Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in “double low” chest CTA in children: a feasibility study
Background Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventi...
Saved in:
Published in | Radiologia medica Vol. 126; no. 9; pp. 1181 - 1188 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventional 100 kVp tube voltage may not provide adequate enhancement under low contrast dose.
Purpose
To evaluate the performance of a deep learning image reconstruction (DLIR) algorithm in conjunction with lower tube voltage in chest CTA in children under reduced radiation and contrast medium (CM) dose.
Materials and methods
46 Children (age 5.9 ± 4.2 years) in the study group underwent chest CTA with 70 kVp and CM dose of 0.8–1.2 ml/kg. Images were reconstructed at 0.625 mm using a high setting DLIR (DLIR-H). The control group consisted of 46 age-matching children scanned with 100 kVp, CM dose of 1.3–1.8 ml/kg and images reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V. Two radiologists evaluated images subjectively for overall image noise, vessel contrast and vessel margin clarity separately on a 5-point scale (5, excellent and 1, not acceptable). CT value and image noise of aorta and erector spinae muscle were measured.
Results
Compared to the control group, the study group reduced the dose-length-product by 11.2% (
p
= 0.01) and CM dose by 24% (
p
< 0.001), improved the enhancement in aorta (416.5 ± 113.1HU vs. 342.0 ± 57.6HU,
p
< 0.001) and reduced noise (15.1 ± 3.5HU vs. 18.6 ± 4.4HU,
p
< 0.001). The DLIR-H images provided acceptable scores on all 3 aspects of the qualitative evaluation.
Conclusion
“Double low” chest CTA in children using 70 kVp and DLIR provides high image quality with reduced noise and improved vessel enhancement for diagnosis while further reduces radiation and CM dose. |
---|---|
AbstractList | BACKGROUNDChest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventional 100 kVp tube voltage may not provide adequate enhancement under low contrast dose. PURPOSETo evaluate the performance of a deep learning image reconstruction (DLIR) algorithm in conjunction with lower tube voltage in chest CTA in children under reduced radiation and contrast medium (CM) dose. MATERIALS AND METHODS46 Children (age 5.9 ± 4.2 years) in the study group underwent chest CTA with 70 kVp and CM dose of 0.8-1.2 ml/kg. Images were reconstructed at 0.625 mm using a high setting DLIR (DLIR-H). The control group consisted of 46 age-matching children scanned with 100 kVp, CM dose of 1.3-1.8 ml/kg and images reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V. Two radiologists evaluated images subjectively for overall image noise, vessel contrast and vessel margin clarity separately on a 5-point scale (5, excellent and 1, not acceptable). CT value and image noise of aorta and erector spinae muscle were measured. RESULTSCompared to the control group, the study group reduced the dose-length-product by 11.2% (p = 0.01) and CM dose by 24% (p < 0.001), improved the enhancement in aorta (416.5 ± 113.1HU vs. 342.0 ± 57.6HU, p < 0.001) and reduced noise (15.1 ± 3.5HU vs. 18.6 ± 4.4HU, p < 0.001). The DLIR-H images provided acceptable scores on all 3 aspects of the qualitative evaluation. CONCLUSION"Double low" chest CTA in children using 70 kVp and DLIR provides high image quality with reduced noise and improved vessel enhancement for diagnosis while further reduces radiation and CM dose. Background Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium doses. Iterative Reconstruction algorithms are often used to reduce image noise but encounter limitations under low radiation dose and conventional 100 kVp tube voltage may not provide adequate enhancement under low contrast dose. Purpose To evaluate the performance of a deep learning image reconstruction (DLIR) algorithm in conjunction with lower tube voltage in chest CTA in children under reduced radiation and contrast medium (CM) dose. Materials and methods 46 Children (age 5.9 ± 4.2 years) in the study group underwent chest CTA with 70 kVp and CM dose of 0.8–1.2 ml/kg. Images were reconstructed at 0.625 mm using a high setting DLIR (DLIR-H). The control group consisted of 46 age-matching children scanned with 100 kVp, CM dose of 1.3–1.8 ml/kg and images reconstructed with 50% and 100% adaptive statistical iterative reconstruction-V. Two radiologists evaluated images subjectively for overall image noise, vessel contrast and vessel margin clarity separately on a 5-point scale (5, excellent and 1, not acceptable). CT value and image noise of aorta and erector spinae muscle were measured. Results Compared to the control group, the study group reduced the dose-length-product by 11.2% ( p = 0.01) and CM dose by 24% ( p < 0.001), improved the enhancement in aorta (416.5 ± 113.1HU vs. 342.0 ± 57.6HU, p < 0.001) and reduced noise (15.1 ± 3.5HU vs. 18.6 ± 4.4HU, p < 0.001). The DLIR-H images provided acceptable scores on all 3 aspects of the qualitative evaluation. Conclusion “Double low” chest CTA in children using 70 kVp and DLIR provides high image quality with reduced noise and improved vessel enhancement for diagnosis while further reduces radiation and CM dose. |
Author | Zhou, Zuofu Li, Haoyan Peng, Yun Sun, Jihang Li, Michelle Gao, Jun Li, Jianying |
Author_xml | – sequence: 1 givenname: Jihang surname: Sun fullname: Sun, Jihang organization: Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health – sequence: 2 givenname: Haoyan surname: Li fullname: Li, Haoyan organization: Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health – sequence: 3 givenname: Jun surname: Gao fullname: Gao, Jun organization: Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health – sequence: 4 givenname: Jianying surname: Li fullname: Li, Jianying organization: GE Healthcare – sequence: 5 givenname: Michelle surname: Li fullname: Li, Michelle organization: Stanford University – sequence: 6 givenname: Zuofu surname: Zhou fullname: Zhou, Zuofu organization: Department of Radiology, Fujian Provincial Maternity and Children’s Hospital, Affiliated Hospital of Fujian Medical University – sequence: 7 givenname: Yun orcidid: 0000-0001-8213-9716 surname: Peng fullname: Peng, Yun email: ppengyun@yahoo.com organization: Imaging Center, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health |
BookMark | eNp9kUtqHDEQhkVwwGMnF_BKkI2z6ESlV3dnZyYvw0CMcdaNWl09I6ORJlK3w-x8gpwguZxPEtkTCGSRVVVR319V1H9CjkIMSMgZsDfAWP02AyhZV4xDxUA0suLPyAIarivdNuKILBgTomqE5sfkJOdbxiQD1i7IjytMY0xbEyxSvDN-NpOLgcaRGjog7qhHk4ILa-q2Zo00oY0hT2m2T9z5-9Xl9Wtq_DomN2221AX6cP9ziHPvkfr4_eH-F7UbzBNd3lw8du3G-SFheFcWjGiy6513057maR72L8jz0fiML__EU_L144eb5edq9eXT5fJiVVmh-FT1o2I1H8WgQGilxagbVBq4lEKaVmksmZY9G9HKuhdQKgXALAMNDQgrTsn5Ye4uxW9zua7bumzRexMwzrnjSkLdtC1rC_rqH_Q2zimU6wqlOZdlHxSKHyibYs4Jx26XysPSvgPWPVrUHSzqikXdk0UdLyJxEOUChzWmv6P_o_oNJjCWbA |
CitedBy_id | crossref_primary_10_3390_tomography9010018 crossref_primary_10_1007_s11547_023_01710_w crossref_primary_10_3390_diagnostics12123223 crossref_primary_10_3390_tomography9030075 crossref_primary_10_3390_diagnostics13020302 crossref_primary_10_3390_children9071044 crossref_primary_10_3390_diagnostics12051151 crossref_primary_10_1016_j_ejrad_2024_111301 crossref_primary_10_3390_cancers15174344 crossref_primary_10_3390_children10081372 crossref_primary_10_3390_jcm12041489 crossref_primary_10_3390_jpm12081344 crossref_primary_10_3390_biology12020213 crossref_primary_10_1186_s13027_023_00495_x crossref_primary_10_3390_jcm11102766 crossref_primary_10_1155_2022_6355098 crossref_primary_10_1053_j_sult_2023_03_009 crossref_primary_10_3390_cancers15020351 crossref_primary_10_5812_iranjradiol_126572 crossref_primary_10_3390_tomography9030095 crossref_primary_10_3390_diagnostics13182877 crossref_primary_10_1007_s00330_022_08975_1 crossref_primary_10_3390_jpm12071153 |
Cites_doi | 10.1148/radiol.14140244 10.1007/s00247-002-0669-8 10.1148/radiol.2016151621 10.1007/s11547-019-00995-0 10.1111/ped.13101 10.1007/s00330-020-06724-w 10.1007/s00330-019-06170-3 10.1016/j.carj.2018.05.004 10.1148/radiol.2015132766 10.1007/s11547-020-01191-1 10.1148/rg.351140089 10.1007/s00330-020-07358-8 10.1097/RCT.0000000000000329 10.1053/j.sempedsurg.2016.02.009 10.1097/MD.0000000000019347 10.1016/j.jpedsurg.2018.08.054 10.1007/s00247-016-3588-9 10.1097/RTI.0000000000000127 10.3174/ajnr.A5372 |
ContentType | Journal Article |
Copyright | Italian Society of Medical Radiology 2021 Italian Society of Medical Radiology 2021. |
Copyright_xml | – notice: Italian Society of Medical Radiology 2021 – notice: Italian Society of Medical Radiology 2021. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1007/s11547-021-01384-2 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1826-6983 |
EndPage | 1188 |
ExternalDocumentID | 10_1007_s11547_021_01384_2 |
GrantInformation_xml | – fundername: Beijing Children’s Hospital Young Investigator Program grantid: BCH-YIPB-2016-06 |
GroupedDBID | -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J P9S PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z7X Z82 Z87 ZA5 ZMTXR ZOVNA ~A9 ~S- AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 AAYZH 7X8 |
ID | FETCH-LOGICAL-c352t-bf5072f3d5136563f68e56124434a956e24464b0fec47b314465110c0161813c3 |
IEDL.DBID | U2A |
ISSN | 0033-8362 |
IngestDate | Thu Oct 24 21:06:53 EDT 2024 Sat Oct 26 13:23:01 EDT 2024 Thu Sep 12 19:17:45 EDT 2024 Sat Dec 16 12:09:05 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Deep learning Tomography Thorax Child X-ray computed Image reconstruction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-bf5072f3d5136563f68e56124434a956e24464b0fec47b314465110c0161813c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0001-8213-9716 |
PQID | 2562249561 |
PQPubID | 2043526 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2541789909 proquest_journals_2562249561 crossref_primary_10_1007_s11547_021_01384_2 springer_journals_10_1007_s11547_021_01384_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Torino |
PublicationSubtitle | Official Journal of the Italian Society of Medical and Interventional Radiology |
PublicationTitle | Radiologia medica |
PublicationTitleAbbrev | Radiol med |
PublicationYear | 2021 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Greffier, Hamard, Pereira (CR17) 2020; 30 Takanori, Yoshinori, Takeshi (CR21) 2018; 69 Carl, Michael, Andrada (CR2) 2016; 25 Andrea, Marie, Oliver (CR23) 2020; 94 CR15 Akagi, Nakamura, Higaki (CR16) 2019; 9 MacDougall, Kleinman, Yu (CR10) 2016; 46 Haner, Sibel, Peter (CR20) 2011; 29 Sergei, Bernadette, Pierluigi (CR7) 2021; 37 Sun, Yang, Zhou (CR12) 2020; 125 Han, Kyung, Jai (CR5) 2020; 99 Geyer, Schoepf, Meinel (CR22) 2015; 276 Trotman-Dickenson (CR4) 2015; 30 Basheer, Roya, Jose (CR3) 2015; 9 Chankue, Ki, Yunsub (CR24) 2020 Na, Qi, Chenghao (CR6) 2019; 54 Hasan, Erkut, Okan (CR1) 2017; 59 (CR8) 2002; 32 Benz, Benetos, Rampidis (CR18) 2020; 13 Shimoyama, Nishii, Watanabe (CR11) 2017; 38 Mathias, Holger, Joseph (CR9) 2014; 273 Sun, Hu, Shen (CR14) 2019; 124 Christopher, Melissa, Santiago (CR19) 2015; 35 Goenka, Herts, Dong (CR13) 2016; 280 Zhang, Li, Schoepf (CR25) 2016; 40 M Akagi (1384_CR16) 2019; 9 C Benz (1384_CR18) 2020; 13 D Haner (1384_CR20) 2011; 29 AH Goenka (1384_CR13) 2016; 280 RD MacDougall (1384_CR10) 2016; 46 W Christopher (1384_CR19) 2015; 35 MH Sergei (1384_CR7) 2021; 37 Z Na (1384_CR6) 2019; 54 M Mathias (1384_CR9) 2014; 273 J Sun (1384_CR14) 2019; 124 LL Geyer (1384_CR22) 2015; 276 P Chankue (1384_CR24) 2020 The Society for Pediatric Radiology (1384_CR8) 2002; 32 S Andrea (1384_CR23) 2020; 94 JK Han (1384_CR5) 2020; 99 S Shimoyama (1384_CR11) 2017; 38 J Sun (1384_CR12) 2020; 125 T Basheer (1384_CR3) 2015; 9 M Takanori (1384_CR21) 2018; 69 LJ Zhang (1384_CR25) 2016; 40 T Hasan (1384_CR1) 2017; 59 LB Carl (1384_CR2) 2016; 25 J Greffier (1384_CR17) 2020; 30 1384_CR15 B Trotman-Dickenson (1384_CR4) 2015; 30 |
References_xml | – volume: 273 start-page: 373 year: 2014 end-page: 382 ident: CR9 article-title: Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second-versus a third-generation dual-source CT system publication-title: Radiology doi: 10.1148/radiol.14140244 contributor: fullname: Joseph – volume: 32 start-page: 217 year: 2002 end-page: 313 ident: CR8 article-title: The ALARA (as low as reasonably achievable) concept in pediatric CT intelligent dose reduction. Multidisciplinary conference organized by the Society of Pediatric Radiology publication-title: Pediatr Radiol doi: 10.1007/s00247-002-0669-8 – volume: 280 start-page: 475 year: 2016 end-page: 482 ident: CR13 article-title: Image noise, cnr, and detectability of low-contrast, low-attenuation liver lesions in a phantom: effects of radiation exposure, phantom size, integrated circuit detector, and iterative reconstruction publication-title: Radiology doi: 10.1148/radiol.2016151621 contributor: fullname: Dong – volume: 124 start-page: 595 year: 2019 end-page: 601 ident: CR14 article-title: Improving image quality with model-based iterative reconstruction algorithm for chest CT in children with reduced contrast concentration publication-title: Radiol Med doi: 10.1007/s11547-019-00995-0 contributor: fullname: Shen – volume: 59 start-page: 134 year: 2017 end-page: 140 ident: CR1 article-title: Assessment of children with vascular ring publication-title: Pediatr Int doi: 10.1111/ped.13101 contributor: fullname: Okan – volume: 30 start-page: 3951 year: 2020 end-page: 3959 ident: CR17 article-title: Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w contributor: fullname: Pereira – volume: 9 start-page: 6163 year: 2019 end-page: 6171 ident: CR16 article-title: Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT publication-title: Eur Radiol doi: 10.1007/s00330-019-06170-3 contributor: fullname: Higaki – volume: 69 start-page: 390 year: 2018 end-page: 396 ident: CR21 article-title: Radiation dose reduction with a low-tube voltage technique for pediatric chest computed tomographic angiography based on the contrast-to-noise ratio index publication-title: Can Assoc Radiol J doi: 10.1016/j.carj.2018.05.004 contributor: fullname: Takeshi – volume: 37 start-page: 80 year: 2021 end-page: 88 ident: CR7 article-title: A clinical guideline for structured assessment of CT-imaging in congenital lung abnormalities publication-title: Paediatr Respir Rev contributor: fullname: Pierluigi – volume: 276 start-page: 339 year: 2015 end-page: 357 ident: CR22 article-title: State of the art: iterative CT reconstruction techniques publication-title: Radiology doi: 10.1148/radiol.2015132766 contributor: fullname: Meinel – volume: 125 start-page: 918 year: 2020 end-page: 925 ident: CR12 article-title: Performance evaluation of two iterative reconstruction algorithms, MBIR and ASIR, in low radiation dose and low contrast dose abdominal CT in children publication-title: Radiol Med doi: 10.1007/s11547-020-01191-1 contributor: fullname: Zhou – volume: 35 start-page: 32 year: 2015 end-page: 49 ident: CR19 article-title: Bronchial arteries: anatomy, function, hypertrophy, and anomalies publication-title: Radiographics doi: 10.1148/rg.351140089 contributor: fullname: Santiago – year: 2020 ident: CR24 article-title: CT iterative vs deep learning reconstruction: comparison of noise and sharpness publication-title: Eur Radiol doi: 10.1007/s00330-020-07358-8 contributor: fullname: Yunsub – volume: 40 start-page: 109 year: 2016 end-page: 117 ident: CR25 article-title: Non-electrocardiogram-triggered 70-kVp high-pitch computed tomography angiography of the whole aorta with iterative reconstruction: initial results publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000329 contributor: fullname: Schoepf – volume: 13 start-page: 30464 year: 2020 end-page: 30472 ident: CR18 article-title: Validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy publication-title: J Cardiovasc Comput Tomogr contributor: fullname: Rampidis – ident: CR15 – volume: 25 start-page: 165 year: 2016 end-page: 175 ident: CR2 article-title: Vascular rings publication-title: Semin Pediatr Surg doi: 10.1053/j.sempedsurg.2016.02.009 contributor: fullname: Andrada – volume: 99 start-page: e19347 year: 2020 ident: CR5 article-title: Intralobar pulmonary sequestration with cystic degeneration mimicking a bronchogenic cyst in an elderly patient: a case report and literature review publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000019347 contributor: fullname: Jai – volume: 54 start-page: 1286 year: 2019 end-page: 1292 ident: CR6 article-title: Distribution, diagnosis, and treatment of pulmonary sequestration: report of 208 cases publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2018.08.054 contributor: fullname: Chenghao – volume: 46 start-page: 1114 year: 2016 end-page: 1119 ident: CR10 article-title: Pediatric thoracic CT angiography at 70 kV: a phantom study to investigate the effects on image quality and radiation dose publication-title: Pediatr Radiol doi: 10.1007/s00247-016-3588-9 contributor: fullname: Yu – volume: 9 start-page: 05 year: 2015 end-page: 8 ident: CR3 article-title: Pulmonary sequestration: A 29 patient case series and review publication-title: J Clin Diagn Res contributor: fullname: Jose – volume: 30 start-page: 46 year: 2015 end-page: 59 ident: CR4 article-title: Congenital lung disease in the adult: guide to the evaluation and management publication-title: J Thorac Imaging doi: 10.1097/RTI.0000000000000127 contributor: fullname: Trotman-Dickenson – volume: 38 start-page: 2399 year: 2017 end-page: 2405 ident: CR11 article-title: Advantages of 70-kV CT angiography for the visualization of the adamkiewicz artery: comparison with 120-kV imaging publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5372 contributor: fullname: Watanabe – volume: 94 start-page: 20200677 year: 2020 ident: CR23 article-title: Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography publication-title: Br J Radiol contributor: fullname: Oliver – volume: 29 start-page: S86 year: 2011 end-page: 91 ident: CR20 article-title: Assessment of disease activity and progression in Takayasu's arteritis publication-title: Clin Exp Rheumatol contributor: fullname: Peter – volume: 124 start-page: 595 year: 2019 ident: 1384_CR14 publication-title: Radiol Med doi: 10.1007/s11547-019-00995-0 contributor: fullname: J Sun – volume: 273 start-page: 373 year: 2014 ident: 1384_CR9 publication-title: Radiology doi: 10.1148/radiol.14140244 contributor: fullname: M Mathias – volume: 54 start-page: 1286 year: 2019 ident: 1384_CR6 publication-title: J Pediatr Surg doi: 10.1016/j.jpedsurg.2018.08.054 contributor: fullname: Z Na – volume: 94 start-page: 20200677 year: 2020 ident: 1384_CR23 publication-title: Br J Radiol contributor: fullname: S Andrea – volume: 280 start-page: 475 year: 2016 ident: 1384_CR13 publication-title: Radiology doi: 10.1148/radiol.2016151621 contributor: fullname: AH Goenka – volume: 276 start-page: 339 year: 2015 ident: 1384_CR22 publication-title: Radiology doi: 10.1148/radiol.2015132766 contributor: fullname: LL Geyer – volume: 38 start-page: 2399 year: 2017 ident: 1384_CR11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5372 contributor: fullname: S Shimoyama – volume: 125 start-page: 918 year: 2020 ident: 1384_CR12 publication-title: Radiol Med doi: 10.1007/s11547-020-01191-1 contributor: fullname: J Sun – volume: 30 start-page: 3951 year: 2020 ident: 1384_CR17 publication-title: Eur Radiol doi: 10.1007/s00330-020-06724-w contributor: fullname: J Greffier – volume: 25 start-page: 165 year: 2016 ident: 1384_CR2 publication-title: Semin Pediatr Surg doi: 10.1053/j.sempedsurg.2016.02.009 contributor: fullname: LB Carl – volume: 35 start-page: 32 year: 2015 ident: 1384_CR19 publication-title: Radiographics doi: 10.1148/rg.351140089 contributor: fullname: W Christopher – volume: 32 start-page: 217 year: 2002 ident: 1384_CR8 publication-title: Pediatr Radiol doi: 10.1007/s00247-002-0669-8 contributor: fullname: The Society for Pediatric Radiology – volume: 30 start-page: 46 year: 2015 ident: 1384_CR4 publication-title: J Thorac Imaging doi: 10.1097/RTI.0000000000000127 contributor: fullname: B Trotman-Dickenson – volume: 59 start-page: 134 year: 2017 ident: 1384_CR1 publication-title: Pediatr Int doi: 10.1111/ped.13101 contributor: fullname: T Hasan – volume: 29 start-page: S86 year: 2011 ident: 1384_CR20 publication-title: Clin Exp Rheumatol contributor: fullname: D Haner – volume: 69 start-page: 390 year: 2018 ident: 1384_CR21 publication-title: Can Assoc Radiol J doi: 10.1016/j.carj.2018.05.004 contributor: fullname: M Takanori – volume: 9 start-page: 05 year: 2015 ident: 1384_CR3 publication-title: J Clin Diagn Res contributor: fullname: T Basheer – volume: 9 start-page: 6163 year: 2019 ident: 1384_CR16 publication-title: Eur Radiol doi: 10.1007/s00330-019-06170-3 contributor: fullname: M Akagi – ident: 1384_CR15 – volume: 46 start-page: 1114 year: 2016 ident: 1384_CR10 publication-title: Pediatr Radiol doi: 10.1007/s00247-016-3588-9 contributor: fullname: RD MacDougall – volume: 13 start-page: 30464 year: 2020 ident: 1384_CR18 publication-title: J Cardiovasc Comput Tomogr contributor: fullname: C Benz – volume: 40 start-page: 109 year: 2016 ident: 1384_CR25 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000329 contributor: fullname: LJ Zhang – year: 2020 ident: 1384_CR24 publication-title: Eur Radiol doi: 10.1007/s00330-020-07358-8 contributor: fullname: P Chankue – volume: 99 start-page: e19347 year: 2020 ident: 1384_CR5 publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000019347 contributor: fullname: JK Han – volume: 37 start-page: 80 year: 2021 ident: 1384_CR7 publication-title: Paediatr Respir Rev contributor: fullname: MH Sergei |
SSID | ssj0040109 |
Score | 2.4483726 |
Snippet | Background
Chest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium... BackgroundChest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium... BACKGROUNDChest CT angiography (CTA) is a convenient clinical examination for children with an increasing need to reduce both radiation and contrast medium... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1181 |
SubjectTerms | Acceptable noise levels Algorithms Angiography Aorta Chest Chest Radiology Computed tomography Coronary vessels Deep learning Diagnostic Radiology Electric potential Feasibility studies Image contrast Image enhancement Image quality Image reconstruction Imaging Interventional Radiology Machine learning Medical imaging Medicine Medicine & Public Health Muscles Neuroradiology Noise Performance evaluation Radiation Radiation dosage Radiology Ultrasound Voltage |
Title | Performance evaluation of a deep learning image reconstruction (DLIR) algorithm in “double low” chest CTA in children: a feasibility study |
URI | https://link.springer.com/article/10.1007/s11547-021-01384-2 https://www.proquest.com/docview/2562249561 https://search.proquest.com/docview/2541789909 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA5iQbyIv1itZQQPiga6STbbeiu1_isiFvS07G6TWmh3i7aItz6BT6Av1ydxku66KHrwtpCQwH7J5Btm5htCdiTDN1i6DpWmrEdwIWnIHZc6XAQs4pFi2kR0r67laUuc37v3eR23TXbPIpLWUOe1bvjYe9RkFJjgmqBodwtIHoTxuFqsnplfYWI9Uy1GTqtontNKmd_X-P4a5RTzR1TUPjbHi2QhZYlQn8K6RGZUvEzmrtI4-Ap5u8nz_SEX7IZEQwBtpQaQdoPoQLePFgOs3_ulFQu7R5dnt3sQ9DrJU3f42IduDJPxezsZhT0FveRlMv4A20oLGnd1M5oVfR_iBloFaVLtK1h52lXSOm7eNU5p2lmBRki4hjTUSAOZ5m3XZLlJrmVVmTaZAsEK0GNS-CVFWNEqEh5iZ1TVkCdEVl7f4RFfI7NxEqt1ApGoOSJoe5XI40JLXUOjoSRHr1Ew7VXdItnP_rA_mApo-LlUssHDRzx8i4fPiqSUgeCnl-nZR1bGTIts6RTJ9tcwXgMT2whilYzMHOF46DtWakVykIGXL_H3jhv_m75J5pk9PybLrERmETi1hbRkGJZJoX7ycNEs2-P4CXH22Oc |
link.rule.ids | 315,783,787,27937,27938,41094,41536,42163,42605,52124,52247 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSgMxEA6ioF7EX6y_I3hQNNBNstnWW1FL1VZEWvC27G6TWmh3i20Rbz6BT6Av55M4SXe7KHrwtpCQwH7JzBdm5htCDiVDHyxdh0pT1iO4kDTkjksdLgIW8UgxbSK6jVtZa4nrB_chLQobZtnuWUjSWuq82A29vUdNSoGJrgmKhnfO6KubRL4Wq2T2V5hgz0SMkdMS2ue0VOb3Nb67o5xj_giLWm9TXSZLKU2EygTXFTKj4lUy30gD4Wvk7S5P-IdcsRsSDQG0lRpA2g6iA90-mgywD9-pWCwcXdSv7o8h6HWSp-7osQ_dGD5f39vJOOwp6CXPn68fYHtpwXmzYkazqu8z3ECrIM2qfQGrT7tOWtXL5nmNpq0VaISMa0RDjTyQad52TZqb5FqWlOmTKRCtAJ9MCr-kCItaRcJD8IysGhKFyOrrOzziG2Q2TmK1SSASZUcEba8YeVxoqctoNZTk-GwUTHslt0BOsj_sDyYKGn6ulWzw8BEP3-LhswLZyUDw09s09JGWMdMjWzoFcjAdxntgghtBrJKxmSMcDx-PxXKBnGbg5Uv8vePW_6bvk4Vas1H361e3N9tkkdmzZFLOdsgsgqh2kaOMwj17JL8ANgjarg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6hXQlxgZZSsUDLVOqhiBo2sePsclsBWyg_QhVI9BQljg0rlmRFs6raE0_AE8DL7ZMwzg9pUXuoeotky3Y84_nRzHwD8F66pIOl5zBpy3oEF5JF3PGYw0XoKq60a2xE9-hY7p2Jz-fe-S9V_Hm2exWSLGoaLEpTkm2OYrNZF76R5veZTS-wkTbBSAg3hUOuSgOavU9fD3YraSxs6KeAZuSsQ9K6LJz58yq_K6fa4nwWJM11T38OwurURcrJ1cY4izbUz2eAjv_zWy9gtjRMsVdw0kuY0sk8TB-VofdXcHdSlxhgjRGOqcEQY61HWDaguMDBNQkpzF3tJ3ha_LBzuP9lDcPhRXozyC6vcZDg5PY-TsfRUOMw_T65fcC8exdun_bsaFVnvkUbGB2Webw_MEfEXYCz_u7p9h4rmzkwRTZexiJDlqdreOzZxDrJjexo25lTEH-E5KRp-pIiahuthE_sYoHcyDRROaK_wxV_DY0kTfQioBJdR4Sx31Y-F0aaLskpLTlRX7jG73gtWK-oGIwKzI6gRme2VxzQFQf5FQduC1YqQgfl-_0WkCHo2q7c0mnBu6dhenk2nBImOh3bOcLxyV1td1vwsaJtvcTfd1z6t-mrMH2y0w8O948PlmHGzbnD5ritQINoqN-QUZRFb0u-fwTJEwCQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+a+deep+learning+image+reconstruction+%28DLIR%29+algorithm+in+%E2%80%9Cdouble+low%E2%80%9D+chest+CTA+in+children%3A+a+feasibility+study&rft.jtitle=Radiologia+medica&rft.au=Sun%2C+Jihang&rft.au=Li%2C+Haoyan&rft.au=Gao%2C+Jun&rft.au=Li%2C+Jianying&rft.date=2021-09-01&rft.issn=0033-8362&rft.eissn=1826-6983&rft.volume=126&rft.issue=9&rft.spage=1181&rft.epage=1188&rft_id=info:doi/10.1007%2Fs11547-021-01384-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11547_021_01384_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-8362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-8362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-8362&client=summon |