300 Faces In-The-Wild Challenge: database and results
Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due...
Saved in:
Published in | Image and vision computing Vol. 47; pp. 3 - 18 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0262-8856 1872-8138 |
DOI | 10.1016/j.imavis.2016.01.002 |
Cover
Loading…
Abstract | Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/. |
---|---|
AbstractList | Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/. |
Author | Antonakos, Epameinondas Tzimiropoulos, Georgios Sagonas, Christos Zafeiriou, Stefanos Pantic, Maja |
Author_xml | – sequence: 1 givenname: Christos surname: Sagonas fullname: Sagonas, Christos email: c.sagonas@imperial.ac.uk organization: Imperial College London, Department of Computing, London, UK – sequence: 2 givenname: Epameinondas surname: Antonakos fullname: Antonakos, Epameinondas organization: Imperial College London, Department of Computing, London, UK – sequence: 3 givenname: Georgios surname: Tzimiropoulos fullname: Tzimiropoulos, Georgios organization: University of Nottingham, School of Computer Science, Nottingham, UK – sequence: 4 givenname: Stefanos surname: Zafeiriou fullname: Zafeiriou, Stefanos organization: Imperial College London, Department of Computing, London, UK – sequence: 5 givenname: Maja surname: Pantic fullname: Pantic, Maja organization: Imperial College London, Department of Computing, London, UK |
BookMark | eNqFkMFKAzEQhoNUsK2-gYd9gV1nkt1N2oMgxapQ8FLxGLLJrE1Zs5KsBd_eLfXkQU8zA__3w3wzNgl9IMauEQoErG_2hX83B58KPl4FYAHAz9gUleS5QqEmbAq8HndV1RdsltIeACTIxZRVAiBbG0spewr5dkf5q-9cttqZrqPwRsvMmcE0JlFmgssipc9uSJfsvDVdoqufOWcv6_vt6jHfPD88re42uRUVH_Km4a2AEhqlqEYEt6hK4CStaEvBhWygtlwKV6NtjFVka-kqqSw2UiG2KOZseeq1sU8pUqutH8zg-zBE4zuNoI8C9F6fBOijAA2oRwEjXP6CP-IYi1__YbcnjMbHDp6iTtZTsOR8JDto1_u_C74BpxF3KQ |
CitedBy_id | crossref_primary_10_1007_s42761_021_00075_5 crossref_primary_10_1049_el_2019_0319 crossref_primary_10_20965_jaciii_2023_p0054 crossref_primary_10_1016_j_knosys_2024_111627 crossref_primary_10_1080_02522667_2020_1802122 crossref_primary_10_1109_JBHI_2020_3019242 crossref_primary_10_1007_s00521_023_08531_y crossref_primary_10_1016_j_cviu_2021_103171 crossref_primary_10_1049_iet_bmt_2017_0193 crossref_primary_10_1109_TCSVT_2020_3006236 crossref_primary_10_1109_JSEN_2020_3022958 crossref_primary_10_3390_bdcc3010014 crossref_primary_10_3390_electronics11223692 crossref_primary_10_1007_s11042_021_11525_4 crossref_primary_10_1121_10_0002924 crossref_primary_10_1109_ACCESS_2023_3262247 crossref_primary_10_1007_s11554_023_01336_1 crossref_primary_10_1109_ACCESS_2023_3243287 crossref_primary_10_1007_s11042_023_16779_8 crossref_primary_10_1109_TMC_2024_3445373 crossref_primary_10_3390_e23030273 crossref_primary_10_1134_S1054661817030312 crossref_primary_10_1109_ACCESS_2019_2930304 crossref_primary_10_1111_cgf_13895 crossref_primary_10_1109_ACCESS_2018_2884969 crossref_primary_10_12688_f1000research_50887_1 crossref_primary_10_3389_fnbot_2023_1154427 crossref_primary_10_1016_j_imavis_2016_03_009 crossref_primary_10_1109_ACCESS_2021_3077479 crossref_primary_10_1109_TCSVT_2023_3238517 crossref_primary_10_1016_j_imavis_2020_103883 crossref_primary_10_1007_s00371_020_01934_1 crossref_primary_10_26102_2310_6018_2019_26_3_005 crossref_primary_10_1007_s00530_024_01357_1 crossref_primary_10_1109_TASLP_2023_3264454 crossref_primary_10_1109_TMM_2019_2916455 crossref_primary_10_3390_s20072140 crossref_primary_10_1002_tee_23630 crossref_primary_10_1016_j_patcog_2023_109484 crossref_primary_10_1109_TIV_2017_2772889 crossref_primary_10_1007_s10044_023_01181_9 crossref_primary_10_3390_app122312027 crossref_primary_10_1109_TBIOM_2019_2950032 crossref_primary_10_1049_itr2_70006 crossref_primary_10_3390_app8112284 crossref_primary_10_1109_TPAMI_2018_2828424 crossref_primary_10_1371_journal_pone_0255643 crossref_primary_10_1109_ACCESS_2019_2899379 crossref_primary_10_1109_TIP_2019_2899267 crossref_primary_10_3389_fmed_2021_661309 crossref_primary_10_1088_1742_6596_1651_1_012076 crossref_primary_10_3390_jimaging7090169 crossref_primary_10_1007_s13042_019_01024_2 crossref_primary_10_1007_s10639_021_10808_5 crossref_primary_10_32431_kace_2024_27_1_016 crossref_primary_10_1016_j_imavis_2023_104686 crossref_primary_10_1109_TPAMI_2020_2983935 crossref_primary_10_1007_s11263_019_01155_7 crossref_primary_10_1186_s13640_021_00549_3 crossref_primary_10_1016_j_patcog_2020_107354 crossref_primary_10_1080_13803395_2023_2259043 crossref_primary_10_1109_TPAMI_2017_2783940 crossref_primary_10_1007_s41095_022_0286_4 crossref_primary_10_1155_2022_3986470 crossref_primary_10_1016_j_patrec_2021_11_002 crossref_primary_10_1016_j_robot_2021_103874 crossref_primary_10_3390_app13169130 crossref_primary_10_3390_biology10121269 crossref_primary_10_1109_ACCESS_2019_2907327 crossref_primary_10_3390_s21165419 crossref_primary_10_1109_TIP_2016_2642828 crossref_primary_10_1016_j_jvcir_2018_07_006 crossref_primary_10_1109_ACCESS_2020_3025818 crossref_primary_10_1007_s11280_018_0615_9 crossref_primary_10_1016_j_neunet_2020_11_001 crossref_primary_10_1109_ACCESS_2022_3161968 crossref_primary_10_1109_TASE_2022_3207194 crossref_primary_10_1109_TIP_2021_3082319 crossref_primary_10_1111_1475_679X_12428 crossref_primary_10_1007_s11263_016_0920_7 crossref_primary_10_1007_s11263_019_01151_x crossref_primary_10_1007_s11263_019_01197_x crossref_primary_10_3390_s20092480 crossref_primary_10_1016_j_imavis_2020_104007 crossref_primary_10_3389_frsip_2022_861641 crossref_primary_10_3390_jimaging9050104 crossref_primary_10_1007_s11227_023_05758_3 crossref_primary_10_3390_s23187744 crossref_primary_10_3390_computers11030034 crossref_primary_10_1007_s00521_020_05280_0 crossref_primary_10_1007_s11263_023_01804_y crossref_primary_10_1007_s42761_023_00191_4 crossref_primary_10_1109_ACCESS_2020_3029065 crossref_primary_10_1007_s11263_017_0996_8 crossref_primary_10_1109_ACCESS_2021_3095844 crossref_primary_10_1016_j_bjps_2024_02_074 crossref_primary_10_1109_ACCESS_2019_2960325 crossref_primary_10_1109_TIM_2025_3541698 crossref_primary_10_1002_tee_23555 crossref_primary_10_1109_TIV_2019_2955369 crossref_primary_10_3390_app12199548 crossref_primary_10_3390_s20185222 crossref_primary_10_1016_j_ijom_2021_01_002 crossref_primary_10_32604_iasc_2022_022359 crossref_primary_10_1109_ACCESS_2025_3540658 crossref_primary_10_3389_fcomp_2020_00009 crossref_primary_10_3390_s19051103 crossref_primary_10_1109_TIP_2020_3032029 crossref_primary_10_1016_j_asoc_2021_107173 crossref_primary_10_1109_TCSVT_2019_2897243 crossref_primary_10_1016_j_fsidi_2024_301808 crossref_primary_10_1109_JIOT_2022_3162403 crossref_primary_10_3390_sym12020307 crossref_primary_10_1109_LSP_2016_2643284 crossref_primary_10_1016_j_cogr_2022_01_003 crossref_primary_10_1109_TAI_2022_3172272 crossref_primary_10_1145_3507902 crossref_primary_10_1016_j_jsr_2024_01_013 crossref_primary_10_1088_1361_6579_aadb35 crossref_primary_10_3390_s23229076 crossref_primary_10_1016_j_imavis_2020_103976 crossref_primary_10_1109_TPAMI_2018_2881476 crossref_primary_10_1007_s11704_022_2059_8 crossref_primary_10_1109_TPAMI_2020_3046323 crossref_primary_10_1109_TETCI_2024_3369937 crossref_primary_10_1007_s11263_024_02116_5 crossref_primary_10_3390_s20247079 crossref_primary_10_1016_j_neunet_2021_03_019 crossref_primary_10_1109_TAFFC_2021_3124142 crossref_primary_10_1541_ieejeiss_138_1604 crossref_primary_10_1109_TPAMI_2021_3138762 crossref_primary_10_1002_cav_1980 crossref_primary_10_1016_j_compbiomed_2019_103475 crossref_primary_10_1177_0954407021999485 crossref_primary_10_3390_app14114702 crossref_primary_10_1007_s42979_025_03810_y crossref_primary_10_1049_2023_6636386 crossref_primary_10_1088_1742_6596_1486_4_042033 crossref_primary_10_1109_TITS_2024_3443832 crossref_primary_10_1111_srt_12977 crossref_primary_10_1007_s42979_024_02928_9 crossref_primary_10_1016_j_yebeh_2018_02_010 crossref_primary_10_1016_j_gmod_2025_101255 crossref_primary_10_1016_j_smhl_2020_100144 crossref_primary_10_1007_s10489_022_03173_4 crossref_primary_10_1007_s42979_021_00868_2 crossref_primary_10_1016_j_eswa_2025_126683 crossref_primary_10_1109_TPAMI_2018_2885298 crossref_primary_10_1016_j_patcog_2024_110263 crossref_primary_10_1109_ACCESS_2023_3257180 crossref_primary_10_1038_s41598_023_34310_9 crossref_primary_10_1088_1742_6596_1836_1_012033 crossref_primary_10_1111_cgf_14463 crossref_primary_10_1002_ecj_12316 crossref_primary_10_3390_s23031614 crossref_primary_10_1016_j_eswa_2023_122416 crossref_primary_10_1109_ACCESS_2024_3505536 crossref_primary_10_1016_j_patcog_2021_108325 crossref_primary_10_1109_TPAMI_2019_2927975 crossref_primary_10_1109_ACCESS_2024_3459419 crossref_primary_10_2139_ssrn_3995175 crossref_primary_10_1007_s11042_023_17731_6 crossref_primary_10_1016_j_compbiomed_2019_103376 crossref_primary_10_1109_TPAMI_2022_3222784 crossref_primary_10_1007_s11263_024_02208_2 crossref_primary_10_1016_j_specom_2019_10_006 crossref_primary_10_1007_s10044_024_01369_7 crossref_primary_10_1016_j_patcog_2020_107504 crossref_primary_10_1016_j_neunet_2019_12_009 crossref_primary_10_1186_s13640_018_0324_4 crossref_primary_10_1007_s11760_023_02644_6 crossref_primary_10_1038_s41746_022_00642_5 crossref_primary_10_2478_amns_2023_2_00053 crossref_primary_10_1109_TPAMI_2021_3076536 crossref_primary_10_1080_10447318_2020_1768666 crossref_primary_10_1109_ACCESS_2022_3228324 crossref_primary_10_1016_j_neucom_2016_09_015 crossref_primary_10_1007_s11554_021_01107_w crossref_primary_10_1109_TPAMI_2017_2738004 crossref_primary_10_1109_TIP_2018_2816121 crossref_primary_10_1007_s12553_019_00313_8 crossref_primary_10_1049_iet_ipr_2018_5481 crossref_primary_10_1049_cvi2_12208 crossref_primary_10_1109_TIP_2023_3261749 crossref_primary_10_1007_s42979_023_01709_0 crossref_primary_10_1007_s11263_018_1130_2 crossref_primary_10_1016_j_neucom_2021_01_027 crossref_primary_10_1016_j_bspc_2020_102242 crossref_primary_10_3390_sym12010027 crossref_primary_10_1016_j_procs_2023_10_551 crossref_primary_10_1109_TAFFC_2017_2740923 crossref_primary_10_1007_s00180_023_01395_9 crossref_primary_10_1016_j_jid_2021_07_186 crossref_primary_10_3390_jimaging7070108 crossref_primary_10_1089_fpsam_2019_0016 crossref_primary_10_1016_j_cose_2022_103024 crossref_primary_10_1007_s11042_023_14770_x crossref_primary_10_1007_s11263_019_01275_0 crossref_primary_10_1109_TMM_2021_3121547 crossref_primary_10_1016_j_cities_2018_09_009 crossref_primary_10_1016_j_procs_2024_10_281 crossref_primary_10_1007_s11263_018_1097_z crossref_primary_10_1109_ACCESS_2021_3082910 crossref_primary_10_1109_ACCESS_2022_3214227 crossref_primary_10_1007_s11263_018_1134_y crossref_primary_10_1016_j_patrec_2019_10_012 crossref_primary_10_1109_TMM_2020_2993943 crossref_primary_10_1109_TNNLS_2020_3044078 crossref_primary_10_1016_j_robot_2019_103344 crossref_primary_10_1049_htl2_12076 crossref_primary_10_1098_rsos_211500 crossref_primary_10_1109_TAFFC_2021_3061605 crossref_primary_10_1541_ieejeiss_141_563 crossref_primary_10_2139_ssrn_3741735 crossref_primary_10_3390_app13021226 crossref_primary_10_1109_TPAMI_2016_2636829 crossref_primary_10_1049_iet_spr_2016_0761 crossref_primary_10_2139_ssrn_3853393 crossref_primary_10_1088_1757_899X_928_3_032051 crossref_primary_10_1007_s10044_021_01004_9 crossref_primary_10_1038_s42003_023_04838_7 crossref_primary_10_32604_iasc_2022_020586 crossref_primary_10_1109_TII_2020_2966513 crossref_primary_10_1177_09567976211030630 crossref_primary_10_3390_s21165360 crossref_primary_10_3390_electronics14030608 crossref_primary_10_1109_TCYB_2021_3131569 crossref_primary_10_2196_43387 crossref_primary_10_1109_ACCESS_2020_3000063 crossref_primary_10_3390_s21206847 crossref_primary_10_1109_ACCESS_2022_3181167 crossref_primary_10_3390_electronics11131946 crossref_primary_10_1109_ACCESS_2022_3149380 crossref_primary_10_1109_TPAMI_2020_3038760 crossref_primary_10_1007_s11042_022_12775_6 crossref_primary_10_1007_s11263_024_02136_1 crossref_primary_10_1038_s41598_024_68555_9 crossref_primary_10_1145_3338841 crossref_primary_10_1016_j_inffus_2023_102013 crossref_primary_10_1016_j_cviu_2019_102846 crossref_primary_10_11610_isij_4724 crossref_primary_10_1016_j_jcorpfin_2020_101693 crossref_primary_10_1016_j_patrec_2020_11_008 crossref_primary_10_1109_TPAMI_2017_2784421 crossref_primary_10_1111_cgf_14513 crossref_primary_10_1007_s11042_020_08873_y crossref_primary_10_1109_ACCESS_2024_3437291 crossref_primary_10_3390_s20071936 crossref_primary_10_1007_s41870_024_01872_4 crossref_primary_10_1016_j_patcog_2021_107866 crossref_primary_10_1111_cgf_14639 crossref_primary_10_1109_TPAMI_2017_2787130 crossref_primary_10_1007_s12559_021_09846_5 crossref_primary_10_1016_j_media_2023_102875 crossref_primary_10_1016_j_jvcir_2021_103395 crossref_primary_10_22363_2312_8631_2023_20_3_316_327 crossref_primary_10_1109_TPAMI_2018_2832138 crossref_primary_10_1186_s41235_022_00379_5 crossref_primary_10_1007_s00414_021_02512_3 crossref_primary_10_3390_a14090268 crossref_primary_10_1109_TPAMI_2017_2734779 crossref_primary_10_1007_s11042_022_13380_3 crossref_primary_10_1016_j_eswa_2021_116073 crossref_primary_10_1016_j_neucom_2017_06_050 crossref_primary_10_1371_journal_pone_0231266 crossref_primary_10_1016_j_patcog_2020_107311 crossref_primary_10_1017_S0890060419000350 crossref_primary_10_1016_j_imavis_2018_07_002 crossref_primary_10_1007_s11263_018_1095_1 crossref_primary_10_14500_aro_11850 crossref_primary_10_3390_bioengineering9110619 crossref_primary_10_1109_TIP_2021_3112059 |
Cites_doi | 10.1023/B:VISI.0000029666.37597.d3 10.1109/TPAMI.2012.40 10.1023/B:VISI.0000042934.15159.49 10.1109/TIP.2015.2431445 10.1109/34.927467 10.1016/j.cviu.2012.03.008 10.1007/s11263-010-0380-4 10.1016/j.imavis.2015.09.003 10.1016/j.imavis.2015.11.003 10.1006/cviu.1995.1004 10.1016/j.imavis.2015.11.005 10.1007/s11263-013-0667-3 10.1016/j.imavis.2009.08.002 10.1109/TPAMI.2012.205 10.1016/j.imavis.2015.11.004 10.1016/j.imavis.2005.07.009 10.1016/j.imavis.2016.02.004 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2016.01.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
EndPage | 18 |
ExternalDocumentID | 10_1016_j_imavis_2016_01_002 S0262885616000147 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-bb2f3040b88e6110d95402e7c3f43237b06c273d61cbac8ec67d578c1b7811f13 |
IEDL.DBID | .~1 |
ISSN | 0262-8856 |
IngestDate | Thu Apr 24 22:57:07 EDT 2025 Tue Jul 01 00:48:15 EDT 2025 Fri Feb 23 02:23:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Facial landmark localization Semi-automatic annotation tool Facial database Challenge |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-bb2f3040b88e6110d95402e7c3f43237b06c273d61cbac8ec67d578c1b7811f13 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0262885616000147 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2016_01_002 crossref_primary_10_1016_j_imavis_2016_01_002 elsevier_sciencedirect_doi_10_1016_j_imavis_2016_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 2016-03-00 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationTitle | Image and vision computing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Asthana, Zafeiriou, Cheng, Pantic (bb0085) 2013 Martinez (bb0140) 1998 Cootes, Taylor, Cooper, Graham (bb0070) 1995; 61 Alabort-i-Medina, Zafeiriou (bb0035) 2014 Cristinacce, Cootes (bb0075) 2006; 3 Jain, Learned-Miller (bb0250) 2010 Le, Brandt, Lin, Bourdev, Huang (bb0150) 2012 Tzimiropoulos, Zafeiriou, Pantic (bb0190) 2012; 34 Martinez, Valstar (bb0270) 2016; 47 Antonakos, Alabort-i-Medina, Tzimiropoulos, Zafeiriou (bb0030) 2014 Yan, Lei, Yi, Li (bb0235) 2013 Martinez, Valstar, Binefa, Pantic (bb0220) 2013; 35 Viola, Jones (bb0245) 2001 Felzenszwalb, Huttenlocher (bb0055) 2005; 61 Saragih, Lucey, Cohn (bb0080) 2011; 91 Ren, Cao, Wei, Sun (bb0115) 2014 Baltrusaitis, Robinson, Morency (bb0205) 2013 Gross, Matthews, Baker (bb0200) 2005; 23 Belhumeur, Jacobs, Kriegman, Kumar (bb0145) 2011 Papandreou, Maragos (bb0195) 2008 Xiong, De la Torre (bb0095) 2013 Tong, Liu, Wheeler, Tu (bb0180) 2012; 116 Zhou, Fan, Cao, Jiang, Yin (bb0240) 2013 Sagonas, Tzimiropoulos, Zafeiriou, Pantic (bb0160) 2013 Gross, Matthews, Cohn, Kanade, Baker (bb0125) 2010; 28 Uřičář, Franc, Thomas, Sugimoto, Hlaváč (bb0275) 2016; 47 Tzimiropoulos, Alabort-i-Medina, Zafeiriou, Pantic (bb0015) 2012 Antonakos, i medina, Tzimiropoulos, Zafeiriou (bb0045) 2015; 24 Tzimiropoulos, Pantic (bb0050) 2014 Hasan, Pal, Moalem (bb0210) 2013 Jaiswal, Almaev, Valstar (bb0215) 2013 Tzimiropoulos, Pantic (bb0020) 2013 Antonakos, Alabort-i Medina, Zafeiriou (bb0065) 2015 Čech, Franc, Uřičář, Matas (bb0255) 2016; 47 Matthews, Baker (bb0010) 2004; 60 Wu, Wang, Ji (bb0185) 2014 Zhu, Ramanan (bb0090) 2012 Tzimiropoulos (bb0110) 2015 Pedersoli, Tuytelaars, Gool (bb0175) 2014 Alabort-i Medina, Zafeiriou (bb0040) 2015 Fan, Zhou (bb0265) 2016; 47 Alabort-i-Medina, Antonakos, Booth, Snape, Zafeiriou (bb0165) 2014 Cao, Wei, Wen, Sun (bb0100) 2014; 107 Phillips, Flynn, Scruggs, Bowyer, Chang, Hoffman, Marques, Min, Worek (bb0135) 2005 Asthana, Zafeiriou, Cheng, Pantic (bb0105) 2014 Deng, Liu, Yang, Tao (bb0260) 2016; 47 Milborrow, Bishop, Nicolls (bb0225) 2013 Kostinger, Wohlhart, Roth, Bischof (bb0155) 2011 Messer, Matas, Kittler, Luettin, Maitre (bb0130) 1999; 964 Cootes, Edwards, Taylor (bb0005) 2001; 23 Andriluka, Roth, Schiele (bb0060) 2009 Kazemi, Sullivan (bb0120) 2014 Jia, Yang, Lin, Chan, Patras (bb0170) 2014 Tzimiropoulos, Alabort-i-Medina, Zafeiriou, Pantic (bb0025) 2014 Lowe (bb0230) 1999; 2 Cristinacce (10.1016/j.imavis.2016.01.002_bb0075) 2006; 3 Papandreou (10.1016/j.imavis.2016.01.002_bb0195) 2008 Antonakos (10.1016/j.imavis.2016.01.002_bb0065) 2015 Kazemi (10.1016/j.imavis.2016.01.002_bb0120) 2014 Antonakos (10.1016/j.imavis.2016.01.002_bb0045) 2015; 24 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0050) 2014 Martinez (10.1016/j.imavis.2016.01.002_bb0140) 1998 Zhu (10.1016/j.imavis.2016.01.002_bb0090) 2012 Cootes (10.1016/j.imavis.2016.01.002_bb0070) 1995; 61 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0190) 2012; 34 Alabort-i Medina (10.1016/j.imavis.2016.01.002_bb0040) 2015 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0020) 2013 Asthana (10.1016/j.imavis.2016.01.002_bb0105) 2014 Sagonas (10.1016/j.imavis.2016.01.002_bb0160) 2013 Alabort-i-Medina (10.1016/j.imavis.2016.01.002_bb0165) 2014 Martinez (10.1016/j.imavis.2016.01.002_bb0220) 2013; 35 Pedersoli (10.1016/j.imavis.2016.01.002_bb0175) 2014 Fan (10.1016/j.imavis.2016.01.002_bb0265) 2016; 47 Jaiswal (10.1016/j.imavis.2016.01.002_bb0215) 2013 Messer (10.1016/j.imavis.2016.01.002_bb0130) 1999; 964 Viola (10.1016/j.imavis.2016.01.002_bb0245) 2001 Tong (10.1016/j.imavis.2016.01.002_bb0180) 2012; 116 Deng (10.1016/j.imavis.2016.01.002_bb0260) 2016; 47 Asthana (10.1016/j.imavis.2016.01.002_bb0085) 2013 Kostinger (10.1016/j.imavis.2016.01.002_bb0155) 2011 Belhumeur (10.1016/j.imavis.2016.01.002_bb0145) 2011 Gross (10.1016/j.imavis.2016.01.002_bb0125) 2010; 28 Antonakos (10.1016/j.imavis.2016.01.002_bb0030) 2014 Alabort-i-Medina (10.1016/j.imavis.2016.01.002_bb0035) 2014 Martinez (10.1016/j.imavis.2016.01.002_bb0270) 2016; 47 Le (10.1016/j.imavis.2016.01.002_bb0150) 2012 Zhou (10.1016/j.imavis.2016.01.002_bb0240) 2013 Saragih (10.1016/j.imavis.2016.01.002_bb0080) 2011; 91 Jia (10.1016/j.imavis.2016.01.002_bb0170) 2014 Wu (10.1016/j.imavis.2016.01.002_bb0185) 2014 Hasan (10.1016/j.imavis.2016.01.002_bb0210) 2013 Čech (10.1016/j.imavis.2016.01.002_bb0255) 2016; 47 Cao (10.1016/j.imavis.2016.01.002_bb0100) 2014; 107 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0110) 2015 Milborrow (10.1016/j.imavis.2016.01.002_bb0225) 2013 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0025) 2014 Andriluka (10.1016/j.imavis.2016.01.002_bb0060) 2009 Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0015) 2012 Gross (10.1016/j.imavis.2016.01.002_bb0200) 2005; 23 Uřičář (10.1016/j.imavis.2016.01.002_bb0275) 2016; 47 Ren (10.1016/j.imavis.2016.01.002_bb0115) 2014 Phillips (10.1016/j.imavis.2016.01.002_bb0135) 2005 Yan (10.1016/j.imavis.2016.01.002_bb0235) 2013 Cootes (10.1016/j.imavis.2016.01.002_bb0005) 2001; 23 Lowe (10.1016/j.imavis.2016.01.002_bb0230) 1999; 2 Matthews (10.1016/j.imavis.2016.01.002_bb0010) 2004; 60 Jain (10.1016/j.imavis.2016.01.002_bb0250) 2010 Felzenszwalb (10.1016/j.imavis.2016.01.002_bb0055) 2005; 61 Xiong (10.1016/j.imavis.2016.01.002_bb0095) 2013 Baltrusaitis (10.1016/j.imavis.2016.01.002_bb0205) 2013 |
References_xml | – start-page: 2024 year: 2014 end-page: 2034 ident: bb0025 article-title: Active orientation models for face alignment in-the-wild, IEEE Transactions on Information Forensics and Security, Special Issue on Facial Biometrics in-the-wild 9 – volume: 47 start-page: 45 year: 2016 end-page: 59 ident: bb0275 article-title: Multi-view facial landmark detector learned by the structured output SVM publication-title: Image Vis. Comput. – volume: 47 start-page: 60 year: 2016 end-page: 70 ident: bb0255 article-title: Multi-view facial landmark detection by using a 3D shape model publication-title: Image Vis. Comput. – volume: 964 start-page: 965 year: 1999 end-page: 966 ident: bb0130 article-title: XM2VTSDB: the extended M2VTS database publication-title: Second international conference on audio and video-based biometric person authentication – start-page: 545 year: 2011 end-page: 552 ident: bb0145 article-title: Localizing parts of faces using a consensus of exemplars publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 679 year: 2012 end-page: 692 ident: bb0150 article-title: Interactive facial feature localization publication-title: Proceedings of European Conference on Computer Vision (ECCV) – start-page: 650 year: 2012 end-page: 663 ident: bb0015 article-title: Generic active appearance models revisited publication-title: Proceedings of Asian Conference on Computer Vision (ACCV), Daejeon, Korea – start-page: 5435 year: 2015 end-page: 5444 ident: bb0065 article-title: Active pictorial structures publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – start-page: 2144 year: 2011 end-page: 2151 ident: bb0155 article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on Benchmarking Facial Image Analysis Technologies, IEEE – start-page: 3694 year: 2014 end-page: 3701 ident: bb0175 article-title: Using a deformation field model for localizing faces and facial points under weak supervision publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – volume: 35 start-page: 1149 year: 2013 end-page: 1163 ident: bb0220 article-title: Local evidence aggregation for regression-based facial point detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1851 year: 2014 end-page: 1858 ident: bb0050 article-title: Gauss–Newton deformable part models for face alignment in-the-wild publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 1867 year: 2014 end-page: 1874 ident: bb0120 article-title: One millisecond face alignment with an ensemble of regression trees publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – year: 2014 ident: bb0170 article-title: Structured semi-supervised forest for facial landmarks localization with face mask reasoning publication-title: Proceedings of British Machine Vision Conference (BMVC) – start-page: 386 year: 2013 end-page: 391 ident: bb0240 article-title: Extensive facial landmark localization with coarse-to-fine convolutional network cascade publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – volume: 60 start-page: 135 year: 2004 end-page: 164 ident: bb0010 article-title: Active appearance models revisited publication-title: Int. J. Comput. Vis. – start-page: 532 year: 2013 end-page: 539 ident: bb0095 article-title: Supervised descent method and its applications to face alignment publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – volume: 34 start-page: 2454 year: 2012 end-page: 2466 ident: bb0190 article-title: Subspace learning from image gradient orientations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3659 year: 2015 end-page: 3667 ident: bb0110 article-title: Project-out cascaded regression with an application to face alignment publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 1859 year: 2014 end-page: 1866 ident: bb0105 article-title: Incremental face alignment in the wild publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 947 year: 2005 end-page: 954 ident: bb0135 article-title: Overview of the face recognition grand challenge publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – year: 2010 ident: bb0250 article-title: FDDB: a benchmark for face detection in unconstrained settings, Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst – start-page: 378 year: 2013 end-page: 385 ident: bb0225 article-title: Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – start-page: 679 year: 2014 end-page: 682 ident: bb0165 article-title: Menpo: a comprehensive platform for parametric image alignment and visual deformable models publication-title: Proceedings of the ACM International Conference on Multimedia, Open Source Software Competition, Orlando, FL, USA – start-page: 3679 year: 2015 end-page: 3688 ident: bb0040 article-title: Unifying holistic and parts-based deformable model fitting publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – volume: 47 start-page: 36 year: 2016 end-page: 44 ident: bb0270 article-title: L2,1-based regression and prediction accumulation across views for robust facial landmark detection publication-title: Image Vis. Comput. – start-page: 354 year: 2013 end-page: 361 ident: bb0205 article-title: Constrained local neural fields for robust facial landmark detection in the wild publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – start-page: 593 year: 2013 end-page: 600 ident: bb0020 article-title: Optimization problems for fast AAM fitting in-the-wild publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV) – start-page: 392 year: 2013 end-page: 396 ident: bb0235 article-title: Learn to combine multiple hypotheses for accurate face alignment publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – volume: 24 start-page: 2617 year: 2015 end-page: 2632 ident: bb0045 article-title: Feature-based Lucas–Kanade and active appearance models publication-title: IEEE Trans. Image Process. – volume: 107 start-page: 177 year: 2014 end-page: 190 ident: bb0100 article-title: Face alignment by explicit shape regression publication-title: Int. J. Comput. Vis. – start-page: 370 year: 2013 end-page: 377 ident: bb0215 article-title: Guided unsupervised learning of mode specific models for facial point detection in the wild publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – volume: 91 start-page: 200 year: 2011 end-page: 215 ident: bb0080 article-title: Deformable model fitting by regularized landmark mean-shift publication-title: Int. J. Comput. Vis. – start-page: 1014 year: 2009 end-page: 1021 ident: bb0060 article-title: Pictorial structures revisited: people detection and articulated pose estimation publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 397 year: 2013 end-page: 403 ident: bb0160 article-title: 300 Faces in-the-Wild Challenge: the first facial landmark localization challenge publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W), Sydney, Australia – start-page: 362 year: 2013 end-page: 369 ident: bb0210 article-title: Localizing facial keypoints with global descriptor search, neighbour alignment and locally linear models publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W) – start-page: 3438 year: 2014 end-page: 3445 ident: bb0035 article-title: Bayesian active appearance models publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – volume: 23 start-page: 681 year: 2001 end-page: 685 ident: bb0005 article-title: Active appearance models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 1150 year: 1999 end-page: 1157 ident: bb0230 article-title: Object recognition from local scale-invariant features publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV) – volume: 23 start-page: 1080 year: 2005 end-page: 1093 ident: bb0200 article-title: Generic vs. person specific active appearance models publication-title: Image Vis. Comput. – volume: 3 start-page: 929 year: 2006 end-page: 938 ident: bb0075 article-title: Feature detection and tracking with constrained local models publication-title: Proceedings of British Machine Vision Conference (BMVC) – volume: 61 start-page: 38 year: 1995 end-page: 59 ident: bb0070 article-title: Active shape models—their training and application publication-title: Comput. Vis. Image Underst. – volume: 116 start-page: 922 year: 2012 end-page: 935 ident: bb0180 article-title: Semi-supervised facial landmark annotation publication-title: Comput. Vis. Image Underst. – start-page: 1 year: 2008 end-page: 8 ident: bb0195 article-title: Adaptive and constrained algorithms for inverse compositional active appearance model fitting publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – start-page: 511 year: 2001 end-page: 518 ident: bb0245 article-title: Rapid object detection using a boosted cascade of simple features publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – start-page: 3444 year: 2013 end-page: 3451 ident: bb0085 article-title: Robust discriminative response map fitting with constrained local models publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – year: 1998 ident: bb0140 article-title: The AR Face Database, CVC Technical Report 24 – volume: 61 start-page: 55 year: 2005 end-page: 79 ident: bb0055 article-title: Pictorial structures for object recognition publication-title: Int. J. Comput. Vis. – start-page: 2879 year: 2012 end-page: 2886 ident: bb0090 article-title: Face detection, pose estimation, and landmark localization in the wild publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR),IEEE – volume: 47 start-page: 27 year: 2016 end-page: 35 ident: bb0265 article-title: Approaching human level facial landmark localization by deep learning publication-title: Image Vis. Comput. – volume: 28 start-page: 807 year: 2010 end-page: 813 ident: bb0125 article-title: Multi-pie publication-title: Image Vis. Comput. – start-page: 1685 year: 2014 end-page: 1692 ident: bb0115 article-title: Face alignment at 3000 publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE – volume: 47 start-page: 19 year: 2016 end-page: 26 ident: bb0260 article-title: M publication-title: Image Vis. Comput. – start-page: 224 year: 2014 end-page: 228 ident: bb0030 article-title: HOG active appearance models publication-title: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, France – start-page: 1781 year: 2014 end-page: 1788 ident: bb0185 article-title: A hierarchical probabilistic model for facial feature detection publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR) – volume: 2 start-page: 1150 year: 1999 ident: 10.1016/j.imavis.2016.01.002_bb0230 article-title: Object recognition from local scale-invariant features – volume: 60 start-page: 135 issue: 2 year: 2004 ident: 10.1016/j.imavis.2016.01.002_bb0010 article-title: Active appearance models revisited publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029666.37597.d3 – start-page: 1685 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0115 article-title: Face alignment at 3000fps via regressing local binary features – start-page: 2879 year: 2012 ident: 10.1016/j.imavis.2016.01.002_bb0090 article-title: Face detection, pose estimation, and landmark localization in the wild – start-page: 1014 year: 2009 ident: 10.1016/j.imavis.2016.01.002_bb0060 article-title: Pictorial structures revisited: people detection and articulated pose estimation – year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0170 article-title: Structured semi-supervised forest for facial landmarks localization with face mask reasoning – start-page: 593 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0020 article-title: Optimization problems for fast AAM fitting in-the-wild – start-page: 679 year: 2012 ident: 10.1016/j.imavis.2016.01.002_bb0150 article-title: Interactive facial feature localization – start-page: 679 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0165 article-title: Menpo: a comprehensive platform for parametric image alignment and visual deformable models – volume: 34 start-page: 2454 issue: 12 year: 2012 ident: 10.1016/j.imavis.2016.01.002_bb0190 article-title: Subspace learning from image gradient orientations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.40 – volume: 61 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.imavis.2016.01.002_bb0055 article-title: Pictorial structures for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000042934.15159.49 – volume: 24 start-page: 2617 issue: 9 year: 2015 ident: 10.1016/j.imavis.2016.01.002_bb0045 article-title: Feature-based Lucas–Kanade and active appearance models publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2431445 – start-page: 511 year: 2001 ident: 10.1016/j.imavis.2016.01.002_bb0245 article-title: Rapid object detection using a boosted cascade of simple features – start-page: 378 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0225 article-title: Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge – start-page: 354 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0205 article-title: Constrained local neural fields for robust facial landmark detection in the wild – start-page: 3694 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0175 article-title: Using a deformation field model for localizing faces and facial points under weak supervision – year: 2010 ident: 10.1016/j.imavis.2016.01.002_bb0250 – start-page: 545 year: 2011 ident: 10.1016/j.imavis.2016.01.002_bb0145 article-title: Localizing parts of faces using a consensus of exemplars – volume: 23 start-page: 681 issue: 6 year: 2001 ident: 10.1016/j.imavis.2016.01.002_bb0005 article-title: Active appearance models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927467 – start-page: 3659 year: 2015 ident: 10.1016/j.imavis.2016.01.002_bb0110 article-title: Project-out cascaded regression with an application to face alignment – volume: 116 start-page: 922 issue: 8 year: 2012 ident: 10.1016/j.imavis.2016.01.002_bb0180 article-title: Semi-supervised facial landmark annotation publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2012.03.008 – start-page: 2144 year: 2011 ident: 10.1016/j.imavis.2016.01.002_bb0155 article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization – volume: 91 start-page: 200 issue: 2 year: 2011 ident: 10.1016/j.imavis.2016.01.002_bb0080 article-title: Deformable model fitting by regularized landmark mean-shift publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0380-4 – volume: 47 start-page: 36 year: 2016 ident: 10.1016/j.imavis.2016.01.002_bb0270 article-title: L2,1-based regression and prediction accumulation across views for robust facial landmark detection publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2015.09.003 – start-page: 362 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0210 article-title: Localizing facial keypoints with global descriptor search, neighbour alignment and locally linear models – start-page: 947 year: 2005 ident: 10.1016/j.imavis.2016.01.002_bb0135 article-title: Overview of the face recognition grand challenge – start-page: 2024 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0025 – volume: 3 start-page: 929 year: 2006 ident: 10.1016/j.imavis.2016.01.002_bb0075 article-title: Feature detection and tracking with constrained local models – start-page: 1859 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0105 article-title: Incremental face alignment in the wild – start-page: 532 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0095 article-title: Supervised descent method and its applications to face alignment – start-page: 3444 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0085 article-title: Robust discriminative response map fitting with constrained local models – volume: 47 start-page: 60 year: 2016 ident: 10.1016/j.imavis.2016.01.002_bb0255 article-title: Multi-view facial landmark detection by using a 3D shape model publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2015.11.003 – volume: 964 start-page: 965 year: 1999 ident: 10.1016/j.imavis.2016.01.002_bb0130 article-title: XM2VTSDB: the extended M2VTS database – start-page: 650 year: 2012 ident: 10.1016/j.imavis.2016.01.002_bb0015 article-title: Generic active appearance models revisited – start-page: 3679 year: 2015 ident: 10.1016/j.imavis.2016.01.002_bb0040 article-title: Unifying holistic and parts-based deformable model fitting – start-page: 397 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0160 article-title: 300 Faces in-the-Wild Challenge: the first facial landmark localization challenge – volume: 61 start-page: 38 issue: 1 year: 1995 ident: 10.1016/j.imavis.2016.01.002_bb0070 article-title: Active shape models—their training and application publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1995.1004 – start-page: 5435 year: 2015 ident: 10.1016/j.imavis.2016.01.002_bb0065 article-title: Active pictorial structures – volume: 47 start-page: 19 year: 2016 ident: 10.1016/j.imavis.2016.01.002_bb0260 article-title: M3 CSR: multi-view, multi-scale and multi-component cascade shape regression publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2015.11.005 – year: 1998 ident: 10.1016/j.imavis.2016.01.002_bb0140 – volume: 107 start-page: 177 issue: 2 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0100 article-title: Face alignment by explicit shape regression publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0667-3 – start-page: 224 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0030 article-title: HOG active appearance models – volume: 28 start-page: 807 issue: 5 year: 2010 ident: 10.1016/j.imavis.2016.01.002_bb0125 article-title: Multi-pie publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2009.08.002 – start-page: 1851 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0050 article-title: Gauss–Newton deformable part models for face alignment in-the-wild – start-page: 1781 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0185 article-title: A hierarchical probabilistic model for facial feature detection – volume: 35 start-page: 1149 issue: 5 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0220 article-title: Local evidence aggregation for regression-based facial point detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.205 – volume: 47 start-page: 27 year: 2016 ident: 10.1016/j.imavis.2016.01.002_bb0265 article-title: Approaching human level facial landmark localization by deep learning publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2015.11.004 – start-page: 1867 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0120 article-title: One millisecond face alignment with an ensemble of regression trees – start-page: 3438 year: 2014 ident: 10.1016/j.imavis.2016.01.002_bb0035 article-title: Bayesian active appearance models – start-page: 386 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0240 article-title: Extensive facial landmark localization with coarse-to-fine convolutional network cascade – volume: 23 start-page: 1080 issue: 12 year: 2005 ident: 10.1016/j.imavis.2016.01.002_bb0200 article-title: Generic vs. person specific active appearance models publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2005.07.009 – start-page: 392 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0235 article-title: Learn to combine multiple hypotheses for accurate face alignment – start-page: 1 year: 2008 ident: 10.1016/j.imavis.2016.01.002_bb0195 article-title: Adaptive and constrained algorithms for inverse compositional active appearance model fitting – volume: 47 start-page: 45 year: 2016 ident: 10.1016/j.imavis.2016.01.002_bb0275 article-title: Multi-view facial landmark detector learned by the structured output SVM publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.02.004 – start-page: 370 year: 2013 ident: 10.1016/j.imavis.2016.01.002_bb0215 article-title: Guided unsupervised learning of mode specific models for facial point detection in the wild |
SSID | ssj0007079 |
Score | 2.6448052 |
Snippet | Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3 |
SubjectTerms | Challenge Facial database Facial landmark localization Semi-automatic annotation tool |
Title | 300 Faces In-The-Wild Challenge: database and results |
URI | https://dx.doi.org/10.1016/j.imavis.2016.01.002 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvejBR1Wsj7IHr7FJNs2m3kqxtAq9aKG3JfsIVGosNr36251JNloRFDwm7MIyzMz3zfLNLMC1jVSQpFimJmk_86JQY8zZTHgmzRANEWSVKgWy03g8i-7nvXkDhnUvDMkqXe6vcnqZrd2frrNmd7VYdB-xegiTBPE_Lok-dZRHkSAvv3n_knnQBLjqngVPgavr9rlS47V4oVZ-EnjF5fBOd7nyA562IGd0CPuOK7JBdZwjaNi8BQeONzIXlesW7G0NFTyGHvd9NiKlFZvkHroBaWING9avptwyUoUSerE0NwzL7c2yWJ_AbHT3NBx77nEETyNnKjylwoxjBKoksTFiuOkj9wqt0DyLeMiF8mON1MTEgVapTqyOhcHo1IGi3tIs4KfQzF9zewaMByq1RKyEVZHAIE-VwEImNH7m69DwNvDaJlK7yeH0gMVS1hKxZ1lZUpIlpR9ItGQbvM9dq2pyxh_rRW1u-c0DJCb3X3ee_3vnBezSV6Upu4Rm8baxV0gyCtUpvagDO4PJw3j6AWTyzk8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14bWi7pVu8ESIpglyEhNum-2iCwUqk_H9n2y3BmGjitdtJNpOd-b7ZfDML8KAD4UUJlqlR0k2dwJcYczpljkpSREMEWSEKgewkjGfB87wzr0G_6oUxskqb-8ucXmRr-6VtvdleLRbtV6we_ChC_A8Los_2oGGmU3Xq0OgNR_Fkm5DNELjyqgU3ggZVB10h81q8m25-o_EKi_md9n7lB0LtoM7gBI4sXSS9ckenUNNZE44tdSQ2MNdNONyZK3gGHeq6ZGDEVmSYOXgSjCxWkX71cMojMcJQA2AkyRTBinuzzNfnMBs8TfuxY99HcCTSptwRwk8pBqGIIh0ijKsu0i9fM0nTgPqUCTeUyE5U6EmRyEjLkCkMUOkJ016aevQC6tlHpi-BUE8k2nArpkXAMM4TwbCW8ZWbutJXtAW08gmXdni4ecNiySuV2BsvPcmNJ7nrcfRkC5yt1aocnvHH_6xyN_92CDjm918tr_5teQ_78fRlzMfDyegaDsxKKTG7gXr-udG3yDlycWfP1BeP19EA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=300+Faces+In-The-Wild+Challenge%3A+database+and+results&rft.jtitle=Image+and+vision+computing&rft.au=Sagonas%2C+Christos&rft.au=Antonakos%2C+Epameinondas&rft.au=Tzimiropoulos%2C+Georgios&rft.au=Zafeiriou%2C+Stefanos&rft.date=2016-03-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=47&rft.spage=3&rft.epage=18&rft_id=info:doi/10.1016%2Fj.imavis.2016.01.002&rft.externalDocID=S0262885616000147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |