Automatic offline path planning of robots grinding multi-curved surfaces on large ship propellers – A human-in-the-loop approach

Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important...

Full description

Saved in:
Bibliographic Details
Published inProcedia CIRP Vol. 120; pp. 934 - 939
Main Authors Vetter, Nikita W., Beuss, Florian, Jentsch, Alexander, Fruendt, Soeren, Sender, Jan, Fluegge, Wilko, Kloetzer, Christian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2023
Subjects
Online AccessGet full text
ISSN2212-8271
2212-8271
DOI10.1016/j.procir.2023.09.103

Cover

Abstract Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important components of a ship and represents a relatively complex part in the production process. Manufacturing in the casting process is resource- and time-consuming and requires extensive finishing, which also includes grinding to final size. Technologically, this operation is still performed manually or mechanically assisted and requires employees with a high level of experience in the operation and handling of grinding technology. In order to prevent the increasing shortage of skilled workers and to make the finishing process independent from employee-specific knowledge, it is necessary to develop an automatic grinding process. In this context, offline path planning for multi-curved surfaces has emerged as a particular challenge, since existing approaches do not sufficiently consider the robot axis positions nor the pose limits of the end effectors. This work starts by presenting the current state of research and then introduces a human-in-the-loop approach that solves the problem of 3D trajectory planning using two-dimensional viewing planes. The trajectories thus found are projected onto the surface of the propeller and analyzed for potential collisions with the robot, grinding efficiency and reachability. Furthermore, it is possible to calculate an automatic removal characteristic by overlaying a simplified casting model and ideal model of a propeller.
AbstractList Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important components of a ship and represents a relatively complex part in the production process. Manufacturing in the casting process is resource- and time-consuming and requires extensive finishing, which also includes grinding to final size. Technologically, this operation is still performed manually or mechanically assisted and requires employees with a high level of experience in the operation and handling of grinding technology. In order to prevent the increasing shortage of skilled workers and to make the finishing process independent from employee-specific knowledge, it is necessary to develop an automatic grinding process. In this context, offline path planning for multi-curved surfaces has emerged as a particular challenge, since existing approaches do not sufficiently consider the robot axis positions nor the pose limits of the end effectors. This work starts by presenting the current state of research and then introduces a human-in-the-loop approach that solves the problem of 3D trajectory planning using two-dimensional viewing planes. The trajectories thus found are projected onto the surface of the propeller and analyzed for potential collisions with the robot, grinding efficiency and reachability. Furthermore, it is possible to calculate an automatic removal characteristic by overlaying a simplified casting model and ideal model of a propeller.
Author Fluegge, Wilko
Beuss, Florian
Fruendt, Soeren
Jentsch, Alexander
Sender, Jan
Kloetzer, Christian
Vetter, Nikita W.
Author_xml – sequence: 1
  givenname: Nikita W.
  surname: Vetter
  fullname: Vetter, Nikita W.
  organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany
– sequence: 2
  givenname: Florian
  surname: Beuss
  fullname: Beuss, Florian
  email: florian.beuss@igp.fraunhofer.de
  organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany
– sequence: 3
  givenname: Alexander
  surname: Jentsch
  fullname: Jentsch, Alexander
  organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany
– sequence: 4
  givenname: Soeren
  surname: Fruendt
  fullname: Fruendt, Soeren
  organization: Mecklenburger Metallguss GmbH - MMG, Teterower Straße 1, 17192 Waren (Müritz), Germany
– sequence: 5
  givenname: Jan
  surname: Sender
  fullname: Sender, Jan
  organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany
– sequence: 6
  givenname: Wilko
  surname: Fluegge
  fullname: Fluegge, Wilko
  organization: University of Rostock, Chair for Manufacturing Engineering, A.-Einstein-Str. 30, 18059 Rostock, Germany
– sequence: 7
  givenname: Christian
  surname: Kloetzer
  fullname: Kloetzer, Christian
  organization: Mecklenburger Metallguss GmbH - MMG, Teterower Straße 1, 17192 Waren (Müritz), Germany
BookMark eNqFkM9KAzEQxoNUsNa-gYe8wNYk224bD0Ip_oOCFz2HbDLbTUmTJckWvImv4Bv6JKbUg3jQuczwMb-Pme8cDZx3gNAlJRNKaHW1nXTBKxMmjLByQnhWyxM0ZIyyYsHmdPBjPkPjGLck13xKSsqG6H3ZJ7-TySjsm8YaB7iTqcWdlc4Zt8kqDr72KeJNME4fpF1vkylUH_agcexDIxVE7B22MmwAx9Z0ON_UgbUQIv58-8BL3PY76QrjitRCYb3vsOzyklTtBTptpI0w_u4j9HJ3-7x6KNZP94-r5bpQ5YylogbZqJJWGnglZ5rNqIaa87kkWtMpWTRzWtdSc87YrOZVKTmjvNK8JpySitTlCE2Pvir4GAM0ogtmJ8OroEQcohRbcYxSHKIUhGe1zNj1L0yZlAPzLgVp7H_wzRGG_NjeQBBRGXAKtAmgktDe_G3wBQOAl_g
CitedBy_id crossref_primary_10_1088_1361_6501_ad9ca3
Cites_doi 10.1016/j.jmapro.2020.03.051
10.1016/j.ssci.2022.105700
10.1016/S1000-9361(11)60060-5
10.1016/j.cja.2021.06.018
10.1016/S0924-0136(99)00338-6
10.1016/j.rcim.2011.08.004
10.1007/s00773-022-00878-6
10.1016/j.rcim.2019.101908
10.1016/j.jmapro.2023.01.004
10.1016/j.procs.2019.09.024
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procir.2023.09.103
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-8271
EndPage 939
ExternalDocumentID 10_1016_j_procir_2023_09_103
S2212827123008351
GroupedDBID 0R~
4.4
457
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
RIG
ROL
SSZ
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-beafc316de96a5d251deb997a0dd1408f71bbad99225b963a92196d9b091060b3
IEDL.DBID IXB
ISSN 2212-8271
IngestDate Tue Jul 01 05:01:16 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Sat May 24 17:05:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords robot grinding
human-in-the-loop
multi-curved surfaces
robot path planning
trajectory planning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-beafc316de96a5d251deb997a0dd1408f71bbad99225b963a92196d9b091060b3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2212827123008351
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_procir_2023_09_103
crossref_citationtrail_10_1016_j_procir_2023_09_103
elsevier_sciencedirect_doi_10_1016_j_procir_2023_09_103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Procedia CIRP
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nordberg (bib0003) 2014
Chong, Lai, HUANG, Xifan, Zhaorui, Mingwang, Heng (bib0009) 2022; 35
Cheng, Yen, Kumar Bedaka, Humay-oon Shah, Lin (bib0008) 2023; 86
Zhu, Feng, Xu, Yang, Li, Yan, Ding (bib0004) 2020; 65
Njaastad, Steen, Egeland (bib0011) 2022; 27
Wei, Chao (bib0001) 2011; 24
Fuentes-Bargues, Sánchez-Lite, González-Gaya, Rosales-Prieto, Reniers (bib0002) 2022; 150
Çakır, Hekimoğlu, Deniz (bib0007) 2019; 158
Tam, Lui, Mok (bib0006) 1999; 95
Pan, Polden, Larkin, Duin, Norrish (bib0010) 2012; 28
Xie, Li, Liao, Wang, Zhou (bib0005) 2020; 56
Tam (10.1016/j.procir.2023.09.103_bib0006) 1999; 95
Njaastad (10.1016/j.procir.2023.09.103_bib0011) 2022; 27
Nordberg (10.1016/j.procir.2023.09.103_bib0003) 2014
Çakır (10.1016/j.procir.2023.09.103_bib0007) 2019; 158
Fuentes-Bargues (10.1016/j.procir.2023.09.103_bib0002) 2022; 150
Pan (10.1016/j.procir.2023.09.103_bib0010) 2012; 28
Xie (10.1016/j.procir.2023.09.103_bib0005) 2020; 56
Cheng (10.1016/j.procir.2023.09.103_bib0008) 2023; 86
Chong (10.1016/j.procir.2023.09.103_bib0009) 2022; 35
Zhu (10.1016/j.procir.2023.09.103_bib0004) 2020; 65
Wei (10.1016/j.procir.2023.09.103_bib0001) 2011; 24
References_xml – volume: 56
  start-page: 830
  year: 2020
  end-page: 844
  ident: bib0005
  article-title: A robotic belt grinding approach based on easy-to-grind region partitioning
  publication-title: Journal of Manufacturing Processes
– volume: 95
  start-page: 191
  year: 1999
  end-page: 200
  ident: bib0006
  article-title: Robotic polishing of free-form surfaces using scanning paths
  publication-title: Journal of Materials Processing Technology
– volume: 150
  year: 2022
  ident: bib0002
  article-title: A study of situational circumstances related to spain's occupational accident rates in the metal sector from 2009 to 2019
  publication-title: Safety Science
– year: 2014
  ident: bib0003
  article-title: Handbook on the Toxicology of Metals
– volume: 158
  start-page: 27
  year: 2019
  end-page: 36
  ident: bib0007
  article-title: Path planning for industrial robot milling applications
  publication-title: Procedia Computer Science
– volume: 24
  start-page: 520
  year: 2011
  end-page: 526
  ident: bib0001
  article-title: A path planning method for robotic belt surface grinding
  publication-title: Chinese Journal of Aeronautics
– volume: 65
  year: 2020
  ident: bib0004
  article-title: Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 35
  start-page: 508
  year: 2022
  end-page: 520
  ident: bib0009
  article-title: A trajectory planning method on error compensation of residual height for aero-engine blades of robotic belt grinding
  publication-title: Chinese Journal of Aeronautics
– volume: 27
  start-page: 887
  year: 2022
  end-page: 906
  ident: bib0011
  article-title: Identification of the geometric design parameters of propeller blades from 3d scanning
  publication-title: Journal of Marine Science and Technology
– volume: 86
  start-page: 294
  year: 2023
  end-page: 310
  ident: bib0008
  article-title: Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application
  publication-title: Journal of Manufacturing Processes
– volume: 28
  start-page: 87
  year: 2012
  end-page: 94
  ident: bib0010
  article-title: Recent progress on programming methods for industrial robots
  publication-title: Robotics and Computer-Integrated Manufacturing
– volume: 56
  start-page: 830
  year: 2020
  ident: 10.1016/j.procir.2023.09.103_bib0005
  article-title: A robotic belt grinding approach based on easy-to-grind region partitioning
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2020.03.051
– volume: 150
  year: 2022
  ident: 10.1016/j.procir.2023.09.103_bib0002
  article-title: A study of situational circumstances related to spain's occupational accident rates in the metal sector from 2009 to 2019
  publication-title: Safety Science
  doi: 10.1016/j.ssci.2022.105700
– volume: 24
  start-page: 520
  issue: 4
  year: 2011
  ident: 10.1016/j.procir.2023.09.103_bib0001
  article-title: A path planning method for robotic belt surface grinding
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/S1000-9361(11)60060-5
– volume: 35
  start-page: 508
  issue: 4
  year: 2022
  ident: 10.1016/j.procir.2023.09.103_bib0009
  article-title: A trajectory planning method on error compensation of residual height for aero-engine blades of robotic belt grinding
  publication-title: Chinese Journal of Aeronautics
  doi: 10.1016/j.cja.2021.06.018
– volume: 95
  start-page: 191
  issue: 1-3
  year: 1999
  ident: 10.1016/j.procir.2023.09.103_bib0006
  article-title: Robotic polishing of free-form surfaces using scanning paths
  publication-title: Journal of Materials Processing Technology
  doi: 10.1016/S0924-0136(99)00338-6
– volume: 28
  start-page: 87
  issue: 2
  year: 2012
  ident: 10.1016/j.procir.2023.09.103_bib0010
  article-title: Recent progress on programming methods for industrial robots
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2011.08.004
– year: 2014
  ident: 10.1016/j.procir.2023.09.103_bib0003
– volume: 27
  start-page: 887
  issue: 2
  year: 2022
  ident: 10.1016/j.procir.2023.09.103_bib0011
  article-title: Identification of the geometric design parameters of propeller blades from 3d scanning
  publication-title: Journal of Marine Science and Technology
  doi: 10.1007/s00773-022-00878-6
– volume: 65
  year: 2020
  ident: 10.1016/j.procir.2023.09.103_bib0004
  article-title: Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications
  publication-title: Robotics and Computer-Integrated Manufacturing
  doi: 10.1016/j.rcim.2019.101908
– volume: 86
  start-page: 294
  year: 2023
  ident: 10.1016/j.procir.2023.09.103_bib0008
  article-title: Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application
  publication-title: Journal of Manufacturing Processes
  doi: 10.1016/j.jmapro.2023.01.004
– volume: 158
  start-page: 27
  year: 2019
  ident: 10.1016/j.procir.2023.09.103_bib0007
  article-title: Path planning for industrial robot milling applications
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.024
SSID ssj0000740312
Score 2.21296
Snippet Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 934
SubjectTerms human-in-the-loop
multi-curved surfaces
robot grinding
robot path planning
trajectory planning
Title Automatic offline path planning of robots grinding multi-curved surfaces on large ship propellers – A human-in-the-loop approach
URI https://dx.doi.org/10.1016/j.procir.2023.09.103
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gtZo0TVyPoaKqqGAAKrpFduygoCqJ0pQZ8Rf4h_wSfHlUhQEkxlg-KbKd7z5f7r4j5FIajGNDaWFFj6CDUDmUa4k5U5xxW9lsKDDecXvnTWaDm7k7b5FRUwuDaZU19leYXqJ1PdKrV7OXxXHvoW9Qd9hnBnpLHoFXIKwqxSK--dU6zmJcpDm3-DMB51M0aCroyjQv9BMxCoP2HRQ8tZvuWT891IbXGe-R3Zougl-90T5p6eSA7GyICB6Sd39VpKXwKqRRhKwRsM0wZHU7IjMKeSrTYgnPeVwWsUCZRkjDVf6qFSxXeYSJWZAmsMDEcMAMLsgwTI-Fgkv4fPsAH8p2fjROqOGMdJGmGTSC5EdkNr5-HE1o3VmBhoZwFVRqEYWO7SnNPeEqw3GUlpwzYSllblzDiNlSCoWata40n6jgBtg8xSWyC8-SzjFpJ2miTwhEBqE0F5YnVH_AlCs95WoVKotLJl1bdojTrGYQ1rLj2P1iETT5ZS9BtQcB7kFgcTPqdAhdW2WV7MYf81mzUcG34xMYz_Cr5em_Lc_INj5V8Zhz0i7ylb4wDKWQXbLlT--fpt3yKH4BSH7pNg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHIADYhU7c-BqNWmauD4WRFXWCyD1Ftmxg4KqJEpTzohf4A_5EmayVMABJK5ORopi582z8-YNY6caMU70tUMVPYr3IuNxaTVppqSQrnFFX9F5x-1dMHrsXY398QI7b2thSFbZYH-N6RVaNyOd5m128iTp3HcRdftdgdBb8QjcAi0hGwjIQP9yfDY_aMEciQuX_iZQAKeItoSu0nlRokjIGbTrkeOp27bP-pmivqSd4Tpba_giDOpH2mALNt1kq19cBLfY22BWZpXzKmRxTLQRqM8w5E0_IhyFItNZOYWnIqmqWKDSEfJoVrxYA9NZEZMyC7IUJqQMB5JwQU7n9FQpOIWP13cYQNXPjycpR9LIJ1mWQ-tIvs0ehxcP5yPetFbgETKukmur4shzA2NloHyDJMdYLaVQjjG45erHwtVaGTKt9TV-o0oisgVGaqIXgaO9HbaYZqndZRAjRFmpnECZbk8YXwfGtyYyjtRC-67eY177NsOo8R2n9heTsBWYPYf1HIQ0B6EjcdTbY3welde-G3_cL9qJCr-tnxBTw6-R-_-OPGHLo4fbm_Dm8u76gK3Qlfpw5pAtlsXMHiFdKfVxtRw_Abow6rc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+offline+path+planning+of+robots+grinding+multi-curved+surfaces+on+large+ship+propellers+%E2%80%93+A+human-in-the-loop+approach&rft.jtitle=Procedia+CIRP&rft.au=Vetter%2C+Nikita+W.&rft.au=Beuss%2C+Florian&rft.au=Jentsch%2C+Alexander&rft.au=Fruendt%2C+Soeren&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=120&rft.spage=934&rft.epage=939&rft_id=info:doi/10.1016%2Fj.procir.2023.09.103&rft.externalDocID=S2212827123008351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon