Projected WIMP sensitivity of the XENONnT dark matter experiment

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive part...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2020; no. 11; p. 31
Main Authors Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F.D., Antochi, V.C., Angelino, E., Angevaare, J.R., Arneodo, F., Barge, D., Baudis, L., Bauermeister, B., Bellagamba, L., Benabderrahmane, M.L., Berger, T., Brown, A., Brown, E., Bruenner, S., Bruno, G., Budnik, R., Capelli, C., Cardoso, J.M.R., Cichon, D., Cimmino, B., Clark, M., Coderre, D., Colijn, A.P., Conrad, J., Cussonneau, J.P., Decowski, M.P., Depoian, A., Gangi, P. Di, Giovanni, A. Di, Stefano, R. Di, Diglio, S., Elykov, A., Eurin, G., Ferella, A.D., Fulgione, W., Gaemers, P., Gaior, R., Galloway, M., Gao, F., Grandi, L., Hasterok, C., Hils, C., Hiraide, K., Hoetzsch, L., Howlett, J., Iacovacci, M., Itow, Y., Joerg, F., Kato, N., Kazama, S., Kobayashi, M., Koltman, G., Kopec, A., Landsman, H., Lang, R.F., Levinson, L., Lin, Q., Lindemann, S., Lindner, M., Lombardi, F., Long, J., Lopes, J.A.M., Fune, E. López, Macolino, C., Mahlstedt, J., Mancuso, A., Manenti, L., Manfredini, A., Marignetti, F., Undagoitia, T. Marrodán, Martens, K., Masbou, J., Masson, D., Mastroianni, S., Messina, M., Miuchi, K., Mizukoshi, K., Molinario, A., Morå, K., Moriyama, S., Mosbacher, Y., Murra, M., Naganoma, J., Ni, K., Oberlack, U., Odgers, K., Palacio, J., Pelssers, B., Peres, R., Pienaar, J., Pizzella, V., Plante, G., Qin, J., Qiu, H., García, D. Ramírez
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2020
Institute of Physics (IOP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y) -1 and (2.2± 0.5)× 10 −3 (keV t y) -1 , respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10 −48  cm 2 for a 50 GeV/c 2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c 2 WIMP with cross-sections above 2.6×10 −48  cm 2 (5.0×10 −48  cm 2 ) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10 −43  cm 2 (6.0×10 −42  cm 2 ).
AbstractList XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)).
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3±0.6 (keV t y)-1 and (2.2±0.5)×10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48cm2 (5.0×10−48cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43cm2 (6.0×10−42cm2).
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y) -1 and (2.2± 0.5)× 10 −3 (keV t y) -1 , respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10 −48  cm 2 for a 50 GeV/c 2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c 2 WIMP with cross-sections above 2.6×10 −48  cm 2 (5.0×10 −48  cm 2 ) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10 −43  cm 2 (6.0×10 −42  cm 2 ).
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2).
Author Antochi, V.C.
Clark, M.
Aprile, E.
Agostini, F.
Bruenner, S.
Kobayashi, M.
Odgers, K.
Molinario, A.
Budnik, R.
Elykov, A.
Plante, G.
Depoian, A.
Long, J.
Cichon, D.
Mastroianni, S.
Gaior, R.
Pizzella, V.
Lindemann, S.
Undagoitia, T. Marrodán
Oberlack, U.
Coderre, D.
Arneodo, F.
Benabderrahmane, M.L.
Eurin, G.
Diglio, S.
Aalbers, J.
Howlett, J.
Murra, M.
Palacio, J.
Decowski, M.P.
Hils, C.
Kato, N.
Stefano, R. Di
Berger, T.
Manfredini, A.
Naganoma, J.
Pienaar, J.
Brown, A.
Koltman, G.
Landsman, H.
Capelli, C.
Althueser, L.
Miuchi, K.
Ferella, A.D.
Masson, D.
Cimmino, B.
Manenti, L.
Masbou, J.
García, D. Ramírez
Barge, D.
Messina, M.
Fulgione, W.
Lopes, J.A.M.
Qiu, H.
Lindner, M.
Alfonsi, M.
Hasterok, C.
Macolino, C.
Mizukoshi, K.
Hiraide, K.
Marignetti, F.
Cussonneau, J.P.
Mosbacher, Y.
Cardoso, J.M.R.
Giovanni, A. Di
Fune, E. López
Moriyama, S.
Colijn, A.P.
Galloway, M.
Lombardi, F.
Bauermeister, B.
Gaemers, P.
Gao, F.
Mahlstedt, J.
Kopec, A.
Conrad, J.
Bruno, G.
Itow, Y.
Kazama, S.
Mancuso, A.
Grandi, L.
Lin, Q.
Amaro, F.D.
Gangi, P. Di
Angelino, E.
Lang, R.F.
Levinson
Author_xml – sequence: 1
  givenname: E.
  surname: Aprile
  fullname: Aprile, E.
– sequence: 2
  givenname: J.
  surname: Aalbers
  fullname: Aalbers, J.
– sequence: 3
  givenname: F.
  surname: Agostini
  fullname: Agostini, F.
– sequence: 4
  givenname: M.
  surname: Alfonsi
  fullname: Alfonsi, M.
– sequence: 5
  givenname: L.
  surname: Althueser
  fullname: Althueser, L.
– sequence: 6
  givenname: F.D.
  surname: Amaro
  fullname: Amaro, F.D.
– sequence: 7
  givenname: V.C.
  surname: Antochi
  fullname: Antochi, V.C.
– sequence: 8
  givenname: E.
  surname: Angelino
  fullname: Angelino, E.
– sequence: 9
  givenname: J.R.
  surname: Angevaare
  fullname: Angevaare, J.R.
– sequence: 10
  givenname: F.
  surname: Arneodo
  fullname: Arneodo, F.
– sequence: 11
  givenname: D.
  surname: Barge
  fullname: Barge, D.
– sequence: 12
  givenname: L.
  surname: Baudis
  fullname: Baudis, L.
– sequence: 13
  givenname: B.
  surname: Bauermeister
  fullname: Bauermeister, B.
– sequence: 14
  givenname: L.
  surname: Bellagamba
  fullname: Bellagamba, L.
– sequence: 15
  givenname: M.L.
  surname: Benabderrahmane
  fullname: Benabderrahmane, M.L.
– sequence: 16
  givenname: T.
  surname: Berger
  fullname: Berger, T.
– sequence: 17
  givenname: A.
  surname: Brown
  fullname: Brown, A.
– sequence: 18
  givenname: E.
  surname: Brown
  fullname: Brown, E.
– sequence: 19
  givenname: S.
  surname: Bruenner
  fullname: Bruenner, S.
– sequence: 20
  givenname: G.
  surname: Bruno
  fullname: Bruno, G.
– sequence: 21
  givenname: R.
  surname: Budnik
  fullname: Budnik, R.
– sequence: 22
  givenname: C.
  surname: Capelli
  fullname: Capelli, C.
– sequence: 23
  givenname: J.M.R.
  surname: Cardoso
  fullname: Cardoso, J.M.R.
– sequence: 24
  givenname: D.
  surname: Cichon
  fullname: Cichon, D.
– sequence: 25
  givenname: B.
  surname: Cimmino
  fullname: Cimmino, B.
– sequence: 26
  givenname: M.
  surname: Clark
  fullname: Clark, M.
– sequence: 27
  givenname: D.
  surname: Coderre
  fullname: Coderre, D.
– sequence: 28
  givenname: A.P.
  surname: Colijn
  fullname: Colijn, A.P.
– sequence: 29
  givenname: J.
  surname: Conrad
  fullname: Conrad, J.
– sequence: 30
  givenname: J.P.
  surname: Cussonneau
  fullname: Cussonneau, J.P.
– sequence: 31
  givenname: M.P.
  surname: Decowski
  fullname: Decowski, M.P.
– sequence: 32
  givenname: A.
  surname: Depoian
  fullname: Depoian, A.
– sequence: 33
  givenname: P. Di
  surname: Gangi
  fullname: Gangi, P. Di
– sequence: 34
  givenname: A. Di
  surname: Giovanni
  fullname: Giovanni, A. Di
– sequence: 35
  givenname: R. Di
  surname: Stefano
  fullname: Stefano, R. Di
– sequence: 36
  givenname: S.
  surname: Diglio
  fullname: Diglio, S.
– sequence: 37
  givenname: A.
  surname: Elykov
  fullname: Elykov, A.
– sequence: 38
  givenname: G.
  surname: Eurin
  fullname: Eurin, G.
– sequence: 39
  givenname: A.D.
  surname: Ferella
  fullname: Ferella, A.D.
– sequence: 40
  givenname: W.
  surname: Fulgione
  fullname: Fulgione, W.
– sequence: 41
  givenname: P.
  surname: Gaemers
  fullname: Gaemers, P.
– sequence: 42
  givenname: R.
  surname: Gaior
  fullname: Gaior, R.
– sequence: 43
  givenname: M.
  surname: Galloway
  fullname: Galloway, M.
– sequence: 44
  givenname: F.
  surname: Gao
  fullname: Gao, F.
– sequence: 45
  givenname: L.
  surname: Grandi
  fullname: Grandi, L.
– sequence: 46
  givenname: C.
  surname: Hasterok
  fullname: Hasterok, C.
– sequence: 47
  givenname: C.
  surname: Hils
  fullname: Hils, C.
– sequence: 48
  givenname: K.
  surname: Hiraide
  fullname: Hiraide, K.
– sequence: 49
  givenname: L.
  surname: Hoetzsch
  fullname: Hoetzsch, L.
– sequence: 50
  givenname: J.
  surname: Howlett
  fullname: Howlett, J.
– sequence: 51
  givenname: M.
  surname: Iacovacci
  fullname: Iacovacci, M.
– sequence: 52
  givenname: Y.
  surname: Itow
  fullname: Itow, Y.
– sequence: 53
  givenname: F.
  surname: Joerg
  fullname: Joerg, F.
– sequence: 54
  givenname: N.
  surname: Kato
  fullname: Kato, N.
– sequence: 55
  givenname: S.
  surname: Kazama
  fullname: Kazama, S.
– sequence: 56
  givenname: M.
  surname: Kobayashi
  fullname: Kobayashi, M.
– sequence: 57
  givenname: G.
  surname: Koltman
  fullname: Koltman, G.
– sequence: 58
  givenname: A.
  surname: Kopec
  fullname: Kopec, A.
– sequence: 59
  givenname: H.
  surname: Landsman
  fullname: Landsman, H.
– sequence: 60
  givenname: R.F.
  surname: Lang
  fullname: Lang, R.F.
– sequence: 61
  givenname: L.
  surname: Levinson
  fullname: Levinson, L.
– sequence: 62
  givenname: Q.
  surname: Lin
  fullname: Lin, Q.
– sequence: 63
  givenname: S.
  surname: Lindemann
  fullname: Lindemann, S.
– sequence: 64
  givenname: M.
  surname: Lindner
  fullname: Lindner, M.
– sequence: 65
  givenname: F.
  surname: Lombardi
  fullname: Lombardi, F.
– sequence: 66
  givenname: J.
  surname: Long
  fullname: Long, J.
– sequence: 67
  givenname: J.A.M.
  surname: Lopes
  fullname: Lopes, J.A.M.
– sequence: 68
  givenname: E. López
  surname: Fune
  fullname: Fune, E. López
– sequence: 69
  givenname: C.
  surname: Macolino
  fullname: Macolino, C.
– sequence: 70
  givenname: J.
  surname: Mahlstedt
  fullname: Mahlstedt, J.
– sequence: 71
  givenname: A.
  surname: Mancuso
  fullname: Mancuso, A.
– sequence: 72
  givenname: L.
  surname: Manenti
  fullname: Manenti, L.
– sequence: 73
  givenname: A.
  surname: Manfredini
  fullname: Manfredini, A.
– sequence: 74
  givenname: F.
  surname: Marignetti
  fullname: Marignetti, F.
– sequence: 75
  givenname: T. Marrodán
  surname: Undagoitia
  fullname: Undagoitia, T. Marrodán
– sequence: 76
  givenname: K.
  surname: Martens
  fullname: Martens, K.
– sequence: 77
  givenname: J.
  surname: Masbou
  fullname: Masbou, J.
– sequence: 78
  givenname: D.
  surname: Masson
  fullname: Masson, D.
– sequence: 79
  givenname: S.
  surname: Mastroianni
  fullname: Mastroianni, S.
– sequence: 80
  givenname: M.
  surname: Messina
  fullname: Messina, M.
– sequence: 81
  givenname: K.
  surname: Miuchi
  fullname: Miuchi, K.
– sequence: 82
  givenname: K.
  surname: Mizukoshi
  fullname: Mizukoshi, K.
– sequence: 83
  givenname: A.
  surname: Molinario
  fullname: Molinario, A.
– sequence: 84
  givenname: K.
  surname: Morå
  fullname: Morå, K.
– sequence: 85
  givenname: S.
  surname: Moriyama
  fullname: Moriyama, S.
– sequence: 86
  givenname: Y.
  surname: Mosbacher
  fullname: Mosbacher, Y.
– sequence: 87
  givenname: M.
  surname: Murra
  fullname: Murra, M.
– sequence: 88
  givenname: J.
  surname: Naganoma
  fullname: Naganoma, J.
– sequence: 89
  givenname: K.
  surname: Ni
  fullname: Ni, K.
– sequence: 90
  givenname: U.
  surname: Oberlack
  fullname: Oberlack, U.
– sequence: 91
  givenname: K.
  surname: Odgers
  fullname: Odgers, K.
– sequence: 92
  givenname: J.
  surname: Palacio
  fullname: Palacio, J.
– sequence: 93
  givenname: B.
  surname: Pelssers
  fullname: Pelssers, B.
– sequence: 94
  givenname: R.
  surname: Peres
  fullname: Peres, R.
– sequence: 95
  givenname: J.
  surname: Pienaar
  fullname: Pienaar, J.
– sequence: 96
  givenname: V.
  surname: Pizzella
  fullname: Pizzella, V.
– sequence: 97
  givenname: G.
  surname: Plante
  fullname: Plante, G.
– sequence: 98
  givenname: J.
  surname: Qin
  fullname: Qin, J.
– sequence: 99
  givenname: H.
  surname: Qiu
  fullname: Qiu, H.
– sequence: 100
  givenname: D. Ramírez
  surname: García
  fullname: García, D. Ramírez
BackLink https://hal.science/hal-02911946$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188173$$DView record from Swedish Publication Index
BookMark eNp9kclKBDEQhoMouD6C0OBJcJxU0ksaLw7jCuNycLsV6XSiGcfOmGRc3t5uRkU9eKqi-P7a_lWy2LhGE7IJdBeoEH1Ii6xXZJD3GWW0D9CnHBbIynd98Ue-TFZDGFPKcs7FCtm_9G6sVdR1cnt6dpkE3QQb7YuN74kzSXzQyd3h-cV5c5XU0j8mTzJG7RP9NtXePukmrpMlIydBb3zGNXJ9dHg1POmNLo5Ph4NRT_GMxV5VGaXSui5TKXNDpUxLXlJgZW0ykRcVM2VVcqmE4qLgjJu6KkCmwhRU5kpIvkZ25n3Dq57OKpy246V_RyctHtibATp_j2GGIAQUvMW35_iDnPxiTwYj7GqUlQBlmr9Ay27N2al3zzMdIo7dzDftNcjSHCgTbWipvTmlvAvBa4PKRhmta6KXdoJAsXMDu09j92ns3EAAbN1o1dkf9ddS_-s-AKjUjbM
CitedBy_id crossref_primary_10_1103_PhysRevLett_133_111001
crossref_primary_10_1103_PhysRevD_106_043029
crossref_primary_10_1103_PhysRevD_102_112002
crossref_primary_10_1103_PhysRevD_104_112007
crossref_primary_10_1103_PhysRevD_108_055010
crossref_primary_10_1103_PhysRevD_104_112001
crossref_primary_10_1088_1748_0221_19_06_P06008
crossref_primary_10_1103_PhysRevD_106_095022
crossref_primary_10_1103_PhysRevD_106_055015
crossref_primary_10_1088_1475_7516_2021_03_071
crossref_primary_10_1103_PhysRevD_103_035001
crossref_primary_10_1140_epjc_s10052_022_10913_w
crossref_primary_10_1103_PhysRevLett_131_052502
crossref_primary_10_1103_PhysRevD_107_012007
crossref_primary_10_1140_epjc_s10052_023_11826_y
crossref_primary_10_21468_SciPostPhysProc_12_002
crossref_primary_10_1016_j_apradiso_2023_110666
crossref_primary_10_3847_1538_4357_acfa01
crossref_primary_10_1103_PhysRevD_110_075043
crossref_primary_10_1007_s11433_022_2046_y
crossref_primary_10_1088_1475_7516_2022_03_003
crossref_primary_10_1103_PhysRevD_109_075038
crossref_primary_10_1103_PhysRevD_110_035012
crossref_primary_10_1103_PhysRevLett_126_091301
crossref_primary_10_1063_5_0195101
crossref_primary_10_1103_PhysRevLett_129_091802
crossref_primary_10_1103_PhysRevD_103_063028
crossref_primary_10_1103_PhysRevD_106_055027
crossref_primary_10_1016_j_radphyschem_2023_111442
crossref_primary_10_1103_PhysRevD_111_055025
crossref_primary_10_1103_Physics_15_32
crossref_primary_10_1103_PhysRevD_105_063020
crossref_primary_10_1103_PhysRevD_105_103024
crossref_primary_10_1140_epjc_s10052_022_10502_x
crossref_primary_10_1088_1748_0221_18_07_P07054
crossref_primary_10_1088_1674_4527_ad3c6f
crossref_primary_10_1103_PhysRevD_108_095007
crossref_primary_10_1103_PhysRevD_108_095008
crossref_primary_10_3390_instruments5010013
crossref_primary_10_1007_JHEP09_2022_175
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126254
crossref_primary_10_1103_PhysRevD_105_035020
crossref_primary_10_1103_PhysRevD_108_095003
crossref_primary_10_1103_PhysRevD_106_055031
crossref_primary_10_1093_ptep_ptad059
crossref_primary_10_1088_1748_0221_18_02_T02004
crossref_primary_10_1103_PhysRevD_105_115010
crossref_primary_10_1103_PhysRevD_109_075007
crossref_primary_10_1103_PhysRevD_104_015015
crossref_primary_10_3847_2041_8213_abd807
crossref_primary_10_1088_1475_7516_2022_08_049
crossref_primary_10_1360_SSPMA_2022_0005
crossref_primary_10_1140_epjc_s10052_024_13679_5
crossref_primary_10_1088_1475_7516_2025_01_121
crossref_primary_10_1103_PhysRevD_106_055043
crossref_primary_10_3367_UFNe_2022_07_039223
crossref_primary_10_1103_PhysRevD_108_112006
crossref_primary_10_1088_1361_6471_acc394
crossref_primary_10_1103_PhysRevD_110_012011
crossref_primary_10_1140_epjc_s10052_022_10052_2
crossref_primary_10_1140_epjc_s10052_022_10832_w
crossref_primary_10_1016_j_astropartphys_2022_102733
crossref_primary_10_1088_0256_307X_38_1_011301
crossref_primary_10_1016_j_nima_2022_167966
crossref_primary_10_54097_ajst_v8i2_14951
crossref_primary_10_1140_epjc_s10052_024_13407_z
crossref_primary_10_1088_1475_7516_2023_02_002
crossref_primary_10_1103_PhysRevC_102_065501
crossref_primary_10_1103_PhysRevLett_129_161804
crossref_primary_10_1103_PhysRevLett_129_161805
crossref_primary_10_1103_PhysRevD_108_015033
crossref_primary_10_1088_1748_0221_16_09_P09005
crossref_primary_10_3390_universe7030054
crossref_primary_10_1103_PhysRevD_106_022001
crossref_primary_10_1088_1475_7516_2025_01_038
crossref_primary_10_1103_PhysRevLett_131_041003
crossref_primary_10_1093_ptep_ptab139
crossref_primary_10_1103_PhysRevD_108_022007
crossref_primary_10_1103_PhysRevD_103_083002
crossref_primary_10_1088_1361_6633_ac5754
crossref_primary_10_1088_1748_0221_17_04_P04005
crossref_primary_10_1103_PhysRevC_111_014601
crossref_primary_10_1140_epjc_s10052_022_10507_6
crossref_primary_10_1088_1748_0221_17_10_P10035
crossref_primary_10_1088_1674_1137_ad3efe
crossref_primary_10_1103_PhysRevD_109_015021
crossref_primary_10_1103_PhysRevLett_130_021802
crossref_primary_10_1088_1748_0221_16_09_P09011
crossref_primary_10_1088_1475_7516_2022_01_047
crossref_primary_10_3390_sym14102090
crossref_primary_10_1088_1475_7516_2022_05_038
crossref_primary_10_1088_1361_6382_ac38d1
crossref_primary_10_1088_1748_0221_17_01_P01008
crossref_primary_10_1103_PhysRevD_111_015046
crossref_primary_10_1103_PhysRevC_107_025501
crossref_primary_10_1088_1748_0221_17_04_P04014
crossref_primary_10_3367_UFNr_2022_07_039223
crossref_primary_10_1088_1748_0221_16_11_P11040
crossref_primary_10_1103_PhysRevD_106_015012
crossref_primary_10_1140_epjc_s10052_021_09670_z
crossref_primary_10_1103_PhysRevD_106_095004
crossref_primary_10_1088_1475_7516_2022_01_055
crossref_primary_10_1088_1475_7516_2025_01_057
crossref_primary_10_3389_fspas_2022_815517
crossref_primary_10_1088_1475_7516_2024_03_028
crossref_primary_10_1088_1742_6596_2156_1_012176
crossref_primary_10_3390_universe9030137
crossref_primary_10_3390_universe8030139
crossref_primary_10_3390_universe11030074
crossref_primary_10_1103_PhysRevD_107_035032
crossref_primary_10_1088_1475_7516_2022_10_004
crossref_primary_10_1140_epjc_s10052_024_12982_5
crossref_primary_10_1088_1475_7516_2024_03_010
crossref_primary_10_1103_PhysRevC_111_035501
crossref_primary_10_1140_epjc_s10052_022_11151_w
crossref_primary_10_1016_j_rinp_2023_106967
crossref_primary_10_1088_1475_7516_2023_02_046
crossref_primary_10_1088_1475_7516_2022_02_039
crossref_primary_10_1103_PhysRevD_108_115003
crossref_primary_10_1103_PhysRevLett_128_171801
crossref_primary_10_1103_PhysRevC_106_024328
crossref_primary_10_1093_ptep_ptad117
crossref_primary_10_1103_PhysRevD_109_112017
crossref_primary_10_1140_epjc_s10052_022_10532_5
crossref_primary_10_1103_PhysRevD_105_055017
crossref_primary_10_1007_s41365_023_01359_0
crossref_primary_10_1103_PhysRevD_110_055034
crossref_primary_10_1088_1748_0221_17_08_P08002
crossref_primary_10_1088_1748_0221_17_02_C02002
crossref_primary_10_1103_PhysRevD_111_063052
crossref_primary_10_1103_PhysRevD_109_023526
crossref_primary_10_1103_PhysRevD_106_115012
crossref_primary_10_1103_PhysRevLett_130_261002
crossref_primary_10_1103_PhysRevD_105_055003
crossref_primary_10_1103_PhysRevD_109_095031
crossref_primary_10_3390_universe10070288
crossref_primary_10_1088_1748_0221_19_05_P05021
crossref_primary_10_1103_PhysRevD_110_015021
crossref_primary_10_1088_1748_0221_17_08_P08012
crossref_primary_10_1103_PhysRevD_108_012016
crossref_primary_10_1088_1361_6471_ac865e
crossref_primary_10_1088_1748_0221_16_08_P08011
crossref_primary_10_1088_1361_6471_ac841a
crossref_primary_10_1140_epjc_s10052_023_12198_z
crossref_primary_10_1103_PhysRevD_104_115012
crossref_primary_10_1051_epjconf_202429509022
crossref_primary_10_1103_PhysRevD_108_075002
crossref_primary_10_1140_epjc_s10052_024_12768_9
crossref_primary_10_1103_PhysRevD_108_035027
crossref_primary_10_1140_epjc_s10052_023_12296_y
crossref_primary_10_1103_PhysRevD_107_015002
crossref_primary_10_21468_SciPostPhys_10_2_039
crossref_primary_10_1140_epjc_s10052_024_12984_3
crossref_primary_10_1360_SSPMA_2024_0419
crossref_primary_10_1103_PhysRevD_103_063524
crossref_primary_10_1103_PhysRevD_105_055029
crossref_primary_10_1088_1748_0221_17_09_P09029
crossref_primary_10_1103_PhysRevD_104_063023
crossref_primary_10_1103_PhysRevLett_127_081804
crossref_primary_10_1007_s41365_023_01263_7
crossref_primary_10_3390_universe7080313
crossref_primary_10_1088_1748_0221_16_08_P08033
crossref_primary_10_1063_5_0087216
crossref_primary_10_1088_1674_1137_ad6e60
crossref_primary_10_1103_PhysRevD_104_115033
crossref_primary_10_1140_epjc_s10052_024_12464_8
crossref_primary_10_3390_universe8010011
crossref_primary_10_1088_1748_0221_19_09_P09032
crossref_primary_10_1140_epjc_s10052_022_10918_5
crossref_primary_10_1103_PhysRevD_107_015022
crossref_primary_10_1088_1748_0221_18_07_P07018
crossref_primary_10_1360_SSPMA_2024_0485
crossref_primary_10_1103_PhysRevLett_127_261802
crossref_primary_10_1103_PhysRevD_108_035038
crossref_primary_10_1088_1748_0221_18_11_P11009
crossref_primary_10_1088_1748_0221_17_03_P03027
crossref_primary_10_1088_1748_0221_17_07_P07018
crossref_primary_10_1088_0256_307X_38_11_111401
crossref_primary_10_1088_1475_7516_2024_06_031
crossref_primary_10_1088_1748_0221_16_08_P08052
crossref_primary_10_1103_PhysRevD_105_043008
crossref_primary_10_1103_PhysRevD_110_115038
crossref_primary_10_1103_PhysRevD_107_055030
crossref_primary_10_1103_PhysRevD_107_115027
crossref_primary_10_1360_SSPMA_2024_0457
crossref_primary_10_1103_PhysRevD_106_123008
crossref_primary_10_1088_1748_0221_17_05_P05038
crossref_primary_10_1088_1748_0221_17_05_P05037
crossref_primary_10_1103_PhysRevA_108_012810
crossref_primary_10_1098_rsta_2023_0083
crossref_primary_10_1103_PhysRevD_106_013001
crossref_primary_10_3389_fphy_2023_1290449
crossref_primary_10_1103_PhysRevD_107_095019
crossref_primary_10_1051_epjconf_202429508002
crossref_primary_10_1088_1475_7516_2022_10_082
crossref_primary_10_1103_PhysRevD_105_L021302
crossref_primary_10_1103_PhysRevLett_127_191802
crossref_primary_10_1088_1475_7516_2024_05_015
crossref_primary_10_1103_PhysRevD_106_035017
crossref_primary_10_1103_PhysRevD_105_015004
Cites_doi 10.1093/ptep/ptaa015
10.1088/1674-1137/40/10/100001
10.1103/PhysRevD.102.072004
10.1103/PhysRevD.100.052014
10.1088/1361-6471/ab2ea5
10.1103/PhysRevD.100.022001
10.1103/PhysRevLett.118.021303
10.1103/PhysRevD.90.083510
10.1088/1748-0221/11/12/P12017
10.1103/PhysRevLett.121.111302
10.1103/PhysRevD.83.123001
10.1063/1.4818077
10.1140/epjc/s10052-011-1554-0
10.1103/PhysRevLett.119.181302
10.1016/j.nima.2015.05.065
10.1016/j.apradiso.2009.01.021
10.1140/epjc/s10052-017-5329-0
10.1103/PhysRevLett.112.091303
10.1103/PhysRevC.88.025501
10.1016/j.physletb.2017.10.029
10.1016/S0168-9002(03)01368-8
10.1109/TNS.2015.2481322
10.1103/PhysRevLett.119.181301
10.1103/PhysRevD.57.3873
10.1088/1361-6633/aab913
10.1016/S0927-6505(96)00047-3
10.1140/epjc/s10052-017-5326-3
10.1016/j.nima.2020.163549
10.1088/1475-7516/2014/01/044
10.1088/1748-0221/10/09/P09010
10.1088/1748-0221/9/11/P11021
10.1016/j.astropartphys.2018.04.006
10.1140/epjc/s10052-018-5565-y
10.1140/epjc/s10052-015-3657-5
10.1140/epjc/s10052-017-4676-1
10.1016/j.astropartphys.2004.05.001
10.1051/0004-6361/201833910
10.1088/1748-0221/9/11/P11006
10.1140/epjc/s10052-014-2746-1
10.1103/PhysRevC.89.015502
10.1088/1748-0221/8/04/P04026
10.1016/j.nima.2016.06.125
10.1103/PhysRevC.85.034316
10.1088/1748-0221/12/01/P01024
10.1093/ptep/ptz002
10.1103/PhysRevD.101.052002
10.1016/j.nima.2005.12.238
10.1103/PhysRevLett.123.241803
10.1088/1475-7516/2016/04/027
10.1038/s41586-019-1124-4
10.1103/PhysRevC.91.055504
10.1103/PhysRevLett.122.141301
10.1103/RevModPhys.82.2053
10.1140/epjc/s10052-017-4757-1
10.1016/j.nima.2012.08.052
10.1140/epjc/s10052-017-4902-x
10.1016/j.nds.2009.02.002
10.1140/epjc/s10052-020-8284-0
10.1103/PhysRevD.99.112009
10.1103/PhysRevLett.123.251801
10.1016/j.nima.2013.11.081
10.1088/0954-3899/40/11/115201
10.1103/PhysRevD.89.023524
ContentType Journal Article
Copyright Copyright IOP Publishing Nov 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright IOP Publishing Nov 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
ADTPV
AOWAS
DG7
DOI 10.1088/1475-7516/2020/11/031
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1475-7516
EndPage 31
ExternalDocumentID oai_DiVA_org_su_188173
oai_HAL_hal_02911946v1
10_1088_1475_7516_2020_11_031
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
02O
1WK
1XC
4.4
AALHV
ACARI
AEINN
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c352t-bbfcc4dd94aa6f0aa49390129df5867b2f9b93ac8c387323fdb71a48f70a6c8a3
ISSN 1475-7516
1475-7508
IngestDate Thu Aug 21 06:37:23 EDT 2025
Wed Aug 13 07:43:57 EDT 2025
Sun Jun 29 16:28:21 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Tue Jul 01 03:49:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords data analysis method
dark matter: direct detection
nucleus: recoil
background
activity report
XENON
WIMP: dark matter
WIMP nucleon: scattering
electron: recoil
xenon: liquid
sensitivity
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-bbfcc4dd94aa6f0aa49390129df5867b2f9b93ac8c387323fdb71a48f70a6c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3483-8800
0000-0001-5061-4973
0000-0002-6127-2582
0000-0003-3074-0395
0000-0002-5108-6161
0000-0002-8217-2070
0000-0003-3330-621X
0000-0002-8323-9564
0000-0003-0119-9827
0000-0003-1376-677X
0000-0002-1623-8086
0000-0002-4825-438X
0000-0001-7183-0229
0000-0002-9052-9703
PQID 2461028246
PQPubID 2048024
PageCount 1
ParticipantIDs swepub_primary_oai_DiVA_org_su_188173
hal_primary_oai_HAL_hal_02911946v1
proquest_journals_2461028246
crossref_citationtrail_10_1088_1475_7516_2020_11_031
crossref_primary_10_1088_1475_7516_2020_11_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2020
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References (crKey-10.1088/1475-7516/2020/11/031-BIB35) 2014; 9
(crKey-10.1088/1475-7516/2020/11/031-BIB36) 2019; 100
(crKey-10.1088/1475-7516/2020/11/031-BIB4) 2017; 119
(crKey-10.1088/1475-7516/2020/11/031-BIB46) 2013; 1549
(crKey-10.1088/1475-7516/2020/11/031-BIB13) 2014; 112
(crKey-10.1088/1475-7516/2020/11/031-BIB16) 2015; 795
(crKey-10.1088/1475-7516/2020/11/031-BIB23) 2014; 9
(crKey-10.1088/1475-7516/2020/11/031-BIB61) 1999
(crKey-10.1088/1475-7516/2020/11/031-BIB47) 2017; 77
(crKey-10.1088/1475-7516/2020/11/031-BIB7) 2017; 77
(crKey-10.1088/1475-7516/2020/11/031-BIB72) 2016; 40
crKey-10.1088/1475-7516/2020/11/031-BIB42
(crKey-10.1088/1475-7516/2020/11/031-BIB68) 2011; 71
crKey-10.1088/1475-7516/2020/11/031-BIB49
(crKey-10.1088/1475-7516/2020/11/031-BIB14) 2019; 99
(crKey-10.1088/1475-7516/2020/11/031-BIB54) 2015; 91
(crKey-10.1088/1475-7516/2020/11/031-BIB69) 1996; 6
(crKey-10.1088/1475-7516/2020/11/031-BIB74) 2019; 100
(crKey-10.1088/1475-7516/2020/11/031-BIB70) 2014; 90
(crKey-10.1088/1475-7516/2020/11/031-BIB63) 2006; 560
(crKey-10.1088/1475-7516/2020/11/031-BIB75) 2020; 101
(crKey-10.1088/1475-7516/2020/11/031-BIB37) 2017; 77
(crKey-10.1088/1475-7516/2020/11/031-BIB66) 2013; 88
(crKey-10.1088/1475-7516/2020/11/031-BIB22) 2014; 737
(crKey-10.1088/1475-7516/2020/11/031-BIB41) 2011; 6
(crKey-10.1088/1475-7516/2020/11/031-BIB21) 2020; 959
(crKey-10.1088/1475-7516/2020/11/031-BIB3) 2018; 121
(crKey-10.1088/1475-7516/2020/11/031-BIB15) 2015; 75
(crKey-10.1088/1475-7516/2020/11/031-BIB18) 2013; 8
(crKey-10.1088/1475-7516/2020/11/031-BIB71) 1998; 57
crKey-10.1088/1475-7516/2020/11/031-BIB60
(crKey-10.1088/1475-7516/2020/11/031-BIB57) 2012; 85
(crKey-10.1088/1475-7516/2020/11/031-BIB67) 2011; 83
(crKey-10.1088/1475-7516/2020/11/031-BIB29) 2020; 2020
(crKey-10.1088/1475-7516/2020/11/031-BIB45) 2009; 67
crKey-10.1088/1475-7516/2020/11/031-BIB56
(crKey-10.1088/1475-7516/2020/11/031-BIB1) 2020; 641
(crKey-10.1088/1475-7516/2020/11/031-BIB31) 2015; 62
(crKey-10.1088/1475-7516/2020/11/031-BIB50) 2009; 110
(crKey-10.1088/1475-7516/2020/11/031-BIB73) 2019; 122
(crKey-10.1088/1475-7516/2020/11/031-BIB25) 2016; 835
(crKey-10.1088/1475-7516/2020/11/031-BIB26) 2016; 2016
(crKey-10.1088/1475-7516/2020/11/031-BIB32) 2012; 696
(crKey-10.1088/1475-7516/2020/11/031-BIB19) 2017; 77
(crKey-10.1088/1475-7516/2020/11/031-BIB53) 2018; 78
(crKey-10.1088/1475-7516/2020/11/031-BIB34) 2018; 102
(crKey-10.1088/1475-7516/2020/11/031-BIB59) 2014; 2014
(crKey-10.1088/1475-7516/2020/11/031-BIB6) 2019; 46
(crKey-10.1088/1475-7516/2020/11/031-BIB51) 2014; 74
(crKey-10.1088/1475-7516/2020/11/031-BIB62) 2004; 21
crKey-10.1088/1475-7516/2020/11/031-BIB20
crKey-10.1088/1475-7516/2020/11/031-BIB65
crKey-10.1088/1475-7516/2020/11/031-BIB27
(crKey-10.1088/1475-7516/2020/11/031-BIB55) 2014; 89
(crKey-10.1088/1475-7516/2020/11/031-BIB2) 2018; 81
(crKey-10.1088/1475-7516/2020/11/031-BIB33) 2015; 10
(crKey-10.1088/1475-7516/2020/11/031-BIB44) 2013; 40
(crKey-10.1088/1475-7516/2020/11/031-BIB58) 2017; 774
(crKey-10.1088/1475-7516/2020/11/031-BIB30) 2019; 2019
(crKey-10.1088/1475-7516/2020/11/031-BIB28) 2018
(crKey-10.1088/1475-7516/2020/11/031-BIB9) 2019; 123
(crKey-10.1088/1475-7516/2020/11/031-BIB48) 2019; 568
crKey-10.1088/1475-7516/2020/11/031-BIB40
(crKey-10.1088/1475-7516/2020/11/031-BIB64) 2014; 89
(crKey-10.1088/1475-7516/2020/11/031-BIB52) 2017; 119
(crKey-10.1088/1475-7516/2020/11/031-BIB24) 2003; 506
(crKey-10.1088/1475-7516/2020/11/031-BIB11) 2010; 82
(crKey-10.1088/1475-7516/2020/11/031-BIB10) 2020; 102
(crKey-10.1088/1475-7516/2020/11/031-BIB5) 2017; 118
(crKey-10.1088/1475-7516/2020/11/031-BIB8) 2019; 123
(crKey-10.1088/1475-7516/2020/11/031-BIB43) 2016; 11
(crKey-10.1088/1475-7516/2020/11/031-BIB17) 2017; 12
(crKey-10.1088/1475-7516/2020/11/031-BIB39) 2018
(crKey-10.1088/1475-7516/2020/11/031-BIB38) 2017; 77
(crKey-10.1088/1475-7516/2020/11/031-BIB12) 2020; 80
References_xml – volume: 2020
  start-page: 043D02
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB29
  article-title: Gamma-ray spectra from thermal neutroncapture on gadolinium-155 and naturalgadolinium,
  publication-title: PTEP
  doi: 10.1093/ptep/ptaa015
– volume: 40
  start-page: 100001
  year: 2016
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB72
  article-title: Review of Particle Physics,
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/40/10/100001
– volume: 102
  start-page: 072004
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB10
  article-title: Excess electronic recoil events in XENON1T,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.072004
– volume: 100
  start-page: 052014
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB36
  article-title: XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.052014
– volume: 46
  start-page: 103003
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB6
  article-title: Direct Detection of WIMP Dark Matter: Concepts and Status,
  publication-title: J. Phys. G
  doi: 10.1088/1361-6471/ab2ea5
– volume: 100
  start-page: 022001
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB74
  article-title: Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.022001
– volume: 118
  start-page: 021303
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB5
  article-title: Results from a search for dark matter in the complete LUX exposure,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.021303
– volume: 90
  start-page: 083510
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB70
  article-title: Complementarity of dark matter detectors in light of the neutrino background,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.083510
– volume: 11
  start-page: P12017
  year: 2016
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB43
  article-title: The GeMSE facility for low-background γ-ray spectrometry
  publication-title: JINST
  doi: 10.1088/1748-0221/11/12/P12017
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB60
  article-title: Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering
– volume: 121
  start-page: 111302
  year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB3
  article-title: Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.111302
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB40
– volume: 83
  start-page: 123001
  year: 2011
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB67
  article-title: Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.123001
– volume: 1549
  start-page: 66
  year: 2013
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB46
  article-title: Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry,
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4818077
– volume: 71
  start-page: 1554
  year: 2011
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB68
  article-title: Asymptotic formulae for likelihood-based tests of new physics,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-011-1554-0
– volume: 119
  start-page: 181302
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB4
  article-title: Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.181302
– volume: 795
  start-page: 293
  year: 2015
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB16
  article-title: High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2015.05.065
– volume: 67
  start-page: 828
  year: 2009
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB45
  article-title: Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection,
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2009.01.021
– volume: 77
  start-page: 890
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB47
  article-title: Material radioassay and selection for the XENON1T dark matter experiment,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5329-0
– volume: 112
  start-page: 091303
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB13
  article-title: First results from the LUX dark matter experiment at the Sanford Underground Research Facility,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.091303
– volume: 88
  start-page: 025501
  year: 2013
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB66
  article-title: Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory,
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.88.025501
– volume: 774
  start-page: 656
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB58
  article-title: Low-energy electronic recoil in xenon detectors by solar neutrinos,
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.10.029
– volume: 506
  start-page: 250
  year: 2003
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB24
  article-title: Geant4 — A Simulation Toolkit,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/S0168-9002(03)01368-8
– volume: 62
  start-page: 3387
  year: 2015
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB31
  article-title: A Global Analysis of Light and Charge Yields in Liquid Xenon,
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2015.2481322
– year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB28
– volume: 119
  start-page: 181301
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB52
  article-title: First Dark Matter Search Results from the XENON1T Experiment,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.181301
– volume: 57
  start-page: 3873
  year: 1998
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB71
  article-title: A Unified approach to the classical statistical analysis of small signals,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.57.3873
– volume: 81
  start-page: 066201
  year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB2
  article-title: WIMP dark matter candidates and searches — current status and future prospects,
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/aab913
– volume: 6
  start-page: 87
  year: 1996
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB69
  article-title: Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil,
  publication-title: Astropart. Phys.
  doi: 10.1016/S0927-6505(96)00047-3
– volume: 77
  start-page: 881
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB7
  article-title: The XENON1T Dark Matter Experiment,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5326-3
– volume: 959
  start-page: 163549
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB21
  article-title: Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2020.163549
– volume: 2014
  start-page: 044
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB59
  article-title: Neutrino physics with multi-ton scale liquid xenon detectors
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/01/044
– volume: 10
  start-page: P09010
  year: 2015
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB33
  article-title: Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes
  publication-title: JINST
  doi: 10.1088/1748-0221/10/09/P09010
– volume: 9
  start-page: P11021
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB35
  article-title: Measurement of the absolute Quantum Efficiency of Hamamatsu model R11410-10 photomultiplier tubes at low temperatures down to liquid xenon boiling point
  publication-title: JINST
  doi: 10.1088/1748-0221/9/11/P11021
– year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB39
– volume: 102
  start-page: 56
  year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB34
  article-title: Response of photomultiplier tubes to xenon scintillation light,
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2018.04.006
– volume: 78
  start-page: 132
  year: 2018
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB53
  article-title: Intrinsic backgrounds from Rn and Kr in the XENON100 experiment,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-5565-y
– volume: 75
  start-page: 546
  year: 2015
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB15
  article-title: Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-015-3657-5
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB56
– volume: 77
  start-page: 143
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB37
  article-title: Radon depletion in xenon boil-off gas,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4676-1
– volume: 21
  start-page: 667
  year: 2004
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB62
  article-title: Neutron background in large scale xenon detectors for dark matter searches,
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2004.05.001
– volume: 641
  start-page: A6
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB1
  article-title: Planck 2018 results. VI. Cosmological parameters,
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201833910
– volume: 9
  start-page: P11006
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB23
  article-title: Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment
  publication-title: JINST
  doi: 10.1088/1748-0221/9/11/P11006
– volume: 74
  start-page: 2746
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB51
  article-title: Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-014-2746-1
– volume: 89
  start-page: 015502
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB55
  article-title: Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector,
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.015502
– volume: 8
  start-page: P04026
  year: 2013
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB18
  article-title: Performance of the Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon Environments
  publication-title: JINST
  doi: 10.1088/1748-0221/8/04/P04026
– volume: 835
  start-page: 186
  year: 2016
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB25
  article-title: Recent developments in Geant4,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2016.06.125
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB42
– volume: 85
  start-page: 034316
  year: 2012
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB57
  article-title: Phase space factors for double-β decay,
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.034316
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB27
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB65
  article-title: Atmospheric neutrinos in a next-generation xenon dark matter experiment
– volume: 12
  start-page: P01024
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB17
  article-title: Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
  publication-title: JINST
  doi: 10.1088/1748-0221/12/01/P01024
– volume: 2019
  start-page: 023D01
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB30
  article-title: Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157,
  publication-title: PTEP
  doi: 10.1093/ptep/ptz002
– volume: 101
  start-page: 052002
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB75
  article-title: Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.052002
– volume: 560
  start-page: 454
  year: 2006
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB63
  article-title: Low energy neutron propagation in MCNPX and GEANT4,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2005.12.238
– volume: 123
  start-page: 241803
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB9
  article-title: Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.241803
– volume: 2016
  start-page: 027
  year: 2016
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB26
  article-title: Physics reach of the XENON1T dark matter experiment
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/027
– volume: 568
  start-page: 532
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB48
  article-title: Observation of two-neutrino double electron capture in 124Xe with XENON1T,
  publication-title: Nature
  doi: 10.1038/s41586-019-1124-4
– volume: 91
  start-page: 055504
  year: 2015
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB54
  article-title: Reliability of usual assumptions in the calculation of β and ν spectra,
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.91.055504
– volume: 122
  start-page: 141301
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB73
  article-title: Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.141301
– volume: 6
  start-page: P08010
  year: 2011
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB41
  article-title: Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
  publication-title: JINST
– volume: 82
  start-page: 2053
  year: 2010
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB11
  article-title: Liquid Xenon Detectors for Particle Physics and Astrophysics,
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2053
– volume: 77
  start-page: 275
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB19
  article-title: Removing krypton from xenon by cryogenic distillation to the ppq level,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4757-1
– year: 1999
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB61
– volume: 696
  start-page: 32
  year: 2012
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB32
  article-title: Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2012.08.052
– volume: 77
  start-page: 358
  year: 2017
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB38
  article-title: Online 222Rn removal by cryogenic distillation in the XENON100 experiment,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-4902-x
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB49
  article-title: Improved calculations of beta decay backgrounds to new physics in liquid xenon detectors
– volume: 110
  start-page: 681
  year: 2009
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB50
  article-title: Nuclear Data Sheets for A = 214,
  publication-title: Nucl. Data Sheets
  doi: 10.1016/j.nds.2009.02.002
– volume: 80
  start-page: 785
  year: 2020
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB12
  article-title: Energy resolution and linearity of XENON1T in the MeV energy range,
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-020-8284-0
– volume: 99
  start-page: 112009
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB14
  article-title: XENON1T dark matter data analysis: Signal and background models and statistical inference,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.112009
– ident: crKey-10.1088/1475-7516/2020/11/031-BIB20
  article-title: 222Rn emanation measurements for the XENON1T experiment
– volume: 123
  start-page: 251801
  year: 2019
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB8
  article-title: Light Dark Matter Search with Ionization Signals in XENON1T,
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.251801
– volume: 737
  start-page: 253
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB22
  article-title: Calibration of the Super-Kamiokande Detector,
  publication-title: Nucl. Instrum. Meth. A
  doi: 10.1016/j.nima.2013.11.081
– volume: 40
  start-page: 115201
  year: 2013
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB44
  article-title: The neutron background of the XENON100 dark matter search experiment,
  publication-title: J. Phys. G
  doi: 10.1088/0954-3899/40/11/115201
– volume: 89
  start-page: 023524
  year: 2014
  ident: crKey-10.1088/1475-7516/2020/11/031-BIB64
  article-title: Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments,
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.023524
SSID ssj0026338
ssib002806714
ssib053834950
Score 2.694286
Snippet XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In...
SourceID swepub
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 31
SubjectTerms Astrophysics
Confidence intervals
Cross-sections
Dark matter
dark matter experiments
dark matter simulations
High Energy Physics - Experiment
Instrumentation and Detectors
Physics
Sensitivity
Statistical analysis
Weakly interacting massive particles
Xenon
Title Projected WIMP sensitivity of the XENONnT dark matter experiment
URI https://www.proquest.com/docview/2461028246
https://hal.science/hal-02911946
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188173
Volume 2020
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcuHC8JwWCqNhgEvGiWUrsnQjA-mkDE1zSCE3jSTbpUObdPLgwG_gR7NrK4oL5VEuHmdjrTP51qvd9T4IeakKY0uRsijnykXcWhXZnPFIKGYS5gR8idXIRyMxPOHvp71pq_W9kbW0XtmO-3ZtXcn_oAo0wBWrZG-AbGAKBDgHfOEICMPxnzAe12EUsBk_HR6N20tMRvfTIPyr_-lgdDyaTdq5WXxpX1S9NBtN_X9jmbr58mLbmsksVwvwrOu7-0hIMMT7l4uzOiF50Ak0g32zavnYEk_noEyq-VHtgy31vMQE3Soq22kGIMDbZCEAUetMnvWirMd8R-traF7R4uKmSLGG4vRbQdH48ItyB4VYtQfwrLGWBTgiCZV-vGHRbKn901YXEhCrV-9SamSmkZlGVuAO6RiL8m8n4HTgPIzD43Fw30VazUUP99_Ug0nZDTSMJcVdxrpxyq5YOrc-Y55t04lpNqatjJnJPXLXY037Naj3SauYPSC7fUQaa1zoa1qde7AfkjdB0ihKGm1IGp2XFCSNekmjKGm0ljS6lbRH5ORgMHk7jPzsjciBSb6KrC2d43muuDGijI3hCqNjicrLnhSZTUplVWqcdKnM0iQtc5sxw2WZxUY4adLHZGc2nxW7hBoFjIQtciNTMH8tHHsJbBuJkQm3WbZH-OZ_0s43psf5KOf6jyjtkU5Ydll3ZvnbghcAQrgW-6oP-x800uIE9nzFxVe4aH-DkfZP-lJjz0WMTXCxR17VuF1h8-7sY1_PF6d6udZMSpalT276456SO9tna5_srBbr4hmYuyv7vJLCH_ZUn0I
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+WIMP+sensitivity+of+the+XENONnT+dark+matter+experiment&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Aprile%2C+E.&rft.au=Aalbers%2C+J.&rft.au=Agostini%2C+F.&rft.au=Alfonsi%2C+M.&rft.date=2020-11-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2020&rft.issue=11&rft.spage=31&rft.epage=31&rft_id=info:doi/10.1088%2F1475-7516%2F2020%2F11%2F031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1475_7516_2020_11_031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon