) 2020; 63
Xiao (10.1016/j.knosys.2022.109929_b28) 2021; 229
Zhang (10.1016/j.knosys.2022.109929_b29) 2022
Li (10.1016/j.knosys.2022.109929_b25) 2022; 19
Li (10.1016/j.knosys.2022.109929_b31) 2020; 37
Zhao (10.1016/j.knosys.2022.109929_b27) 2020
Suto (10.1016/j.knosys.2022.109929_b22) 2018; 32
Wang (10.1016/j.knosys.2022.109929_b18) 2021; 24
Seshadri (10.1016/j.knosys.2022.109929_b1) 2020; 2
Almaslukh (10.1016/j.knosys.2022.109929_b42) 2017; 17
M. (10.1016/j.knosys.2022.109929_b56) 2015; 5
Wu (10.1016/j.knosys.2022.109929_b2) 2018
Hassan (10.1016/j.knosys.2022.109929_b52) 2020; 77
Tao (10.1016/j.knosys.2022.109929_b12) 2021; 21
Essien (10.1016/j.knosys.2022.109929_b19) 2020
Halim (10.1016/j.knosys.2022.109929_b14) 2022; 15
Janiesch (10.1016/j.knosys.2022.109929_b35) 2021; 31
Vaizman (10.1016/j.knosys.2022.109929_b17) 2017; 16
Banos (10.1016/j.knosys.2022.109929_b53) 2014
Chen (10.1016/j.knosys.2022.109929_b6) 2022; 9
Sofi (10.1016/j.knosys.2022.109929_b10) 2022; 163
Zhang (10.1016/j.knosys.2022.109929_b21) 2012
Harsha (10.1016/j.knosys.2022.109929_b13) 2021; 121
References_xml – volume: 14
  year: 2022
  ident: b8
  article-title: A novel image representation of GNSS correlation for deep learning multipath detection
  publication-title: Array
– volume: 63
  start-page: 33
  year: 2020
  end-page: 36
  ident: b57
  article-title: Federated learning for privacy-preserving AI
  publication-title: Commun. ACM
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: b35
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
– year: 2021
  ident: b30
  article-title: ClusterFL
  publication-title: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services
– start-page: 165
  year: 2018
  end-page: 173
  ident: b2
  article-title: A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications
  publication-title: Internet of Things
– year: 2022
  ident: b29
  article-title: Federated markov logic network for indoor activity recognition in internet of things
  publication-title: Knowl.-Based Syst.
– volume: 32
  start-page: 15673
  year: 2018
  end-page: 15686
  ident: b22
  article-title: Comparison of offline and real-time human activity recognition results using machine learning techniques
  publication-title: Neural Comput. Appl.
– start-page: 46
  year: 2015
  end-page: 53
  ident: b40
  article-title: Deep convolutional neural networks for human activity recognition with smartphone sensors
  publication-title: Neural Information Processing
– year: 2016
  ident: b45
  article-title: Artificial intelligence: a modern approach
– start-page: 91
  year: 2014
  end-page: 98
  ident: b53
  article-title: mHealthDroid: A novel framework for agile development of mobile health applications
  publication-title: Ambient Assisted Living and Daily Activities
– year: 2020
  ident: b26
  article-title: Evaluation of federated learning aggregation algorithms
  publication-title: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers
– volume: 229
  year: 2021
  ident: b28
  article-title: A federated learning system with enhanced feature extraction for human activity recognition
  publication-title: Knowl.-Based Syst.
– start-page: 59
  year: 2021
  end-page: 68
  ident: b7
  article-title: Post-COVID-19: Deep image processing AI to analyze social distancing in a human community
  publication-title: Advances on Smart and Soft Computing
– start-page: 578
  year: 2018
  end-page: 587
  ident: b44
  article-title: Model and principles for the implementation of neural-like structures based on geometric data transformations
  publication-title: Advances in Intelligent Systems and Computing
– start-page: 3330
  year: 2021
  end-page: 3334
  ident: b47
  article-title: Environment-independent wi-fi human activity recognition with adversarial network
  publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
– start-page: 1
  year: 2018
  end-page: 6
  ident: b15
  article-title: Human activity recognition using smartphones
  publication-title: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies
– volume: 21
  start-page: 776
  year: 2021
  ident: b12
  article-title: Remote patient monitoring using radio frequency identification (RFID) technology and machine learning for early detection of suicidal behaviour in mental health facilities
  publication-title: Sensors
– volume: 14
  start-page: 325
  year: 2016
  end-page: 336
  ident: b3
  article-title: An intelligent recommender system based on predictive analysis in telehealthcare environment
  publication-title: Web Intell.
– volume: 33
  start-page: 13705
  year: 2021
  end-page: 13722
  ident: b50
  article-title: Dilated causal convolution with multi-head self attention for sensor human activity recognition
  publication-title: Neural Comput. Appl.
– volume: 121
  start-page: 381
  year: 2021
  end-page: 398
  ident: b13
  article-title: Performance analysis of machine learning algorithms for smartphone-based human activity recognition
  publication-title: Wirel. Pers. Commun.
– volume: 6
  year: 2021
  ident: b46
  article-title: Multimodal neurons in artificial neural networks
  publication-title: Distill
– start-page: 1
  year: 2022
  end-page: 13
  ident: b34
  article-title: Personalized human activity recognition using deep learning and edge-cloud architecture
  publication-title: J. Ambient Intell. Humaniz. Comput.
– year: 2020
  ident: b19
  article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter
  publication-title: World Wide Web
– volume: 163
  year: 2022
  ident: b10
  article-title: Structural health monitoring using wireless smart sensor network – an overview
  publication-title: Mech. Syst. Signal Process.
– volume: 34
  start-page: 2253
  year: 2019
  end-page: 2259
  ident: b4
  article-title: Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning–based surveillance platform
  publication-title: J. Arthroplasty
– volume: 9
  start-page: 68985
  year: 2021
  end-page: 69001
  ident: b49
  article-title: Isplinception: An inception-resnet deep learning architecture for human activity recognition
  publication-title: IEEE Access
– volume: 17
  start-page: 2556
  year: 2017
  ident: b20
  article-title: Deep recurrent neural networks for human activity recognition
  publication-title: Sensors
– volume: 185
  year: 2019
  ident: b36
  article-title: Assessing physical activity and functional fitness level using convolutional neural networks
  publication-title: Knowl.-Based Syst.
– volume: 21
  start-page: 18214
  year: 2021
  end-page: 18221
  ident: b33
  article-title: Novel ensemble algorithm for multiple activity recognition in elderly people exploiting ubiquitous sensing devices
  publication-title: IEEE Sens. J.
– volume: 10
  start-page: 56720
  year: 2022
  end-page: 56739
  ident: b9
  article-title: A review of the trends and challenges in adopting natural language processing methods for education feedback analysis
  publication-title: IEEE Access
– volume: 16
  start-page: 62
  year: 2017
  end-page: 74
  ident: b17
  article-title: Recognizing detailed human context in the wild from smartphones and smartwatches
  publication-title: IEEE Pervasive Comput.
– start-page: 3
  year: 2013
  ident: b55
  article-title: A public domain dataset for human activity recognition using smartphones
  publication-title: Esann, Vol. 3
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: b43
  article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks
  publication-title: Appl. Soft Comput.
– year: 2012
  ident: b21
  article-title: USc-HAD
  publication-title: Proceedings of the 2012 ACM Conference on Ubiquitous Computing
– volume: 18
  start-page: 1055
  year: 2018
  ident: b38
  article-title: Divide and conquer-based 1d CNN human activity recognition using test data sharpening
  publication-title: Sensors
– start-page: 1
  year: 2020
  end-page: 5
  ident: b48
  article-title: Classification of human activities based on radar signals using 1d-cnn and lstm
  publication-title: 2020 IEEE International Symposium on Circuits and Systems
– volume: 37
  start-page: 50
  year: 2020
  end-page: 60
  ident: b31
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
– volume: 14
  start-page: S6
  year: 2015
  ident: b54
  article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications
  publication-title: BioMed. Eng. Online
– volume: 55
  start-page: 105
  year: 2020
  end-page: 115
  ident: b5
  article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare
  publication-title: Inf. Fusion
– volume: 20
  start-page: 4361
  year: 2020
  end-page: 4371
  ident: b16
  article-title: Context-aware human activity recognition (cahar) in-the-wild using smartphone accelerometer
  publication-title: IEEE Sens. J.
– volume: 118
  year: 2020
  ident: b51
  article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values
  publication-title: Transp. Res. C
– volume: 17
  start-page: 160
  year: 2017
  end-page: 165
  ident: b42
  article-title: An effective deep autoencoder approach for online smartphone-based human activity recognition
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 9
  year: 2022
  ident: b6
  article-title: Machine and cognitive intelligence for human health: systematic review
  publication-title: Brain Inform.
– start-page: 6638
  year: 2022
  end-page: 6660
  ident: b32
  article-title: The AI doctor is in: A survey of task-oriented dialogue systems for healthcare applications
  publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
– volume: 19
  start-page: 87
  year: 2021
  end-page: 114
  ident: b11
  article-title: Federated learning and privacy
  publication-title: Queue
– year: 2020
  ident: b27
  article-title: Semi-supervised federated learning for activity recognition
– volume: 19
  start-page: 329
  year: 2022
  end-page: 342
  ident: b25
  article-title: A federated learning based semi-supervised credit prediction approach enhanced by multi-layer label mean
  publication-title: Web Intell.
– volume: 8
  start-page: 768
  year: 2019
  ident: b24
  article-title: A survey on internet of things and cloud computing for healthcare
  publication-title: Electronics
– year: 2015
  ident: b41
  article-title: Human activity recognition using wearable sensors by deep convolutional neural networks
  publication-title: Proceedings of the 23rd ACM International Conference on Multimedia
– volume: 15
  year: 2022
  ident: b14
  article-title: Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors
  publication-title: Array
– volume: 2
  year: 2020
  ident: b1
  article-title: Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments
  publication-title: Front. Digit. Health
– start-page: 1
  year: 2020
  end-page: 26
  ident: b23
  article-title: Fog, edge and pervasive computing in intelligent internet of things driven applications in healthcare: Challenges, limitations and future use
– volume: 5
  start-page: 01
  year: 2015
  end-page: 11
  ident: b56
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: Int. J. Data Min. Knowl. Manag. Process.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b37
  article-title: A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison
  publication-title: 2021 IEEE International Conference on Pervasive Computing and Communications
– volume: 24
  start-page: 805
  year: 2021
  end-page: 823
  ident: b18
  article-title: On prediction of traffic flows in smart cities: a multitask deep learning based approach
  publication-title: World Wide Web
– volume: 59
  start-page: 235
  year: 2016
  end-page: 244
  ident: b39
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
– volume: 77
  start-page: 2237
  year: 2020
  end-page: 2250
  ident: b52
  article-title: An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in internet of medical things environment
  publication-title: J. Supercomput.
– volume: 20
  start-page: 4361
  issue: 8
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b16
  article-title: Context-aware human activity recognition (cahar) in-the-wild using smartphone accelerometer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2964278
– volume: 34
  start-page: 2253
  issue: 10
  year: 2019
  ident: 10.1016/j.knosys.2022.109929_b4
  article-title: Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning–based surveillance platform
  publication-title: J. Arthroplasty
  doi: 10.1016/j.arth.2019.05.021
– volume: 14
  start-page: 325
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2022.109929_b3
  article-title: An intelligent recommender system based on predictive analysis in telehealthcare environment
  publication-title: Web Intell.
  doi: 10.3233/WEB-160348
– volume: 21
  start-page: 18214
  issue: 16
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b33
  article-title: Novel ensemble algorithm for multiple activity recognition in elderly people exploiting ubiquitous sensing devices
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3085362
– volume: 18
  start-page: 1055
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b38
  article-title: Divide and conquer-based 1d CNN human activity recognition using test data sharpening
  publication-title: Sensors
  doi: 10.3390/s18041055
– volume: 10
  start-page: 56720
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b9
  article-title: A review of the trends and challenges in adopting natural language processing methods for education feedback analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3177752
– volume: 33
  start-page: 13705
  issue: 20
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b50
  article-title: Dilated causal convolution with multi-head self attention for sensor human activity recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06007-5
– volume: 17
  start-page: 160
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.109929_b42
  article-title: An effective deep autoencoder approach for online smartphone-based human activity recognition
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 14
  start-page: S6
  issue: Suppl 2
  year: 2015
  ident: 10.1016/j.knosys.2022.109929_b54
  article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications
  publication-title: BioMed. Eng. Online
  doi: 10.1186/1475-925X-14-S2-S6
– volume: 59
  start-page: 235
  year: 2016
  ident: 10.1016/j.knosys.2022.109929_b39
  article-title: Human activity recognition with smartphone sensors using deep learning neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.04.032
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b37
  article-title: A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison
– volume: 19
  start-page: 87
  issue: 5
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b11
  article-title: Federated learning and privacy
  publication-title: Queue
  doi: 10.1145/3494834.3500240
– volume: 118
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b51
  article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102674
– volume: 77
  start-page: 2237
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b52
  article-title: An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in internet of medical things environment
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03361-4
– volume: 21
  start-page: 776
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b12
  article-title: Remote patient monitoring using radio frequency identification (RFID) technology and machine learning for early detection of suicidal behaviour in mental health facilities
  publication-title: Sensors
  doi: 10.3390/s21030776
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b35
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 185
  year: 2019
  ident: 10.1016/j.knosys.2022.109929_b36
  article-title: Assessing physical activity and functional fitness level using convolutional neural networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104939
– year: 2022
  ident: 10.1016/j.knosys.2022.109929_b29
  article-title: Federated markov logic network for indoor activity recognition in internet of things
  publication-title: Knowl.-Based Syst.
– year: 2020
  ident: 10.1016/j.knosys.2022.109929_b26
  article-title: Evaluation of federated learning aggregation algorithms
– start-page: 6638
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b32
  article-title: The AI doctor is in: A survey of task-oriented dialogue systems for healthcare applications
– volume: 9
  start-page: 68985
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b49
  article-title: Isplinception: An inception-resnet deep learning architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3078184
– start-page: 46
  year: 2015
  ident: 10.1016/j.knosys.2022.109929_b40
  article-title: Deep convolutional neural networks for human activity recognition with smartphone sensors
– volume: 8
  start-page: 768
  issue: 7
  year: 2019
  ident: 10.1016/j.knosys.2022.109929_b24
  article-title: A survey on internet of things and cloud computing for healthcare
  publication-title: Electronics
  doi: 10.3390/electronics8070768
– volume: 163
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b10
  article-title: Structural health monitoring using wireless smart sensor network – an overview
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108113
– start-page: 3330
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b47
  article-title: Environment-independent wi-fi human activity recognition with adversarial network
– year: 2020
  ident: 10.1016/j.knosys.2022.109929_b27
– volume: 14
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b8
  article-title: A novel image representation of GNSS correlation for deep learning multipath detection
  publication-title: Array
  doi: 10.1016/j.array.2022.100167
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b23
– volume: 16
  start-page: 62
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.109929_b17
  article-title: Recognizing detailed human context in the wild from smartphones and smartwatches
  publication-title: IEEE Pervasive Comput.
  doi: 10.1109/MPRV.2017.3971131
– volume: 62
  start-page: 915
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b43
  article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.027
– volume: 17
  start-page: 2556
  issue: 11
  year: 2017
  ident: 10.1016/j.knosys.2022.109929_b20
  article-title: Deep recurrent neural networks for human activity recognition
  publication-title: Sensors
  doi: 10.3390/s17112556
– volume: 19
  start-page: 329
  issue: 4
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b25
  article-title: A federated learning based semi-supervised credit prediction approach enhanced by multi-layer label mean
  publication-title: Web Intell.
  doi: 10.3233/WEB-210476
– start-page: 59
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b7
  article-title: Post-COVID-19: Deep image processing AI to analyze social distancing in a human community
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b31
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2975749
– start-page: 578
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b44
  article-title: Model and principles for the implementation of neural-like structures based on geometric data transformations
– volume: 15
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b14
  article-title: Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors
  publication-title: Array
  doi: 10.1016/j.array.2022.100190
– year: 2021
  ident: 10.1016/j.knosys.2022.109929_b30
  article-title: ClusterFL
– start-page: 1
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b48
  article-title: Classification of human activities based on radar signals using 1d-cnn and lstm
– volume: 55
  start-page: 105
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b5
  article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.08.004
– year: 2020
  ident: 10.1016/j.knosys.2022.109929_b19
  article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter
  publication-title: World Wide Web
– year: 2015
  ident: 10.1016/j.knosys.2022.109929_b41
  article-title: Human activity recognition using wearable sensors by deep convolutional neural networks
– start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b15
  article-title: Human activity recognition using smartphones
– year: 2016
  ident: 10.1016/j.knosys.2022.109929_b45
– volume: 24
  start-page: 805
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b18
  article-title: On prediction of traffic flows in smart cities: a multitask deep learning based approach
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00877-4
– volume: 32
  start-page: 15673
  issue: 20
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b22
  article-title: Comparison of offline and real-time human activity recognition results using machine learning techniques
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3437-x
– volume: 6
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b46
  article-title: Multimodal neurons in artificial neural networks
  publication-title: Distill
  doi: 10.23915/distill.00030
– start-page: 91
  year: 2014
  ident: 10.1016/j.knosys.2022.109929_b53
  article-title: mHealthDroid: A novel framework for agile development of mobile health applications
– volume: 121
  start-page: 381
  issue: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b13
  article-title: Performance analysis of machine learning algorithms for smartphone-based human activity recognition
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08641-7
– volume: 2
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b1
  article-title: Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments
  publication-title: Front. Digit. Health
  doi: 10.3389/fdgth.2020.00008
– volume: 5
  start-page: 01
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2022.109929_b56
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: Int. J. Data Min. Knowl. Manag. Process.
  doi: 10.5121/ijdkp.2015.5201
– volume: 63
  start-page: 33
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2022.109929_b57
  article-title: Federated learning for privacy-preserving AI
  publication-title: Commun. ACM
  doi: 10.1145/3387107
– start-page: 3
  year: 2013
  ident: 10.1016/j.knosys.2022.109929_b55
  article-title: A public domain dataset for human activity recognition using smartphones
– start-page: 165
  year: 2018
  ident: 10.1016/j.knosys.2022.109929_b2
  article-title: A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications
– volume: 229
  year: 2021
  ident: 10.1016/j.knosys.2022.109929_b28
  article-title: A federated learning system with enhanced feature extraction for human activity recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107338
– year: 2012
  ident: 10.1016/j.knosys.2022.109929_b21
  article-title: USc-HAD
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b6
  article-title: Machine and cognitive intelligence for human health: systematic review
  publication-title: Brain Inform.
  doi: 10.1186/s40708-022-00153-9
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2022.109929_b34
  article-title: Personalized human activity recognition using deep learning and edge-cloud architecture
  publication-title: J. Ambient Intell. Humaniz. Comput.
SSID ssj0002218
Score 2.5536132
Snippet Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109929
SubjectTerms ANN
Bi-LSTM
CNN
Federated learning
HAR
RPM
Title FedStack: Personalized activity monitoring using stacked federated learning
URI https://dx.doi.org/10.1016/j.knosys.2022.109929
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtWl2m816K8VSLRZBC72FZB-lVtti60EP_nZnNokPEAWPCTMQJvP4dpn5hpBT6YJY8pCzKApwJCd0LOORZlboWCHhmItx3vl6EPWG4mrUGlVIp5yFwbbKIvfnOd1n6-JNo7BmYzGZNG4BHIC_QsEKPS_aCCfYhUQvP3v7bPMIQ3_Hh8IMpcvxOd_jNZ3Nly9I2h2GyKukPND8oTx9KTndLbJRYEXazj9nm1TsbIdslnsYaBGWu6TftQZAo56e05sSW79aQ3FmAVdD0EcfuHiDR7HPfUyXKA0SDqkkAG0aWmyPGO-RYffirtNjxZIEpgE7rZhuBk6lCsIqc1o4pY0yXMbayiiF4xTXqbKB4YJzB4c5-GUiNi2pjAickS4N-T6pzuYze0CoBSgRZ5AdZRaLZtpUymUOSjzUeDhC87RGeGmbRBcM4rjI4iEpW8Xuk9yiCVo0yS1aI-xDa5EzaPwhL0uzJ988IYEk_6vm4b81j8g6Pvk2ldYxqa6enu0JgI1VVvfeVCdr7ct-b_AOZDTUmQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PejFt1ife_AammbzWm-lWKp9INhCbyHZh2i1LbYe9Nc7k2yKgih4TWYgTObx7TLzDcBlZNw44h53wtClkRzPOBkPpaN9GQsiHDMxzTv3B2Fn5N-Og_EatMpZGGqrtLm_yOl5trZP6taa9fnjY_0ewQH6KxYsL-dFG69DldipggpUmzfdzmCVkD0vv-YjeYcUygm6vM1rMp0t3om32_OIWknkWPOHCvWl6rR3YMvCRdYsvmgX1vR0D7bLVQzMRuY-dNtaIW6Ukyt2V8LrD60YjS3Qdgj2kscuXeIxanV_YAuSRglDbBIIOBWzCyQeDmDUvh62Oo7dk-BIhE9LRzZcI1KBkZUZ6RshlVA8iqWOwhRPVFymQruK-5wbPM_hX_NjFURC-a5RkUk9fgiV6Wyqj4BpRBNxhgkyymK_kTaEMJnBKo9lHk_RPK0BL22TSEsiTrssnpOyW-wpKSyakEWTwqI1cFZa84JE4w_5qDR78s0ZEszzv2oe_1vzAjY6w34v6d0MuiewSW_yrpXgFCrL1zd9hthjmZ1b3_oEuGnXSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedStack%3A+Personalized+activity+monitoring+using+stacked+federated+learning&rft.jtitle=Knowledge-based+systems&rft.au=Shaik%2C+Thanveer&rft.au=Tao%2C+Xiaohui&rft.au=Higgins%2C+Niall&rft.au=Gururajan%2C+Raj&rft.date=2022-12-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=257&rft_id=info:doi/10.1016%2Fj.knosys.2022.109929&rft.externalDocID=S095070512201022X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon