Different contributions of microbial and plant residues to soil organic carbon accumulation during planted forest and abandoned farmland restoration, Loess Plateau, China
Aims Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession proces...
Saved in:
Published in | Plant and soil Vol. 507; no. 1; pp. 845 - 862 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession process of different vegetation types.
Methods
In this study, grasslands (GL) and
Robinia pseudoacacia
plantations (RP) restored for 10, 20, 30, and 40 years were used as research subjects on the Loess Plateau, and farmland was used as a control. Several indicators of soil physicochemical and plant characteristics, enzyme activity, amino sugar, lignin phenols were measured.
Results
The results indicated that the contents of microbial and plant residue carbon in GL and RP increased with the increasing restoration years. However, the contribution of plant residue carbon to the SOC in GL and RP gradually decreased, while microbial residue carbon showed the opposite trend. In contrast, microbial residues were the main contributor to SOC in GL (62.8–75.1%), while plant residues were the main contributor to SOC in RP (47.2–58.3%). There was a difference in the bacterial and fungal residue carbon contribution to SOC between GL and RP. In GL, the dominant contributor to SOC changed from bacterial (47.7–37.2%) to fungal residues (15.1–37.9%). But in RP, it has always been dominated by fungal residue carbon (17.4–33.3%).
Conclusions
More SOC accumulated in GL and RP in the form of microbial and plant residue carbon, respectively. In GL and RP, the contribution of carbon from fungal residues increased with the increase of recovery years. Overall, our research not only contributes to understanding the complexity of the carbon cycle in ecosystems, but also provides a valuable scientific basis for the management of soil carbon pools in different vegetation types under climate change. |
---|---|
AbstractList | AIMS: Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession process of different vegetation types. METHODS: In this study, grasslands (GL) and Robinia pseudoacacia plantations (RP) restored for 10, 20, 30, and 40 years were used as research subjects on the Loess Plateau, and farmland was used as a control. Several indicators of soil physicochemical and plant characteristics, enzyme activity, amino sugar, lignin phenols were measured. RESULTS: The results indicated that the contents of microbial and plant residue carbon in GL and RP increased with the increasing restoration years. However, the contribution of plant residue carbon to the SOC in GL and RP gradually decreased, while microbial residue carbon showed the opposite trend. In contrast, microbial residues were the main contributor to SOC in GL (62.8–75.1%), while plant residues were the main contributor to SOC in RP (47.2–58.3%). There was a difference in the bacterial and fungal residue carbon contribution to SOC between GL and RP. In GL, the dominant contributor to SOC changed from bacterial (47.7–37.2%) to fungal residues (15.1–37.9%). But in RP, it has always been dominated by fungal residue carbon (17.4–33.3%). CONCLUSIONS: More SOC accumulated in GL and RP in the form of microbial and plant residue carbon, respectively. In GL and RP, the contribution of carbon from fungal residues increased with the increase of recovery years. Overall, our research not only contributes to understanding the complexity of the carbon cycle in ecosystems, but also provides a valuable scientific basis for the management of soil carbon pools in different vegetation types under climate change. AimsPlant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession process of different vegetation types.MethodsIn this study, grasslands (GL) and Robinia pseudoacacia plantations (RP) restored for 10, 20, 30, and 40 years were used as research subjects on the Loess Plateau, and farmland was used as a control. Several indicators of soil physicochemical and plant characteristics, enzyme activity, amino sugar, lignin phenols were measured.ResultsThe results indicated that the contents of microbial and plant residue carbon in GL and RP increased with the increasing restoration years. However, the contribution of plant residue carbon to the SOC in GL and RP gradually decreased, while microbial residue carbon showed the opposite trend. In contrast, microbial residues were the main contributor to SOC in GL (62.8–75.1%), while plant residues were the main contributor to SOC in RP (47.2–58.3%). There was a difference in the bacterial and fungal residue carbon contribution to SOC between GL and RP. In GL, the dominant contributor to SOC changed from bacterial (47.7–37.2%) to fungal residues (15.1–37.9%). But in RP, it has always been dominated by fungal residue carbon (17.4–33.3%).ConclusionsMore SOC accumulated in GL and RP in the form of microbial and plant residue carbon, respectively. In GL and RP, the contribution of carbon from fungal residues increased with the increase of recovery years. Overall, our research not only contributes to understanding the complexity of the carbon cycle in ecosystems, but also provides a valuable scientific basis for the management of soil carbon pools in different vegetation types under climate change. Aims Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant residues and microbial residues affect SOC accumulation and the underlying mechanisms remain poorly understood, especially in the succession process of different vegetation types. Methods In this study, grasslands (GL) and Robinia pseudoacacia plantations (RP) restored for 10, 20, 30, and 40 years were used as research subjects on the Loess Plateau, and farmland was used as a control. Several indicators of soil physicochemical and plant characteristics, enzyme activity, amino sugar, lignin phenols were measured. Results The results indicated that the contents of microbial and plant residue carbon in GL and RP increased with the increasing restoration years. However, the contribution of plant residue carbon to the SOC in GL and RP gradually decreased, while microbial residue carbon showed the opposite trend. In contrast, microbial residues were the main contributor to SOC in GL (62.8–75.1%), while plant residues were the main contributor to SOC in RP (47.2–58.3%). There was a difference in the bacterial and fungal residue carbon contribution to SOC between GL and RP. In GL, the dominant contributor to SOC changed from bacterial (47.7–37.2%) to fungal residues (15.1–37.9%). But in RP, it has always been dominated by fungal residue carbon (17.4–33.3%). Conclusions More SOC accumulated in GL and RP in the form of microbial and plant residue carbon, respectively. In GL and RP, the contribution of carbon from fungal residues increased with the increase of recovery years. Overall, our research not only contributes to understanding the complexity of the carbon cycle in ecosystems, but also provides a valuable scientific basis for the management of soil carbon pools in different vegetation types under climate change. |
Author | Wang, Xingbo Sailike, Ahejiang Yu, Zhouchang Shi, Jiayi Peng, Ning Zhang, Wei Wang, Rong Hao, Hongjian Li, Shicai Pian, Duo Wang, Zihan |
Author_xml | – sequence: 1 givenname: Hongjian surname: Hao fullname: Hao, Hongjian organization: College of Grassland Agriculture, Northwest A&F University – sequence: 2 givenname: Rong surname: Wang fullname: Wang, Rong organization: College of Grassland Agriculture, Northwest A&F University – sequence: 3 givenname: Shicai surname: Li fullname: Li, Shicai organization: College of Grassland Agriculture, Northwest A&F University – sequence: 4 givenname: Duo surname: Pian fullname: Pian, Duo organization: College of Grassland Agriculture, Northwest A&F University, Institute of Pratacultural Science, Tibet Academy of Agriculture and Animal Husandry Science – sequence: 5 givenname: Ning surname: Peng fullname: Peng, Ning organization: College of Life Sciences, Northwest A&F University – sequence: 6 givenname: Ahejiang surname: Sailike fullname: Sailike, Ahejiang organization: College of Grassland Agriculture, Northwest A&F University – sequence: 7 givenname: Zhouchang surname: Yu fullname: Yu, Zhouchang organization: College of Grassland Agriculture, Northwest A&F University – sequence: 8 givenname: Jiayi surname: Shi fullname: Shi, Jiayi organization: College of Grassland Agriculture, Northwest A&F University – sequence: 9 givenname: Xingbo surname: Wang fullname: Wang, Xingbo organization: College of Grassland Agriculture, Northwest A&F University – sequence: 10 givenname: Zihan surname: Wang fullname: Wang, Zihan organization: College of Grassland Agriculture, Northwest A&F University – sequence: 11 givenname: Wei surname: Zhang fullname: Zhang, Wei email: zwgwyd@163.com organization: College of Grassland Agriculture, Northwest A&F University, Shaanxi Engineering Research Center of Circular Agriculture |
BookMark | eNp9kU2L1TAUhoOM4J2rf8BVwI2L6ZiPtmmXch114IIuFNyF0-RkzNAm16SF8S_5K01vBWEWE0hCTt7n5XxckosQAxLymrNrzph6lznnrK6YKLtVSlQPz8iON0pWDZPtBdkxJkXFVP_jBbnM-Z6tb97uyJ8P3jlMGGZqYpiTH5bZx5BpdHTyJsXBw0ghWHoaoYgSZm8XzHSONEc_0pjuIHhDDaQhBgrGLNMywmpC7ZJ8uNtItNTFQs9nMxjKWUooQUjTuIbWv5jO4BU9RsyZfi0-CMsVPfz0AV6S5w7GjK_-3Xvy_ePNt8Pn6vjl0-3h_bEyshFzNdgGROfaFpkRwoLqVG-hcciAIfamY7auG3Q1G1CqeuitGxh2HIbatlI2ck_ebr6nFH-VUmc9-WxwLFliXLKWgjHRN0K1RfrmkfQ-LimU7LTkqu27Tpa1J92mKu3MOaHTxs_nQucEftSc6XWIehuiLkPU5yHqh4KKR-gp-QnS76chuUH5tPYf0_-snqD-AqoNtoc |
CitedBy_id | crossref_primary_10_3390_agronomy14123053 crossref_primary_10_1016_j_geoderma_2024_117109 crossref_primary_10_1007_s44246_024_00181_6 |
Cites_doi | 10.1016/j.scitotenv.2023.168627 10.1007/s00374-024-01803-2 10.1016/j.scitotenv.2022.157197 10.1016/j.soilbio.2024.109399 10.1111/gcb.15595 10.1111/gcb.15969 10.1111/1365-2435.14497 10.1016/j.ijbiomac.2017.10.155 10.1111/1365-2745.13385 10.1016/j.iswcr.2022.05.002 10.1038/s41561-019-0417-4 10.1002/IMT2.66 10.1016/0038-0717(96)00117-4 10.1016/j.soilbio.2021.108422 10.1016/j.scitotenv.2024.171418 10.1002/ecy.2916 10.1007/s11104-023-05995-8 10.1111/geb.13605 10.1016/j.soilbio.2022.108688 10.1016/j.jaridenv.2023.105052 10.1007/s10705-020-10076-8 10.1007/s11430-020-9705-9 10.1007/s11104-020-04507-2 10.1016/j.soilbio.2016.02.013 10.1111/gcb.12508 10.1016/j.soilbio.2021.108189 10.1111/geb.13776 10.1016/j.soilblo.2019.03.017 10.1016/j.soilbio.2021.108474 10.1111/gcb.15593 10.1016/j.soilbio.2023.109183 10.1038/s43017-023-00396-y 10.1016/j.chemosphere.2023.139280 10.1111/gcb.16347 10.1007/s11104-022-05787-6 10.1016/j.apsoil.2023.104985 10.1016/j.soilbio.2021.108207 10.1111/gcb.14781 10.1016/j.soilbio.2019.107584 10.1111/tpj.14781 10.3389/fmicb.2023.1116943 10.3390/f14101964 10.1111/gcb.16613 10.1016/j.geoderma.2022.115720 10.1007/s11104-024-06628-4 10.1007/s11368-019-02532-y 10.1016/S0038-0717(02)00074-3 10.1007/s40333-023-0025-4 10.1016/j.scitotenv.2021.150557 10.1016/j.soilbio.2009.02.029 10.1038/s41467-020-16881-7 10.1111/gcb.12113 10.1016/j.soilbio.2022.108607 10.1016/j.soilbio.2022.108587 10.1126/science.adc9453 10.1038/s42003-021-02907-3 10.1016/j.ecolind.2023.111036 10.1007/s00374-020-01474-9 10.3390/agronomy12102557 10.1038/s41467-022-33278-w 10.1016/j.soilbio.2015.10.017 10.1016/j.catena.2018.11.009 10.1016/j.scitotenv.2020.143945 10.1021/ac00239a007 10.1016/j.scitotenv.2022.157645 10.1016/j.catena.2023.107412 10.1007/s11104-018-3605-x 10.1007/s00374-018-1288-3 10.1016/j.agee.2023.108656 10.1016/j.soilbio.2022.108645 10.1111/gcb.14482 10.1007/s11104-023-06277-z 10.1007/s11104-024-06502-3 10.1016/j.soilbio.2023.108963 10.1038/s41467-018-05891-1 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025 |
DBID | AAYXX CITATION 7SN 7ST 7T7 8FD C1K FR3 P64 RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-024-06772-x |
DatabaseName | CrossRef Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Ecology Botany |
EISSN | 1573-5036 |
EndPage | 862 |
ExternalDocumentID | 10_1007_s11104_024_06772_x |
GeographicLocations | Loess Plateau China |
GeographicLocations_xml | – name: Loess Plateau – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 42007428 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Research and Development Projects of Shaanxi Province grantid: No. 2022SF-285 funderid: http://dx.doi.org/10.13039/501100015401 – fundername: Forestry Science and Technology Innovation Project of Shaanxi Province grantid: No. SXLK2022-02-14 – fundername: Chinese Universities Scientific Fund grantid: 2452023079 funderid: http://dx.doi.org/10.13039/501100005236 |
GroupedDBID | -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~F 2~H 30V 3SX 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDBE ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBXY ACDTI ACGFS ACHIC ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEEJZ AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIDBO AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0K M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 PF0 PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 XOL Y6R YLTOR Z45 ZCG ZMTXR ZOVNA ~02 ~8M ~EX ~KM AAYXX ABBRH ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM 7SN 7ST 7T7 8FD ABRTQ C1K FR3 P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-bd5a28f66e0c22da7879da5fe0a0ee9c80d445ef40be374b9dfb0e81ab4d63353 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 18:21:30 EDT 2025 Fri Jul 25 18:57:12 EDT 2025 Tue Jul 01 05:17:53 EDT 2025 Thu Apr 24 22:59:38 EDT 2025 Fri Mar 14 02:01:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plant residue Vegetation restoration Soil organic carbon Ratio of bacteria residue to fungal residue Microbial residue |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-bd5a28f66e0c22da7879da5fe0a0ee9c80d445ef40be374b9dfb0e81ab4d63353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 3176988333 |
PQPubID | 54098 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_3200295276 proquest_journals_3176988333 crossref_citationtrail_10_1007_s11104_024_06772_x crossref_primary_10_1007_s11104_024_06772_x springer_journals_10_1007_s11104_024_06772_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | LP Ye (6772_CR63) 2022; 12 6772_CR64 6772_CR69 MF Cotrufo (6772_CR11) 2013; 19 6772_CR68 XJ Xiang (6772_CR52) 2018; 425 6772_CR29 C Zhang (6772_CR67) 2016; 97 6772_CR28 C Liang (6772_CR33) 2019; 25 M Arcidiacono (6772_CR3) 2023 Y Li (6772_CR30) 2023; 178 XF Tian (6772_CR44) 2024 Y Yang (6772_CR62) 2023; 14 BR Wang (6772_CR47) 2021; 162 RL Huang (6772_CR25) 2021; 4 YH Xue (6772_CR57) 2023; 337 6772_CR61 VN Roth (6772_CR40) 2019; 12 6772_CR60 N Hu (6772_CR24) 2020; 20 6772_CR59 XC Zhao (6772_CR73) 2023; 32 6772_CR58 HW Wu (6772_CR51) 2024; 909 EC Coonan (6772_CR10) 2020; 117 LX Meng (6772_CR37) 2022; 845 G Angst (6772_CR2) 2021; 156 JI Hedges (6772_CR23) 1982; 54 KR Saiya-Cork (6772_CR41) 2002; 34 AD Medeiros (6772_CR36) 2023; 218 NW Sokol (6772_CR42) 2019; 25 MI Ghani (6772_CR18) 2023; 11 W Zhang (6772_CR72) 2019; 134 P Voosen (6772_CR46) 2022; 376 ZH Zhou (6772_CR75) 2020; 11 6772_CR49 YD Xu (6772_CR55) 2019; 174 Y Zhang (6772_CR71) 2024 6772_CR48 L Cao (6772_CR6) 2023; 155 GM Qin (6772_CR39) 2024; 38 XD Zhang (6772_CR66) 1996; 28 T Ma (6772_CR35) 2018; 9 C Liang (6772_CR34) 2021; 64 DL Jones (6772_CR27) 2019; 138 K Beidler (6772_CR4) 2020; 108 ZM Guo (6772_CR19) 2021; 761 XX Zhang (6772_CR70) 2022; 412 CD Canto (6772_CR5) 2020; 103 RR Zhou (6772_CR74) 2023; 29 XL Ding (6772_CR15) 2020; 56 ZW Feng (6772_CR16) 2023; 14 KQ Xiao (6772_CR53) 2023; 4 CW Fernandez (6772_CR17) 2016; 93 6772_CR32 6772_CR31 GH Dai (6772_CR12) 2022; 168 XM Zeng (6772_CR65) 2022; 28 ZY Qian (6772_CR38) 2023; 187 YD Xu (6772_CR54) 2022; 164 RG Joergensen (6772_CR26) 2018; 54 X Wang (6772_CR50) 2024; 923 XX Hao (6772_CR21) 2023; 356 ZJ Xue (6772_CR56) 2024; 494 L Deng (6772_CR14) 2014; 20 JL DeForest (6772_CR13) 2009; 41 Y Abid (6772_CR1) 2018; 108 BB Han (6772_CR20) 2024; 33 L Sun (6772_CR43) 2023; 15 XB Chen (6772_CR8) 2021; 27 M He (6772_CR22) 2022; 28 SP Charles (6772_CR7) 2020; 101 P Tian (6772_CR45) 2022; 847 JM Cheng (6772_CR9) 2020; 450 |
References_xml | – volume: 909 start-page: 168627 year: 2024 ident: 6772_CR51 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.168627 – ident: 6772_CR32 doi: 10.1007/s00374-024-01803-2 – volume: 845 year: 2022 ident: 6772_CR37 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157197 – ident: 6772_CR31 doi: 10.1016/j.soilbio.2024.109399 – volume: 27 start-page: 2478 year: 2021 ident: 6772_CR8 publication-title: Global Change Biol doi: 10.1111/gcb.15595 – volume: 28 start-page: 936 year: 2022 ident: 6772_CR22 publication-title: Glob Chang Biol doi: 10.1111/gcb.15969 – volume: 38 start-page: 573 year: 2024 ident: 6772_CR39 publication-title: Funct Ecol doi: 10.1111/1365-2435.14497 – volume: 108 start-page: 719 year: 2018 ident: 6772_CR1 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.10.155 – volume: 108 start-page: 1845 year: 2020 ident: 6772_CR4 publication-title: J Ecol doi: 10.1111/1365-2745.13385 – volume: 11 start-page: 561 year: 2023 ident: 6772_CR18 publication-title: Int Soil Water Conserv Res doi: 10.1016/j.iswcr.2022.05.002 – volume: 12 start-page: 755 year: 2019 ident: 6772_CR40 publication-title: Nat Geosci doi: 10.1038/s41561-019-0417-4 – ident: 6772_CR59 doi: 10.1002/IMT2.66 – volume: 28 start-page: 1201 year: 1996 ident: 6772_CR66 publication-title: Soil Biol Biochem doi: 10.1016/0038-0717(96)00117-4 – volume: 162 year: 2021 ident: 6772_CR47 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108422 – volume: 923 year: 2024 ident: 6772_CR50 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2024.171418 – volume: 101 start-page: e02916 year: 2020 ident: 6772_CR7 publication-title: Ecology doi: 10.1002/ecy.2916 – year: 2023 ident: 6772_CR3 publication-title: Plant Soil doi: 10.1007/s11104-023-05995-8 – volume: 32 start-page: 120 year: 2023 ident: 6772_CR73 publication-title: Glob Ecol Biogeogr doi: 10.1111/geb.13605 – ident: 6772_CR58 doi: 10.1016/j.soilbio.2022.108688 – volume: 218 year: 2023 ident: 6772_CR36 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2023.105052 – volume: 117 start-page: 273 year: 2020 ident: 6772_CR10 publication-title: Nutr Cycl Agroecosys doi: 10.1007/s10705-020-10076-8 – volume: 64 start-page: 545 year: 2021 ident: 6772_CR34 publication-title: Sci China Earth Sci doi: 10.1007/s11430-020-9705-9 – volume: 450 start-page: 273 year: 2020 ident: 6772_CR9 publication-title: Plant Soil doi: 10.1007/s11104-020-04507-2 – volume: 97 start-page: 40 year: 2016 ident: 6772_CR67 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.02.013 – volume: 20 start-page: 3544 year: 2014 ident: 6772_CR14 publication-title: Glob Chang Biol doi: 10.1111/gcb.12508 – volume: 156 year: 2021 ident: 6772_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108189 – volume: 33 start-page: 151 year: 2024 ident: 6772_CR20 publication-title: Global Ecol Biogeogr doi: 10.1111/geb.13776 – volume: 134 start-page: 1 year: 2019 ident: 6772_CR72 publication-title: Soil Biol Biochem doi: 10.1016/j.soilblo.2019.03.017 – volume: 164 year: 2022 ident: 6772_CR54 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2021.108474 – ident: 6772_CR29 doi: 10.1111/gcb.15593 – volume: 187 start-page: 109183 year: 2023 ident: 6772_CR38 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2023.109183 – volume: 4 start-page: 135 year: 2023 ident: 6772_CR53 publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-023-00396-y – volume: 337 start-page: 139280 year: 2023 ident: 6772_CR57 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.139280 – volume: 28 start-page: 6433 year: 2022 ident: 6772_CR65 publication-title: Glob Chang Biol doi: 10.1111/gcb.16347 – ident: 6772_CR69 doi: 10.1007/s11104-022-05787-6 – ident: 6772_CR68 doi: 10.1016/j.apsoil.2023.104985 – ident: 6772_CR28 doi: 10.1016/j.soilbio.2021.108207 – volume: 25 start-page: 3578 year: 2019 ident: 6772_CR33 publication-title: Glob Chang Biol doi: 10.1111/gcb.14781 – volume: 138 year: 2019 ident: 6772_CR27 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2019.107584 – volume: 103 start-page: 951 year: 2020 ident: 6772_CR5 publication-title: Plant J doi: 10.1111/tpj.14781 – volume: 14 start-page: 1116943 year: 2023 ident: 6772_CR16 publication-title: Front Microbiol doi: 10.3389/fmicb.2023.1116943 – volume: 14 start-page: 1964 year: 2023 ident: 6772_CR62 publication-title: Forests doi: 10.3390/f14101964 – volume: 29 start-page: 1998 year: 2023 ident: 6772_CR74 publication-title: Glob Change Biol doi: 10.1111/gcb.16613 – volume: 412 start-page: 115720 year: 2022 ident: 6772_CR70 publication-title: Geoderma doi: 10.1016/j.geoderma.2022.115720 – year: 2024 ident: 6772_CR44 publication-title: Plant Soil doi: 10.1007/s11104-024-06628-4 – volume: 20 start-page: 1264 year: 2020 ident: 6772_CR24 publication-title: J Soils Sediments doi: 10.1007/s11368-019-02532-y – volume: 34 start-page: 1309 year: 2002 ident: 6772_CR41 publication-title: Soil Biol Biochem doi: 10.1016/S0038-0717(02)00074-3 – volume: 15 start-page: 1107 year: 2023 ident: 6772_CR43 publication-title: J Arid Land doi: 10.1007/s40333-023-0025-4 – ident: 6772_CR60 doi: 10.1016/j.scitotenv.2021.150557 – volume: 41 start-page: 1180 year: 2009 ident: 6772_CR13 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.02.029 – volume: 11 start-page: 3072 year: 2020 ident: 6772_CR75 publication-title: Nat Commun doi: 10.1038/s41467-020-16881-7 – volume: 19 start-page: 988 year: 2013 ident: 6772_CR11 publication-title: Global Change Biol doi: 10.1111/gcb.12113 – ident: 6772_CR49 doi: 10.1016/j.soilbio.2022.108607 – ident: 6772_CR61 doi: 10.1016/j.soilbio.2022.108587 – volume: 376 start-page: 685 year: 2022 ident: 6772_CR46 publication-title: Science doi: 10.1126/science.adc9453 – volume: 4 start-page: 1376 year: 2021 ident: 6772_CR25 publication-title: Commun Biol doi: 10.1038/s42003-021-02907-3 – volume: 155 start-page: 111036 year: 2023 ident: 6772_CR6 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2023.111036 – volume: 56 start-page: 881 year: 2020 ident: 6772_CR15 publication-title: Biol Fertil Soils doi: 10.1007/s00374-020-01474-9 – volume: 12 year: 2022 ident: 6772_CR63 publication-title: Agronomy-Basel doi: 10.3390/agronomy12102557 – ident: 6772_CR48 doi: 10.1038/s41467-022-33278-w – volume: 93 start-page: 38 year: 2016 ident: 6772_CR17 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.10.017 – volume: 174 start-page: 316 year: 2019 ident: 6772_CR55 publication-title: Catena doi: 10.1016/j.catena.2018.11.009 – volume: 761 start-page: 143945 year: 2021 ident: 6772_CR19 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.143945 – volume: 54 start-page: 174 year: 1982 ident: 6772_CR23 publication-title: Anal Chem doi: 10.1021/ac00239a007 – volume: 847 start-page: 157645 year: 2022 ident: 6772_CR45 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.157645 – ident: 6772_CR64 doi: 10.1016/j.catena.2023.107412 – volume: 425 start-page: 539 year: 2018 ident: 6772_CR52 publication-title: Plant Soil doi: 10.1007/s11104-018-3605-x – volume: 54 start-page: 559 year: 2018 ident: 6772_CR26 publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-1288-3 – volume: 356 start-page: 108656 year: 2023 ident: 6772_CR21 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2023.108656 – volume: 168 start-page: 108645 year: 2022 ident: 6772_CR12 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2022.108645 – volume: 25 start-page: 12 year: 2019 ident: 6772_CR42 publication-title: Glob Chang Biol doi: 10.1111/gcb.14482 – volume: 494 start-page: 301 year: 2024 ident: 6772_CR56 publication-title: Plant Soil doi: 10.1007/s11104-023-06277-z – year: 2024 ident: 6772_CR71 publication-title: Plant Soil doi: 10.1007/s11104-024-06502-3 – volume: 178 start-page: 108963 year: 2023 ident: 6772_CR30 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2023.108963 – volume: 9 start-page: 3480 year: 2018 ident: 6772_CR35 publication-title: Nat Commun doi: 10.1038/s41467-018-05891-1 |
SSID | ssj0003216 |
Score | 2.4971995 |
Snippet | Aims
Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant... AimsPlant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant... AIMS: Plant and microbial residues are the primary drivers mediating soil organic carbon (SOC) accumulation in terrestrial ecosystems. However, how plant... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 845 |
SubjectTerms | abandoned land Accumulation Agricultural land Agriculture Biomedical and Life Sciences Carbon Carbon cycle China Climate change Ecology Enzymatic activity Enzyme activity forests Fungi Grasslands Life Sciences lignin Microorganisms Old fields Organic carbon Phenols Plant Physiology plant residues Plant Sciences Research Article Residues Robinia pseudoacacia soil Soil management soil organic carbon Soil Science & Conservation sugars Terrestrial ecosystems Vegetation |
Title | Different contributions of microbial and plant residues to soil organic carbon accumulation during planted forest and abandoned farmland restoration, Loess Plateau, China |
URI | https://link.springer.com/article/10.1007/s11104-024-06772-x https://www.proquest.com/docview/3176988333 https://www.proquest.com/docview/3200295276 |
Volume | 507 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQLkhwQFBAFJaVkbhRS65jO8mxZVtWPFYcqFROkZ-oUpus2lRi_xK_krHjtFoESJwSJc7EyYw9nzXj-RB6E2rUMes1yYWzIcwoiHK8IN4zN7askNyGheLnK3m54B-WYpk2he36bPc-JBln6uNmN_BUnIBPIaHqGSOAHE9FWLuDFS_Y5DD_ZiwSnoYTQvNymbbK_FnGbXd0xJi_hUWjt5k_Qg8TTMSTTq-P0R1XD9CDyfdtKpXhBujutAFgdzNA92ax8vTNE_TzItGdtDimoCcuqx1uPN6sYsklEKpqi6_X8EcxLLVXFnqC2wbvmtUadxxPBhu11U2NlTH7TeL3wt2Gxu5JZzGAXfiEKExpFThBwkW13YRUySC5TcY1wp8amE7xF5Dj1H6EI2X3U7SYz76-uySJjIEYwGgt0VYoVngpHTWMWQUDvbRKeEcVda40BbWcC-c51S7LuS7BAKgrxkpzK7NMZM_QSQ1deY4w9VTSXHNVaMW9yZUUYB-Sas0K4_l4iMa9TiqTKpUHwox1dayxHPRYgR6rqMfqxxC9PTxz3dXp-Gfrs17VVRqzuwqQlCwD93I2RK8Pt2G0hRCKql2zhzYhp6UULJdDNOpN5Cji72988X_NX6L7LBANx_TwM3TSbvfuFaCfVp-j08l8Or0Kx_ffPs7Oo_H_At65AuI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQAAEPCAqIwgAj8UYtuY7tJI8FNhXoJh5WqW-Rf06V2mRqU4n9S_srd3acViBA4i1K7IuTO_s-y3f3IfQh1Khj1muSC2fDMaMgyvGCeM_c2LJCchs2imfncjrn3xZikZLCtn20e38kGVfqQ7IbeCpOwKeQUPWMEUCOdwEMFCGQa84m-_U3Y5HwNFwQmpeLlCrzZxm_uqMDxvztWDR6m9Mn6HGCiXjS6fUpuuPqAXo0udykUhlugO59agDYXQ_Q_ZNYefr6Gbr5kuhOWhxD0BOX1RY3Hq-XseQSCFW1xVcr-KMYttpLCyPBbYO3zXKFO44ng43a6KbGypjdOvF74S6hsevpLAawC58QhSmtAidIuKk26xAqGSS3ybhGeNbAcop_gByndiMcKbufo_npycXnKUlkDMQARmuJtkKxwkvpqGHMKpjopVXCO6qoc6UpqOVcOM-pdlnOdQkGQF0xVppbmWUie4GOahjKS4Spp5LmmqtCK-5NrqQA-5BUa1YYz8dDNO51UplUqTwQZqyqQ43loMcK9FhFPVY_h-jjvs9VV6fjn62Pe1VXac5uK0BSsgzcy9kQvd8_htkWjlBU7ZodtAkxLaVguRyiUW8iBxF_f-Or_2v-Dj2YXpzNqtnX8--v0UMWSIdjqPgxOmo3O_cGkFCr30bDvwUCcgLF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQ8hAcEBQQhQWMxI1a6zi2kxwLu9UCy2oPVOot8hNVapOqTSX2L_ErGTtuCwiQuEWJPXEyY89Ynvk-hN4EjDpmvSaFcDYcMwqiHC-J98xllpWS27BR_Hwpz6f840zMfqrij9nuuyPJvqYhoDQ13cnK-pND4Rt4LU7Av5CAgMYIRJE3YTnOgl1P2Xi_Fucskp-GC0KLapbKZv4s41fXdIg3fzsijZ5n8gDdTyEjHvc6fohuuGaA7o2_rhNshhugW-9aCPKuB-j2WUShvn6Evp8m6pMOx3T0xGu1wa3Hy3mEXwKhqrF4tYC_i2HbPbcwEty1eNPOF7jnezLYqLVuG6yM2S4T1xfuixv7ns5iCHzhE6IwpVXgBwk31XoZ0iaD5C4Z2ghftLC04iuQ49R2hCN992M0nZx9eX9OEjEDMRCvdURboVjppXTUMGYVTPrKKuEdVdS5ypTUci6c51S7vOC6AmOgrsyU5lbmucifoKMGhvIUYeqppIXmqtSKe1MoKcBWJNWalcbzbIiynU5qk1DLA3nGoj7gLQc91qDHOuqx_jZEb_d9Vj1mxz9bH-9UXaf5u6khqpJV4GHOh-j1_jHMvHCcohrXbqFNyG-pBCvkEI12JnIQ8fc3Pvu_5q_QnavTSX3x4fLTc3SXBf7hmDV-jI669da9gKCo0y-j3f8AhVEHAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+contributions+of+microbial+and+plant+residues+to+soil+organic+carbon+accumulation+during+planted+forest+and+abandoned+farmland+restoration%2C+Loess+Plateau%2C+China&rft.jtitle=Plant+and+soil&rft.au=Hao%2C+Hongjian&rft.au=Wang%2C+Rong&rft.au=Li%2C+Shicai&rft.au=Pian%2C+Duo&rft.date=2025-02-01&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=507&rft.issue=1-2&rft.spage=845&rft.epage=862&rft_id=info:doi/10.1007%2Fs11104-024-06772-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11104_024_06772_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |