Automatic offline path planning of robots grinding multi-curved surfaces on large ship propellers – A human-in-the-loop approach
Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important...
Saved in:
Published in | Procedia CIRP Vol. 120; pp. 934 - 939 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2212-8271 2212-8271 |
DOI | 10.1016/j.procir.2023.09.103 |
Cover
Abstract | Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important components of a ship and represents a relatively complex part in the production process. Manufacturing in the casting process is resource- and time-consuming and requires extensive finishing, which also includes grinding to final size. Technologically, this operation is still performed manually or mechanically assisted and requires employees with a high level of experience in the operation and handling of grinding technology. In order to prevent the increasing shortage of skilled workers and to make the finishing process independent from employee-specific knowledge, it is necessary to develop an automatic grinding process. In this context, offline path planning for multi-curved surfaces has emerged as a particular challenge, since existing approaches do not sufficiently consider the robot axis positions nor the pose limits of the end effectors. This work starts by presenting the current state of research and then introduces a human-in-the-loop approach that solves the problem of 3D trajectory planning using two-dimensional viewing planes. The trajectories thus found are projected onto the surface of the propeller and analyzed for potential collisions with the robot, grinding efficiency and reachability. Furthermore, it is possible to calculate an automatic removal characteristic by overlaying a simplified casting model and ideal model of a propeller. |
---|---|
AbstractList | Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending on the robot system used. An example of such a multi-curved component can be found in the ship propeller, which is one of the most important components of a ship and represents a relatively complex part in the production process. Manufacturing in the casting process is resource- and time-consuming and requires extensive finishing, which also includes grinding to final size. Technologically, this operation is still performed manually or mechanically assisted and requires employees with a high level of experience in the operation and handling of grinding technology. In order to prevent the increasing shortage of skilled workers and to make the finishing process independent from employee-specific knowledge, it is necessary to develop an automatic grinding process. In this context, offline path planning for multi-curved surfaces has emerged as a particular challenge, since existing approaches do not sufficiently consider the robot axis positions nor the pose limits of the end effectors. This work starts by presenting the current state of research and then introduces a human-in-the-loop approach that solves the problem of 3D trajectory planning using two-dimensional viewing planes. The trajectories thus found are projected onto the surface of the propeller and analyzed for potential collisions with the robot, grinding efficiency and reachability. Furthermore, it is possible to calculate an automatic removal characteristic by overlaying a simplified casting model and ideal model of a propeller. |
Author | Fluegge, Wilko Beuss, Florian Fruendt, Soeren Jentsch, Alexander Sender, Jan Kloetzer, Christian Vetter, Nikita W. |
Author_xml | – sequence: 1 givenname: Nikita W. surname: Vetter fullname: Vetter, Nikita W. organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany – sequence: 2 givenname: Florian surname: Beuss fullname: Beuss, Florian email: florian.beuss@igp.fraunhofer.de organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany – sequence: 3 givenname: Alexander surname: Jentsch fullname: Jentsch, Alexander organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany – sequence: 4 givenname: Soeren surname: Fruendt fullname: Fruendt, Soeren organization: Mecklenburger Metallguss GmbH - MMG, Teterower Straße 1, 17192 Waren (Müritz), Germany – sequence: 5 givenname: Jan surname: Sender fullname: Sender, Jan organization: Fraunhofer Institute for Large Structures in Production Engineering, A-Einstein-Str. 30, 18059 Rostock, Germany – sequence: 6 givenname: Wilko surname: Fluegge fullname: Fluegge, Wilko organization: University of Rostock, Chair for Manufacturing Engineering, A.-Einstein-Str. 30, 18059 Rostock, Germany – sequence: 7 givenname: Christian surname: Kloetzer fullname: Kloetzer, Christian organization: Mecklenburger Metallguss GmbH - MMG, Teterower Straße 1, 17192 Waren (Müritz), Germany |
BookMark | eNqFkM9KAzEQxoNUsNa-gYe8wNYk224bD0Ip_oOCFz2HbDLbTUmTJckWvImv4Bv6JKbUg3jQuczwMb-Pme8cDZx3gNAlJRNKaHW1nXTBKxMmjLByQnhWyxM0ZIyyYsHmdPBjPkPjGLck13xKSsqG6H3ZJ7-TySjsm8YaB7iTqcWdlc4Zt8kqDr72KeJNME4fpF1vkylUH_agcexDIxVE7B22MmwAx9Z0ON_UgbUQIv58-8BL3PY76QrjitRCYb3vsOzyklTtBTptpI0w_u4j9HJ3-7x6KNZP94-r5bpQ5YylogbZqJJWGnglZ5rNqIaa87kkWtMpWTRzWtdSc87YrOZVKTmjvNK8JpySitTlCE2Pvir4GAM0ogtmJ8OroEQcohRbcYxSHKIUhGe1zNj1L0yZlAPzLgVp7H_wzRGG_NjeQBBRGXAKtAmgktDe_G3wBQOAl_g |
CitedBy_id | crossref_primary_10_1088_1361_6501_ad9ca3 |
Cites_doi | 10.1016/j.jmapro.2020.03.051 10.1016/j.ssci.2022.105700 10.1016/S1000-9361(11)60060-5 10.1016/j.cja.2021.06.018 10.1016/S0924-0136(99)00338-6 10.1016/j.rcim.2011.08.004 10.1007/s00773-022-00878-6 10.1016/j.rcim.2019.101908 10.1016/j.jmapro.2023.01.004 10.1016/j.procs.2019.09.024 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procir.2023.09.103 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2212-8271 |
EndPage | 939 |
ExternalDocumentID | 10_1016_j_procir_2023_09_103 S2212827123008351 |
GroupedDBID | 0R~ 4.4 457 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB HZ~ IXB KQ8 M41 M~E O-L O9- OK1 RIG ROL SSZ AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c352t-beafc316de96a5d251deb997a0dd1408f71bbad99225b963a92196d9b091060b3 |
IEDL.DBID | IXB |
ISSN | 2212-8271 |
IngestDate | Tue Jul 01 05:01:16 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Sat May 24 17:05:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | robot grinding human-in-the-loop multi-curved surfaces robot path planning trajectory planning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-beafc316de96a5d251deb997a0dd1408f71bbad99225b963a92196d9b091060b3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2212827123008351 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_procir_2023_09_103 crossref_citationtrail_10_1016_j_procir_2023_09_103 elsevier_sciencedirect_doi_10_1016_j_procir_2023_09_103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Procedia CIRP |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nordberg (bib0003) 2014 Chong, Lai, HUANG, Xifan, Zhaorui, Mingwang, Heng (bib0009) 2022; 35 Cheng, Yen, Kumar Bedaka, Humay-oon Shah, Lin (bib0008) 2023; 86 Zhu, Feng, Xu, Yang, Li, Yan, Ding (bib0004) 2020; 65 Njaastad, Steen, Egeland (bib0011) 2022; 27 Wei, Chao (bib0001) 2011; 24 Fuentes-Bargues, Sánchez-Lite, González-Gaya, Rosales-Prieto, Reniers (bib0002) 2022; 150 Çakır, Hekimoğlu, Deniz (bib0007) 2019; 158 Tam, Lui, Mok (bib0006) 1999; 95 Pan, Polden, Larkin, Duin, Norrish (bib0010) 2012; 28 Xie, Li, Liao, Wang, Zhou (bib0005) 2020; 56 Tam (10.1016/j.procir.2023.09.103_bib0006) 1999; 95 Njaastad (10.1016/j.procir.2023.09.103_bib0011) 2022; 27 Nordberg (10.1016/j.procir.2023.09.103_bib0003) 2014 Çakır (10.1016/j.procir.2023.09.103_bib0007) 2019; 158 Fuentes-Bargues (10.1016/j.procir.2023.09.103_bib0002) 2022; 150 Pan (10.1016/j.procir.2023.09.103_bib0010) 2012; 28 Xie (10.1016/j.procir.2023.09.103_bib0005) 2020; 56 Cheng (10.1016/j.procir.2023.09.103_bib0008) 2023; 86 Chong (10.1016/j.procir.2023.09.103_bib0009) 2022; 35 Zhu (10.1016/j.procir.2023.09.103_bib0004) 2020; 65 Wei (10.1016/j.procir.2023.09.103_bib0001) 2011; 24 |
References_xml | – volume: 56 start-page: 830 year: 2020 end-page: 844 ident: bib0005 article-title: A robotic belt grinding approach based on easy-to-grind region partitioning publication-title: Journal of Manufacturing Processes – volume: 95 start-page: 191 year: 1999 end-page: 200 ident: bib0006 article-title: Robotic polishing of free-form surfaces using scanning paths publication-title: Journal of Materials Processing Technology – volume: 150 year: 2022 ident: bib0002 article-title: A study of situational circumstances related to spain's occupational accident rates in the metal sector from 2009 to 2019 publication-title: Safety Science – year: 2014 ident: bib0003 article-title: Handbook on the Toxicology of Metals – volume: 158 start-page: 27 year: 2019 end-page: 36 ident: bib0007 article-title: Path planning for industrial robot milling applications publication-title: Procedia Computer Science – volume: 24 start-page: 520 year: 2011 end-page: 526 ident: bib0001 article-title: A path planning method for robotic belt surface grinding publication-title: Chinese Journal of Aeronautics – volume: 65 year: 2020 ident: bib0004 article-title: Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications publication-title: Robotics and Computer-Integrated Manufacturing – volume: 35 start-page: 508 year: 2022 end-page: 520 ident: bib0009 article-title: A trajectory planning method on error compensation of residual height for aero-engine blades of robotic belt grinding publication-title: Chinese Journal of Aeronautics – volume: 27 start-page: 887 year: 2022 end-page: 906 ident: bib0011 article-title: Identification of the geometric design parameters of propeller blades from 3d scanning publication-title: Journal of Marine Science and Technology – volume: 86 start-page: 294 year: 2023 end-page: 310 ident: bib0008 article-title: Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application publication-title: Journal of Manufacturing Processes – volume: 28 start-page: 87 year: 2012 end-page: 94 ident: bib0010 article-title: Recent progress on programming methods for industrial robots publication-title: Robotics and Computer-Integrated Manufacturing – volume: 56 start-page: 830 year: 2020 ident: 10.1016/j.procir.2023.09.103_bib0005 article-title: A robotic belt grinding approach based on easy-to-grind region partitioning publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2020.03.051 – volume: 150 year: 2022 ident: 10.1016/j.procir.2023.09.103_bib0002 article-title: A study of situational circumstances related to spain's occupational accident rates in the metal sector from 2009 to 2019 publication-title: Safety Science doi: 10.1016/j.ssci.2022.105700 – volume: 24 start-page: 520 issue: 4 year: 2011 ident: 10.1016/j.procir.2023.09.103_bib0001 article-title: A path planning method for robotic belt surface grinding publication-title: Chinese Journal of Aeronautics doi: 10.1016/S1000-9361(11)60060-5 – volume: 35 start-page: 508 issue: 4 year: 2022 ident: 10.1016/j.procir.2023.09.103_bib0009 article-title: A trajectory planning method on error compensation of residual height for aero-engine blades of robotic belt grinding publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2021.06.018 – volume: 95 start-page: 191 issue: 1-3 year: 1999 ident: 10.1016/j.procir.2023.09.103_bib0006 article-title: Robotic polishing of free-form surfaces using scanning paths publication-title: Journal of Materials Processing Technology doi: 10.1016/S0924-0136(99)00338-6 – volume: 28 start-page: 87 issue: 2 year: 2012 ident: 10.1016/j.procir.2023.09.103_bib0010 article-title: Recent progress on programming methods for industrial robots publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2011.08.004 – year: 2014 ident: 10.1016/j.procir.2023.09.103_bib0003 – volume: 27 start-page: 887 issue: 2 year: 2022 ident: 10.1016/j.procir.2023.09.103_bib0011 article-title: Identification of the geometric design parameters of propeller blades from 3d scanning publication-title: Journal of Marine Science and Technology doi: 10.1007/s00773-022-00878-6 – volume: 65 year: 2020 ident: 10.1016/j.procir.2023.09.103_bib0004 article-title: Robotic grinding of complex components: A step towards efficient and intelligent machining – challenges, solutions, and applications publication-title: Robotics and Computer-Integrated Manufacturing doi: 10.1016/j.rcim.2019.101908 – volume: 86 start-page: 294 year: 2023 ident: 10.1016/j.procir.2023.09.103_bib0008 article-title: Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application publication-title: Journal of Manufacturing Processes doi: 10.1016/j.jmapro.2023.01.004 – volume: 158 start-page: 27 year: 2019 ident: 10.1016/j.procir.2023.09.103_bib0007 article-title: Path planning for industrial robot milling applications publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.09.024 |
SSID | ssj0000740312 |
Score | 2.21296 |
Snippet | Multi-curved components represent a particular challenge when machining with robots, as the machining is subject to a wide range of technical limits depending... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 934 |
SubjectTerms | human-in-the-loop multi-curved surfaces robot grinding robot path planning trajectory planning |
Title | Automatic offline path planning of robots grinding multi-curved surfaces on large ship propellers – A human-in-the-loop approach |
URI | https://dx.doi.org/10.1016/j.procir.2023.09.103 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqG5gtZo0TVyPoaKqqGAAKrpFduygoCqJ0pQZ8Rf4h_wSfHlUhQEkxlg-KbKd7z5f7r4j5FIajGNDaWFFj6CDUDmUa4k5U5xxW9lsKDDecXvnTWaDm7k7b5FRUwuDaZU19leYXqJ1PdKrV7OXxXHvoW9Qd9hnBnpLHoFXIKwqxSK--dU6zmJcpDm3-DMB51M0aCroyjQv9BMxCoP2HRQ8tZvuWT891IbXGe-R3Zougl-90T5p6eSA7GyICB6Sd39VpKXwKqRRhKwRsM0wZHU7IjMKeSrTYgnPeVwWsUCZRkjDVf6qFSxXeYSJWZAmsMDEcMAMLsgwTI-Fgkv4fPsAH8p2fjROqOGMdJGmGTSC5EdkNr5-HE1o3VmBhoZwFVRqEYWO7SnNPeEqw3GUlpwzYSllblzDiNlSCoWata40n6jgBtg8xSWyC8-SzjFpJ2miTwhEBqE0F5YnVH_AlCs95WoVKotLJl1bdojTrGYQ1rLj2P1iETT5ZS9BtQcB7kFgcTPqdAhdW2WV7MYf81mzUcG34xMYz_Cr5em_Lc_INj5V8Zhz0i7ylb4wDKWQXbLlT--fpt3yKH4BSH7pNg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHIADYhU7c-BqNWmauD4WRFXWCyD1Ftmxg4KqJEpTzohf4A_5EmayVMABJK5ORopi582z8-YNY6caMU70tUMVPYr3IuNxaTVppqSQrnFFX9F5x-1dMHrsXY398QI7b2thSFbZYH-N6RVaNyOd5m128iTp3HcRdftdgdBb8QjcAi0hGwjIQP9yfDY_aMEciQuX_iZQAKeItoSu0nlRokjIGbTrkeOp27bP-pmivqSd4Tpba_giDOpH2mALNt1kq19cBLfY22BWZpXzKmRxTLQRqM8w5E0_IhyFItNZOYWnIqmqWKDSEfJoVrxYA9NZEZMyC7IUJqQMB5JwQU7n9FQpOIWP13cYQNXPjycpR9LIJ1mWQ-tIvs0ehxcP5yPetFbgETKukmur4shzA2NloHyDJMdYLaVQjjG45erHwtVaGTKt9TV-o0oisgVGaqIXgaO9HbaYZqndZRAjRFmpnECZbk8YXwfGtyYyjtRC-67eY177NsOo8R2n9heTsBWYPYf1HIQ0B6EjcdTbY3welde-G3_cL9qJCr-tnxBTw6-R-_-OPGHLo4fbm_Dm8u76gK3Qlfpw5pAtlsXMHiFdKfVxtRw_Abow6rc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+offline+path+planning+of+robots+grinding+multi-curved+surfaces+on+large+ship+propellers+%E2%80%93+A+human-in-the-loop+approach&rft.jtitle=Procedia+CIRP&rft.au=Vetter%2C+Nikita+W.&rft.au=Beuss%2C+Florian&rft.au=Jentsch%2C+Alexander&rft.au=Fruendt%2C+Soeren&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=120&rft.spage=934&rft.epage=939&rft_id=info:doi/10.1016%2Fj.procir.2023.09.103&rft.externalDocID=S2212827123008351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon |