FedStack: Personalized activity monitoring using stacked federated learning
Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations...
Saved in:
Published in | Knowledge-based systems Vol. 257; p. 109929 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations and challenges such as predicting and classifying vital signs and physical movements, which are considered crucial tasks. Federated learning is a relatively new AI technique designed to enhance data privacy by decentralizing traditional machine learning modeling. However, traditional federated learning requires identical architectural models to be trained across the local clients and global servers. This limits global model architecture due to the lack of local models’ heterogeneity. To overcome this, a novel federated learning architecture, FedStack, which supports ensembling heterogeneous architectural client models was proposed in this study. This work offers a protected privacy system for hospitalized in-patients in a decentralized approach and identifies optimum sensor placement. The proposed architecture was applied to a mobile health sensor benchmark dataset from 10 different subjects to classify 12 routine activities. Three AI models, artificial neural network (ANN), convolutional neural network (CNN), and bidirectional long short-term memory (Bi-LSTM) were trained on individual subject data. The federated learning architecture was applied to these models to build local and global models capable of state-of-the-art performances. The local CNN model outperformed ANN and Bi-LSTM models on each subject data. Our proposed work has demonstrated better performance for heterogeneous stacking of the local models compared to homogeneous stacking. Further analysis of the global heterogeneous CNN model determined that the optimum placement of the sensors on human limbs resulted in better activity recognition. This work sets the stage to build an enhanced RPM system that incorporates client privacy to assist with clinical observations for patients in an acute mental health facility and ultimately help to prevent unexpected death.
•A novel federated architecture, FedStack, is proposed to overcome the heterogeneity limitation in traditional federated learning.•Enhanced personalized patient monitoring by adopting the proposed novel federated architecture to classify physical activities.•FedStack framework outperformed the baseline models’ performance in federated learning. |
---|---|
AbstractList | Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from superficial vessels. There is a growing interest in applying artificial intelligence (AI) to this area of healthcare by addressing known limitations and challenges such as predicting and classifying vital signs and physical movements, which are considered crucial tasks. Federated learning is a relatively new AI technique designed to enhance data privacy by decentralizing traditional machine learning modeling. However, traditional federated learning requires identical architectural models to be trained across the local clients and global servers. This limits global model architecture due to the lack of local models’ heterogeneity. To overcome this, a novel federated learning architecture, FedStack, which supports ensembling heterogeneous architectural client models was proposed in this study. This work offers a protected privacy system for hospitalized in-patients in a decentralized approach and identifies optimum sensor placement. The proposed architecture was applied to a mobile health sensor benchmark dataset from 10 different subjects to classify 12 routine activities. Three AI models, artificial neural network (ANN), convolutional neural network (CNN), and bidirectional long short-term memory (Bi-LSTM) were trained on individual subject data. The federated learning architecture was applied to these models to build local and global models capable of state-of-the-art performances. The local CNN model outperformed ANN and Bi-LSTM models on each subject data. Our proposed work has demonstrated better performance for heterogeneous stacking of the local models compared to homogeneous stacking. Further analysis of the global heterogeneous CNN model determined that the optimum placement of the sensors on human limbs resulted in better activity recognition. This work sets the stage to build an enhanced RPM system that incorporates client privacy to assist with clinical observations for patients in an acute mental health facility and ultimately help to prevent unexpected death.
•A novel federated architecture, FedStack, is proposed to overcome the heterogeneity limitation in traditional federated learning.•Enhanced personalized patient monitoring by adopting the proposed novel federated architecture to classify physical activities.•FedStack framework outperformed the baseline models’ performance in federated learning. |
ArticleNumber | 109929 |
Author | Gururajan, Raj Shaik, Thanveer Higgins, Niall Tao, Xiaohui Acharya, U. Rajendra Li, Yuefeng Zhou, Xujuan |
Author_xml | – sequence: 1 givenname: Thanveer orcidid: 0000-0002-9730-665X surname: Shaik fullname: Shaik, Thanveer email: thanveer.shaik@usq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba 4350, Australia – sequence: 2 givenname: Xiaohui orcidid: 0000-0002-0020-077X surname: Tao fullname: Tao, Xiaohui email: Xiaohui.Tao@usq.edu.au organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba 4350, Australia – sequence: 3 givenname: Niall orcidid: 0000-0002-3260-1711 surname: Higgins fullname: Higgins, Niall email: Niall.Higgins@health.qld.gov.au organization: Metro North Hospital and Health Service, Royal Brisbane and Women’s Hospital, Herston 4029, Australia – sequence: 4 givenname: Raj surname: Gururajan fullname: Gururajan, Raj email: Raj.Gururajan@usq.edu.au organization: School of Business, University of Southern Queensland, Springfield 4300, Australia – sequence: 5 givenname: Yuefeng surname: Li fullname: Li, Yuefeng email: y2.li@qut.edu.au organization: School of Computer Science, Queensland University of Technology, Brisbane, Australia – sequence: 6 givenname: Xujuan orcidid: 0000-0002-1736-739X surname: Zhou fullname: Zhou, Xujuan email: Xujuan.Zhou@usq.edu.au organization: School of Business, University of Southern Queensland, Springfield 4300, Australia – sequence: 7 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: Rajendra_Udyavara_ACHARYA@np.edu.sg organization: Singapore University of Social Sciences, Singapore |
BookMark | eNqFkMFKAzEQhoNUsK2-gYd9ga1JNttsehCkWBULCuo5pMlE0m4TSWKhPr27rCcPepkZZv7_h_kmaOSDB4QuCZ4RTOZX29nOh3RMM4op7VZCUHGCxqThtOQMixEaY1HjkuOanKFJSluMOyVpxuhxBeYlK71bFM8QU_CqdV9gCqWzO7h8LPbBuxyi8-_FZ-pr6tWdwoKBqHI3taCi707n6NSqNsHFT5-it9Xt6_K-XD_dPSxv1qWuappLTbAVSnDBNlYzK7QRpuKNBj5XtKGVVgKwqVhVWdIw2ABrTM2FYdgabhWtpogNuTqGlCJY-RHdXsWjJFj2QORWDkBkD0QOQDrb4pdNu6yyCz5H5dr_zNeDGbrHDg6iTNqB12BcBJ2lCe7vgG9qL4Ml |
CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110815 crossref_primary_10_1016_j_envdev_2024_101002 crossref_primary_10_1109_TETCI_2024_3398024 crossref_primary_10_1016_j_caeai_2023_100187 crossref_primary_10_1016_j_knosys_2025_113237 crossref_primary_10_1109_TNNLS_2023_3269062 crossref_primary_10_1109_OJCOMS_2024_3484228 crossref_primary_10_1016_j_egyai_2023_100303 crossref_primary_10_1016_j_patrec_2023_12_004 crossref_primary_10_3390_mti7070067 crossref_primary_10_1109_JBHI_2024_3428512 crossref_primary_10_1109_TCE_2024_3460469 crossref_primary_10_53759_7669_jmc202303034 crossref_primary_10_1016_j_inffus_2023_102040 crossref_primary_10_1109_TEM_2024_3386580 crossref_primary_10_1016_j_media_2025_103497 crossref_primary_10_1016_j_softx_2024_101885 crossref_primary_10_1109_TKDE_2024_3382726 crossref_primary_10_1007_s10586_024_04285_x crossref_primary_10_1016_j_patter_2024_101006 crossref_primary_10_1016_j_asoc_2025_112747 crossref_primary_10_1002_widm_1485 crossref_primary_10_1016_j_iot_2023_100845 crossref_primary_10_1016_j_knosys_2023_110872 crossref_primary_10_1016_j_nlp_2022_100003 crossref_primary_10_1080_00401706_2024_2327341 |
Cites_doi | 10.1109/JSEN.2020.2964278 10.1016/j.arth.2019.05.021 10.3233/WEB-160348 10.1109/JSEN.2021.3085362 10.3390/s18041055 10.1109/ACCESS.2022.3177752 10.1007/s00521-021-06007-5 10.1186/1475-925X-14-S2-S6 10.1016/j.eswa.2016.04.032 10.1145/3494834.3500240 10.1016/j.trc.2020.102674 10.1007/s11227-020-03361-4 10.3390/s21030776 10.1007/s12525-021-00475-2 10.1016/j.knosys.2019.104939 10.1109/ACCESS.2021.3078184 10.3390/electronics8070768 10.1016/j.ymssp.2021.108113 10.1016/j.array.2022.100167 10.1109/MPRV.2017.3971131 10.1016/j.asoc.2017.09.027 10.3390/s17112556 10.3233/WEB-210476 10.1109/MSP.2020.2975749 10.1016/j.array.2022.100190 10.1016/j.inffus.2019.08.004 10.1007/s11280-021-00877-4 10.1007/s00521-018-3437-x 10.23915/distill.00030 10.1007/s11277-021-08641-7 10.3389/fdgth.2020.00008 10.5121/ijdkp.2015.5201 10.1145/3387107 10.1016/j.knosys.2021.107338 10.1186/s40708-022-00153-9 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2022.109929 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2022_109929 S095070512201022X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH UHS WUQ |
ID | FETCH-LOGICAL-c352t-c10f9a9794bfc4f9cd9d378ce76a2823ca9e0d3433f184ebe48d579d40fd7fa23 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Tue Jul 01 00:20:23 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Fri Feb 23 02:38:49 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bi-LSTM HAR ANN CNN Federated learning RPM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-c10f9a9794bfc4f9cd9d378ce76a2823ca9e0d3433f184ebe48d579d40fd7fa23 |
ORCID | 0000-0002-3260-1711 0000-0002-1736-739X 0000-0002-9730-665X 0000-0002-0020-077X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S095070512201022X |
ParticipantIDs | crossref_primary_10_1016_j_knosys_2022_109929 crossref_citationtrail_10_1016_j_knosys_2022_109929 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_109929 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-05 |
PublicationDateYYYYMMDD | 2022-12-05 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bulbul, Cetin, Dogru (b15) 2018 Ek, Portet, Lalanda, Vega (b37) 2021 Tkachenko, Izonin (b44) 2018 Blais, Couellan, Munin (b8) 2022; 14 Wu, Redouté, Yuce (b2) 2018 Zhu, Chen, Ye (b48) 2020 Class-Peters, Adoni, Nahhal, Byed, Krichen, Kimpolo, Kalala (b7) 2021 Ronao, Cho (b40) 2015 Vaizman, Ellis, Lanckriet (b17) 2017; 16 Chen, Cheng, Wang, Tao, Xie, Xu (b6) 2022; 9 Suto, Oniga, Lung, Orha (b22) 2018; 32 Ronao, Cho (b39) 2016; 59 M., M.N. (b56) 2015; 5 Lafta, Zhang, Tao, Li, Tseng, Luo, Chen (b3) 2016; 14 Jiang, Yin (b41) 2015 Dang, Piran, Han, Min, Moon (b24) 2019; 8 Liaqat, Dashtipour, Shah, Rizwan, Alotaibi, Althobaiti, Arshad, Assaleh, Ramzan (b33) 2021; 21 Russell, Norvig (b45) 2016 Banos, Villalonga, Garcia, Saez, Damas, Holgado-Terriza, Lee, Pomares, Rojas (b54) 2015; 14 Ignatov (b43) 2018; 62 Ronald, Poulose, Han (b49) 2021; 9 Li, Sahu, Talwalkar, Smith (b31) 2020; 37 Tao, Shaik, Higgins, Gururajan, Zhou (b12) 2021; 21 Xiao, Xu, Xing, Song, Wang, Zhao (b28) 2021; 229 Zhang, Sawchuk (b21) 2012 Zhang, Ren, Zhu, Zhou, Liu, Lu, Ning (b29) 2022 Ek, Portet, Lalanda, Vega (b26) 2020 Hassan, Ullah, Hossain, Alelaiwi (b52) 2020; 77 Cheng, Liu, Chen, Yang (b57) 2020; 63 Ramkumar, Haeberle, Ramanathan, Cantrell, Navarro, Mont, Bloomfield, Patterson (b4) 2019; 34 Essien, Petrounias, Sampaio, Sampaio (b19) 2020 Cui, Ke, Pu, Wang (b51) 2020; 118 Banos, Garcia, Holgado-Terriza, Damas, Pomares, Rojas, Saez, Villalonga (b53) 2014 Seshadri, Davies, Harlow, Hsu, Knighton, Walker, Voos, Drummond (b1) 2020; 2 Wang, Xu, Liu, Zhou, Zhao (b18) 2021; 24 Valizadeh, Parde (b32) 2022 Janiesch, Zschech, Heinrich (b35) 2021; 31 Almaslukh, AlMuhtadi, Artoli (b42) 2017; 17 Sofi, Regita, Rane, Lau (b10) 2022; 163 Zhao, Liu, Li, Barnaghi, Haddadi (b27) 2020 Murad, Pyun (b20) 2017; 17 Asim, Azam, Ehatisham-ul Haq, Naeem, Khalid (b16) 2020; 20 Li, Long, Bi, Wang, Zhang, Tao (b25) 2022; 19 Wang, Chen, Yang, Xu (b47) 2021 Uddin, Hassan, Alsanad, Savaglio (b5) 2020; 55 Alam, Qazi, Iqbal, Raza (b23) 2020 Harsha, Anudeep, Vikash, Ratnam (b13) 2021; 121 Ouyang, Xie, Zhou, Huang, Xing (b30) 2021 Bonawitz, Kairouz, McMahan, Ramage (b11) 2021; 19 Goh, Cammarata, Voss, Carter, Petrov, Schubert, Radford, Olah (b46) 2021; 6 Halim (b14) 2022; 15 Galán-Mercant, Ortiz, Herrera-Viedma, Tomas, Fernandes, Moral-Munoz (b36) 2019; 185 Cho, Yoon (b38) 2018; 18 Anguita, Ghio, Oneto, Parra, Reyes-Ortiz (b55) 2013 Alawneh, Al-Ayyoub, Al-Sharif, Shatnawi (b34) 2022 Hamad, Kimura, Yang, Woo, Wei (b50) 2021; 33 Shaik, Tao, Li, Dann, McDonald, Redmond, Galligan (b9) 2022; 10 Bonawitz (10.1016/j.knosys.2022.109929_b11) 2021; 19 Anguita (10.1016/j.knosys.2022.109929_b55) 2013 Tkachenko (10.1016/j.knosys.2022.109929_b44) 2018 Lafta (10.1016/j.knosys.2022.109929_b3) 2016; 14 Ramkumar (10.1016/j.knosys.2022.109929_b4) 2019; 34 Banos (10.1016/j.knosys.2022.109929_b54) 2015; 14 Cho (10.1016/j.knosys.2022.109929_b38) 2018; 18 Zhu (10.1016/j.knosys.2022.109929_b48) 2020 Murad (10.1016/j.knosys.2022.109929_b20) 2017; 17 Hamad (10.1016/j.knosys.2022.109929_b50) 2021; 33 Class-Peters (10.1016/j.knosys.2022.109929_b7) 2021 Alawneh (10.1016/j.knosys.2022.109929_b34) 2022 Asim (10.1016/j.knosys.2022.109929_b16) 2020; 20 Goh (10.1016/j.knosys.2022.109929_b46) 2021; 6 Ek (10.1016/j.knosys.2022.109929_b26) 2020 Bulbul (10.1016/j.knosys.2022.109929_b15) 2018 Blais (10.1016/j.knosys.2022.109929_b8) 2022; 14 Liaqat (10.1016/j.knosys.2022.109929_b33) 2021; 21 Jiang (10.1016/j.knosys.2022.109929_b41) 2015 Ek (10.1016/j.knosys.2022.109929_b37) 2021 Ouyang (10.1016/j.knosys.2022.109929_b30) 2021 Valizadeh (10.1016/j.knosys.2022.109929_b32) 2022 Cui (10.1016/j.knosys.2022.109929_b51) 2020; 118 Alam (10.1016/j.knosys.2022.109929_b23) 2020 Ronao (10.1016/j.knosys.2022.109929_b40) 2015 Ronald (10.1016/j.knosys.2022.109929_b49) 2021; 9 Ignatov (10.1016/j.knosys.2022.109929_b43) 2018; 62 Dang (10.1016/j.knosys.2022.109929_b24) 2019; 8 Galán-Mercant (10.1016/j.knosys.2022.109929_b36) 2019; 185 Ronao (10.1016/j.knosys.2022.109929_b39) 2016; 59 Wang (10.1016/j.knosys.2022.109929_b47) 2021 Uddin (10.1016/j.knosys.2022.109929_b5) 2020; 55 Shaik (10.1016/j.knosys.2022.109929_b9) 2022; 10 Russell (10.1016/j.knosys.2022.109929_b45) 2016 Cheng (10.1016/j.knosys.2022.109929_b57) 2020; 63 Xiao (10.1016/j.knosys.2022.109929_b28) 2021; 229 Zhang (10.1016/j.knosys.2022.109929_b29) 2022 Li (10.1016/j.knosys.2022.109929_b25) 2022; 19 Li (10.1016/j.knosys.2022.109929_b31) 2020; 37 Zhao (10.1016/j.knosys.2022.109929_b27) 2020 Suto (10.1016/j.knosys.2022.109929_b22) 2018; 32 Wang (10.1016/j.knosys.2022.109929_b18) 2021; 24 Seshadri (10.1016/j.knosys.2022.109929_b1) 2020; 2 Almaslukh (10.1016/j.knosys.2022.109929_b42) 2017; 17 M. (10.1016/j.knosys.2022.109929_b56) 2015; 5 Wu (10.1016/j.knosys.2022.109929_b2) 2018 Hassan (10.1016/j.knosys.2022.109929_b52) 2020; 77 Tao (10.1016/j.knosys.2022.109929_b12) 2021; 21 Essien (10.1016/j.knosys.2022.109929_b19) 2020 Halim (10.1016/j.knosys.2022.109929_b14) 2022; 15 Janiesch (10.1016/j.knosys.2022.109929_b35) 2021; 31 Vaizman (10.1016/j.knosys.2022.109929_b17) 2017; 16 Banos (10.1016/j.knosys.2022.109929_b53) 2014 Chen (10.1016/j.knosys.2022.109929_b6) 2022; 9 Sofi (10.1016/j.knosys.2022.109929_b10) 2022; 163 Zhang (10.1016/j.knosys.2022.109929_b21) 2012 Harsha (10.1016/j.knosys.2022.109929_b13) 2021; 121 |
References_xml | – volume: 14 year: 2022 ident: b8 article-title: A novel image representation of GNSS correlation for deep learning multipath detection publication-title: Array – volume: 63 start-page: 33 year: 2020 end-page: 36 ident: b57 article-title: Federated learning for privacy-preserving AI publication-title: Commun. ACM – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: b35 article-title: Machine learning and deep learning publication-title: Electron. Mark. – year: 2021 ident: b30 article-title: ClusterFL publication-title: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services – start-page: 165 year: 2018 end-page: 173 ident: b2 article-title: A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications publication-title: Internet of Things – year: 2022 ident: b29 article-title: Federated markov logic network for indoor activity recognition in internet of things publication-title: Knowl.-Based Syst. – volume: 32 start-page: 15673 year: 2018 end-page: 15686 ident: b22 article-title: Comparison of offline and real-time human activity recognition results using machine learning techniques publication-title: Neural Comput. Appl. – start-page: 46 year: 2015 end-page: 53 ident: b40 article-title: Deep convolutional neural networks for human activity recognition with smartphone sensors publication-title: Neural Information Processing – year: 2016 ident: b45 article-title: Artificial intelligence: a modern approach – start-page: 91 year: 2014 end-page: 98 ident: b53 article-title: mHealthDroid: A novel framework for agile development of mobile health applications publication-title: Ambient Assisted Living and Daily Activities – year: 2020 ident: b26 article-title: Evaluation of federated learning aggregation algorithms publication-title: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers – volume: 229 year: 2021 ident: b28 article-title: A federated learning system with enhanced feature extraction for human activity recognition publication-title: Knowl.-Based Syst. – start-page: 59 year: 2021 end-page: 68 ident: b7 article-title: Post-COVID-19: Deep image processing AI to analyze social distancing in a human community publication-title: Advances on Smart and Soft Computing – start-page: 578 year: 2018 end-page: 587 ident: b44 article-title: Model and principles for the implementation of neural-like structures based on geometric data transformations publication-title: Advances in Intelligent Systems and Computing – start-page: 3330 year: 2021 end-page: 3334 ident: b47 article-title: Environment-independent wi-fi human activity recognition with adversarial network publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing – start-page: 1 year: 2018 end-page: 6 ident: b15 article-title: Human activity recognition using smartphones publication-title: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies – volume: 21 start-page: 776 year: 2021 ident: b12 article-title: Remote patient monitoring using radio frequency identification (RFID) technology and machine learning for early detection of suicidal behaviour in mental health facilities publication-title: Sensors – volume: 14 start-page: 325 year: 2016 end-page: 336 ident: b3 article-title: An intelligent recommender system based on predictive analysis in telehealthcare environment publication-title: Web Intell. – volume: 33 start-page: 13705 year: 2021 end-page: 13722 ident: b50 article-title: Dilated causal convolution with multi-head self attention for sensor human activity recognition publication-title: Neural Comput. Appl. – volume: 121 start-page: 381 year: 2021 end-page: 398 ident: b13 article-title: Performance analysis of machine learning algorithms for smartphone-based human activity recognition publication-title: Wirel. Pers. Commun. – volume: 6 year: 2021 ident: b46 article-title: Multimodal neurons in artificial neural networks publication-title: Distill – start-page: 1 year: 2022 end-page: 13 ident: b34 article-title: Personalized human activity recognition using deep learning and edge-cloud architecture publication-title: J. Ambient Intell. Humaniz. Comput. – year: 2020 ident: b19 article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter publication-title: World Wide Web – volume: 163 year: 2022 ident: b10 article-title: Structural health monitoring using wireless smart sensor network – an overview publication-title: Mech. Syst. Signal Process. – volume: 34 start-page: 2253 year: 2019 end-page: 2259 ident: b4 article-title: Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning–based surveillance platform publication-title: J. Arthroplasty – volume: 9 start-page: 68985 year: 2021 end-page: 69001 ident: b49 article-title: Isplinception: An inception-resnet deep learning architecture for human activity recognition publication-title: IEEE Access – volume: 17 start-page: 2556 year: 2017 ident: b20 article-title: Deep recurrent neural networks for human activity recognition publication-title: Sensors – volume: 185 year: 2019 ident: b36 article-title: Assessing physical activity and functional fitness level using convolutional neural networks publication-title: Knowl.-Based Syst. – volume: 21 start-page: 18214 year: 2021 end-page: 18221 ident: b33 article-title: Novel ensemble algorithm for multiple activity recognition in elderly people exploiting ubiquitous sensing devices publication-title: IEEE Sens. J. – volume: 10 start-page: 56720 year: 2022 end-page: 56739 ident: b9 article-title: A review of the trends and challenges in adopting natural language processing methods for education feedback analysis publication-title: IEEE Access – volume: 16 start-page: 62 year: 2017 end-page: 74 ident: b17 article-title: Recognizing detailed human context in the wild from smartphones and smartwatches publication-title: IEEE Pervasive Comput. – start-page: 3 year: 2013 ident: b55 article-title: A public domain dataset for human activity recognition using smartphones publication-title: Esann, Vol. 3 – volume: 62 start-page: 915 year: 2018 end-page: 922 ident: b43 article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks publication-title: Appl. Soft Comput. – year: 2012 ident: b21 article-title: USc-HAD publication-title: Proceedings of the 2012 ACM Conference on Ubiquitous Computing – volume: 18 start-page: 1055 year: 2018 ident: b38 article-title: Divide and conquer-based 1d CNN human activity recognition using test data sharpening publication-title: Sensors – start-page: 1 year: 2020 end-page: 5 ident: b48 article-title: Classification of human activities based on radar signals using 1d-cnn and lstm publication-title: 2020 IEEE International Symposium on Circuits and Systems – volume: 37 start-page: 50 year: 2020 end-page: 60 ident: b31 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. – volume: 14 start-page: S6 year: 2015 ident: b54 article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications publication-title: BioMed. Eng. Online – volume: 55 start-page: 105 year: 2020 end-page: 115 ident: b5 article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare publication-title: Inf. Fusion – volume: 20 start-page: 4361 year: 2020 end-page: 4371 ident: b16 article-title: Context-aware human activity recognition (cahar) in-the-wild using smartphone accelerometer publication-title: IEEE Sens. J. – volume: 118 year: 2020 ident: b51 article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values publication-title: Transp. Res. C – volume: 17 start-page: 160 year: 2017 end-page: 165 ident: b42 article-title: An effective deep autoencoder approach for online smartphone-based human activity recognition publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 9 year: 2022 ident: b6 article-title: Machine and cognitive intelligence for human health: systematic review publication-title: Brain Inform. – start-page: 6638 year: 2022 end-page: 6660 ident: b32 article-title: The AI doctor is in: A survey of task-oriented dialogue systems for healthcare applications publication-title: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics – volume: 19 start-page: 87 year: 2021 end-page: 114 ident: b11 article-title: Federated learning and privacy publication-title: Queue – year: 2020 ident: b27 article-title: Semi-supervised federated learning for activity recognition – volume: 19 start-page: 329 year: 2022 end-page: 342 ident: b25 article-title: A federated learning based semi-supervised credit prediction approach enhanced by multi-layer label mean publication-title: Web Intell. – volume: 8 start-page: 768 year: 2019 ident: b24 article-title: A survey on internet of things and cloud computing for healthcare publication-title: Electronics – year: 2015 ident: b41 article-title: Human activity recognition using wearable sensors by deep convolutional neural networks publication-title: Proceedings of the 23rd ACM International Conference on Multimedia – volume: 15 year: 2022 ident: b14 article-title: Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors publication-title: Array – volume: 2 year: 2020 ident: b1 article-title: Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments publication-title: Front. Digit. Health – start-page: 1 year: 2020 end-page: 26 ident: b23 article-title: Fog, edge and pervasive computing in intelligent internet of things driven applications in healthcare: Challenges, limitations and future use – volume: 5 start-page: 01 year: 2015 end-page: 11 ident: b56 article-title: A review on evaluation metrics for data classification evaluations publication-title: Int. J. Data Min. Knowl. Manag. Process. – start-page: 1 year: 2021 end-page: 10 ident: b37 article-title: A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison publication-title: 2021 IEEE International Conference on Pervasive Computing and Communications – volume: 24 start-page: 805 year: 2021 end-page: 823 ident: b18 article-title: On prediction of traffic flows in smart cities: a multitask deep learning based approach publication-title: World Wide Web – volume: 59 start-page: 235 year: 2016 end-page: 244 ident: b39 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. – volume: 77 start-page: 2237 year: 2020 end-page: 2250 ident: b52 article-title: An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in internet of medical things environment publication-title: J. Supercomput. – volume: 20 start-page: 4361 issue: 8 year: 2020 ident: 10.1016/j.knosys.2022.109929_b16 article-title: Context-aware human activity recognition (cahar) in-the-wild using smartphone accelerometer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2964278 – volume: 34 start-page: 2253 issue: 10 year: 2019 ident: 10.1016/j.knosys.2022.109929_b4 article-title: Remote patient monitoring using mobile health for total knee arthroplasty: Validation of a wearable and machine learning–based surveillance platform publication-title: J. Arthroplasty doi: 10.1016/j.arth.2019.05.021 – volume: 14 start-page: 325 issue: 4 year: 2016 ident: 10.1016/j.knosys.2022.109929_b3 article-title: An intelligent recommender system based on predictive analysis in telehealthcare environment publication-title: Web Intell. doi: 10.3233/WEB-160348 – volume: 21 start-page: 18214 issue: 16 year: 2021 ident: 10.1016/j.knosys.2022.109929_b33 article-title: Novel ensemble algorithm for multiple activity recognition in elderly people exploiting ubiquitous sensing devices publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3085362 – volume: 18 start-page: 1055 issue: 4 year: 2018 ident: 10.1016/j.knosys.2022.109929_b38 article-title: Divide and conquer-based 1d CNN human activity recognition using test data sharpening publication-title: Sensors doi: 10.3390/s18041055 – volume: 10 start-page: 56720 year: 2022 ident: 10.1016/j.knosys.2022.109929_b9 article-title: A review of the trends and challenges in adopting natural language processing methods for education feedback analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3177752 – volume: 33 start-page: 13705 issue: 20 year: 2021 ident: 10.1016/j.knosys.2022.109929_b50 article-title: Dilated causal convolution with multi-head self attention for sensor human activity recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06007-5 – volume: 17 start-page: 160 issue: 4 year: 2017 ident: 10.1016/j.knosys.2022.109929_b42 article-title: An effective deep autoencoder approach for online smartphone-based human activity recognition publication-title: Int. J. Comput. Sci. Netw. Secur. – volume: 14 start-page: S6 issue: Suppl 2 year: 2015 ident: 10.1016/j.knosys.2022.109929_b54 article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications publication-title: BioMed. Eng. Online doi: 10.1186/1475-925X-14-S2-S6 – volume: 59 start-page: 235 year: 2016 ident: 10.1016/j.knosys.2022.109929_b39 article-title: Human activity recognition with smartphone sensors using deep learning neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.032 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2022.109929_b37 article-title: A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison – volume: 19 start-page: 87 issue: 5 year: 2021 ident: 10.1016/j.knosys.2022.109929_b11 article-title: Federated learning and privacy publication-title: Queue doi: 10.1145/3494834.3500240 – volume: 118 year: 2020 ident: 10.1016/j.knosys.2022.109929_b51 article-title: Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102674 – volume: 77 start-page: 2237 issue: 3 year: 2020 ident: 10.1016/j.knosys.2022.109929_b52 article-title: An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in internet of medical things environment publication-title: J. Supercomput. doi: 10.1007/s11227-020-03361-4 – volume: 21 start-page: 776 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109929_b12 article-title: Remote patient monitoring using radio frequency identification (RFID) technology and machine learning for early detection of suicidal behaviour in mental health facilities publication-title: Sensors doi: 10.3390/s21030776 – volume: 31 start-page: 685 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109929_b35 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 185 year: 2019 ident: 10.1016/j.knosys.2022.109929_b36 article-title: Assessing physical activity and functional fitness level using convolutional neural networks publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.104939 – year: 2022 ident: 10.1016/j.knosys.2022.109929_b29 article-title: Federated markov logic network for indoor activity recognition in internet of things publication-title: Knowl.-Based Syst. – year: 2020 ident: 10.1016/j.knosys.2022.109929_b26 article-title: Evaluation of federated learning aggregation algorithms – start-page: 6638 year: 2022 ident: 10.1016/j.knosys.2022.109929_b32 article-title: The AI doctor is in: A survey of task-oriented dialogue systems for healthcare applications – volume: 9 start-page: 68985 year: 2021 ident: 10.1016/j.knosys.2022.109929_b49 article-title: Isplinception: An inception-resnet deep learning architecture for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3078184 – start-page: 46 year: 2015 ident: 10.1016/j.knosys.2022.109929_b40 article-title: Deep convolutional neural networks for human activity recognition with smartphone sensors – volume: 8 start-page: 768 issue: 7 year: 2019 ident: 10.1016/j.knosys.2022.109929_b24 article-title: A survey on internet of things and cloud computing for healthcare publication-title: Electronics doi: 10.3390/electronics8070768 – volume: 163 year: 2022 ident: 10.1016/j.knosys.2022.109929_b10 article-title: Structural health monitoring using wireless smart sensor network – an overview publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108113 – start-page: 3330 year: 2021 ident: 10.1016/j.knosys.2022.109929_b47 article-title: Environment-independent wi-fi human activity recognition with adversarial network – year: 2020 ident: 10.1016/j.knosys.2022.109929_b27 – volume: 14 year: 2022 ident: 10.1016/j.knosys.2022.109929_b8 article-title: A novel image representation of GNSS correlation for deep learning multipath detection publication-title: Array doi: 10.1016/j.array.2022.100167 – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2022.109929_b23 – volume: 16 start-page: 62 issue: 4 year: 2017 ident: 10.1016/j.knosys.2022.109929_b17 article-title: Recognizing detailed human context in the wild from smartphones and smartwatches publication-title: IEEE Pervasive Comput. doi: 10.1109/MPRV.2017.3971131 – volume: 62 start-page: 915 year: 2018 ident: 10.1016/j.knosys.2022.109929_b43 article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.027 – volume: 17 start-page: 2556 issue: 11 year: 2017 ident: 10.1016/j.knosys.2022.109929_b20 article-title: Deep recurrent neural networks for human activity recognition publication-title: Sensors doi: 10.3390/s17112556 – volume: 19 start-page: 329 issue: 4 year: 2022 ident: 10.1016/j.knosys.2022.109929_b25 article-title: A federated learning based semi-supervised credit prediction approach enhanced by multi-layer label mean publication-title: Web Intell. doi: 10.3233/WEB-210476 – start-page: 59 year: 2021 ident: 10.1016/j.knosys.2022.109929_b7 article-title: Post-COVID-19: Deep image processing AI to analyze social distancing in a human community – volume: 37 start-page: 50 issue: 3 year: 2020 ident: 10.1016/j.knosys.2022.109929_b31 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2975749 – start-page: 578 year: 2018 ident: 10.1016/j.knosys.2022.109929_b44 article-title: Model and principles for the implementation of neural-like structures based on geometric data transformations – volume: 15 year: 2022 ident: 10.1016/j.knosys.2022.109929_b14 article-title: Stochastic recognition of human daily activities via hybrid descriptors and random forest using wearable sensors publication-title: Array doi: 10.1016/j.array.2022.100190 – year: 2021 ident: 10.1016/j.knosys.2022.109929_b30 article-title: ClusterFL – start-page: 1 year: 2020 ident: 10.1016/j.knosys.2022.109929_b48 article-title: Classification of human activities based on radar signals using 1d-cnn and lstm – volume: 55 start-page: 105 year: 2020 ident: 10.1016/j.knosys.2022.109929_b5 article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.08.004 – year: 2020 ident: 10.1016/j.knosys.2022.109929_b19 article-title: A deep-learning model for urban traffic flow prediction with traffic events mined from twitter publication-title: World Wide Web – year: 2015 ident: 10.1016/j.knosys.2022.109929_b41 article-title: Human activity recognition using wearable sensors by deep convolutional neural networks – start-page: 1 year: 2018 ident: 10.1016/j.knosys.2022.109929_b15 article-title: Human activity recognition using smartphones – year: 2016 ident: 10.1016/j.knosys.2022.109929_b45 – volume: 24 start-page: 805 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109929_b18 article-title: On prediction of traffic flows in smart cities: a multitask deep learning based approach publication-title: World Wide Web doi: 10.1007/s11280-021-00877-4 – volume: 32 start-page: 15673 issue: 20 year: 2018 ident: 10.1016/j.knosys.2022.109929_b22 article-title: Comparison of offline and real-time human activity recognition results using machine learning techniques publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3437-x – volume: 6 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.109929_b46 article-title: Multimodal neurons in artificial neural networks publication-title: Distill doi: 10.23915/distill.00030 – start-page: 91 year: 2014 ident: 10.1016/j.knosys.2022.109929_b53 article-title: mHealthDroid: A novel framework for agile development of mobile health applications – volume: 121 start-page: 381 issue: 1 year: 2021 ident: 10.1016/j.knosys.2022.109929_b13 article-title: Performance analysis of machine learning algorithms for smartphone-based human activity recognition publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08641-7 – volume: 2 year: 2020 ident: 10.1016/j.knosys.2022.109929_b1 article-title: Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments publication-title: Front. Digit. Health doi: 10.3389/fdgth.2020.00008 – volume: 5 start-page: 01 issue: 2 year: 2015 ident: 10.1016/j.knosys.2022.109929_b56 article-title: A review on evaluation metrics for data classification evaluations publication-title: Int. J. Data Min. Knowl. Manag. Process. doi: 10.5121/ijdkp.2015.5201 – volume: 63 start-page: 33 issue: 12 year: 2020 ident: 10.1016/j.knosys.2022.109929_b57 article-title: Federated learning for privacy-preserving AI publication-title: Commun. ACM doi: 10.1145/3387107 – start-page: 3 year: 2013 ident: 10.1016/j.knosys.2022.109929_b55 article-title: A public domain dataset for human activity recognition using smartphones – start-page: 165 year: 2018 ident: 10.1016/j.knosys.2022.109929_b2 article-title: A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications – volume: 229 year: 2021 ident: 10.1016/j.knosys.2022.109929_b28 article-title: A federated learning system with enhanced feature extraction for human activity recognition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107338 – year: 2012 ident: 10.1016/j.knosys.2022.109929_b21 article-title: USc-HAD – volume: 9 issue: 1 year: 2022 ident: 10.1016/j.knosys.2022.109929_b6 article-title: Machine and cognitive intelligence for human health: systematic review publication-title: Brain Inform. doi: 10.1186/s40708-022-00153-9 – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2022.109929_b34 article-title: Personalized human activity recognition using deep learning and edge-cloud architecture publication-title: J. Ambient Intell. Humaniz. Comput. |
SSID | ssj0002218 |
Score | 2.5536132 |
Snippet | Recent advances in remote patient monitoring (RPM) systems can recognize various human activities to measure vital signs, including subtle motions from... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109929 |
SubjectTerms | ANN Bi-LSTM CNN Federated learning HAR RPM |
Title | FedStack: Personalized activity monitoring using stacked federated learning |
URI | https://dx.doi.org/10.1016/j.knosys.2022.109929 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtWl2m816K8VSLRZBC72FZB-lVtti60EP_nZnNokPEAWPCTMQJvP4dpn5hpBT6YJY8pCzKApwJCd0LOORZlboWCHhmItx3vl6EPWG4mrUGlVIp5yFwbbKIvfnOd1n6-JNo7BmYzGZNG4BHIC_QsEKPS_aCCfYhUQvP3v7bPMIQ3_Hh8IMpcvxOd_jNZ3Nly9I2h2GyKukPND8oTx9KTndLbJRYEXazj9nm1TsbIdslnsYaBGWu6TftQZAo56e05sSW79aQ3FmAVdD0EcfuHiDR7HPfUyXKA0SDqkkAG0aWmyPGO-RYffirtNjxZIEpgE7rZhuBk6lCsIqc1o4pY0yXMbayiiF4xTXqbKB4YJzB4c5-GUiNi2pjAickS4N-T6pzuYze0CoBSgRZ5AdZRaLZtpUymUOSjzUeDhC87RGeGmbRBcM4rjI4iEpW8Xuk9yiCVo0yS1aI-xDa5EzaPwhL0uzJ988IYEk_6vm4b81j8g6Pvk2ldYxqa6enu0JgI1VVvfeVCdr7ct-b_AOZDTUmQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PejFt1ife_AammbzWm-lWKp9INhCbyHZh2i1LbYe9Nc7k2yKgih4TWYgTObx7TLzDcBlZNw44h53wtClkRzPOBkPpaN9GQsiHDMxzTv3B2Fn5N-Og_EatMpZGGqrtLm_yOl5trZP6taa9fnjY_0ewQH6KxYsL-dFG69DldipggpUmzfdzmCVkD0vv-YjeYcUygm6vM1rMp0t3om32_OIWknkWPOHCvWl6rR3YMvCRdYsvmgX1vR0D7bLVQzMRuY-dNtaIW6Ukyt2V8LrD60YjS3Qdgj2kscuXeIxanV_YAuSRglDbBIIOBWzCyQeDmDUvh62Oo7dk-BIhE9LRzZcI1KBkZUZ6RshlVA8iqWOwhRPVFymQruK-5wbPM_hX_NjFURC-a5RkUk9fgiV6Wyqj4BpRBNxhgkyymK_kTaEMJnBKo9lHk_RPK0BL22TSEsiTrssnpOyW-wpKSyakEWTwqI1cFZa84JE4w_5qDR78s0ZEszzv2oe_1vzAjY6w34v6d0MuiewSW_yrpXgFCrL1zd9hthjmZ1b3_oEuGnXSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FedStack%3A+Personalized+activity+monitoring+using+stacked+federated+learning&rft.jtitle=Knowledge-based+systems&rft.au=Shaik%2C+Thanveer&rft.au=Tao%2C+Xiaohui&rft.au=Higgins%2C+Niall&rft.au=Gururajan%2C+Raj&rft.date=2022-12-05&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=257&rft_id=info:doi/10.1016%2Fj.knosys.2022.109929&rft.externalDocID=S095070512201022X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |