Reduction of RANS/LES combustion sub-models for quasi-dimensional spark ignition engine simulations and evaluation of the modelling assumptions with DNS
Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative fo...
Saved in:
Published in | Combustion and flame Vol. 220; pp. 189 - 202 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models.
It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation. |
---|---|
AbstractList | Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models.
It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation. Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models. It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation. |
Author | Giannakopoulos, George K. Boulouchos, Konstantinos Bardis, Konstantinos Wright, Yuri M. Frouzakis, Christos E. Kyrtatos, Panagiotis |
Author_xml | – sequence: 1 givenname: Konstantinos surname: Bardis fullname: Bardis, Konstantinos email: bardis@lav.mavt.ethz.ch organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland – sequence: 2 givenname: Panagiotis surname: Kyrtatos fullname: Kyrtatos, Panagiotis organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland – sequence: 3 givenname: Christos E. surname: Frouzakis fullname: Frouzakis, Christos E. organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland – sequence: 4 givenname: Yuri M. surname: Wright fullname: Wright, Yuri M. organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland – sequence: 5 givenname: George K. surname: Giannakopoulos fullname: Giannakopoulos, George K. organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland – sequence: 6 givenname: Konstantinos surname: Boulouchos fullname: Boulouchos, Konstantinos organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland |
BookMark | eNqNkdtO3DAQhq0KpC6Ud7Da6wQ7PiTpVRHQg7SiEgvXlmNPFm8Te7Fjqr5JH7fZXSohrriyNP7nG818J-jIBw8IfaSkpITK801pwtjlNPWDHqGsSEVKIkvC-Du0oELIomoreoQWhFBSVLQh79FJShtCSM0ZW6C_t2CzmVzwOPT49uJmdb68XuFn6q6ccleMwcKQcB8ifsw6ucK6EXyav_WA01bHX9itvdvnwa-dB5zcmAe9qySsvcXwpIes_w-aHgDvoYPza6xTyuP2kP3tpgd8dbP6gI57PSQ4e35P0f3X67vL78Xy57cflxfLwjBRTUUH1kprqax5beuusZwLbkzTtl3bCq6ZbJigvBFMaFoD10RDL6DXjRGE0Yadok8H7jaGxwxpUpuQ47xXUhUXrBJcSjanPh9SJoaUIvRqG92o4x9FidqZUBv10oTamVBEqtnE3PzlVbNx0_4UU9RueBvi6oCYNcCTg6iSceANWBfBTMoG9xbMP7E6tBU |
CitedBy_id | crossref_primary_10_1016_j_proci_2022_06_030 crossref_primary_10_1016_j_actaastro_2022_02_025 |
Cites_doi | 10.1080/00102200802612419 10.1243/1468087011545442 10.1177/1468087414521615 10.1016/j.combustflame.2011.11.022 10.1016/j.combustflame.2017.11.005 10.1016/j.combustflame.2013.01.001 10.1016/j.apenergy.2018.08.046 10.1016/j.combustflame.2015.04.011 10.1016/j.proci.2014.08.014 10.1080/00102200903341587 10.2298/TSCI130103030S 10.1177/1468087419877990 10.1007/BF00271513 10.1016/j.apenergy.2019.03.198 10.1016/j.proci.2006.07.119 10.4271/2017-01-0542 10.1016/j.egypro.2014.01.088 10.2514/3.9948 10.1115/1.3240815 10.1016/j.combustflame.2013.01.017 10.1016/j.proci.2006.07.086 10.1016/j.ijheatfluidflow.2004.07.005 10.1016/S0082-0784(06)80064-0 10.1016/j.combustflame.2017.09.029 10.1080/00102209808924163 10.1016/S0082-0784(98)80487-6 10.1017/S0022112098004212 |
ContentType | Journal Article |
Copyright | 2020 The Combustion Institute Copyright Elsevier BV Oct 2020 |
Copyright_xml | – notice: 2020 The Combustion Institute – notice: Copyright Elsevier BV Oct 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.combustflame.2020.06.034 |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1556-2921 |
EndPage | 202 |
ExternalDocumentID | 10_1016_j_combustflame_2020_06_034 S0010218020302522 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D L7M |
ID | FETCH-LOGICAL-c352t-bedd6dd16747d7b8d4454cc899b9954a36835148535a17e4a0aef5efa8c503183 |
IEDL.DBID | .~1 |
ISSN | 0010-2180 |
IngestDate | Mon Jul 14 10:16:52 EDT 2025 Tue Jul 01 01:56:45 EDT 2025 Thu Apr 24 22:52:37 EDT 2025 Fri Feb 23 02:48:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame wall interaction Direct numerical simulation Spark ignition engines Early flame development Quasi dimensional model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-bedd6dd16747d7b8d4454cc899b9954a36835148535a17e4a0aef5efa8c503183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2453254663 |
PQPubID | 2045271 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2453254663 crossref_primary_10_1016_j_combustflame_2020_06_034 crossref_citationtrail_10_1016_j_combustflame_2020_06_034 elsevier_sciencedirect_doi_10_1016_j_combustflame_2020_06_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Combustion and flame |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Ewald, Peters (bib0004) 2007; 31 Jafargholi, Giannakopoulos, Frouzakis, Boulouchos (bib0017) 2018; 188 Dulbecco, Richard, Laget, Aubret (bib0027) 2016 Sjerić, Kozarac, Tomić (bib0030) 2014; 18 Fiveland, Assanis (bib0039) 2001 Sjerić (bib0010) 2014 Lämmle (bib0012) 2005 Bardis, Xu, Kyrtatos, Wright, Boulouchos (bib0024) 2018 Weller, Tabor, Gosman, Fureby (bib0006) 1998; 27 Hanjalić, Popovac, Hadžiabdić (bib0034) 2004; 25 H. Reitz, H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, et al., IJER editorial: The future of the internal combustion engine, 2019. Richard, Veynante (bib0013) 2015; 343 Richard, Colin, Vermorel, Benkenida, Angelberger, Veynante (bib0037) 2007; 31(2) Achuth, Mehta (bib0025) 2001; 2 Ihme (bib0035) 2012; 159 Peters (bib0007) 1999; 384 Kolla, Rogerson, Swaminathan (bib0038) 2010; 182 Heywood (bib0002) 1988 Boudier, Henriot, Poinsot, Baritaud (bib0005) 1992; 24(1) Herweg, Maly (bib0009) 1992 Fogla, Bybee, Mirzaeian, Millo, Wahiduzzaman (bib0022) 2017; 10 Masouleh, Keskinen, Kaario, Kahila, Wright, Vuorinen (bib0043) 2018; 230 Agarwal, Filipi, Assanis, Baker (bib0029) 1998; 136 Steiner, Boulouchos (bib0040) 1995 Borgnakke, Arpaci, Tabaczynski (bib0020) 1980 Lam, Bremhorst (bib0031) 1981; 103 Kolla, Rogerson, Chakraborty, Swaminathan (bib0008) 2009; 181 Durbin (bib0033) 1991; 3 Dreizler, Böhm (bib0014) 2015; 35 Poinsot, Veynante (bib0015) 2005 De Bellis, Severi, Fontanesi, Bozza (bib0028) 2014; 45 Masouleh, Keskinen, Kaario, Kahila, Karimkashi, Vuorinen (bib0044) 2019; 250 Kéromnès, Metcalfe, Heufer, Donohoe, Das, Sung, Herzler, Naumann, Griebel, Mathieu, Krejci, Petersen, Pitz, Curran (bib0018) 2013; 160 Grasreiner, Neumann, Luttermann, Wensing, Hasse (bib0026) 2014; 15 Williams (bib0042) 1985 Suckart, Linse (bib0016) 2018; 190 Ratzke, Schöffler, Kuppa, Dinkelacker (bib0041) 2015; 162 Chen, Patel (bib0032) 1988; 26 De Bellis, Bozza, Tufano (bib0011) 2017 Bozza, Teodosio, De Bellis, Fontanesi, Iorio (bib0023) 2018 Kee, Grcar, Miller, Miller (bib0019) 1985 Borgnakke, Davis, Tabaczynski (bib0021) 1981 Wong, Hoult (bib0036) 1979 Eyssartier, Cuenot, Gicquel, Poinsot (bib0003) 2013; 160 Sjerić (10.1016/j.combustflame.2020.06.034_bib0010) 2014 Borgnakke (10.1016/j.combustflame.2020.06.034_bib0021) 1981 Jafargholi (10.1016/j.combustflame.2020.06.034_bib0017) 2018; 188 Kolla (10.1016/j.combustflame.2020.06.034_bib0038) 2010; 182 Bozza (10.1016/j.combustflame.2020.06.034_bib0023) 2018 Dreizler (10.1016/j.combustflame.2020.06.034_bib0014) 2015; 35 Sjerić (10.1016/j.combustflame.2020.06.034_bib0030) 2014; 18 Fogla (10.1016/j.combustflame.2020.06.034_bib0022) 2017; 10 Boudier (10.1016/j.combustflame.2020.06.034_bib0005) 1992; 24(1) Herweg (10.1016/j.combustflame.2020.06.034_bib0009) 1992 Williams (10.1016/j.combustflame.2020.06.034_bib0042) 1985 Eyssartier (10.1016/j.combustflame.2020.06.034_bib0003) 2013; 160 Kéromnès (10.1016/j.combustflame.2020.06.034_bib0018) 2013; 160 Richard (10.1016/j.combustflame.2020.06.034_bib0013) 2015; 343 Peters (10.1016/j.combustflame.2020.06.034_bib0007) 1999; 384 Steiner (10.1016/j.combustflame.2020.06.034_bib0040) 1995 Achuth (10.1016/j.combustflame.2020.06.034_bib0025) 2001; 2 Dulbecco (10.1016/j.combustflame.2020.06.034_bib0027) 2016 Lam (10.1016/j.combustflame.2020.06.034_bib0031) 1981; 103 Heywood (10.1016/j.combustflame.2020.06.034_bib0002) 1988 Kolla (10.1016/j.combustflame.2020.06.034_bib0008) 2009; 181 De Bellis (10.1016/j.combustflame.2020.06.034_bib0011) 2017 Suckart (10.1016/j.combustflame.2020.06.034_bib0016) 2018; 190 Grasreiner (10.1016/j.combustflame.2020.06.034_bib0026) 2014; 15 Borgnakke (10.1016/j.combustflame.2020.06.034_bib0020) 1980 10.1016/j.combustflame.2020.06.034_bib0001 De Bellis (10.1016/j.combustflame.2020.06.034_bib0028) 2014; 45 Richard (10.1016/j.combustflame.2020.06.034_bib0037) 2007; 31(2) Ihme (10.1016/j.combustflame.2020.06.034_bib0035) 2012; 159 Poinsot (10.1016/j.combustflame.2020.06.034_bib0015) 2005 Masouleh (10.1016/j.combustflame.2020.06.034_bib0043) 2018; 230 Ewald (10.1016/j.combustflame.2020.06.034_bib0004) 2007; 31 Agarwal (10.1016/j.combustflame.2020.06.034_bib0029) 1998; 136 Fiveland (10.1016/j.combustflame.2020.06.034_bib0039) 2001 Ratzke (10.1016/j.combustflame.2020.06.034_bib0041) 2015; 162 Durbin (10.1016/j.combustflame.2020.06.034_bib0033) 1991; 3 Masouleh (10.1016/j.combustflame.2020.06.034_bib0044) 2019; 250 Weller (10.1016/j.combustflame.2020.06.034_bib0006) 1998; 27 Lämmle (10.1016/j.combustflame.2020.06.034_bib0012) 2005 Chen (10.1016/j.combustflame.2020.06.034_bib0032) 1988; 26 Bardis (10.1016/j.combustflame.2020.06.034_bib0024) 2018 Hanjalić (10.1016/j.combustflame.2020.06.034_bib0034) 2004; 25 Wong (10.1016/j.combustflame.2020.06.034_bib0036) 1979 Kee (10.1016/j.combustflame.2020.06.034_bib0019) 1985 |
References_xml | – start-page: 964 year: 1981 end-page: 978 ident: bib0021 article-title: Predictions of in-cylinder swirl velocity and turbulence intensity for an open chamber cup in piston engine publication-title: SAE Trans. – volume: 136 start-page: 13 year: 1998 end-page: 39 ident: bib0029 article-title: Assessment of single-and two-zone turbulence formulations for quasi-dimensional modeling of spark-ignition engine combustion publication-title: Combust. Sci. Technol. – volume: 162 start-page: 2778 year: 2015 end-page: 2787 ident: bib0041 article-title: Validation of turbulent flame speed models for methane–air-mixtures at high pressure gas engine conditions publication-title: Combust. Flame – year: 2005 ident: bib0015 publication-title: Theoretical and Numerical Combustion – volume: 18 year: 2014 ident: bib0030 article-title: Development of a two zone turbulence model and its application to the cycle-simulation. publication-title: Thermal Sci. – year: 2018 ident: bib0024 article-title: A zero dimensional turbulence and heat transfer phenomenological model for pre-chamber gas engines publication-title: Technical Report – volume: 188 start-page: 453 year: 2018 end-page: 468 ident: bib0017 article-title: Laminar syngas–air premixed flames in a closed rectangular domain: Dns of flame propagation and flame/wall interactions publication-title: Combust. Flame – year: 2016 ident: bib0027 article-title: Development of a quasi-dimensional KK turbulence model for direct injection spark ignition (DISI) engines based on the formal reduction of a 3D CFD approach publication-title: Technical Report – year: 1988 ident: bib0002 publication-title: Internal Combustion Engine Fundamentals – volume: 181 start-page: 518 year: 2009 end-page: 535 ident: bib0008 article-title: Scalar dissipation rate modeling and its validation publication-title: Combust. Sci. Technol. – volume: 3 start-page: 1 year: 1991 end-page: 13 ident: bib0033 article-title: Near-wall turbulence closure modeling without damping functions publication-title: Theor. Comput. Fluid Dyn. – volume: 2 start-page: 209 year: 2001 end-page: 227 ident: bib0025 article-title: Predictions of tumble and turbulence in four-valve pentroof spark ignition engines publication-title: Int. J. Engine Res. – volume: 343 start-page: 219 year: 2015 end-page: 231 ident: bib0013 article-title: A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines publication-title: Compt. Rend. Méc. – start-page: 1243 year: 1979 end-page: 1262 ident: bib0036 article-title: Rapid distortion theory applied to turbulent combustion publication-title: SAE Trans. – volume: 31(2) start-page: 3059 year: 2007 end-page: 3066 ident: bib0037 article-title: Towards large eddy simulation of combustion in spark ignition engines publication-title: Proc. Combust. Inst. – year: 2014 ident: bib0010 article-title: New physically based sub-models for the cycle-simulation of spark-ignition engine publication-title: PhD, Zagreb – volume: 103 start-page: 456 year: 1981 end-page: 460 ident: bib0031 article-title: A modified form of the k-ε model for predicting wall turbulence publication-title: J. Fluids Eng. – volume: 35 start-page: 37 year: 2015 end-page: 64 ident: bib0014 article-title: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions publication-title: Proc. Combust. Inst. – volume: 45 start-page: 829 year: 2014 end-page: 838 ident: bib0028 article-title: Hierarchical 1d/3d approach for the development of a turbulent combustion model applied to a vva turbocharged engine. part i: turbulence model publication-title: Energy Procedia – start-page: 606 year: 1995 end-page: 618 ident: bib0040 article-title: Near-wall unsteady premixed flame propagation in SI engines publication-title: SAE Trans. – volume: 160 start-page: 995 year: 2013 end-page: 1011 ident: bib0018 article-title: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures publication-title: Combust. Flame – volume: 384 start-page: 107 year: 1999 end-page: 132 ident: bib0007 article-title: The turbulent burning velocity for large-scale and small-scale turbulence publication-title: J. Fluid Mech. – reference: H. Reitz, H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, et al., IJER editorial: The future of the internal combustion engine, 2019. – year: 2005 ident: bib0012 publication-title: Numerical and experimental study of flame propagation and knock in a compressed natural gas engine – year: 2018 ident: bib0023 article-title: Refinement of a 0D turbulence model to predict tumble and turbulent intensity in SI engines. Part II: model concept, validation and discussion publication-title: Technical Report – volume: 190 start-page: 50 year: 2018 end-page: 64 ident: bib0016 article-title: Modelling turbulent premixed flame–wall interactions including flame quenching and near-wall turbulence based on a level-set flamelet approach publication-title: Combust. Flame – year: 1985 ident: bib0019 article-title: PREMIX: a fortran program for modeling steady laminar one-dimensional premixed flames publication-title: Technical Report No. SAND85-8240 – volume: 10 start-page: 562 year: 2017 end-page: 575 ident: bib0022 article-title: Development of a k-ϵ phenomenological model to predict in-cylinder turbulence publication-title: SAE Int. J. Engines – volume: 24(1) start-page: 503 year: 1992 end-page: 510 ident: bib0005 article-title: A model for turbulent flame ignition and propagation in spark ignition engines publication-title: Symp. (Int.) Combust. – volume: 159 start-page: 1592 year: 2012 end-page: 1604 ident: bib0035 article-title: On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures publication-title: Combust. Flame – volume: 182 start-page: 284 year: 2010 end-page: 308 ident: bib0038 article-title: Validation of a turbulent flame speed model across combustion regimes publication-title: Combust. Sci. Technol. – volume: 31 start-page: 3051 year: 2007 end-page: 3058 ident: bib0004 article-title: On unsteady premixed turbulent burning velocity prediction in internal combustion engines publication-title: Proc. Combust. Inst. – start-page: 1030 year: 2001 end-page: 1044 ident: bib0039 article-title: Development of a two-zone HCCI combustion model accounting for boundary layer effects publication-title: SAE Trans. – start-page: 97 year: 1985 end-page: 131 ident: bib0042 article-title: Turbulent combustion publication-title: The Mathematics of Combustion – volume: 26 start-page: 641 year: 1988 end-page: 648 ident: bib0032 article-title: Near-wall turbulence models for complex flows including separation publication-title: AIAA J. – volume: 250 start-page: 801 year: 2019 end-page: 820 ident: bib0044 article-title: Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds publication-title: Appl. Energy – start-page: 1947 year: 1992 end-page: 1976 ident: bib0009 article-title: A fundamental model for flame kernel formation in SI engines publication-title: SAE Trans. – volume: 27 start-page: 899 year: 1998 end-page: 907 ident: bib0006 article-title: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer publication-title: Symp. (Int.) Combust. – year: 1980 ident: bib0020 article-title: A model for the instantaneous heat transfer and turbulence in a spark ignition engine publication-title: Technical Report – year: 2017 ident: bib0011 article-title: A comparison between two phenomenological combustion models applied to different SI engines publication-title: Technical Report – volume: 15 start-page: 805 year: 2014 end-page: 816 ident: bib0026 article-title: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains publication-title: Int. J. Engine Res. – volume: 25 start-page: 1047 year: 2004 end-page: 1051 ident: bib0034 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow – volume: 160 start-page: 1191 year: 2013 end-page: 1207 ident: bib0003 article-title: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames publication-title: Combust. Flame – volume: 230 start-page: 486 year: 2018 end-page: 505 ident: bib0043 article-title: Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration publication-title: Appl. Energy – volume: 181 start-page: 518 issue: 3 year: 2009 ident: 10.1016/j.combustflame.2020.06.034_bib0008 article-title: Scalar dissipation rate modeling and its validation publication-title: Combust. Sci. Technol. doi: 10.1080/00102200802612419 – volume: 2 start-page: 209 issue: 3 year: 2001 ident: 10.1016/j.combustflame.2020.06.034_bib0025 article-title: Predictions of tumble and turbulence in four-valve pentroof spark ignition engines publication-title: Int. J. Engine Res. doi: 10.1243/1468087011545442 – start-page: 1947 year: 1992 ident: 10.1016/j.combustflame.2020.06.034_bib0009 article-title: A fundamental model for flame kernel formation in SI engines publication-title: SAE Trans. – volume: 15 start-page: 805 issue: 7 year: 2014 ident: 10.1016/j.combustflame.2020.06.034_bib0026 article-title: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains publication-title: Int. J. Engine Res. doi: 10.1177/1468087414521615 – volume: 159 start-page: 1592 issue: 4 year: 2012 ident: 10.1016/j.combustflame.2020.06.034_bib0035 article-title: On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.11.022 – volume: 190 start-page: 50 year: 2018 ident: 10.1016/j.combustflame.2020.06.034_bib0016 article-title: Modelling turbulent premixed flame–wall interactions including flame quenching and near-wall turbulence based on a level-set flamelet approach publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.11.005 – volume: 160 start-page: 995 issue: 6 year: 2013 ident: 10.1016/j.combustflame.2020.06.034_bib0018 article-title: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2013.01.001 – volume: 230 start-page: 486 year: 2018 ident: 10.1016/j.combustflame.2020.06.034_bib0043 article-title: Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.08.046 – volume: 162 start-page: 2778 issue: 7 year: 2015 ident: 10.1016/j.combustflame.2020.06.034_bib0041 article-title: Validation of turbulent flame speed models for methane–air-mixtures at high pressure gas engine conditions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2015.04.011 – year: 2005 ident: 10.1016/j.combustflame.2020.06.034_bib0015 – volume: 35 start-page: 37 issue: 1 year: 2015 ident: 10.1016/j.combustflame.2020.06.034_bib0014 article-title: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.08.014 – volume: 182 start-page: 284 issue: 3 year: 2010 ident: 10.1016/j.combustflame.2020.06.034_bib0038 article-title: Validation of a turbulent flame speed model across combustion regimes publication-title: Combust. Sci. Technol. doi: 10.1080/00102200903341587 – year: 2014 ident: 10.1016/j.combustflame.2020.06.034_bib0010 article-title: New physically based sub-models for the cycle-simulation of spark-ignition engine publication-title: PhD, Zagreb – volume: 18 issue: 1 year: 2014 ident: 10.1016/j.combustflame.2020.06.034_bib0030 article-title: Development of a two zone turbulence model and its application to the cycle-simulation. publication-title: Thermal Sci. doi: 10.2298/TSCI130103030S – ident: 10.1016/j.combustflame.2020.06.034_bib0001 doi: 10.1177/1468087419877990 – year: 1980 ident: 10.1016/j.combustflame.2020.06.034_bib0020 article-title: A model for the instantaneous heat transfer and turbulence in a spark ignition engine – volume: 3 start-page: 1 issue: 1 year: 1991 ident: 10.1016/j.combustflame.2020.06.034_bib0033 article-title: Near-wall turbulence closure modeling without damping functions publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/BF00271513 – year: 1985 ident: 10.1016/j.combustflame.2020.06.034_bib0019 article-title: PREMIX: a fortran program for modeling steady laminar one-dimensional premixed flames – start-page: 964 year: 1981 ident: 10.1016/j.combustflame.2020.06.034_bib0021 article-title: Predictions of in-cylinder swirl velocity and turbulence intensity for an open chamber cup in piston engine publication-title: SAE Trans. – volume: 250 start-page: 801 year: 2019 ident: 10.1016/j.combustflame.2020.06.034_bib0044 article-title: Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.198 – volume: 31 start-page: 3051 issue: 2 year: 2007 ident: 10.1016/j.combustflame.2020.06.034_bib0004 article-title: On unsteady premixed turbulent burning velocity prediction in internal combustion engines publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.119 – volume: 10 start-page: 562 issue: 2 year: 2017 ident: 10.1016/j.combustflame.2020.06.034_bib0022 article-title: Development of a k-ϵ phenomenological model to predict in-cylinder turbulence publication-title: SAE Int. J. Engines doi: 10.4271/2017-01-0542 – year: 2016 ident: 10.1016/j.combustflame.2020.06.034_bib0027 article-title: Development of a quasi-dimensional KK turbulence model for direct injection spark ignition (DISI) engines based on the formal reduction of a 3D CFD approach – start-page: 1030 year: 2001 ident: 10.1016/j.combustflame.2020.06.034_bib0039 article-title: Development of a two-zone HCCI combustion model accounting for boundary layer effects publication-title: SAE Trans. – start-page: 97 year: 1985 ident: 10.1016/j.combustflame.2020.06.034_bib0042 article-title: Turbulent combustion – volume: 45 start-page: 829 year: 2014 ident: 10.1016/j.combustflame.2020.06.034_bib0028 article-title: Hierarchical 1d/3d approach for the development of a turbulent combustion model applied to a vva turbocharged engine. part i: turbulence model publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.01.088 – volume: 26 start-page: 641 issue: 6 year: 1988 ident: 10.1016/j.combustflame.2020.06.034_bib0032 article-title: Near-wall turbulence models for complex flows including separation publication-title: AIAA J. doi: 10.2514/3.9948 – volume: 103 start-page: 456 issue: 3 year: 1981 ident: 10.1016/j.combustflame.2020.06.034_bib0031 article-title: A modified form of the k-ε model for predicting wall turbulence publication-title: J. Fluids Eng. doi: 10.1115/1.3240815 – volume: 160 start-page: 1191 issue: 7 year: 2013 ident: 10.1016/j.combustflame.2020.06.034_bib0003 article-title: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2013.01.017 – year: 2005 ident: 10.1016/j.combustflame.2020.06.034_bib0012 – year: 2018 ident: 10.1016/j.combustflame.2020.06.034_bib0023 article-title: Refinement of a 0D turbulence model to predict tumble and turbulent intensity in SI engines. Part II: model concept, validation and discussion – volume: 31(2) start-page: 3059 year: 2007 ident: 10.1016/j.combustflame.2020.06.034_bib0037 article-title: Towards large eddy simulation of combustion in spark ignition engines publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2006.07.086 – start-page: 606 year: 1995 ident: 10.1016/j.combustflame.2020.06.034_bib0040 article-title: Near-wall unsteady premixed flame propagation in SI engines publication-title: SAE Trans. – volume: 25 start-page: 1047 issue: 6 year: 2004 ident: 10.1016/j.combustflame.2020.06.034_bib0034 article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2004.07.005 – volume: 343 start-page: 219 issue: 3 year: 2015 ident: 10.1016/j.combustflame.2020.06.034_bib0013 article-title: A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines publication-title: Compt. Rend. Méc. – start-page: 1243 year: 1979 ident: 10.1016/j.combustflame.2020.06.034_bib0036 article-title: Rapid distortion theory applied to turbulent combustion publication-title: SAE Trans. – volume: 24(1) start-page: 503 year: 1992 ident: 10.1016/j.combustflame.2020.06.034_bib0005 article-title: A model for turbulent flame ignition and propagation in spark ignition engines publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(06)80064-0 – year: 1988 ident: 10.1016/j.combustflame.2020.06.034_bib0002 – volume: 188 start-page: 453 year: 2018 ident: 10.1016/j.combustflame.2020.06.034_bib0017 article-title: Laminar syngas–air premixed flames in a closed rectangular domain: Dns of flame propagation and flame/wall interactions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.09.029 – year: 2018 ident: 10.1016/j.combustflame.2020.06.034_bib0024 article-title: A zero dimensional turbulence and heat transfer phenomenological model for pre-chamber gas engines – volume: 136 start-page: 13 issue: 1–6 year: 1998 ident: 10.1016/j.combustflame.2020.06.034_bib0029 article-title: Assessment of single-and two-zone turbulence formulations for quasi-dimensional modeling of spark-ignition engine combustion publication-title: Combust. Sci. Technol. doi: 10.1080/00102209808924163 – volume: 27 start-page: 899 year: 1998 ident: 10.1016/j.combustflame.2020.06.034_bib0006 article-title: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(98)80487-6 – volume: 384 start-page: 107 year: 1999 ident: 10.1016/j.combustflame.2020.06.034_bib0007 article-title: The turbulent burning velocity for large-scale and small-scale turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112098004212 – year: 2017 ident: 10.1016/j.combustflame.2020.06.034_bib0011 article-title: A comparison between two phenomenological combustion models applied to different SI engines |
SSID | ssj0007433 |
Score | 2.3329167 |
Snippet | Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 189 |
SubjectTerms | Calibration Combustion Direct numerical simulation Early flame development Flame wall interaction Large eddy simulation Mathematical models Model accuracy Optimization Quasi dimensional model Reduction Simulation Spark ignition Spark ignition engines Three dimensional models |
Title | Reduction of RANS/LES combustion sub-models for quasi-dimensional spark ignition engine simulations and evaluation of the modelling assumptions with DNS |
URI | https://dx.doi.org/10.1016/j.combustflame.2020.06.034 https://www.proquest.com/docview/2453254663 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB62RsHRsHDwQh-GsHkIRb025dMn8AMrj6d_jn-l7XiZqYkHhZsqXtmvbl-97W975HyEWbAU00A2UB2cHFThxLtoSwhMuADFCwXGG-80PYGozZ7cSblEi3yIXBsEqD_Tmma7Q2TxpmNRvzNMUcXyxLHeBRGhC3gzjMmI9Wfvm-DvMAhsxPmQFvsHUhPKpjvGBsucqWCSw-SmY6ttbydNlfJPULrjUH9ffJnnEeaSef3wEpqWmFbHeLmm0VsvtNXvCQfAxRlxVXns4SOuyEo8Z9b0TNdPBxtpKWroWTUXBe6dtKZKkVo-B_LtZBAW8WzzTVIUbQXunhaZa-mqpfGRXTmK4lw_FF4FJSPShmulNwzsFi8rb405deh6MjMu73HrsDy1RisCJw0JaWVFh4KsaMBT_2ZRAz5rEogm81iXpywm0FmBEA1O-Jpq-YsIVKPJWIIPI0ahyT8nQ2VSeESnDZwEdIgogJJmPWFqwtpXL8GLDDVnGVtIul55GRKcdqGS-8iEd74t-3jeO2cQzOc1mVuF9957lYx0a9rood5j9MjwOrbNS_VpgFNwCQcYd5LpYaaLmn_xz-jOzgXR5AWCPl5WKlzsERWsq6tvQ62erc3A3CT8NoDNw |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hMgADggKiPD2wRm0TJ00HhqqAWigZ-pC6WXbiSOHRAmn_Cz-XO8fhJSFVYsmQ2I51tr7vEt99B3DR5kgTzVA7SHZ4aaSuowIpHelxJAMSLNeU73wfBb0Jv5360zXolrkwFFZpsb_AdIPW9k7dWrP-kmWU40tlqUM6SkPidhGH10mdyq_Aeqd_14s-ARlJsjhoRsihDqX2qAnzwuHVMl-kaH9SzXQbRs7T43_x1C_ENjR0swPb1n9knWKKu7CmZ1XY6JZl26qw9U1hcA_ehyTNSsZn85QNO9GoPrgeMTsdup0vlWPK4eQM_Vf2upR55iSk-V_odTCEnLdHlpkoI2yvzfAsz55t4a-cyVnCvlTD6UXoVTIzKCW7M_TPcdMUbem_L7uKRvswubked3uOLcbgxOijLRylqfZUQkkLraSlwoSjseMYP9cUScpJLwgpKQDZ35fNluayIXXq61SGsW-A4wAqs_lMHwJT6LWhm5CGMZdcJbwteVsp7bYShI-GTmrQLk0vYqtUTgUznkQZkvYgvi-boGUTFJ_n8Rp4n31fCr2OlXpdlissfuw-gcSyUv-TclsIiwG5cLnvUbWBwDv65_DnsNEb3w_EoB_dHcMmPSniCU-gsnhb6lP0ixbqzO77D-EyD40 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+RANS%2FLES+combustion+sub-models+for+quasi-dimensional+spark+ignition+engine+simulations+and+evaluation+of+the+modelling+assumptions+with+DNS&rft.jtitle=Combustion+and+flame&rft.au=Bardis%2C+Konstantinos&rft.au=Kyrtatos%2C+Panagiotis&rft.au=Frouzakis%2C+Christos+E.&rft.au=Wright%2C+Yuri+M.&rft.date=2020-10-01&rft.issn=0010-2180&rft.volume=220&rft.spage=189&rft.epage=202&rft_id=info:doi/10.1016%2Fj.combustflame.2020.06.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2020_06_034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |