Projected WIMP sensitivity of the XENONnT dark matter experiment
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive part...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2020; no. 11; p. 31 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.11.2020
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)
-1
and (2.2± 0.5)× 10
−3
(keV t y)
-1
, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10
−48
cm
2
for a 50 GeV/c
2
mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c
2
WIMP with cross-sections above 2.6×10
−48
cm
2
(5.0×10
−48
cm
2
) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10
−43
cm
2
(6.0×10
−42
cm
2
). |
---|---|
AbstractList | XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 +/- 0.6 (keV t y)(-1) and (2.2 +/- 0.5) x 10(-3 )(keV t y)(-1), respectively, in a 4t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4 x 10(-48) cm(2) for a 50 GeV/c(2) mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c(2) WIMP with cross-sections above 2.6 x 10(-48) cm(2) (5.0 x 10(-48) cm(2)) the median XENONnT discovery significance exceeds 3 sigma (5 sigma). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2 x 10(-43) cm(2) (6.0 x 10(-42) cm(2)). XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3±0.6 (keV t y)-1 and (2.2±0.5)×10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48cm2 (5.0×10−48cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43cm2 (6.0×10−42cm2). XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y) -1 and (2.2± 0.5)× 10 −3 (keV t y) -1 , respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10 −48 cm 2 for a 50 GeV/c 2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c 2 WIMP with cross-sections above 2.6×10 −48 cm 2 (5.0×10 −48 cm 2 ) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10 −43 cm 2 (6.0×10 −42 cm 2 ). XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2). |
Author | Antochi, V.C. Clark, M. Aprile, E. Agostini, F. Bruenner, S. Kobayashi, M. Odgers, K. Molinario, A. Budnik, R. Elykov, A. Plante, G. Depoian, A. Long, J. Cichon, D. Mastroianni, S. Gaior, R. Pizzella, V. Lindemann, S. Undagoitia, T. Marrodán Oberlack, U. Coderre, D. Arneodo, F. Benabderrahmane, M.L. Eurin, G. Diglio, S. Aalbers, J. Howlett, J. Murra, M. Palacio, J. Decowski, M.P. Hils, C. Kato, N. Stefano, R. Di Berger, T. Manfredini, A. Naganoma, J. Pienaar, J. Brown, A. Koltman, G. Landsman, H. Capelli, C. Althueser, L. Miuchi, K. Ferella, A.D. Masson, D. Cimmino, B. Manenti, L. Masbou, J. García, D. Ramírez Barge, D. Messina, M. Fulgione, W. Lopes, J.A.M. Qiu, H. Lindner, M. Alfonsi, M. Hasterok, C. Macolino, C. Mizukoshi, K. Hiraide, K. Marignetti, F. Cussonneau, J.P. Mosbacher, Y. Cardoso, J.M.R. Giovanni, A. Di Fune, E. López Moriyama, S. Colijn, A.P. Galloway, M. Lombardi, F. Bauermeister, B. Gaemers, P. Gao, F. Mahlstedt, J. Kopec, A. Conrad, J. Bruno, G. Itow, Y. Kazama, S. Mancuso, A. Grandi, L. Lin, Q. Amaro, F.D. Gangi, P. Di Angelino, E. Lang, R.F. Levinson |
Author_xml | – sequence: 1 givenname: E. surname: Aprile fullname: Aprile, E. – sequence: 2 givenname: J. surname: Aalbers fullname: Aalbers, J. – sequence: 3 givenname: F. surname: Agostini fullname: Agostini, F. – sequence: 4 givenname: M. surname: Alfonsi fullname: Alfonsi, M. – sequence: 5 givenname: L. surname: Althueser fullname: Althueser, L. – sequence: 6 givenname: F.D. surname: Amaro fullname: Amaro, F.D. – sequence: 7 givenname: V.C. surname: Antochi fullname: Antochi, V.C. – sequence: 8 givenname: E. surname: Angelino fullname: Angelino, E. – sequence: 9 givenname: J.R. surname: Angevaare fullname: Angevaare, J.R. – sequence: 10 givenname: F. surname: Arneodo fullname: Arneodo, F. – sequence: 11 givenname: D. surname: Barge fullname: Barge, D. – sequence: 12 givenname: L. surname: Baudis fullname: Baudis, L. – sequence: 13 givenname: B. surname: Bauermeister fullname: Bauermeister, B. – sequence: 14 givenname: L. surname: Bellagamba fullname: Bellagamba, L. – sequence: 15 givenname: M.L. surname: Benabderrahmane fullname: Benabderrahmane, M.L. – sequence: 16 givenname: T. surname: Berger fullname: Berger, T. – sequence: 17 givenname: A. surname: Brown fullname: Brown, A. – sequence: 18 givenname: E. surname: Brown fullname: Brown, E. – sequence: 19 givenname: S. surname: Bruenner fullname: Bruenner, S. – sequence: 20 givenname: G. surname: Bruno fullname: Bruno, G. – sequence: 21 givenname: R. surname: Budnik fullname: Budnik, R. – sequence: 22 givenname: C. surname: Capelli fullname: Capelli, C. – sequence: 23 givenname: J.M.R. surname: Cardoso fullname: Cardoso, J.M.R. – sequence: 24 givenname: D. surname: Cichon fullname: Cichon, D. – sequence: 25 givenname: B. surname: Cimmino fullname: Cimmino, B. – sequence: 26 givenname: M. surname: Clark fullname: Clark, M. – sequence: 27 givenname: D. surname: Coderre fullname: Coderre, D. – sequence: 28 givenname: A.P. surname: Colijn fullname: Colijn, A.P. – sequence: 29 givenname: J. surname: Conrad fullname: Conrad, J. – sequence: 30 givenname: J.P. surname: Cussonneau fullname: Cussonneau, J.P. – sequence: 31 givenname: M.P. surname: Decowski fullname: Decowski, M.P. – sequence: 32 givenname: A. surname: Depoian fullname: Depoian, A. – sequence: 33 givenname: P. Di surname: Gangi fullname: Gangi, P. Di – sequence: 34 givenname: A. Di surname: Giovanni fullname: Giovanni, A. Di – sequence: 35 givenname: R. Di surname: Stefano fullname: Stefano, R. Di – sequence: 36 givenname: S. surname: Diglio fullname: Diglio, S. – sequence: 37 givenname: A. surname: Elykov fullname: Elykov, A. – sequence: 38 givenname: G. surname: Eurin fullname: Eurin, G. – sequence: 39 givenname: A.D. surname: Ferella fullname: Ferella, A.D. – sequence: 40 givenname: W. surname: Fulgione fullname: Fulgione, W. – sequence: 41 givenname: P. surname: Gaemers fullname: Gaemers, P. – sequence: 42 givenname: R. surname: Gaior fullname: Gaior, R. – sequence: 43 givenname: M. surname: Galloway fullname: Galloway, M. – sequence: 44 givenname: F. surname: Gao fullname: Gao, F. – sequence: 45 givenname: L. surname: Grandi fullname: Grandi, L. – sequence: 46 givenname: C. surname: Hasterok fullname: Hasterok, C. – sequence: 47 givenname: C. surname: Hils fullname: Hils, C. – sequence: 48 givenname: K. surname: Hiraide fullname: Hiraide, K. – sequence: 49 givenname: L. surname: Hoetzsch fullname: Hoetzsch, L. – sequence: 50 givenname: J. surname: Howlett fullname: Howlett, J. – sequence: 51 givenname: M. surname: Iacovacci fullname: Iacovacci, M. – sequence: 52 givenname: Y. surname: Itow fullname: Itow, Y. – sequence: 53 givenname: F. surname: Joerg fullname: Joerg, F. – sequence: 54 givenname: N. surname: Kato fullname: Kato, N. – sequence: 55 givenname: S. surname: Kazama fullname: Kazama, S. – sequence: 56 givenname: M. surname: Kobayashi fullname: Kobayashi, M. – sequence: 57 givenname: G. surname: Koltman fullname: Koltman, G. – sequence: 58 givenname: A. surname: Kopec fullname: Kopec, A. – sequence: 59 givenname: H. surname: Landsman fullname: Landsman, H. – sequence: 60 givenname: R.F. surname: Lang fullname: Lang, R.F. – sequence: 61 givenname: L. surname: Levinson fullname: Levinson, L. – sequence: 62 givenname: Q. surname: Lin fullname: Lin, Q. – sequence: 63 givenname: S. surname: Lindemann fullname: Lindemann, S. – sequence: 64 givenname: M. surname: Lindner fullname: Lindner, M. – sequence: 65 givenname: F. surname: Lombardi fullname: Lombardi, F. – sequence: 66 givenname: J. surname: Long fullname: Long, J. – sequence: 67 givenname: J.A.M. surname: Lopes fullname: Lopes, J.A.M. – sequence: 68 givenname: E. López surname: Fune fullname: Fune, E. López – sequence: 69 givenname: C. surname: Macolino fullname: Macolino, C. – sequence: 70 givenname: J. surname: Mahlstedt fullname: Mahlstedt, J. – sequence: 71 givenname: A. surname: Mancuso fullname: Mancuso, A. – sequence: 72 givenname: L. surname: Manenti fullname: Manenti, L. – sequence: 73 givenname: A. surname: Manfredini fullname: Manfredini, A. – sequence: 74 givenname: F. surname: Marignetti fullname: Marignetti, F. – sequence: 75 givenname: T. Marrodán surname: Undagoitia fullname: Undagoitia, T. Marrodán – sequence: 76 givenname: K. surname: Martens fullname: Martens, K. – sequence: 77 givenname: J. surname: Masbou fullname: Masbou, J. – sequence: 78 givenname: D. surname: Masson fullname: Masson, D. – sequence: 79 givenname: S. surname: Mastroianni fullname: Mastroianni, S. – sequence: 80 givenname: M. surname: Messina fullname: Messina, M. – sequence: 81 givenname: K. surname: Miuchi fullname: Miuchi, K. – sequence: 82 givenname: K. surname: Mizukoshi fullname: Mizukoshi, K. – sequence: 83 givenname: A. surname: Molinario fullname: Molinario, A. – sequence: 84 givenname: K. surname: Morå fullname: Morå, K. – sequence: 85 givenname: S. surname: Moriyama fullname: Moriyama, S. – sequence: 86 givenname: Y. surname: Mosbacher fullname: Mosbacher, Y. – sequence: 87 givenname: M. surname: Murra fullname: Murra, M. – sequence: 88 givenname: J. surname: Naganoma fullname: Naganoma, J. – sequence: 89 givenname: K. surname: Ni fullname: Ni, K. – sequence: 90 givenname: U. surname: Oberlack fullname: Oberlack, U. – sequence: 91 givenname: K. surname: Odgers fullname: Odgers, K. – sequence: 92 givenname: J. surname: Palacio fullname: Palacio, J. – sequence: 93 givenname: B. surname: Pelssers fullname: Pelssers, B. – sequence: 94 givenname: R. surname: Peres fullname: Peres, R. – sequence: 95 givenname: J. surname: Pienaar fullname: Pienaar, J. – sequence: 96 givenname: V. surname: Pizzella fullname: Pizzella, V. – sequence: 97 givenname: G. surname: Plante fullname: Plante, G. – sequence: 98 givenname: J. surname: Qin fullname: Qin, J. – sequence: 99 givenname: H. surname: Qiu fullname: Qiu, H. – sequence: 100 givenname: D. Ramírez surname: García fullname: García, D. Ramírez |
BackLink | https://hal.science/hal-02911946$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188173$$DView record from Swedish Publication Index |
BookMark | eNp9kclKBDEQhoMouD6C0OBJcJxU0ksaLw7jCuNycLsV6XSiGcfOmGRc3t5uRkU9eKqi-P7a_lWy2LhGE7IJdBeoEH1Ii6xXZJD3GWW0D9CnHBbIynd98Ue-TFZDGFPKcs7FCtm_9G6sVdR1cnt6dpkE3QQb7YuN74kzSXzQyd3h-cV5c5XU0j8mTzJG7RP9NtXePukmrpMlIydBb3zGNXJ9dHg1POmNLo5Ph4NRT_GMxV5VGaXSui5TKXNDpUxLXlJgZW0ykRcVM2VVcqmE4qLgjJu6KkCmwhRU5kpIvkZ25n3Dq57OKpy246V_RyctHtibATp_j2GGIAQUvMW35_iDnPxiTwYj7GqUlQBlmr9Ay27N2al3zzMdIo7dzDftNcjSHCgTbWipvTmlvAvBa4PKRhmta6KXdoJAsXMDu09j92ns3EAAbN1o1dkf9ddS_-s-AKjUjbM |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_133_111001 crossref_primary_10_1103_PhysRevD_106_043029 crossref_primary_10_1103_PhysRevD_102_112002 crossref_primary_10_1103_PhysRevD_104_112007 crossref_primary_10_1103_PhysRevD_108_055010 crossref_primary_10_1103_PhysRevD_104_112001 crossref_primary_10_1088_1748_0221_19_06_P06008 crossref_primary_10_1103_PhysRevD_106_095022 crossref_primary_10_1103_PhysRevD_106_055015 crossref_primary_10_1088_1475_7516_2021_03_071 crossref_primary_10_1103_PhysRevD_103_035001 crossref_primary_10_1140_epjc_s10052_022_10913_w crossref_primary_10_1103_PhysRevLett_131_052502 crossref_primary_10_1103_PhysRevD_107_012007 crossref_primary_10_1140_epjc_s10052_023_11826_y crossref_primary_10_21468_SciPostPhysProc_12_002 crossref_primary_10_1016_j_apradiso_2023_110666 crossref_primary_10_3847_1538_4357_acfa01 crossref_primary_10_1103_PhysRevD_110_075043 crossref_primary_10_1007_s11433_022_2046_y crossref_primary_10_1088_1475_7516_2022_03_003 crossref_primary_10_1103_PhysRevD_109_075038 crossref_primary_10_1103_PhysRevD_110_035012 crossref_primary_10_1103_PhysRevLett_126_091301 crossref_primary_10_1063_5_0195101 crossref_primary_10_1103_PhysRevLett_129_091802 crossref_primary_10_1103_PhysRevD_103_063028 crossref_primary_10_1103_PhysRevD_106_055027 crossref_primary_10_1016_j_radphyschem_2023_111442 crossref_primary_10_1103_PhysRevD_111_055025 crossref_primary_10_1103_Physics_15_32 crossref_primary_10_1103_PhysRevD_105_063020 crossref_primary_10_1103_PhysRevD_105_103024 crossref_primary_10_1140_epjc_s10052_022_10502_x crossref_primary_10_1088_1748_0221_18_07_P07054 crossref_primary_10_1088_1674_4527_ad3c6f crossref_primary_10_1103_PhysRevD_108_095007 crossref_primary_10_1103_PhysRevD_108_095008 crossref_primary_10_3390_instruments5010013 crossref_primary_10_1007_JHEP09_2022_175 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126254 crossref_primary_10_1103_PhysRevD_105_035020 crossref_primary_10_1103_PhysRevD_108_095003 crossref_primary_10_1103_PhysRevD_106_055031 crossref_primary_10_1093_ptep_ptad059 crossref_primary_10_1088_1748_0221_18_02_T02004 crossref_primary_10_1103_PhysRevD_105_115010 crossref_primary_10_1103_PhysRevD_109_075007 crossref_primary_10_1103_PhysRevD_104_015015 crossref_primary_10_3847_2041_8213_abd807 crossref_primary_10_1088_1475_7516_2022_08_049 crossref_primary_10_1360_SSPMA_2022_0005 crossref_primary_10_1140_epjc_s10052_024_13679_5 crossref_primary_10_1088_1475_7516_2025_01_121 crossref_primary_10_1103_PhysRevD_106_055043 crossref_primary_10_3367_UFNe_2022_07_039223 crossref_primary_10_1103_PhysRevD_108_112006 crossref_primary_10_1088_1361_6471_acc394 crossref_primary_10_1103_PhysRevD_110_012011 crossref_primary_10_1140_epjc_s10052_022_10052_2 crossref_primary_10_1140_epjc_s10052_022_10832_w crossref_primary_10_1016_j_astropartphys_2022_102733 crossref_primary_10_1088_0256_307X_38_1_011301 crossref_primary_10_1016_j_nima_2022_167966 crossref_primary_10_54097_ajst_v8i2_14951 crossref_primary_10_1140_epjc_s10052_024_13407_z crossref_primary_10_1088_1475_7516_2023_02_002 crossref_primary_10_1103_PhysRevC_102_065501 crossref_primary_10_1103_PhysRevLett_129_161804 crossref_primary_10_1103_PhysRevLett_129_161805 crossref_primary_10_1103_PhysRevD_108_015033 crossref_primary_10_1088_1748_0221_16_09_P09005 crossref_primary_10_3390_universe7030054 crossref_primary_10_1103_PhysRevD_106_022001 crossref_primary_10_1088_1475_7516_2025_01_038 crossref_primary_10_1103_PhysRevLett_131_041003 crossref_primary_10_1093_ptep_ptab139 crossref_primary_10_1103_PhysRevD_108_022007 crossref_primary_10_1103_PhysRevD_103_083002 crossref_primary_10_1088_1361_6633_ac5754 crossref_primary_10_1088_1748_0221_17_04_P04005 crossref_primary_10_1103_PhysRevC_111_014601 crossref_primary_10_1140_epjc_s10052_022_10507_6 crossref_primary_10_1088_1748_0221_17_10_P10035 crossref_primary_10_1088_1674_1137_ad3efe crossref_primary_10_1103_PhysRevD_109_015021 crossref_primary_10_1103_PhysRevLett_130_021802 crossref_primary_10_1088_1748_0221_16_09_P09011 crossref_primary_10_1088_1475_7516_2022_01_047 crossref_primary_10_3390_sym14102090 crossref_primary_10_1088_1475_7516_2022_05_038 crossref_primary_10_1088_1361_6382_ac38d1 crossref_primary_10_1088_1748_0221_17_01_P01008 crossref_primary_10_1103_PhysRevD_111_015046 crossref_primary_10_1103_PhysRevC_107_025501 crossref_primary_10_1088_1748_0221_17_04_P04014 crossref_primary_10_3367_UFNr_2022_07_039223 crossref_primary_10_1088_1748_0221_16_11_P11040 crossref_primary_10_1103_PhysRevD_106_015012 crossref_primary_10_1140_epjc_s10052_021_09670_z crossref_primary_10_1103_PhysRevD_106_095004 crossref_primary_10_1088_1475_7516_2022_01_055 crossref_primary_10_1088_1475_7516_2025_01_057 crossref_primary_10_3389_fspas_2022_815517 crossref_primary_10_1088_1475_7516_2024_03_028 crossref_primary_10_1088_1742_6596_2156_1_012176 crossref_primary_10_3390_universe9030137 crossref_primary_10_3390_universe8030139 crossref_primary_10_3390_universe11030074 crossref_primary_10_1103_PhysRevD_107_035032 crossref_primary_10_1088_1475_7516_2022_10_004 crossref_primary_10_1140_epjc_s10052_024_12982_5 crossref_primary_10_1088_1475_7516_2024_03_010 crossref_primary_10_1103_PhysRevC_111_035501 crossref_primary_10_1140_epjc_s10052_022_11151_w crossref_primary_10_1016_j_rinp_2023_106967 crossref_primary_10_1088_1475_7516_2023_02_046 crossref_primary_10_1088_1475_7516_2022_02_039 crossref_primary_10_1103_PhysRevD_108_115003 crossref_primary_10_1103_PhysRevLett_128_171801 crossref_primary_10_1103_PhysRevC_106_024328 crossref_primary_10_1093_ptep_ptad117 crossref_primary_10_1103_PhysRevD_109_112017 crossref_primary_10_1140_epjc_s10052_022_10532_5 crossref_primary_10_1103_PhysRevD_105_055017 crossref_primary_10_1007_s41365_023_01359_0 crossref_primary_10_1103_PhysRevD_110_055034 crossref_primary_10_1088_1748_0221_17_08_P08002 crossref_primary_10_1088_1748_0221_17_02_C02002 crossref_primary_10_1103_PhysRevD_111_063052 crossref_primary_10_1103_PhysRevD_109_023526 crossref_primary_10_1103_PhysRevD_106_115012 crossref_primary_10_1103_PhysRevLett_130_261002 crossref_primary_10_1103_PhysRevD_105_055003 crossref_primary_10_1103_PhysRevD_109_095031 crossref_primary_10_3390_universe10070288 crossref_primary_10_1088_1748_0221_19_05_P05021 crossref_primary_10_1103_PhysRevD_110_015021 crossref_primary_10_1088_1748_0221_17_08_P08012 crossref_primary_10_1103_PhysRevD_108_012016 crossref_primary_10_1088_1361_6471_ac865e crossref_primary_10_1088_1748_0221_16_08_P08011 crossref_primary_10_1088_1361_6471_ac841a crossref_primary_10_1140_epjc_s10052_023_12198_z crossref_primary_10_1103_PhysRevD_104_115012 crossref_primary_10_1051_epjconf_202429509022 crossref_primary_10_1103_PhysRevD_108_075002 crossref_primary_10_1140_epjc_s10052_024_12768_9 crossref_primary_10_1103_PhysRevD_108_035027 crossref_primary_10_1140_epjc_s10052_023_12296_y crossref_primary_10_1103_PhysRevD_107_015002 crossref_primary_10_21468_SciPostPhys_10_2_039 crossref_primary_10_1140_epjc_s10052_024_12984_3 crossref_primary_10_1360_SSPMA_2024_0419 crossref_primary_10_1103_PhysRevD_103_063524 crossref_primary_10_1103_PhysRevD_105_055029 crossref_primary_10_1088_1748_0221_17_09_P09029 crossref_primary_10_1103_PhysRevD_104_063023 crossref_primary_10_1103_PhysRevLett_127_081804 crossref_primary_10_1007_s41365_023_01263_7 crossref_primary_10_3390_universe7080313 crossref_primary_10_1088_1748_0221_16_08_P08033 crossref_primary_10_1063_5_0087216 crossref_primary_10_1088_1674_1137_ad6e60 crossref_primary_10_1103_PhysRevD_104_115033 crossref_primary_10_1140_epjc_s10052_024_12464_8 crossref_primary_10_3390_universe8010011 crossref_primary_10_1088_1748_0221_19_09_P09032 crossref_primary_10_1140_epjc_s10052_022_10918_5 crossref_primary_10_1103_PhysRevD_107_015022 crossref_primary_10_1088_1748_0221_18_07_P07018 crossref_primary_10_1360_SSPMA_2024_0485 crossref_primary_10_1103_PhysRevLett_127_261802 crossref_primary_10_1103_PhysRevD_108_035038 crossref_primary_10_1088_1748_0221_18_11_P11009 crossref_primary_10_1088_1748_0221_17_03_P03027 crossref_primary_10_1088_1748_0221_17_07_P07018 crossref_primary_10_1088_0256_307X_38_11_111401 crossref_primary_10_1088_1475_7516_2024_06_031 crossref_primary_10_1088_1748_0221_16_08_P08052 crossref_primary_10_1103_PhysRevD_105_043008 crossref_primary_10_1103_PhysRevD_110_115038 crossref_primary_10_1103_PhysRevD_107_055030 crossref_primary_10_1103_PhysRevD_107_115027 crossref_primary_10_1360_SSPMA_2024_0457 crossref_primary_10_1103_PhysRevD_106_123008 crossref_primary_10_1088_1748_0221_17_05_P05038 crossref_primary_10_1088_1748_0221_17_05_P05037 crossref_primary_10_1103_PhysRevA_108_012810 crossref_primary_10_1098_rsta_2023_0083 crossref_primary_10_1103_PhysRevD_106_013001 crossref_primary_10_3389_fphy_2023_1290449 crossref_primary_10_1103_PhysRevD_107_095019 crossref_primary_10_1051_epjconf_202429508002 crossref_primary_10_1088_1475_7516_2022_10_082 crossref_primary_10_1103_PhysRevD_105_L021302 crossref_primary_10_1103_PhysRevLett_127_191802 crossref_primary_10_1088_1475_7516_2024_05_015 crossref_primary_10_1103_PhysRevD_106_035017 crossref_primary_10_1103_PhysRevD_105_015004 |
Cites_doi | 10.1093/ptep/ptaa015 10.1088/1674-1137/40/10/100001 10.1103/PhysRevD.102.072004 10.1103/PhysRevD.100.052014 10.1088/1361-6471/ab2ea5 10.1103/PhysRevD.100.022001 10.1103/PhysRevLett.118.021303 10.1103/PhysRevD.90.083510 10.1088/1748-0221/11/12/P12017 10.1103/PhysRevLett.121.111302 10.1103/PhysRevD.83.123001 10.1063/1.4818077 10.1140/epjc/s10052-011-1554-0 10.1103/PhysRevLett.119.181302 10.1016/j.nima.2015.05.065 10.1016/j.apradiso.2009.01.021 10.1140/epjc/s10052-017-5329-0 10.1103/PhysRevLett.112.091303 10.1103/PhysRevC.88.025501 10.1016/j.physletb.2017.10.029 10.1016/S0168-9002(03)01368-8 10.1109/TNS.2015.2481322 10.1103/PhysRevLett.119.181301 10.1103/PhysRevD.57.3873 10.1088/1361-6633/aab913 10.1016/S0927-6505(96)00047-3 10.1140/epjc/s10052-017-5326-3 10.1016/j.nima.2020.163549 10.1088/1475-7516/2014/01/044 10.1088/1748-0221/10/09/P09010 10.1088/1748-0221/9/11/P11021 10.1016/j.astropartphys.2018.04.006 10.1140/epjc/s10052-018-5565-y 10.1140/epjc/s10052-015-3657-5 10.1140/epjc/s10052-017-4676-1 10.1016/j.astropartphys.2004.05.001 10.1051/0004-6361/201833910 10.1088/1748-0221/9/11/P11006 10.1140/epjc/s10052-014-2746-1 10.1103/PhysRevC.89.015502 10.1088/1748-0221/8/04/P04026 10.1016/j.nima.2016.06.125 10.1103/PhysRevC.85.034316 10.1088/1748-0221/12/01/P01024 10.1093/ptep/ptz002 10.1103/PhysRevD.101.052002 10.1016/j.nima.2005.12.238 10.1103/PhysRevLett.123.241803 10.1088/1475-7516/2016/04/027 10.1038/s41586-019-1124-4 10.1103/PhysRevC.91.055504 10.1103/PhysRevLett.122.141301 10.1103/RevModPhys.82.2053 10.1140/epjc/s10052-017-4757-1 10.1016/j.nima.2012.08.052 10.1140/epjc/s10052-017-4902-x 10.1016/j.nds.2009.02.002 10.1140/epjc/s10052-020-8284-0 10.1103/PhysRevD.99.112009 10.1103/PhysRevLett.123.251801 10.1016/j.nima.2013.11.081 10.1088/0954-3899/40/11/115201 10.1103/PhysRevD.89.023524 |
ContentType | Journal Article |
Copyright | Copyright IOP Publishing Nov 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright IOP Publishing Nov 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC ADTPV AOWAS DG7 |
DOI | 10.1088/1475-7516/2020/11/031 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1475-7516 |
EndPage | 31 |
ExternalDocumentID | oai_DiVA_org_su_188173 oai_HAL_hal_02911946v1 10_1088_1475_7516_2020_11_031 |
GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT 02O 1WK 1XC 4.4 AALHV ACARI AEINN AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 RNS S3P ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c352t-bbfcc4dd94aa6f0aa49390129df5867b2f9b93ac8c387323fdb71a48f70a6c8a3 |
ISSN | 1475-7516 1475-7508 |
IngestDate | Thu Aug 21 06:37:23 EDT 2025 Wed Aug 13 07:43:57 EDT 2025 Sun Jun 29 16:28:21 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Tue Jul 01 03:49:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | data analysis method dark matter: direct detection nucleus: recoil background activity report XENON WIMP: dark matter WIMP nucleon: scattering electron: recoil xenon: liquid sensitivity |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-bbfcc4dd94aa6f0aa49390129df5867b2f9b93ac8c387323fdb71a48f70a6c8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3483-8800 0000-0001-5061-4973 0000-0002-6127-2582 0000-0003-3074-0395 0000-0002-5108-6161 0000-0002-8217-2070 0000-0003-3330-621X 0000-0002-8323-9564 0000-0003-0119-9827 0000-0003-1376-677X 0000-0002-1623-8086 0000-0002-4825-438X 0000-0001-7183-0229 0000-0002-9052-9703 |
PQID | 2461028246 |
PQPubID | 2048024 |
PageCount | 1 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_188173 hal_primary_oai_HAL_hal_02911946v1 proquest_journals_2461028246 crossref_citationtrail_10_1088_1475_7516_2020_11_031 crossref_primary_10_1088_1475_7516_2020_11_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2020 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | (crKey-10.1088/1475-7516/2020/11/031-BIB35) 2014; 9 (crKey-10.1088/1475-7516/2020/11/031-BIB36) 2019; 100 (crKey-10.1088/1475-7516/2020/11/031-BIB4) 2017; 119 (crKey-10.1088/1475-7516/2020/11/031-BIB46) 2013; 1549 (crKey-10.1088/1475-7516/2020/11/031-BIB13) 2014; 112 (crKey-10.1088/1475-7516/2020/11/031-BIB16) 2015; 795 (crKey-10.1088/1475-7516/2020/11/031-BIB23) 2014; 9 (crKey-10.1088/1475-7516/2020/11/031-BIB61) 1999 (crKey-10.1088/1475-7516/2020/11/031-BIB47) 2017; 77 (crKey-10.1088/1475-7516/2020/11/031-BIB7) 2017; 77 (crKey-10.1088/1475-7516/2020/11/031-BIB72) 2016; 40 crKey-10.1088/1475-7516/2020/11/031-BIB42 (crKey-10.1088/1475-7516/2020/11/031-BIB68) 2011; 71 crKey-10.1088/1475-7516/2020/11/031-BIB49 (crKey-10.1088/1475-7516/2020/11/031-BIB14) 2019; 99 (crKey-10.1088/1475-7516/2020/11/031-BIB54) 2015; 91 (crKey-10.1088/1475-7516/2020/11/031-BIB69) 1996; 6 (crKey-10.1088/1475-7516/2020/11/031-BIB74) 2019; 100 (crKey-10.1088/1475-7516/2020/11/031-BIB70) 2014; 90 (crKey-10.1088/1475-7516/2020/11/031-BIB63) 2006; 560 (crKey-10.1088/1475-7516/2020/11/031-BIB75) 2020; 101 (crKey-10.1088/1475-7516/2020/11/031-BIB37) 2017; 77 (crKey-10.1088/1475-7516/2020/11/031-BIB66) 2013; 88 (crKey-10.1088/1475-7516/2020/11/031-BIB22) 2014; 737 (crKey-10.1088/1475-7516/2020/11/031-BIB41) 2011; 6 (crKey-10.1088/1475-7516/2020/11/031-BIB21) 2020; 959 (crKey-10.1088/1475-7516/2020/11/031-BIB3) 2018; 121 (crKey-10.1088/1475-7516/2020/11/031-BIB15) 2015; 75 (crKey-10.1088/1475-7516/2020/11/031-BIB18) 2013; 8 (crKey-10.1088/1475-7516/2020/11/031-BIB71) 1998; 57 crKey-10.1088/1475-7516/2020/11/031-BIB60 (crKey-10.1088/1475-7516/2020/11/031-BIB57) 2012; 85 (crKey-10.1088/1475-7516/2020/11/031-BIB67) 2011; 83 (crKey-10.1088/1475-7516/2020/11/031-BIB29) 2020; 2020 (crKey-10.1088/1475-7516/2020/11/031-BIB45) 2009; 67 crKey-10.1088/1475-7516/2020/11/031-BIB56 (crKey-10.1088/1475-7516/2020/11/031-BIB1) 2020; 641 (crKey-10.1088/1475-7516/2020/11/031-BIB31) 2015; 62 (crKey-10.1088/1475-7516/2020/11/031-BIB50) 2009; 110 (crKey-10.1088/1475-7516/2020/11/031-BIB73) 2019; 122 (crKey-10.1088/1475-7516/2020/11/031-BIB25) 2016; 835 (crKey-10.1088/1475-7516/2020/11/031-BIB26) 2016; 2016 (crKey-10.1088/1475-7516/2020/11/031-BIB32) 2012; 696 (crKey-10.1088/1475-7516/2020/11/031-BIB19) 2017; 77 (crKey-10.1088/1475-7516/2020/11/031-BIB53) 2018; 78 (crKey-10.1088/1475-7516/2020/11/031-BIB34) 2018; 102 (crKey-10.1088/1475-7516/2020/11/031-BIB59) 2014; 2014 (crKey-10.1088/1475-7516/2020/11/031-BIB6) 2019; 46 (crKey-10.1088/1475-7516/2020/11/031-BIB51) 2014; 74 (crKey-10.1088/1475-7516/2020/11/031-BIB62) 2004; 21 crKey-10.1088/1475-7516/2020/11/031-BIB20 crKey-10.1088/1475-7516/2020/11/031-BIB65 crKey-10.1088/1475-7516/2020/11/031-BIB27 (crKey-10.1088/1475-7516/2020/11/031-BIB55) 2014; 89 (crKey-10.1088/1475-7516/2020/11/031-BIB2) 2018; 81 (crKey-10.1088/1475-7516/2020/11/031-BIB33) 2015; 10 (crKey-10.1088/1475-7516/2020/11/031-BIB44) 2013; 40 (crKey-10.1088/1475-7516/2020/11/031-BIB58) 2017; 774 (crKey-10.1088/1475-7516/2020/11/031-BIB30) 2019; 2019 (crKey-10.1088/1475-7516/2020/11/031-BIB28) 2018 (crKey-10.1088/1475-7516/2020/11/031-BIB9) 2019; 123 (crKey-10.1088/1475-7516/2020/11/031-BIB48) 2019; 568 crKey-10.1088/1475-7516/2020/11/031-BIB40 (crKey-10.1088/1475-7516/2020/11/031-BIB64) 2014; 89 (crKey-10.1088/1475-7516/2020/11/031-BIB52) 2017; 119 (crKey-10.1088/1475-7516/2020/11/031-BIB24) 2003; 506 (crKey-10.1088/1475-7516/2020/11/031-BIB11) 2010; 82 (crKey-10.1088/1475-7516/2020/11/031-BIB10) 2020; 102 (crKey-10.1088/1475-7516/2020/11/031-BIB5) 2017; 118 (crKey-10.1088/1475-7516/2020/11/031-BIB8) 2019; 123 (crKey-10.1088/1475-7516/2020/11/031-BIB43) 2016; 11 (crKey-10.1088/1475-7516/2020/11/031-BIB17) 2017; 12 (crKey-10.1088/1475-7516/2020/11/031-BIB39) 2018 (crKey-10.1088/1475-7516/2020/11/031-BIB38) 2017; 77 (crKey-10.1088/1475-7516/2020/11/031-BIB12) 2020; 80 |
References_xml | – volume: 2020 start-page: 043D02 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB29 article-title: Gamma-ray spectra from thermal neutroncapture on gadolinium-155 and naturalgadolinium, publication-title: PTEP doi: 10.1093/ptep/ptaa015 – volume: 40 start-page: 100001 year: 2016 ident: crKey-10.1088/1475-7516/2020/11/031-BIB72 article-title: Review of Particle Physics, publication-title: Chin. Phys. C doi: 10.1088/1674-1137/40/10/100001 – volume: 102 start-page: 072004 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB10 article-title: Excess electronic recoil events in XENON1T, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.072004 – volume: 100 start-page: 052014 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB36 article-title: XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.052014 – volume: 46 start-page: 103003 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB6 article-title: Direct Detection of WIMP Dark Matter: Concepts and Status, publication-title: J. Phys. G doi: 10.1088/1361-6471/ab2ea5 – volume: 100 start-page: 022001 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB74 article-title: Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.022001 – volume: 118 start-page: 021303 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB5 article-title: Results from a search for dark matter in the complete LUX exposure, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.021303 – volume: 90 start-page: 083510 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB70 article-title: Complementarity of dark matter detectors in light of the neutrino background, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.083510 – volume: 11 start-page: P12017 year: 2016 ident: crKey-10.1088/1475-7516/2020/11/031-BIB43 article-title: The GeMSE facility for low-background γ-ray spectrometry publication-title: JINST doi: 10.1088/1748-0221/11/12/P12017 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB60 article-title: Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering – volume: 121 start-page: 111302 year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB3 article-title: Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.111302 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB40 – volume: 83 start-page: 123001 year: 2011 ident: crKey-10.1088/1475-7516/2020/11/031-BIB67 article-title: Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.123001 – volume: 1549 start-page: 66 year: 2013 ident: crKey-10.1088/1475-7516/2020/11/031-BIB46 article-title: Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry, publication-title: AIP Conf. Proc. doi: 10.1063/1.4818077 – volume: 71 start-page: 1554 year: 2011 ident: crKey-10.1088/1475-7516/2020/11/031-BIB68 article-title: Asymptotic formulae for likelihood-based tests of new physics, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-011-1554-0 – volume: 119 start-page: 181302 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB4 article-title: Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.181302 – volume: 795 start-page: 293 year: 2015 ident: crKey-10.1088/1475-7516/2020/11/031-BIB16 article-title: High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2015.05.065 – volume: 67 start-page: 828 year: 2009 ident: crKey-10.1088/1475-7516/2020/11/031-BIB45 article-title: Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection, publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2009.01.021 – volume: 77 start-page: 890 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB47 article-title: Material radioassay and selection for the XENON1T dark matter experiment, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5329-0 – volume: 112 start-page: 091303 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB13 article-title: First results from the LUX dark matter experiment at the Sanford Underground Research Facility, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.091303 – volume: 88 start-page: 025501 year: 2013 ident: crKey-10.1088/1475-7516/2020/11/031-BIB66 article-title: Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.88.025501 – volume: 774 start-page: 656 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB58 article-title: Low-energy electronic recoil in xenon detectors by solar neutrinos, publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.10.029 – volume: 506 start-page: 250 year: 2003 ident: crKey-10.1088/1475-7516/2020/11/031-BIB24 article-title: Geant4 — A Simulation Toolkit, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/S0168-9002(03)01368-8 – volume: 62 start-page: 3387 year: 2015 ident: crKey-10.1088/1475-7516/2020/11/031-BIB31 article-title: A Global Analysis of Light and Charge Yields in Liquid Xenon, publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.2015.2481322 – year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB28 – volume: 119 start-page: 181301 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB52 article-title: First Dark Matter Search Results from the XENON1T Experiment, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.181301 – volume: 57 start-page: 3873 year: 1998 ident: crKey-10.1088/1475-7516/2020/11/031-BIB71 article-title: A Unified approach to the classical statistical analysis of small signals, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.57.3873 – volume: 81 start-page: 066201 year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB2 article-title: WIMP dark matter candidates and searches — current status and future prospects, publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/aab913 – volume: 6 start-page: 87 year: 1996 ident: crKey-10.1088/1475-7516/2020/11/031-BIB69 article-title: Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil, publication-title: Astropart. Phys. doi: 10.1016/S0927-6505(96)00047-3 – volume: 77 start-page: 881 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB7 article-title: The XENON1T Dark Matter Experiment, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5326-3 – volume: 959 start-page: 163549 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB21 article-title: Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2020.163549 – volume: 2014 start-page: 044 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB59 article-title: Neutrino physics with multi-ton scale liquid xenon detectors publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/01/044 – volume: 10 start-page: P09010 year: 2015 ident: crKey-10.1088/1475-7516/2020/11/031-BIB33 article-title: Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes publication-title: JINST doi: 10.1088/1748-0221/10/09/P09010 – volume: 9 start-page: P11021 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB35 article-title: Measurement of the absolute Quantum Efficiency of Hamamatsu model R11410-10 photomultiplier tubes at low temperatures down to liquid xenon boiling point publication-title: JINST doi: 10.1088/1748-0221/9/11/P11021 – year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB39 – volume: 102 start-page: 56 year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB34 article-title: Response of photomultiplier tubes to xenon scintillation light, publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2018.04.006 – volume: 78 start-page: 132 year: 2018 ident: crKey-10.1088/1475-7516/2020/11/031-BIB53 article-title: Intrinsic backgrounds from Rn and Kr in the XENON100 experiment, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-5565-y – volume: 75 start-page: 546 year: 2015 ident: crKey-10.1088/1475-7516/2020/11/031-BIB15 article-title: Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-015-3657-5 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB56 – volume: 77 start-page: 143 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB37 article-title: Radon depletion in xenon boil-off gas, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4676-1 – volume: 21 start-page: 667 year: 2004 ident: crKey-10.1088/1475-7516/2020/11/031-BIB62 article-title: Neutron background in large scale xenon detectors for dark matter searches, publication-title: Astropart. Phys. doi: 10.1016/j.astropartphys.2004.05.001 – volume: 641 start-page: A6 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB1 article-title: Planck 2018 results. VI. Cosmological parameters, publication-title: Astron. Astrophys. doi: 10.1051/0004-6361/201833910 – volume: 9 start-page: P11006 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB23 article-title: Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment publication-title: JINST doi: 10.1088/1748-0221/9/11/P11006 – volume: 74 start-page: 2746 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB51 article-title: Krypton assay in xenon at the ppq level using a gas chromatographic system and mass spectrometer, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-2746-1 – volume: 89 start-page: 015502 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB55 article-title: Improved measurement of the 2νββ half-life of 136Xe with the EXO-200 detector, publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.015502 – volume: 8 start-page: P04026 year: 2013 ident: crKey-10.1088/1475-7516/2020/11/031-BIB18 article-title: Performance of the Hamamatsu R11410 Photomultiplier Tube in cryogenic Xenon Environments publication-title: JINST doi: 10.1088/1748-0221/8/04/P04026 – volume: 835 start-page: 186 year: 2016 ident: crKey-10.1088/1475-7516/2020/11/031-BIB25 article-title: Recent developments in Geant4, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2016.06.125 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB42 – volume: 85 start-page: 034316 year: 2012 ident: crKey-10.1088/1475-7516/2020/11/031-BIB57 article-title: Phase space factors for double-β decay, publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.034316 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB27 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB65 article-title: Atmospheric neutrinos in a next-generation xenon dark matter experiment – volume: 12 start-page: P01024 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB17 article-title: Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector publication-title: JINST doi: 10.1088/1748-0221/12/01/P01024 – volume: 2019 start-page: 023D01 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB30 article-title: Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157, publication-title: PTEP doi: 10.1093/ptep/ptz002 – volume: 101 start-page: 052002 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB75 article-title: Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.052002 – volume: 560 start-page: 454 year: 2006 ident: crKey-10.1088/1475-7516/2020/11/031-BIB63 article-title: Low energy neutron propagation in MCNPX and GEANT4, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2005.12.238 – volume: 123 start-page: 241803 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB9 article-title: Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.241803 – volume: 2016 start-page: 027 year: 2016 ident: crKey-10.1088/1475-7516/2020/11/031-BIB26 article-title: Physics reach of the XENON1T dark matter experiment publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/027 – volume: 568 start-page: 532 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB48 article-title: Observation of two-neutrino double electron capture in 124Xe with XENON1T, publication-title: Nature doi: 10.1038/s41586-019-1124-4 – volume: 91 start-page: 055504 year: 2015 ident: crKey-10.1088/1475-7516/2020/11/031-BIB54 article-title: Reliability of usual assumptions in the calculation of β and ν spectra, publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.91.055504 – volume: 122 start-page: 141301 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB73 article-title: Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.141301 – volume: 6 start-page: P08010 year: 2011 ident: crKey-10.1088/1475-7516/2020/11/031-BIB41 article-title: Gator: a low-background counting facility at the Gran Sasso Underground Laboratory publication-title: JINST – volume: 82 start-page: 2053 year: 2010 ident: crKey-10.1088/1475-7516/2020/11/031-BIB11 article-title: Liquid Xenon Detectors for Particle Physics and Astrophysics, publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2053 – volume: 77 start-page: 275 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB19 article-title: Removing krypton from xenon by cryogenic distillation to the ppq level, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4757-1 – year: 1999 ident: crKey-10.1088/1475-7516/2020/11/031-BIB61 – volume: 696 start-page: 32 year: 2012 ident: crKey-10.1088/1475-7516/2020/11/031-BIB32 article-title: Characterization of the Hamamatsu R11410-10 3-Inch Photomultiplier Tube for Liquid Xenon Dark Matter Direct Detection Experiments, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2012.08.052 – volume: 77 start-page: 358 year: 2017 ident: crKey-10.1088/1475-7516/2020/11/031-BIB38 article-title: Online 222Rn removal by cryogenic distillation in the XENON100 experiment, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4902-x – ident: crKey-10.1088/1475-7516/2020/11/031-BIB49 article-title: Improved calculations of beta decay backgrounds to new physics in liquid xenon detectors – volume: 110 start-page: 681 year: 2009 ident: crKey-10.1088/1475-7516/2020/11/031-BIB50 article-title: Nuclear Data Sheets for A = 214, publication-title: Nucl. Data Sheets doi: 10.1016/j.nds.2009.02.002 – volume: 80 start-page: 785 year: 2020 ident: crKey-10.1088/1475-7516/2020/11/031-BIB12 article-title: Energy resolution and linearity of XENON1T in the MeV energy range, publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-020-8284-0 – volume: 99 start-page: 112009 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB14 article-title: XENON1T dark matter data analysis: Signal and background models and statistical inference, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.112009 – ident: crKey-10.1088/1475-7516/2020/11/031-BIB20 article-title: 222Rn emanation measurements for the XENON1T experiment – volume: 123 start-page: 251801 year: 2019 ident: crKey-10.1088/1475-7516/2020/11/031-BIB8 article-title: Light Dark Matter Search with Ionization Signals in XENON1T, publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.251801 – volume: 737 start-page: 253 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB22 article-title: Calibration of the Super-Kamiokande Detector, publication-title: Nucl. Instrum. Meth. A doi: 10.1016/j.nima.2013.11.081 – volume: 40 start-page: 115201 year: 2013 ident: crKey-10.1088/1475-7516/2020/11/031-BIB44 article-title: The neutron background of the XENON100 dark matter search experiment, publication-title: J. Phys. G doi: 10.1088/0954-3899/40/11/115201 – volume: 89 start-page: 023524 year: 2014 ident: crKey-10.1088/1475-7516/2020/11/031-BIB64 article-title: Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.023524 |
SSID | ssj0026338 ssib002806714 ssib053834950 |
Score | 2.694286 |
Snippet | XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In... |
SourceID | swepub hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 31 |
SubjectTerms | Astrophysics Confidence intervals Cross-sections Dark matter dark matter experiments dark matter simulations High Energy Physics - Experiment Instrumentation and Detectors Physics Sensitivity Statistical analysis Weakly interacting massive particles Xenon |
Title | Projected WIMP sensitivity of the XENONnT dark matter experiment |
URI | https://www.proquest.com/docview/2461028246 https://hal.science/hal-02911946 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188173 |
Volume | 2020 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaEcuHC8JwWCqNhgEvGiWUrsnQjA-mkDE1zSCE3jSTbpUObdPLgwG_gR7NrK4oL5VEuHmdjrTP51qvd9T4IeakKY0uRsijnykXcWhXZnPFIKGYS5gR8idXIRyMxPOHvp71pq_W9kbW0XtmO-3ZtXcn_oAo0wBWrZG-AbGAKBDgHfOEICMPxnzAe12EUsBk_HR6N20tMRvfTIPyr_-lgdDyaTdq5WXxpX1S9NBtN_X9jmbr58mLbmsksVwvwrOu7-0hIMMT7l4uzOiF50Ak0g32zavnYEk_noEyq-VHtgy31vMQE3Soq22kGIMDbZCEAUetMnvWirMd8R-traF7R4uKmSLGG4vRbQdH48ItyB4VYtQfwrLGWBTgiCZV-vGHRbKn901YXEhCrV-9SamSmkZlGVuAO6RiL8m8n4HTgPIzD43Fw30VazUUP99_Ug0nZDTSMJcVdxrpxyq5YOrc-Y55t04lpNqatjJnJPXLXY037Naj3SauYPSC7fUQaa1zoa1qde7AfkjdB0ihKGm1IGp2XFCSNekmjKGm0ljS6lbRH5ORgMHk7jPzsjciBSb6KrC2d43muuDGijI3hCqNjicrLnhSZTUplVWqcdKnM0iQtc5sxw2WZxUY4adLHZGc2nxW7hBoFjIQtciNTMH8tHHsJbBuJkQm3WbZH-OZ_0s43psf5KOf6jyjtkU5Ydll3ZvnbghcAQrgW-6oP-x800uIE9nzFxVe4aH-DkfZP-lJjz0WMTXCxR17VuF1h8-7sY1_PF6d6udZMSpalT276456SO9tna5_srBbr4hmYuyv7vJLCH_ZUn0I |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+WIMP+sensitivity+of+the+XENONnT+dark+matter+experiment&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Aprile%2C+E.&rft.au=Aalbers%2C+J.&rft.au=Agostini%2C+F.&rft.au=Alfonsi%2C+M.&rft.date=2020-11-01&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2020&rft.issue=11&rft.spage=31&rft.epage=31&rft_id=info:doi/10.1088%2F1475-7516%2F2020%2F11%2F031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1475_7516_2020_11_031 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |