Reduction of RANS/LES combustion sub-models for quasi-dimensional spark ignition engine simulations and evaluation of the modelling assumptions with DNS

Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative fo...

Full description

Saved in:
Bibliographic Details
Published inCombustion and flame Vol. 220; pp. 189 - 202
Main Authors Bardis, Konstantinos, Kyrtatos, Panagiotis, Frouzakis, Christos E., Wright, Yuri M., Giannakopoulos, George K., Boulouchos, Konstantinos
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.10.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models. It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation.
AbstractList Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models. It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation.
Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating conditions and multiple engine architectures. Efficient models employed in quasi/zero-dimensional approaches may offer an attractive alternative for engine calibration or optimisation. Despite their fair predictive capability, validity is typically limited to around their calibration region and is subject to uncertainties that stem from heuristic simplifications. The validity of the individual sub-models is rarely assessed using detailed three-dimensional (3-D) simulations over a wide range of combustion regimes. The objectives of this work are the following: (i) to present a formal reduction of widely applied 3-D LES combustion sub-models found in the literature with particular emphasis on the early flame development and flame-wall interaction, (ii) to assess the assumptions/approximations introduced in quasi-dimensional (Q-D) modelling using Direct Numerical Simulation (DNS), and (iii) to refine the Q-D models used currently, using formally-derived sub-models. It is found that many of the refinements introduced noticeably improve the accuracy of the Q-D model. The functional form of the models obtained through formal reduction of various LES combustion sub-models presents similarities and agrees well with the heuristic functions that can be found in existing Q-D models. Ultimately, this study enhances the transferability of insights from fundamental investigations to real engine applications, which can be useful for future Q-D model development and validation.
Author Giannakopoulos, George K.
Boulouchos, Konstantinos
Bardis, Konstantinos
Wright, Yuri M.
Frouzakis, Christos E.
Kyrtatos, Panagiotis
Author_xml – sequence: 1
  givenname: Konstantinos
  surname: Bardis
  fullname: Bardis, Konstantinos
  email: bardis@lav.mavt.ethz.ch
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
– sequence: 2
  givenname: Panagiotis
  surname: Kyrtatos
  fullname: Kyrtatos, Panagiotis
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
– sequence: 3
  givenname: Christos E.
  surname: Frouzakis
  fullname: Frouzakis, Christos E.
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
– sequence: 4
  givenname: Yuri M.
  surname: Wright
  fullname: Wright, Yuri M.
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
– sequence: 5
  givenname: George K.
  surname: Giannakopoulos
  fullname: Giannakopoulos, George K.
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
– sequence: 6
  givenname: Konstantinos
  surname: Boulouchos
  fullname: Boulouchos, Konstantinos
  organization: Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland
BookMark eNqNkdtO3DAQhq0KpC6Ud7Da6wQ7PiTpVRHQg7SiEgvXlmNPFm8Te7Fjqr5JH7fZXSohrriyNP7nG818J-jIBw8IfaSkpITK801pwtjlNPWDHqGsSEVKIkvC-Du0oELIomoreoQWhFBSVLQh79FJShtCSM0ZW6C_t2CzmVzwOPT49uJmdb68XuFn6q6ccleMwcKQcB8ifsw6ucK6EXyav_WA01bHX9itvdvnwa-dB5zcmAe9qySsvcXwpIes_w-aHgDvoYPza6xTyuP2kP3tpgd8dbP6gI57PSQ4e35P0f3X67vL78Xy57cflxfLwjBRTUUH1kprqax5beuusZwLbkzTtl3bCq6ZbJigvBFMaFoD10RDL6DXjRGE0Yadok8H7jaGxwxpUpuQ47xXUhUXrBJcSjanPh9SJoaUIvRqG92o4x9FidqZUBv10oTamVBEqtnE3PzlVbNx0_4UU9RueBvi6oCYNcCTg6iSceANWBfBTMoG9xbMP7E6tBU
CitedBy_id crossref_primary_10_1016_j_proci_2022_06_030
crossref_primary_10_1016_j_actaastro_2022_02_025
Cites_doi 10.1080/00102200802612419
10.1243/1468087011545442
10.1177/1468087414521615
10.1016/j.combustflame.2011.11.022
10.1016/j.combustflame.2017.11.005
10.1016/j.combustflame.2013.01.001
10.1016/j.apenergy.2018.08.046
10.1016/j.combustflame.2015.04.011
10.1016/j.proci.2014.08.014
10.1080/00102200903341587
10.2298/TSCI130103030S
10.1177/1468087419877990
10.1007/BF00271513
10.1016/j.apenergy.2019.03.198
10.1016/j.proci.2006.07.119
10.4271/2017-01-0542
10.1016/j.egypro.2014.01.088
10.2514/3.9948
10.1115/1.3240815
10.1016/j.combustflame.2013.01.017
10.1016/j.proci.2006.07.086
10.1016/j.ijheatfluidflow.2004.07.005
10.1016/S0082-0784(06)80064-0
10.1016/j.combustflame.2017.09.029
10.1080/00102209808924163
10.1016/S0082-0784(98)80487-6
10.1017/S0022112098004212
ContentType Journal Article
Copyright 2020 The Combustion Institute
Copyright Elsevier BV Oct 2020
Copyright_xml – notice: 2020 The Combustion Institute
– notice: Copyright Elsevier BV Oct 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.combustflame.2020.06.034
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1556-2921
EndPage 202
ExternalDocumentID 10_1016_j_combustflame_2020_06_034
S0010218020302522
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
L7M
ID FETCH-LOGICAL-c352t-bedd6dd16747d7b8d4454cc899b9954a36835148535a17e4a0aef5efa8c503183
IEDL.DBID .~1
ISSN 0010-2180
IngestDate Mon Jul 14 10:16:52 EDT 2025
Tue Jul 01 01:56:45 EDT 2025
Thu Apr 24 22:52:37 EDT 2025
Fri Feb 23 02:48:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flame wall interaction
Direct numerical simulation
Spark ignition engines
Early flame development
Quasi dimensional model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-bedd6dd16747d7b8d4454cc899b9954a36835148535a17e4a0aef5efa8c503183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2453254663
PQPubID 2045271
PageCount 14
ParticipantIDs proquest_journals_2453254663
crossref_primary_10_1016_j_combustflame_2020_06_034
crossref_citationtrail_10_1016_j_combustflame_2020_06_034
elsevier_sciencedirect_doi_10_1016_j_combustflame_2020_06_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Combustion and flame
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Ewald, Peters (bib0004) 2007; 31
Jafargholi, Giannakopoulos, Frouzakis, Boulouchos (bib0017) 2018; 188
Dulbecco, Richard, Laget, Aubret (bib0027) 2016
Sjerić, Kozarac, Tomić (bib0030) 2014; 18
Fiveland, Assanis (bib0039) 2001
Sjerić (bib0010) 2014
Lämmle (bib0012) 2005
Bardis, Xu, Kyrtatos, Wright, Boulouchos (bib0024) 2018
Weller, Tabor, Gosman, Fureby (bib0006) 1998; 27
Hanjalić, Popovac, Hadžiabdić (bib0034) 2004; 25
H. Reitz, H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, et al., IJER editorial: The future of the internal combustion engine, 2019.
Richard, Veynante (bib0013) 2015; 343
Richard, Colin, Vermorel, Benkenida, Angelberger, Veynante (bib0037) 2007; 31(2)
Achuth, Mehta (bib0025) 2001; 2
Ihme (bib0035) 2012; 159
Peters (bib0007) 1999; 384
Kolla, Rogerson, Swaminathan (bib0038) 2010; 182
Heywood (bib0002) 1988
Boudier, Henriot, Poinsot, Baritaud (bib0005) 1992; 24(1)
Herweg, Maly (bib0009) 1992
Fogla, Bybee, Mirzaeian, Millo, Wahiduzzaman (bib0022) 2017; 10
Masouleh, Keskinen, Kaario, Kahila, Wright, Vuorinen (bib0043) 2018; 230
Agarwal, Filipi, Assanis, Baker (bib0029) 1998; 136
Steiner, Boulouchos (bib0040) 1995
Borgnakke, Arpaci, Tabaczynski (bib0020) 1980
Lam, Bremhorst (bib0031) 1981; 103
Kolla, Rogerson, Chakraborty, Swaminathan (bib0008) 2009; 181
Durbin (bib0033) 1991; 3
Dreizler, Böhm (bib0014) 2015; 35
Poinsot, Veynante (bib0015) 2005
De Bellis, Severi, Fontanesi, Bozza (bib0028) 2014; 45
Masouleh, Keskinen, Kaario, Kahila, Karimkashi, Vuorinen (bib0044) 2019; 250
Kéromnès, Metcalfe, Heufer, Donohoe, Das, Sung, Herzler, Naumann, Griebel, Mathieu, Krejci, Petersen, Pitz, Curran (bib0018) 2013; 160
Grasreiner, Neumann, Luttermann, Wensing, Hasse (bib0026) 2014; 15
Williams (bib0042) 1985
Suckart, Linse (bib0016) 2018; 190
Ratzke, Schöffler, Kuppa, Dinkelacker (bib0041) 2015; 162
Chen, Patel (bib0032) 1988; 26
De Bellis, Bozza, Tufano (bib0011) 2017
Bozza, Teodosio, De Bellis, Fontanesi, Iorio (bib0023) 2018
Kee, Grcar, Miller, Miller (bib0019) 1985
Borgnakke, Davis, Tabaczynski (bib0021) 1981
Wong, Hoult (bib0036) 1979
Eyssartier, Cuenot, Gicquel, Poinsot (bib0003) 2013; 160
Sjerić (10.1016/j.combustflame.2020.06.034_bib0010) 2014
Borgnakke (10.1016/j.combustflame.2020.06.034_bib0021) 1981
Jafargholi (10.1016/j.combustflame.2020.06.034_bib0017) 2018; 188
Kolla (10.1016/j.combustflame.2020.06.034_bib0038) 2010; 182
Bozza (10.1016/j.combustflame.2020.06.034_bib0023) 2018
Dreizler (10.1016/j.combustflame.2020.06.034_bib0014) 2015; 35
Sjerić (10.1016/j.combustflame.2020.06.034_bib0030) 2014; 18
Fogla (10.1016/j.combustflame.2020.06.034_bib0022) 2017; 10
Boudier (10.1016/j.combustflame.2020.06.034_bib0005) 1992; 24(1)
Herweg (10.1016/j.combustflame.2020.06.034_bib0009) 1992
Williams (10.1016/j.combustflame.2020.06.034_bib0042) 1985
Eyssartier (10.1016/j.combustflame.2020.06.034_bib0003) 2013; 160
Kéromnès (10.1016/j.combustflame.2020.06.034_bib0018) 2013; 160
Richard (10.1016/j.combustflame.2020.06.034_bib0013) 2015; 343
Peters (10.1016/j.combustflame.2020.06.034_bib0007) 1999; 384
Steiner (10.1016/j.combustflame.2020.06.034_bib0040) 1995
Achuth (10.1016/j.combustflame.2020.06.034_bib0025) 2001; 2
Dulbecco (10.1016/j.combustflame.2020.06.034_bib0027) 2016
Lam (10.1016/j.combustflame.2020.06.034_bib0031) 1981; 103
Heywood (10.1016/j.combustflame.2020.06.034_bib0002) 1988
Kolla (10.1016/j.combustflame.2020.06.034_bib0008) 2009; 181
De Bellis (10.1016/j.combustflame.2020.06.034_bib0011) 2017
Suckart (10.1016/j.combustflame.2020.06.034_bib0016) 2018; 190
Grasreiner (10.1016/j.combustflame.2020.06.034_bib0026) 2014; 15
Borgnakke (10.1016/j.combustflame.2020.06.034_bib0020) 1980
10.1016/j.combustflame.2020.06.034_bib0001
De Bellis (10.1016/j.combustflame.2020.06.034_bib0028) 2014; 45
Richard (10.1016/j.combustflame.2020.06.034_bib0037) 2007; 31(2)
Ihme (10.1016/j.combustflame.2020.06.034_bib0035) 2012; 159
Poinsot (10.1016/j.combustflame.2020.06.034_bib0015) 2005
Masouleh (10.1016/j.combustflame.2020.06.034_bib0043) 2018; 230
Ewald (10.1016/j.combustflame.2020.06.034_bib0004) 2007; 31
Agarwal (10.1016/j.combustflame.2020.06.034_bib0029) 1998; 136
Fiveland (10.1016/j.combustflame.2020.06.034_bib0039) 2001
Ratzke (10.1016/j.combustflame.2020.06.034_bib0041) 2015; 162
Durbin (10.1016/j.combustflame.2020.06.034_bib0033) 1991; 3
Masouleh (10.1016/j.combustflame.2020.06.034_bib0044) 2019; 250
Weller (10.1016/j.combustflame.2020.06.034_bib0006) 1998; 27
Lämmle (10.1016/j.combustflame.2020.06.034_bib0012) 2005
Chen (10.1016/j.combustflame.2020.06.034_bib0032) 1988; 26
Bardis (10.1016/j.combustflame.2020.06.034_bib0024) 2018
Hanjalić (10.1016/j.combustflame.2020.06.034_bib0034) 2004; 25
Wong (10.1016/j.combustflame.2020.06.034_bib0036) 1979
Kee (10.1016/j.combustflame.2020.06.034_bib0019) 1985
References_xml – start-page: 964
  year: 1981
  end-page: 978
  ident: bib0021
  article-title: Predictions of in-cylinder swirl velocity and turbulence intensity for an open chamber cup in piston engine
  publication-title: SAE Trans.
– volume: 136
  start-page: 13
  year: 1998
  end-page: 39
  ident: bib0029
  article-title: Assessment of single-and two-zone turbulence formulations for quasi-dimensional modeling of spark-ignition engine combustion
  publication-title: Combust. Sci. Technol.
– volume: 162
  start-page: 2778
  year: 2015
  end-page: 2787
  ident: bib0041
  article-title: Validation of turbulent flame speed models for methane–air-mixtures at high pressure gas engine conditions
  publication-title: Combust. Flame
– year: 2005
  ident: bib0015
  publication-title: Theoretical and Numerical Combustion
– volume: 18
  year: 2014
  ident: bib0030
  article-title: Development of a two zone turbulence model and its application to the cycle-simulation.
  publication-title: Thermal Sci.
– year: 2018
  ident: bib0024
  article-title: A zero dimensional turbulence and heat transfer phenomenological model for pre-chamber gas engines
  publication-title: Technical Report
– volume: 188
  start-page: 453
  year: 2018
  end-page: 468
  ident: bib0017
  article-title: Laminar syngas–air premixed flames in a closed rectangular domain: Dns of flame propagation and flame/wall interactions
  publication-title: Combust. Flame
– year: 2016
  ident: bib0027
  article-title: Development of a quasi-dimensional KK turbulence model for direct injection spark ignition (DISI) engines based on the formal reduction of a 3D CFD approach
  publication-title: Technical Report
– year: 1988
  ident: bib0002
  publication-title: Internal Combustion Engine Fundamentals
– volume: 181
  start-page: 518
  year: 2009
  end-page: 535
  ident: bib0008
  article-title: Scalar dissipation rate modeling and its validation
  publication-title: Combust. Sci. Technol.
– volume: 3
  start-page: 1
  year: 1991
  end-page: 13
  ident: bib0033
  article-title: Near-wall turbulence closure modeling without damping functions
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 2
  start-page: 209
  year: 2001
  end-page: 227
  ident: bib0025
  article-title: Predictions of tumble and turbulence in four-valve pentroof spark ignition engines
  publication-title: Int. J. Engine Res.
– volume: 343
  start-page: 219
  year: 2015
  end-page: 231
  ident: bib0013
  article-title: A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines
  publication-title: Compt. Rend. Méc.
– start-page: 1243
  year: 1979
  end-page: 1262
  ident: bib0036
  article-title: Rapid distortion theory applied to turbulent combustion
  publication-title: SAE Trans.
– volume: 31(2)
  start-page: 3059
  year: 2007
  end-page: 3066
  ident: bib0037
  article-title: Towards large eddy simulation of combustion in spark ignition engines
  publication-title: Proc. Combust. Inst.
– year: 2014
  ident: bib0010
  article-title: New physically based sub-models for the cycle-simulation of spark-ignition engine
  publication-title: PhD, Zagreb
– volume: 103
  start-page: 456
  year: 1981
  end-page: 460
  ident: bib0031
  article-title: A modified form of the k-ε model for predicting wall turbulence
  publication-title: J. Fluids Eng.
– volume: 35
  start-page: 37
  year: 2015
  end-page: 64
  ident: bib0014
  article-title: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions
  publication-title: Proc. Combust. Inst.
– volume: 45
  start-page: 829
  year: 2014
  end-page: 838
  ident: bib0028
  article-title: Hierarchical 1d/3d approach for the development of a turbulent combustion model applied to a vva turbocharged engine. part i: turbulence model
  publication-title: Energy Procedia
– start-page: 606
  year: 1995
  end-page: 618
  ident: bib0040
  article-title: Near-wall unsteady premixed flame propagation in SI engines
  publication-title: SAE Trans.
– volume: 160
  start-page: 995
  year: 2013
  end-page: 1011
  ident: bib0018
  article-title: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures
  publication-title: Combust. Flame
– volume: 384
  start-page: 107
  year: 1999
  end-page: 132
  ident: bib0007
  article-title: The turbulent burning velocity for large-scale and small-scale turbulence
  publication-title: J. Fluid Mech.
– reference: H. Reitz, H. Ogawa, R. Payri, T. Fansler, S. Kokjohn, Y. Moriyoshi, A. Agarwal, D. Arcoumanis, D. Assanis, C. Bae, et al., IJER editorial: The future of the internal combustion engine, 2019.
– year: 2005
  ident: bib0012
  publication-title: Numerical and experimental study of flame propagation and knock in a compressed natural gas engine
– year: 2018
  ident: bib0023
  article-title: Refinement of a 0D turbulence model to predict tumble and turbulent intensity in SI engines. Part II: model concept, validation and discussion
  publication-title: Technical Report
– volume: 190
  start-page: 50
  year: 2018
  end-page: 64
  ident: bib0016
  article-title: Modelling turbulent premixed flame–wall interactions including flame quenching and near-wall turbulence based on a level-set flamelet approach
  publication-title: Combust. Flame
– year: 1985
  ident: bib0019
  article-title: PREMIX: a fortran program for modeling steady laminar one-dimensional premixed flames
  publication-title: Technical Report No. SAND85-8240
– volume: 10
  start-page: 562
  year: 2017
  end-page: 575
  ident: bib0022
  article-title: Development of a k-ϵ phenomenological model to predict in-cylinder turbulence
  publication-title: SAE Int. J. Engines
– volume: 24(1)
  start-page: 503
  year: 1992
  end-page: 510
  ident: bib0005
  article-title: A model for turbulent flame ignition and propagation in spark ignition engines
  publication-title: Symp. (Int.) Combust.
– volume: 159
  start-page: 1592
  year: 2012
  end-page: 1604
  ident: bib0035
  article-title: On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures
  publication-title: Combust. Flame
– volume: 182
  start-page: 284
  year: 2010
  end-page: 308
  ident: bib0038
  article-title: Validation of a turbulent flame speed model across combustion regimes
  publication-title: Combust. Sci. Technol.
– volume: 31
  start-page: 3051
  year: 2007
  end-page: 3058
  ident: bib0004
  article-title: On unsteady premixed turbulent burning velocity prediction in internal combustion engines
  publication-title: Proc. Combust. Inst.
– start-page: 1030
  year: 2001
  end-page: 1044
  ident: bib0039
  article-title: Development of a two-zone HCCI combustion model accounting for boundary layer effects
  publication-title: SAE Trans.
– start-page: 97
  year: 1985
  end-page: 131
  ident: bib0042
  article-title: Turbulent combustion
  publication-title: The Mathematics of Combustion
– volume: 26
  start-page: 641
  year: 1988
  end-page: 648
  ident: bib0032
  article-title: Near-wall turbulence models for complex flows including separation
  publication-title: AIAA J.
– volume: 250
  start-page: 801
  year: 2019
  end-page: 820
  ident: bib0044
  article-title: Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds
  publication-title: Appl. Energy
– start-page: 1947
  year: 1992
  end-page: 1976
  ident: bib0009
  article-title: A fundamental model for flame kernel formation in SI engines
  publication-title: SAE Trans.
– volume: 27
  start-page: 899
  year: 1998
  end-page: 907
  ident: bib0006
  article-title: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer
  publication-title: Symp. (Int.) Combust.
– year: 1980
  ident: bib0020
  article-title: A model for the instantaneous heat transfer and turbulence in a spark ignition engine
  publication-title: Technical Report
– year: 2017
  ident: bib0011
  article-title: A comparison between two phenomenological combustion models applied to different SI engines
  publication-title: Technical Report
– volume: 15
  start-page: 805
  year: 2014
  end-page: 816
  ident: bib0026
  article-title: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains
  publication-title: Int. J. Engine Res.
– volume: 25
  start-page: 1047
  year: 2004
  end-page: 1051
  ident: bib0034
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
– volume: 160
  start-page: 1191
  year: 2013
  end-page: 1207
  ident: bib0003
  article-title: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames
  publication-title: Combust. Flame
– volume: 230
  start-page: 486
  year: 2018
  end-page: 505
  ident: bib0043
  article-title: Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration
  publication-title: Appl. Energy
– volume: 181
  start-page: 518
  issue: 3
  year: 2009
  ident: 10.1016/j.combustflame.2020.06.034_bib0008
  article-title: Scalar dissipation rate modeling and its validation
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200802612419
– volume: 2
  start-page: 209
  issue: 3
  year: 2001
  ident: 10.1016/j.combustflame.2020.06.034_bib0025
  article-title: Predictions of tumble and turbulence in four-valve pentroof spark ignition engines
  publication-title: Int. J. Engine Res.
  doi: 10.1243/1468087011545442
– start-page: 1947
  year: 1992
  ident: 10.1016/j.combustflame.2020.06.034_bib0009
  article-title: A fundamental model for flame kernel formation in SI engines
  publication-title: SAE Trans.
– volume: 15
  start-page: 805
  issue: 7
  year: 2014
  ident: 10.1016/j.combustflame.2020.06.034_bib0026
  article-title: A quasi-dimensional model of turbulence and global charge motion for spark ignition engines with fully variable valvetrains
  publication-title: Int. J. Engine Res.
  doi: 10.1177/1468087414521615
– volume: 159
  start-page: 1592
  issue: 4
  year: 2012
  ident: 10.1016/j.combustflame.2020.06.034_bib0035
  article-title: On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.11.022
– volume: 190
  start-page: 50
  year: 2018
  ident: 10.1016/j.combustflame.2020.06.034_bib0016
  article-title: Modelling turbulent premixed flame–wall interactions including flame quenching and near-wall turbulence based on a level-set flamelet approach
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.11.005
– volume: 160
  start-page: 995
  issue: 6
  year: 2013
  ident: 10.1016/j.combustflame.2020.06.034_bib0018
  article-title: An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.01.001
– volume: 230
  start-page: 486
  year: 2018
  ident: 10.1016/j.combustflame.2020.06.034_bib0043
  article-title: Flow and thermal field effects on cycle-to-cycle variation of combustion: scale-resolving simulation in a spark ignited simplified engine configuration
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.08.046
– volume: 162
  start-page: 2778
  issue: 7
  year: 2015
  ident: 10.1016/j.combustflame.2020.06.034_bib0041
  article-title: Validation of turbulent flame speed models for methane–air-mixtures at high pressure gas engine conditions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2015.04.011
– year: 2005
  ident: 10.1016/j.combustflame.2020.06.034_bib0015
– volume: 35
  start-page: 37
  issue: 1
  year: 2015
  ident: 10.1016/j.combustflame.2020.06.034_bib0014
  article-title: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.08.014
– volume: 182
  start-page: 284
  issue: 3
  year: 2010
  ident: 10.1016/j.combustflame.2020.06.034_bib0038
  article-title: Validation of a turbulent flame speed model across combustion regimes
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200903341587
– year: 2014
  ident: 10.1016/j.combustflame.2020.06.034_bib0010
  article-title: New physically based sub-models for the cycle-simulation of spark-ignition engine
  publication-title: PhD, Zagreb
– volume: 18
  issue: 1
  year: 2014
  ident: 10.1016/j.combustflame.2020.06.034_bib0030
  article-title: Development of a two zone turbulence model and its application to the cycle-simulation.
  publication-title: Thermal Sci.
  doi: 10.2298/TSCI130103030S
– ident: 10.1016/j.combustflame.2020.06.034_bib0001
  doi: 10.1177/1468087419877990
– year: 1980
  ident: 10.1016/j.combustflame.2020.06.034_bib0020
  article-title: A model for the instantaneous heat transfer and turbulence in a spark ignition engine
– volume: 3
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.combustflame.2020.06.034_bib0033
  article-title: Near-wall turbulence closure modeling without damping functions
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00271513
– year: 1985
  ident: 10.1016/j.combustflame.2020.06.034_bib0019
  article-title: PREMIX: a fortran program for modeling steady laminar one-dimensional premixed flames
– start-page: 964
  year: 1981
  ident: 10.1016/j.combustflame.2020.06.034_bib0021
  article-title: Predictions of in-cylinder swirl velocity and turbulence intensity for an open chamber cup in piston engine
  publication-title: SAE Trans.
– volume: 250
  start-page: 801
  year: 2019
  ident: 10.1016/j.combustflame.2020.06.034_bib0044
  article-title: Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.198
– volume: 31
  start-page: 3051
  issue: 2
  year: 2007
  ident: 10.1016/j.combustflame.2020.06.034_bib0004
  article-title: On unsteady premixed turbulent burning velocity prediction in internal combustion engines
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.119
– volume: 10
  start-page: 562
  issue: 2
  year: 2017
  ident: 10.1016/j.combustflame.2020.06.034_bib0022
  article-title: Development of a k-ϵ phenomenological model to predict in-cylinder turbulence
  publication-title: SAE Int. J. Engines
  doi: 10.4271/2017-01-0542
– year: 2016
  ident: 10.1016/j.combustflame.2020.06.034_bib0027
  article-title: Development of a quasi-dimensional KK turbulence model for direct injection spark ignition (DISI) engines based on the formal reduction of a 3D CFD approach
– start-page: 1030
  year: 2001
  ident: 10.1016/j.combustflame.2020.06.034_bib0039
  article-title: Development of a two-zone HCCI combustion model accounting for boundary layer effects
  publication-title: SAE Trans.
– start-page: 97
  year: 1985
  ident: 10.1016/j.combustflame.2020.06.034_bib0042
  article-title: Turbulent combustion
– volume: 45
  start-page: 829
  year: 2014
  ident: 10.1016/j.combustflame.2020.06.034_bib0028
  article-title: Hierarchical 1d/3d approach for the development of a turbulent combustion model applied to a vva turbocharged engine. part i: turbulence model
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.01.088
– volume: 26
  start-page: 641
  issue: 6
  year: 1988
  ident: 10.1016/j.combustflame.2020.06.034_bib0032
  article-title: Near-wall turbulence models for complex flows including separation
  publication-title: AIAA J.
  doi: 10.2514/3.9948
– volume: 103
  start-page: 456
  issue: 3
  year: 1981
  ident: 10.1016/j.combustflame.2020.06.034_bib0031
  article-title: A modified form of the k-ε model for predicting wall turbulence
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3240815
– volume: 160
  start-page: 1191
  issue: 7
  year: 2013
  ident: 10.1016/j.combustflame.2020.06.034_bib0003
  article-title: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.01.017
– year: 2005
  ident: 10.1016/j.combustflame.2020.06.034_bib0012
– year: 2018
  ident: 10.1016/j.combustflame.2020.06.034_bib0023
  article-title: Refinement of a 0D turbulence model to predict tumble and turbulent intensity in SI engines. Part II: model concept, validation and discussion
– volume: 31(2)
  start-page: 3059
  year: 2007
  ident: 10.1016/j.combustflame.2020.06.034_bib0037
  article-title: Towards large eddy simulation of combustion in spark ignition engines
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2006.07.086
– start-page: 606
  year: 1995
  ident: 10.1016/j.combustflame.2020.06.034_bib0040
  article-title: Near-wall unsteady premixed flame propagation in SI engines
  publication-title: SAE Trans.
– volume: 25
  start-page: 1047
  issue: 6
  year: 2004
  ident: 10.1016/j.combustflame.2020.06.034_bib0034
  article-title: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2004.07.005
– volume: 343
  start-page: 219
  issue: 3
  year: 2015
  ident: 10.1016/j.combustflame.2020.06.034_bib0013
  article-title: A 0-D flame wrinkling equation to describe the turbulent flame surface evolution in SI engines
  publication-title: Compt. Rend. Méc.
– start-page: 1243
  year: 1979
  ident: 10.1016/j.combustflame.2020.06.034_bib0036
  article-title: Rapid distortion theory applied to turbulent combustion
  publication-title: SAE Trans.
– volume: 24(1)
  start-page: 503
  year: 1992
  ident: 10.1016/j.combustflame.2020.06.034_bib0005
  article-title: A model for turbulent flame ignition and propagation in spark ignition engines
  publication-title: Symp. (Int.) Combust.
  doi: 10.1016/S0082-0784(06)80064-0
– year: 1988
  ident: 10.1016/j.combustflame.2020.06.034_bib0002
– volume: 188
  start-page: 453
  year: 2018
  ident: 10.1016/j.combustflame.2020.06.034_bib0017
  article-title: Laminar syngas–air premixed flames in a closed rectangular domain: Dns of flame propagation and flame/wall interactions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.09.029
– year: 2018
  ident: 10.1016/j.combustflame.2020.06.034_bib0024
  article-title: A zero dimensional turbulence and heat transfer phenomenological model for pre-chamber gas engines
– volume: 136
  start-page: 13
  issue: 1–6
  year: 1998
  ident: 10.1016/j.combustflame.2020.06.034_bib0029
  article-title: Assessment of single-and two-zone turbulence formulations for quasi-dimensional modeling of spark-ignition engine combustion
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209808924163
– volume: 27
  start-page: 899
  year: 1998
  ident: 10.1016/j.combustflame.2020.06.034_bib0006
  article-title: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer
  publication-title: Symp. (Int.) Combust.
  doi: 10.1016/S0082-0784(98)80487-6
– volume: 384
  start-page: 107
  year: 1999
  ident: 10.1016/j.combustflame.2020.06.034_bib0007
  article-title: The turbulent burning velocity for large-scale and small-scale turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098004212
– year: 2017
  ident: 10.1016/j.combustflame.2020.06.034_bib0011
  article-title: A comparison between two phenomenological combustion models applied to different SI engines
SSID ssj0007433
Score 2.3329167
Snippet Despite the significant improvement of computational resources, large eddy simulations (LES) are too expensive to be applied to wide ranges of operating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Calibration
Combustion
Direct numerical simulation
Early flame development
Flame wall interaction
Large eddy simulation
Mathematical models
Model accuracy
Optimization
Quasi dimensional model
Reduction
Simulation
Spark ignition
Spark ignition engines
Three dimensional models
Title Reduction of RANS/LES combustion sub-models for quasi-dimensional spark ignition engine simulations and evaluation of the modelling assumptions with DNS
URI https://dx.doi.org/10.1016/j.combustflame.2020.06.034
https://www.proquest.com/docview/2453254663
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IHtSDUdSIIunB62RsHRsHDwQh-GsHkIRb025dMn8AMrj6d_jn-l7XiZqYkHhZsqXtmvbl-97W975HyEWbAU00A2UB2cHFThxLtoSwhMuADFCwXGG-80PYGozZ7cSblEi3yIXBsEqD_Tmma7Q2TxpmNRvzNMUcXyxLHeBRGhC3gzjMmI9Wfvm-DvMAhsxPmQFvsHUhPKpjvGBsucqWCSw-SmY6ttbydNlfJPULrjUH9ffJnnEeaSef3wEpqWmFbHeLmm0VsvtNXvCQfAxRlxVXns4SOuyEo8Z9b0TNdPBxtpKWroWTUXBe6dtKZKkVo-B_LtZBAW8WzzTVIUbQXunhaZa-mqpfGRXTmK4lw_FF4FJSPShmulNwzsFi8rb405deh6MjMu73HrsDy1RisCJw0JaWVFh4KsaMBT_2ZRAz5rEogm81iXpywm0FmBEA1O-Jpq-YsIVKPJWIIPI0ahyT8nQ2VSeESnDZwEdIgogJJmPWFqwtpXL8GLDDVnGVtIul55GRKcdqGS-8iEd74t-3jeO2cQzOc1mVuF9957lYx0a9rood5j9MjwOrbNS_VpgFNwCQcYd5LpYaaLmn_xz-jOzgXR5AWCPl5WKlzsERWsq6tvQ62erc3A3CT8NoDNw
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hMgADggKiPD2wRm0TJ00HhqqAWigZ-pC6WXbiSOHRAmn_Cz-XO8fhJSFVYsmQ2I51tr7vEt99B3DR5kgTzVA7SHZ4aaSuowIpHelxJAMSLNeU73wfBb0Jv5360zXolrkwFFZpsb_AdIPW9k7dWrP-kmWU40tlqUM6SkPidhGH10mdyq_Aeqd_14s-ARlJsjhoRsihDqX2qAnzwuHVMl-kaH9SzXQbRs7T43_x1C_ENjR0swPb1n9knWKKu7CmZ1XY6JZl26qw9U1hcA_ehyTNSsZn85QNO9GoPrgeMTsdup0vlWPK4eQM_Vf2upR55iSk-V_odTCEnLdHlpkoI2yvzfAsz55t4a-cyVnCvlTD6UXoVTIzKCW7M_TPcdMUbem_L7uKRvswubked3uOLcbgxOijLRylqfZUQkkLraSlwoSjseMYP9cUScpJLwgpKQDZ35fNluayIXXq61SGsW-A4wAqs_lMHwJT6LWhm5CGMZdcJbwteVsp7bYShI-GTmrQLk0vYqtUTgUznkQZkvYgvi-boGUTFJ_n8Rp4n31fCr2OlXpdlissfuw-gcSyUv-TclsIiwG5cLnvUbWBwDv65_DnsNEb3w_EoB_dHcMmPSniCU-gsnhb6lP0ixbqzO77D-EyD40
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+RANS%2FLES+combustion+sub-models+for+quasi-dimensional+spark+ignition+engine+simulations+and+evaluation+of+the+modelling+assumptions+with+DNS&rft.jtitle=Combustion+and+flame&rft.au=Bardis%2C+Konstantinos&rft.au=Kyrtatos%2C+Panagiotis&rft.au=Frouzakis%2C+Christos+E.&rft.au=Wright%2C+Yuri+M.&rft.date=2020-10-01&rft.issn=0010-2180&rft.volume=220&rft.spage=189&rft.epage=202&rft_id=info:doi/10.1016%2Fj.combustflame.2020.06.034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2020_06_034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon