300 Faces In-The-Wild Challenge: database and results

Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 47; pp. 3 - 18
Main Authors Sagonas, Christos, Antonakos, Epameinondas, Tzimiropoulos, Georgios, Zafeiriou, Stefanos, Pantic, Maja
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2016
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2016.01.002

Cover

Loading…
Abstract Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/.
AbstractList Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the last few years that achieve accurate and efficient performance. However, fair comparison between these methodologies is infeasible mainly due to two issues. (a) Most existing databases, captured under both constrained and unconstrained (in-the-wild) conditions have been annotated using different mark-ups and, in most cases, the accuracy of the annotations is low. (b) Most published works report experimental results using different training/testing sets, different error metrics and, of course, landmark points with semantically different locations. In this paper, we aim to overcome the aforementioned problems by (a) proposing a semi-automatic annotation technique that was employed to re-annotate most existing facial databases under a unified protocol, and (b) presenting the 300 Faces In-The-Wild Challenge (300-W), the first facial landmark localization challenge that was organized twice, in 2013 and 2015. To the best of our knowledge, this is the first effort towards a unified annotation scheme of massive databases and a fair experimental comparison of existing facial landmark localization systems. The images and annotations of the new testing database that was used in the 300-W challenge are available from http://ibug.doc.ic.ac.uk/resources/300-W_IMAVIS/.
Author Antonakos, Epameinondas
Tzimiropoulos, Georgios
Sagonas, Christos
Zafeiriou, Stefanos
Pantic, Maja
Author_xml – sequence: 1
  givenname: Christos
  surname: Sagonas
  fullname: Sagonas, Christos
  email: c.sagonas@imperial.ac.uk
  organization: Imperial College London, Department of Computing, London, UK
– sequence: 2
  givenname: Epameinondas
  surname: Antonakos
  fullname: Antonakos, Epameinondas
  organization: Imperial College London, Department of Computing, London, UK
– sequence: 3
  givenname: Georgios
  surname: Tzimiropoulos
  fullname: Tzimiropoulos, Georgios
  organization: University of Nottingham, School of Computer Science, Nottingham, UK
– sequence: 4
  givenname: Stefanos
  surname: Zafeiriou
  fullname: Zafeiriou, Stefanos
  organization: Imperial College London, Department of Computing, London, UK
– sequence: 5
  givenname: Maja
  surname: Pantic
  fullname: Pantic, Maja
  organization: Imperial College London, Department of Computing, London, UK
BookMark eNqFkMFKAzEQhoNUsK2-gYd9gV1nkt1N2oMgxapQ8FLxGLLJrE1Zs5KsBd_eLfXkQU8zA__3w3wzNgl9IMauEQoErG_2hX83B58KPl4FYAHAz9gUleS5QqEmbAq8HndV1RdsltIeACTIxZRVAiBbG0spewr5dkf5q-9cttqZrqPwRsvMmcE0JlFmgssipc9uSJfsvDVdoqufOWcv6_vt6jHfPD88re42uRUVH_Km4a2AEhqlqEYEt6hK4CStaEvBhWygtlwKV6NtjFVka-kqqSw2UiG2KOZseeq1sU8pUqutH8zg-zBE4zuNoI8C9F6fBOijAA2oRwEjXP6CP-IYi1__YbcnjMbHDp6iTtZTsOR8JDto1_u_C74BpxF3KQ
CitedBy_id crossref_primary_10_1007_s42761_021_00075_5
crossref_primary_10_1049_el_2019_0319
crossref_primary_10_20965_jaciii_2023_p0054
crossref_primary_10_1016_j_knosys_2024_111627
crossref_primary_10_1080_02522667_2020_1802122
crossref_primary_10_1109_JBHI_2020_3019242
crossref_primary_10_1007_s00521_023_08531_y
crossref_primary_10_1016_j_cviu_2021_103171
crossref_primary_10_1049_iet_bmt_2017_0193
crossref_primary_10_1109_TCSVT_2020_3006236
crossref_primary_10_1109_JSEN_2020_3022958
crossref_primary_10_3390_bdcc3010014
crossref_primary_10_3390_electronics11223692
crossref_primary_10_1007_s11042_021_11525_4
crossref_primary_10_1121_10_0002924
crossref_primary_10_1109_ACCESS_2023_3262247
crossref_primary_10_1007_s11554_023_01336_1
crossref_primary_10_1109_ACCESS_2023_3243287
crossref_primary_10_1007_s11042_023_16779_8
crossref_primary_10_1109_TMC_2024_3445373
crossref_primary_10_3390_e23030273
crossref_primary_10_1134_S1054661817030312
crossref_primary_10_1109_ACCESS_2019_2930304
crossref_primary_10_1111_cgf_13895
crossref_primary_10_1109_ACCESS_2018_2884969
crossref_primary_10_12688_f1000research_50887_1
crossref_primary_10_3389_fnbot_2023_1154427
crossref_primary_10_1016_j_imavis_2016_03_009
crossref_primary_10_1109_ACCESS_2021_3077479
crossref_primary_10_1109_TCSVT_2023_3238517
crossref_primary_10_1016_j_imavis_2020_103883
crossref_primary_10_1007_s00371_020_01934_1
crossref_primary_10_26102_2310_6018_2019_26_3_005
crossref_primary_10_1007_s00530_024_01357_1
crossref_primary_10_1109_TASLP_2023_3264454
crossref_primary_10_1109_TMM_2019_2916455
crossref_primary_10_3390_s20072140
crossref_primary_10_1002_tee_23630
crossref_primary_10_1016_j_patcog_2023_109484
crossref_primary_10_1109_TIV_2017_2772889
crossref_primary_10_1007_s10044_023_01181_9
crossref_primary_10_3390_app122312027
crossref_primary_10_1109_TBIOM_2019_2950032
crossref_primary_10_1049_itr2_70006
crossref_primary_10_3390_app8112284
crossref_primary_10_1109_TPAMI_2018_2828424
crossref_primary_10_1371_journal_pone_0255643
crossref_primary_10_1109_ACCESS_2019_2899379
crossref_primary_10_1109_TIP_2019_2899267
crossref_primary_10_3389_fmed_2021_661309
crossref_primary_10_1088_1742_6596_1651_1_012076
crossref_primary_10_3390_jimaging7090169
crossref_primary_10_1007_s13042_019_01024_2
crossref_primary_10_1007_s10639_021_10808_5
crossref_primary_10_32431_kace_2024_27_1_016
crossref_primary_10_1016_j_imavis_2023_104686
crossref_primary_10_1109_TPAMI_2020_2983935
crossref_primary_10_1007_s11263_019_01155_7
crossref_primary_10_1186_s13640_021_00549_3
crossref_primary_10_1016_j_patcog_2020_107354
crossref_primary_10_1080_13803395_2023_2259043
crossref_primary_10_1109_TPAMI_2017_2783940
crossref_primary_10_1007_s41095_022_0286_4
crossref_primary_10_1155_2022_3986470
crossref_primary_10_1016_j_patrec_2021_11_002
crossref_primary_10_1016_j_robot_2021_103874
crossref_primary_10_3390_app13169130
crossref_primary_10_3390_biology10121269
crossref_primary_10_1109_ACCESS_2019_2907327
crossref_primary_10_3390_s21165419
crossref_primary_10_1109_TIP_2016_2642828
crossref_primary_10_1016_j_jvcir_2018_07_006
crossref_primary_10_1109_ACCESS_2020_3025818
crossref_primary_10_1007_s11280_018_0615_9
crossref_primary_10_1016_j_neunet_2020_11_001
crossref_primary_10_1109_ACCESS_2022_3161968
crossref_primary_10_1109_TASE_2022_3207194
crossref_primary_10_1109_TIP_2021_3082319
crossref_primary_10_1111_1475_679X_12428
crossref_primary_10_1007_s11263_016_0920_7
crossref_primary_10_1007_s11263_019_01151_x
crossref_primary_10_1007_s11263_019_01197_x
crossref_primary_10_3390_s20092480
crossref_primary_10_1016_j_imavis_2020_104007
crossref_primary_10_3389_frsip_2022_861641
crossref_primary_10_3390_jimaging9050104
crossref_primary_10_1007_s11227_023_05758_3
crossref_primary_10_3390_s23187744
crossref_primary_10_3390_computers11030034
crossref_primary_10_1007_s00521_020_05280_0
crossref_primary_10_1007_s11263_023_01804_y
crossref_primary_10_1007_s42761_023_00191_4
crossref_primary_10_1109_ACCESS_2020_3029065
crossref_primary_10_1007_s11263_017_0996_8
crossref_primary_10_1109_ACCESS_2021_3095844
crossref_primary_10_1016_j_bjps_2024_02_074
crossref_primary_10_1109_ACCESS_2019_2960325
crossref_primary_10_1109_TIM_2025_3541698
crossref_primary_10_1002_tee_23555
crossref_primary_10_1109_TIV_2019_2955369
crossref_primary_10_3390_app12199548
crossref_primary_10_3390_s20185222
crossref_primary_10_1016_j_ijom_2021_01_002
crossref_primary_10_32604_iasc_2022_022359
crossref_primary_10_1109_ACCESS_2025_3540658
crossref_primary_10_3389_fcomp_2020_00009
crossref_primary_10_3390_s19051103
crossref_primary_10_1109_TIP_2020_3032029
crossref_primary_10_1016_j_asoc_2021_107173
crossref_primary_10_1109_TCSVT_2019_2897243
crossref_primary_10_1016_j_fsidi_2024_301808
crossref_primary_10_1109_JIOT_2022_3162403
crossref_primary_10_3390_sym12020307
crossref_primary_10_1109_LSP_2016_2643284
crossref_primary_10_1016_j_cogr_2022_01_003
crossref_primary_10_1109_TAI_2022_3172272
crossref_primary_10_1145_3507902
crossref_primary_10_1016_j_jsr_2024_01_013
crossref_primary_10_1088_1361_6579_aadb35
crossref_primary_10_3390_s23229076
crossref_primary_10_1016_j_imavis_2020_103976
crossref_primary_10_1109_TPAMI_2018_2881476
crossref_primary_10_1007_s11704_022_2059_8
crossref_primary_10_1109_TPAMI_2020_3046323
crossref_primary_10_1109_TETCI_2024_3369937
crossref_primary_10_1007_s11263_024_02116_5
crossref_primary_10_3390_s20247079
crossref_primary_10_1016_j_neunet_2021_03_019
crossref_primary_10_1109_TAFFC_2021_3124142
crossref_primary_10_1541_ieejeiss_138_1604
crossref_primary_10_1109_TPAMI_2021_3138762
crossref_primary_10_1002_cav_1980
crossref_primary_10_1016_j_compbiomed_2019_103475
crossref_primary_10_1177_0954407021999485
crossref_primary_10_3390_app14114702
crossref_primary_10_1007_s42979_025_03810_y
crossref_primary_10_1049_2023_6636386
crossref_primary_10_1088_1742_6596_1486_4_042033
crossref_primary_10_1109_TITS_2024_3443832
crossref_primary_10_1111_srt_12977
crossref_primary_10_1007_s42979_024_02928_9
crossref_primary_10_1016_j_yebeh_2018_02_010
crossref_primary_10_1016_j_gmod_2025_101255
crossref_primary_10_1016_j_smhl_2020_100144
crossref_primary_10_1007_s10489_022_03173_4
crossref_primary_10_1007_s42979_021_00868_2
crossref_primary_10_1016_j_eswa_2025_126683
crossref_primary_10_1109_TPAMI_2018_2885298
crossref_primary_10_1016_j_patcog_2024_110263
crossref_primary_10_1109_ACCESS_2023_3257180
crossref_primary_10_1038_s41598_023_34310_9
crossref_primary_10_1088_1742_6596_1836_1_012033
crossref_primary_10_1111_cgf_14463
crossref_primary_10_1002_ecj_12316
crossref_primary_10_3390_s23031614
crossref_primary_10_1016_j_eswa_2023_122416
crossref_primary_10_1109_ACCESS_2024_3505536
crossref_primary_10_1016_j_patcog_2021_108325
crossref_primary_10_1109_TPAMI_2019_2927975
crossref_primary_10_1109_ACCESS_2024_3459419
crossref_primary_10_2139_ssrn_3995175
crossref_primary_10_1007_s11042_023_17731_6
crossref_primary_10_1016_j_compbiomed_2019_103376
crossref_primary_10_1109_TPAMI_2022_3222784
crossref_primary_10_1007_s11263_024_02208_2
crossref_primary_10_1016_j_specom_2019_10_006
crossref_primary_10_1007_s10044_024_01369_7
crossref_primary_10_1016_j_patcog_2020_107504
crossref_primary_10_1016_j_neunet_2019_12_009
crossref_primary_10_1186_s13640_018_0324_4
crossref_primary_10_1007_s11760_023_02644_6
crossref_primary_10_1038_s41746_022_00642_5
crossref_primary_10_2478_amns_2023_2_00053
crossref_primary_10_1109_TPAMI_2021_3076536
crossref_primary_10_1080_10447318_2020_1768666
crossref_primary_10_1109_ACCESS_2022_3228324
crossref_primary_10_1016_j_neucom_2016_09_015
crossref_primary_10_1007_s11554_021_01107_w
crossref_primary_10_1109_TPAMI_2017_2738004
crossref_primary_10_1109_TIP_2018_2816121
crossref_primary_10_1007_s12553_019_00313_8
crossref_primary_10_1049_iet_ipr_2018_5481
crossref_primary_10_1049_cvi2_12208
crossref_primary_10_1109_TIP_2023_3261749
crossref_primary_10_1007_s42979_023_01709_0
crossref_primary_10_1007_s11263_018_1130_2
crossref_primary_10_1016_j_neucom_2021_01_027
crossref_primary_10_1016_j_bspc_2020_102242
crossref_primary_10_3390_sym12010027
crossref_primary_10_1016_j_procs_2023_10_551
crossref_primary_10_1109_TAFFC_2017_2740923
crossref_primary_10_1007_s00180_023_01395_9
crossref_primary_10_1016_j_jid_2021_07_186
crossref_primary_10_3390_jimaging7070108
crossref_primary_10_1089_fpsam_2019_0016
crossref_primary_10_1016_j_cose_2022_103024
crossref_primary_10_1007_s11042_023_14770_x
crossref_primary_10_1007_s11263_019_01275_0
crossref_primary_10_1109_TMM_2021_3121547
crossref_primary_10_1016_j_cities_2018_09_009
crossref_primary_10_1016_j_procs_2024_10_281
crossref_primary_10_1007_s11263_018_1097_z
crossref_primary_10_1109_ACCESS_2021_3082910
crossref_primary_10_1109_ACCESS_2022_3214227
crossref_primary_10_1007_s11263_018_1134_y
crossref_primary_10_1016_j_patrec_2019_10_012
crossref_primary_10_1109_TMM_2020_2993943
crossref_primary_10_1109_TNNLS_2020_3044078
crossref_primary_10_1016_j_robot_2019_103344
crossref_primary_10_1049_htl2_12076
crossref_primary_10_1098_rsos_211500
crossref_primary_10_1109_TAFFC_2021_3061605
crossref_primary_10_1541_ieejeiss_141_563
crossref_primary_10_2139_ssrn_3741735
crossref_primary_10_3390_app13021226
crossref_primary_10_1109_TPAMI_2016_2636829
crossref_primary_10_1049_iet_spr_2016_0761
crossref_primary_10_2139_ssrn_3853393
crossref_primary_10_1088_1757_899X_928_3_032051
crossref_primary_10_1007_s10044_021_01004_9
crossref_primary_10_1038_s42003_023_04838_7
crossref_primary_10_32604_iasc_2022_020586
crossref_primary_10_1109_TII_2020_2966513
crossref_primary_10_1177_09567976211030630
crossref_primary_10_3390_s21165360
crossref_primary_10_3390_electronics14030608
crossref_primary_10_1109_TCYB_2021_3131569
crossref_primary_10_2196_43387
crossref_primary_10_1109_ACCESS_2020_3000063
crossref_primary_10_3390_s21206847
crossref_primary_10_1109_ACCESS_2022_3181167
crossref_primary_10_3390_electronics11131946
crossref_primary_10_1109_ACCESS_2022_3149380
crossref_primary_10_1109_TPAMI_2020_3038760
crossref_primary_10_1007_s11042_022_12775_6
crossref_primary_10_1007_s11263_024_02136_1
crossref_primary_10_1038_s41598_024_68555_9
crossref_primary_10_1145_3338841
crossref_primary_10_1016_j_inffus_2023_102013
crossref_primary_10_1016_j_cviu_2019_102846
crossref_primary_10_11610_isij_4724
crossref_primary_10_1016_j_jcorpfin_2020_101693
crossref_primary_10_1016_j_patrec_2020_11_008
crossref_primary_10_1109_TPAMI_2017_2784421
crossref_primary_10_1111_cgf_14513
crossref_primary_10_1007_s11042_020_08873_y
crossref_primary_10_1109_ACCESS_2024_3437291
crossref_primary_10_3390_s20071936
crossref_primary_10_1007_s41870_024_01872_4
crossref_primary_10_1016_j_patcog_2021_107866
crossref_primary_10_1111_cgf_14639
crossref_primary_10_1109_TPAMI_2017_2787130
crossref_primary_10_1007_s12559_021_09846_5
crossref_primary_10_1016_j_media_2023_102875
crossref_primary_10_1016_j_jvcir_2021_103395
crossref_primary_10_22363_2312_8631_2023_20_3_316_327
crossref_primary_10_1109_TPAMI_2018_2832138
crossref_primary_10_1186_s41235_022_00379_5
crossref_primary_10_1007_s00414_021_02512_3
crossref_primary_10_3390_a14090268
crossref_primary_10_1109_TPAMI_2017_2734779
crossref_primary_10_1007_s11042_022_13380_3
crossref_primary_10_1016_j_eswa_2021_116073
crossref_primary_10_1016_j_neucom_2017_06_050
crossref_primary_10_1371_journal_pone_0231266
crossref_primary_10_1016_j_patcog_2020_107311
crossref_primary_10_1017_S0890060419000350
crossref_primary_10_1016_j_imavis_2018_07_002
crossref_primary_10_1007_s11263_018_1095_1
crossref_primary_10_14500_aro_11850
crossref_primary_10_3390_bioengineering9110619
crossref_primary_10_1109_TIP_2021_3112059
Cites_doi 10.1023/B:VISI.0000029666.37597.d3
10.1109/TPAMI.2012.40
10.1023/B:VISI.0000042934.15159.49
10.1109/TIP.2015.2431445
10.1109/34.927467
10.1016/j.cviu.2012.03.008
10.1007/s11263-010-0380-4
10.1016/j.imavis.2015.09.003
10.1016/j.imavis.2015.11.003
10.1006/cviu.1995.1004
10.1016/j.imavis.2015.11.005
10.1007/s11263-013-0667-3
10.1016/j.imavis.2009.08.002
10.1109/TPAMI.2012.205
10.1016/j.imavis.2015.11.004
10.1016/j.imavis.2005.07.009
10.1016/j.imavis.2016.02.004
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2016.01.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 18
ExternalDocumentID 10_1016_j_imavis_2016_01_002
S0262885616000147
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-bb2f3040b88e6110d95402e7c3f43237b06c273d61cbac8ec67d578c1b7811f13
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 00:48:15 EDT 2025
Fri Feb 23 02:23:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Facial landmark localization
Semi-automatic annotation tool
Facial database
Challenge
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-bb2f3040b88e6110d95402e7c3f43237b06c273d61cbac8ec67d578c1b7811f13
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0262885616000147
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2016_01_002
crossref_primary_10_1016_j_imavis_2016_01_002
elsevier_sciencedirect_doi_10_1016_j_imavis_2016_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
2016-03-00
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Asthana, Zafeiriou, Cheng, Pantic (bb0085) 2013
Martinez (bb0140) 1998
Cootes, Taylor, Cooper, Graham (bb0070) 1995; 61
Alabort-i-Medina, Zafeiriou (bb0035) 2014
Cristinacce, Cootes (bb0075) 2006; 3
Jain, Learned-Miller (bb0250) 2010
Le, Brandt, Lin, Bourdev, Huang (bb0150) 2012
Tzimiropoulos, Zafeiriou, Pantic (bb0190) 2012; 34
Martinez, Valstar (bb0270) 2016; 47
Antonakos, Alabort-i-Medina, Tzimiropoulos, Zafeiriou (bb0030) 2014
Yan, Lei, Yi, Li (bb0235) 2013
Martinez, Valstar, Binefa, Pantic (bb0220) 2013; 35
Viola, Jones (bb0245) 2001
Felzenszwalb, Huttenlocher (bb0055) 2005; 61
Saragih, Lucey, Cohn (bb0080) 2011; 91
Ren, Cao, Wei, Sun (bb0115) 2014
Baltrusaitis, Robinson, Morency (bb0205) 2013
Gross, Matthews, Baker (bb0200) 2005; 23
Belhumeur, Jacobs, Kriegman, Kumar (bb0145) 2011
Papandreou, Maragos (bb0195) 2008
Xiong, De la Torre (bb0095) 2013
Tong, Liu, Wheeler, Tu (bb0180) 2012; 116
Zhou, Fan, Cao, Jiang, Yin (bb0240) 2013
Sagonas, Tzimiropoulos, Zafeiriou, Pantic (bb0160) 2013
Gross, Matthews, Cohn, Kanade, Baker (bb0125) 2010; 28
Uřičář, Franc, Thomas, Sugimoto, Hlaváč (bb0275) 2016; 47
Tzimiropoulos, Alabort-i-Medina, Zafeiriou, Pantic (bb0015) 2012
Antonakos, i medina, Tzimiropoulos, Zafeiriou (bb0045) 2015; 24
Tzimiropoulos, Pantic (bb0050) 2014
Hasan, Pal, Moalem (bb0210) 2013
Jaiswal, Almaev, Valstar (bb0215) 2013
Tzimiropoulos, Pantic (bb0020) 2013
Antonakos, Alabort-i Medina, Zafeiriou (bb0065) 2015
Čech, Franc, Uřičář, Matas (bb0255) 2016; 47
Matthews, Baker (bb0010) 2004; 60
Wu, Wang, Ji (bb0185) 2014
Zhu, Ramanan (bb0090) 2012
Tzimiropoulos (bb0110) 2015
Pedersoli, Tuytelaars, Gool (bb0175) 2014
Alabort-i Medina, Zafeiriou (bb0040) 2015
Fan, Zhou (bb0265) 2016; 47
Alabort-i-Medina, Antonakos, Booth, Snape, Zafeiriou (bb0165) 2014
Cao, Wei, Wen, Sun (bb0100) 2014; 107
Phillips, Flynn, Scruggs, Bowyer, Chang, Hoffman, Marques, Min, Worek (bb0135) 2005
Asthana, Zafeiriou, Cheng, Pantic (bb0105) 2014
Deng, Liu, Yang, Tao (bb0260) 2016; 47
Milborrow, Bishop, Nicolls (bb0225) 2013
Kostinger, Wohlhart, Roth, Bischof (bb0155) 2011
Messer, Matas, Kittler, Luettin, Maitre (bb0130) 1999; 964
Cootes, Edwards, Taylor (bb0005) 2001; 23
Andriluka, Roth, Schiele (bb0060) 2009
Kazemi, Sullivan (bb0120) 2014
Jia, Yang, Lin, Chan, Patras (bb0170) 2014
Tzimiropoulos, Alabort-i-Medina, Zafeiriou, Pantic (bb0025) 2014
Lowe (bb0230) 1999; 2
Cristinacce (10.1016/j.imavis.2016.01.002_bb0075) 2006; 3
Papandreou (10.1016/j.imavis.2016.01.002_bb0195) 2008
Antonakos (10.1016/j.imavis.2016.01.002_bb0065) 2015
Kazemi (10.1016/j.imavis.2016.01.002_bb0120) 2014
Antonakos (10.1016/j.imavis.2016.01.002_bb0045) 2015; 24
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0050) 2014
Martinez (10.1016/j.imavis.2016.01.002_bb0140) 1998
Zhu (10.1016/j.imavis.2016.01.002_bb0090) 2012
Cootes (10.1016/j.imavis.2016.01.002_bb0070) 1995; 61
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0190) 2012; 34
Alabort-i Medina (10.1016/j.imavis.2016.01.002_bb0040) 2015
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0020) 2013
Asthana (10.1016/j.imavis.2016.01.002_bb0105) 2014
Sagonas (10.1016/j.imavis.2016.01.002_bb0160) 2013
Alabort-i-Medina (10.1016/j.imavis.2016.01.002_bb0165) 2014
Martinez (10.1016/j.imavis.2016.01.002_bb0220) 2013; 35
Pedersoli (10.1016/j.imavis.2016.01.002_bb0175) 2014
Fan (10.1016/j.imavis.2016.01.002_bb0265) 2016; 47
Jaiswal (10.1016/j.imavis.2016.01.002_bb0215) 2013
Messer (10.1016/j.imavis.2016.01.002_bb0130) 1999; 964
Viola (10.1016/j.imavis.2016.01.002_bb0245) 2001
Tong (10.1016/j.imavis.2016.01.002_bb0180) 2012; 116
Deng (10.1016/j.imavis.2016.01.002_bb0260) 2016; 47
Asthana (10.1016/j.imavis.2016.01.002_bb0085) 2013
Kostinger (10.1016/j.imavis.2016.01.002_bb0155) 2011
Belhumeur (10.1016/j.imavis.2016.01.002_bb0145) 2011
Gross (10.1016/j.imavis.2016.01.002_bb0125) 2010; 28
Antonakos (10.1016/j.imavis.2016.01.002_bb0030) 2014
Alabort-i-Medina (10.1016/j.imavis.2016.01.002_bb0035) 2014
Martinez (10.1016/j.imavis.2016.01.002_bb0270) 2016; 47
Le (10.1016/j.imavis.2016.01.002_bb0150) 2012
Zhou (10.1016/j.imavis.2016.01.002_bb0240) 2013
Saragih (10.1016/j.imavis.2016.01.002_bb0080) 2011; 91
Jia (10.1016/j.imavis.2016.01.002_bb0170) 2014
Wu (10.1016/j.imavis.2016.01.002_bb0185) 2014
Hasan (10.1016/j.imavis.2016.01.002_bb0210) 2013
Čech (10.1016/j.imavis.2016.01.002_bb0255) 2016; 47
Cao (10.1016/j.imavis.2016.01.002_bb0100) 2014; 107
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0110) 2015
Milborrow (10.1016/j.imavis.2016.01.002_bb0225) 2013
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0025) 2014
Andriluka (10.1016/j.imavis.2016.01.002_bb0060) 2009
Tzimiropoulos (10.1016/j.imavis.2016.01.002_bb0015) 2012
Gross (10.1016/j.imavis.2016.01.002_bb0200) 2005; 23
Uřičář (10.1016/j.imavis.2016.01.002_bb0275) 2016; 47
Ren (10.1016/j.imavis.2016.01.002_bb0115) 2014
Phillips (10.1016/j.imavis.2016.01.002_bb0135) 2005
Yan (10.1016/j.imavis.2016.01.002_bb0235) 2013
Cootes (10.1016/j.imavis.2016.01.002_bb0005) 2001; 23
Lowe (10.1016/j.imavis.2016.01.002_bb0230) 1999; 2
Matthews (10.1016/j.imavis.2016.01.002_bb0010) 2004; 60
Jain (10.1016/j.imavis.2016.01.002_bb0250) 2010
Felzenszwalb (10.1016/j.imavis.2016.01.002_bb0055) 2005; 61
Xiong (10.1016/j.imavis.2016.01.002_bb0095) 2013
Baltrusaitis (10.1016/j.imavis.2016.01.002_bb0205) 2013
References_xml – start-page: 2024
  year: 2014
  end-page: 2034
  ident: bb0025
  article-title: Active orientation models for face alignment in-the-wild, IEEE Transactions on Information Forensics and Security, Special Issue on Facial Biometrics in-the-wild 9
– volume: 47
  start-page: 45
  year: 2016
  end-page: 59
  ident: bb0275
  article-title: Multi-view facial landmark detector learned by the structured output SVM
  publication-title: Image Vis. Comput.
– volume: 47
  start-page: 60
  year: 2016
  end-page: 70
  ident: bb0255
  article-title: Multi-view facial landmark detection by using a 3D shape model
  publication-title: Image Vis. Comput.
– volume: 964
  start-page: 965
  year: 1999
  end-page: 966
  ident: bb0130
  article-title: XM2VTSDB: the extended M2VTS database
  publication-title: Second international conference on audio and video-based biometric person authentication
– start-page: 545
  year: 2011
  end-page: 552
  ident: bb0145
  article-title: Localizing parts of faces using a consensus of exemplars
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 679
  year: 2012
  end-page: 692
  ident: bb0150
  article-title: Interactive facial feature localization
  publication-title: Proceedings of European Conference on Computer Vision (ECCV)
– start-page: 650
  year: 2012
  end-page: 663
  ident: bb0015
  article-title: Generic active appearance models revisited
  publication-title: Proceedings of Asian Conference on Computer Vision (ACCV), Daejeon, Korea
– start-page: 5435
  year: 2015
  end-page: 5444
  ident: bb0065
  article-title: Active pictorial structures
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– start-page: 2144
  year: 2011
  end-page: 2151
  ident: bb0155
  article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on Benchmarking Facial Image Analysis Technologies, IEEE
– start-page: 3694
  year: 2014
  end-page: 3701
  ident: bb0175
  article-title: Using a deformation field model for localizing faces and facial points under weak supervision
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– volume: 35
  start-page: 1149
  year: 2013
  end-page: 1163
  ident: bb0220
  article-title: Local evidence aggregation for regression-based facial point detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1851
  year: 2014
  end-page: 1858
  ident: bb0050
  article-title: Gauss–Newton deformable part models for face alignment in-the-wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 1867
  year: 2014
  end-page: 1874
  ident: bb0120
  article-title: One millisecond face alignment with an ensemble of regression trees
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– year: 2014
  ident: bb0170
  article-title: Structured semi-supervised forest for facial landmarks localization with face mask reasoning
  publication-title: Proceedings of British Machine Vision Conference (BMVC)
– start-page: 386
  year: 2013
  end-page: 391
  ident: bb0240
  article-title: Extensive facial landmark localization with coarse-to-fine convolutional network cascade
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– volume: 60
  start-page: 135
  year: 2004
  end-page: 164
  ident: bb0010
  article-title: Active appearance models revisited
  publication-title: Int. J. Comput. Vis.
– start-page: 532
  year: 2013
  end-page: 539
  ident: bb0095
  article-title: Supervised descent method and its applications to face alignment
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– volume: 34
  start-page: 2454
  year: 2012
  end-page: 2466
  ident: bb0190
  article-title: Subspace learning from image gradient orientations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3659
  year: 2015
  end-page: 3667
  ident: bb0110
  article-title: Project-out cascaded regression with an application to face alignment
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 1859
  year: 2014
  end-page: 1866
  ident: bb0105
  article-title: Incremental face alignment in the wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 947
  year: 2005
  end-page: 954
  ident: bb0135
  article-title: Overview of the face recognition grand challenge
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– year: 2010
  ident: bb0250
  article-title: FDDB: a benchmark for face detection in unconstrained settings, Tech. Rep. UM-CS-2010-009, University of Massachusetts, Amherst
– start-page: 378
  year: 2013
  end-page: 385
  ident: bb0225
  article-title: Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– start-page: 679
  year: 2014
  end-page: 682
  ident: bb0165
  article-title: Menpo: a comprehensive platform for parametric image alignment and visual deformable models
  publication-title: Proceedings of the ACM International Conference on Multimedia, Open Source Software Competition, Orlando, FL, USA
– start-page: 3679
  year: 2015
  end-page: 3688
  ident: bb0040
  article-title: Unifying holistic and parts-based deformable model fitting
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– volume: 47
  start-page: 36
  year: 2016
  end-page: 44
  ident: bb0270
  article-title: L2,1-based regression and prediction accumulation across views for robust facial landmark detection
  publication-title: Image Vis. Comput.
– start-page: 354
  year: 2013
  end-page: 361
  ident: bb0205
  article-title: Constrained local neural fields for robust facial landmark detection in the wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– start-page: 593
  year: 2013
  end-page: 600
  ident: bb0020
  article-title: Optimization problems for fast AAM fitting in-the-wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV)
– start-page: 392
  year: 2013
  end-page: 396
  ident: bb0235
  article-title: Learn to combine multiple hypotheses for accurate face alignment
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– volume: 24
  start-page: 2617
  year: 2015
  end-page: 2632
  ident: bb0045
  article-title: Feature-based Lucas–Kanade and active appearance models
  publication-title: IEEE Trans. Image Process.
– volume: 107
  start-page: 177
  year: 2014
  end-page: 190
  ident: bb0100
  article-title: Face alignment by explicit shape regression
  publication-title: Int. J. Comput. Vis.
– start-page: 370
  year: 2013
  end-page: 377
  ident: bb0215
  article-title: Guided unsupervised learning of mode specific models for facial point detection in the wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– volume: 91
  start-page: 200
  year: 2011
  end-page: 215
  ident: bb0080
  article-title: Deformable model fitting by regularized landmark mean-shift
  publication-title: Int. J. Comput. Vis.
– start-page: 1014
  year: 2009
  end-page: 1021
  ident: bb0060
  article-title: Pictorial structures revisited: people detection and articulated pose estimation
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 397
  year: 2013
  end-page: 403
  ident: bb0160
  article-title: 300 Faces in-the-Wild Challenge: the first facial landmark localization challenge
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W), Sydney, Australia
– start-page: 362
  year: 2013
  end-page: 369
  ident: bb0210
  article-title: Localizing facial keypoints with global descriptor search, neighbour alignment and locally linear models
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV-W), Workshop on 300 Faces in-the-Wild Challenge (300-W)
– start-page: 3438
  year: 2014
  end-page: 3445
  ident: bb0035
  article-title: Bayesian active appearance models
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– volume: 23
  start-page: 681
  year: 2001
  end-page: 685
  ident: bb0005
  article-title: Active appearance models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 1150
  year: 1999
  end-page: 1157
  ident: bb0230
  article-title: Object recognition from local scale-invariant features
  publication-title: Proceedings of IEEE International Conference on Computer Vision (ICCV)
– volume: 23
  start-page: 1080
  year: 2005
  end-page: 1093
  ident: bb0200
  article-title: Generic vs. person specific active appearance models
  publication-title: Image Vis. Comput.
– volume: 3
  start-page: 929
  year: 2006
  end-page: 938
  ident: bb0075
  article-title: Feature detection and tracking with constrained local models
  publication-title: Proceedings of British Machine Vision Conference (BMVC)
– volume: 61
  start-page: 38
  year: 1995
  end-page: 59
  ident: bb0070
  article-title: Active shape models—their training and application
  publication-title: Comput. Vis. Image Underst.
– volume: 116
  start-page: 922
  year: 2012
  end-page: 935
  ident: bb0180
  article-title: Semi-supervised facial landmark annotation
  publication-title: Comput. Vis. Image Underst.
– start-page: 1
  year: 2008
  end-page: 8
  ident: bb0195
  article-title: Adaptive and constrained algorithms for inverse compositional active appearance model fitting
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– start-page: 511
  year: 2001
  end-page: 518
  ident: bb0245
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– start-page: 3444
  year: 2013
  end-page: 3451
  ident: bb0085
  article-title: Robust discriminative response map fitting with constrained local models
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– year: 1998
  ident: bb0140
  article-title: The AR Face Database, CVC Technical Report 24
– volume: 61
  start-page: 55
  year: 2005
  end-page: 79
  ident: bb0055
  article-title: Pictorial structures for object recognition
  publication-title: Int. J. Comput. Vis.
– start-page: 2879
  year: 2012
  end-page: 2886
  ident: bb0090
  article-title: Face detection, pose estimation, and landmark localization in the wild
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR),IEEE
– volume: 47
  start-page: 27
  year: 2016
  end-page: 35
  ident: bb0265
  article-title: Approaching human level facial landmark localization by deep learning
  publication-title: Image Vis. Comput.
– volume: 28
  start-page: 807
  year: 2010
  end-page: 813
  ident: bb0125
  article-title: Multi-pie
  publication-title: Image Vis. Comput.
– start-page: 1685
  year: 2014
  end-page: 1692
  ident: bb0115
  article-title: Face alignment at 3000
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), IEEE
– volume: 47
  start-page: 19
  year: 2016
  end-page: 26
  ident: bb0260
  article-title: M
  publication-title: Image Vis. Comput.
– start-page: 224
  year: 2014
  end-page: 228
  ident: bb0030
  article-title: HOG active appearance models
  publication-title: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, France
– start-page: 1781
  year: 2014
  end-page: 1788
  ident: bb0185
  article-title: A hierarchical probabilistic model for facial feature detection
  publication-title: Proceedings of IEEE International Conference on Computer Vision & Pattern Recognition (CVPR)
– volume: 2
  start-page: 1150
  year: 1999
  ident: 10.1016/j.imavis.2016.01.002_bb0230
  article-title: Object recognition from local scale-invariant features
– volume: 60
  start-page: 135
  issue: 2
  year: 2004
  ident: 10.1016/j.imavis.2016.01.002_bb0010
  article-title: Active appearance models revisited
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029666.37597.d3
– start-page: 1685
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0115
  article-title: Face alignment at 3000fps via regressing local binary features
– start-page: 2879
  year: 2012
  ident: 10.1016/j.imavis.2016.01.002_bb0090
  article-title: Face detection, pose estimation, and landmark localization in the wild
– start-page: 1014
  year: 2009
  ident: 10.1016/j.imavis.2016.01.002_bb0060
  article-title: Pictorial structures revisited: people detection and articulated pose estimation
– year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0170
  article-title: Structured semi-supervised forest for facial landmarks localization with face mask reasoning
– start-page: 593
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0020
  article-title: Optimization problems for fast AAM fitting in-the-wild
– start-page: 679
  year: 2012
  ident: 10.1016/j.imavis.2016.01.002_bb0150
  article-title: Interactive facial feature localization
– start-page: 679
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0165
  article-title: Menpo: a comprehensive platform for parametric image alignment and visual deformable models
– volume: 34
  start-page: 2454
  issue: 12
  year: 2012
  ident: 10.1016/j.imavis.2016.01.002_bb0190
  article-title: Subspace learning from image gradient orientations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.40
– volume: 61
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.imavis.2016.01.002_bb0055
  article-title: Pictorial structures for object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000042934.15159.49
– volume: 24
  start-page: 2617
  issue: 9
  year: 2015
  ident: 10.1016/j.imavis.2016.01.002_bb0045
  article-title: Feature-based Lucas–Kanade and active appearance models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2431445
– start-page: 511
  year: 2001
  ident: 10.1016/j.imavis.2016.01.002_bb0245
  article-title: Rapid object detection using a boosted cascade of simple features
– start-page: 378
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0225
  article-title: Multiview active shape models with SIFT descriptors for the 300-W face landmark challenge
– start-page: 354
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0205
  article-title: Constrained local neural fields for robust facial landmark detection in the wild
– start-page: 3694
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0175
  article-title: Using a deformation field model for localizing faces and facial points under weak supervision
– year: 2010
  ident: 10.1016/j.imavis.2016.01.002_bb0250
– start-page: 545
  year: 2011
  ident: 10.1016/j.imavis.2016.01.002_bb0145
  article-title: Localizing parts of faces using a consensus of exemplars
– volume: 23
  start-page: 681
  issue: 6
  year: 2001
  ident: 10.1016/j.imavis.2016.01.002_bb0005
  article-title: Active appearance models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927467
– start-page: 3659
  year: 2015
  ident: 10.1016/j.imavis.2016.01.002_bb0110
  article-title: Project-out cascaded regression with an application to face alignment
– volume: 116
  start-page: 922
  issue: 8
  year: 2012
  ident: 10.1016/j.imavis.2016.01.002_bb0180
  article-title: Semi-supervised facial landmark annotation
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2012.03.008
– start-page: 2144
  year: 2011
  ident: 10.1016/j.imavis.2016.01.002_bb0155
  article-title: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization
– volume: 91
  start-page: 200
  issue: 2
  year: 2011
  ident: 10.1016/j.imavis.2016.01.002_bb0080
  article-title: Deformable model fitting by regularized landmark mean-shift
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0380-4
– volume: 47
  start-page: 36
  year: 2016
  ident: 10.1016/j.imavis.2016.01.002_bb0270
  article-title: L2,1-based regression and prediction accumulation across views for robust facial landmark detection
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2015.09.003
– start-page: 362
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0210
  article-title: Localizing facial keypoints with global descriptor search, neighbour alignment and locally linear models
– start-page: 947
  year: 2005
  ident: 10.1016/j.imavis.2016.01.002_bb0135
  article-title: Overview of the face recognition grand challenge
– start-page: 2024
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0025
– volume: 3
  start-page: 929
  year: 2006
  ident: 10.1016/j.imavis.2016.01.002_bb0075
  article-title: Feature detection and tracking with constrained local models
– start-page: 1859
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0105
  article-title: Incremental face alignment in the wild
– start-page: 532
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0095
  article-title: Supervised descent method and its applications to face alignment
– start-page: 3444
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0085
  article-title: Robust discriminative response map fitting with constrained local models
– volume: 47
  start-page: 60
  year: 2016
  ident: 10.1016/j.imavis.2016.01.002_bb0255
  article-title: Multi-view facial landmark detection by using a 3D shape model
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2015.11.003
– volume: 964
  start-page: 965
  year: 1999
  ident: 10.1016/j.imavis.2016.01.002_bb0130
  article-title: XM2VTSDB: the extended M2VTS database
– start-page: 650
  year: 2012
  ident: 10.1016/j.imavis.2016.01.002_bb0015
  article-title: Generic active appearance models revisited
– start-page: 3679
  year: 2015
  ident: 10.1016/j.imavis.2016.01.002_bb0040
  article-title: Unifying holistic and parts-based deformable model fitting
– start-page: 397
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0160
  article-title: 300 Faces in-the-Wild Challenge: the first facial landmark localization challenge
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 10.1016/j.imavis.2016.01.002_bb0070
  article-title: Active shape models—their training and application
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1995.1004
– start-page: 5435
  year: 2015
  ident: 10.1016/j.imavis.2016.01.002_bb0065
  article-title: Active pictorial structures
– volume: 47
  start-page: 19
  year: 2016
  ident: 10.1016/j.imavis.2016.01.002_bb0260
  article-title: M3 CSR: multi-view, multi-scale and multi-component cascade shape regression
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2015.11.005
– year: 1998
  ident: 10.1016/j.imavis.2016.01.002_bb0140
– volume: 107
  start-page: 177
  issue: 2
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0100
  article-title: Face alignment by explicit shape regression
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0667-3
– start-page: 224
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0030
  article-title: HOG active appearance models
– volume: 28
  start-page: 807
  issue: 5
  year: 2010
  ident: 10.1016/j.imavis.2016.01.002_bb0125
  article-title: Multi-pie
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.08.002
– start-page: 1851
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0050
  article-title: Gauss–Newton deformable part models for face alignment in-the-wild
– start-page: 1781
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0185
  article-title: A hierarchical probabilistic model for facial feature detection
– volume: 35
  start-page: 1149
  issue: 5
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0220
  article-title: Local evidence aggregation for regression-based facial point detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.205
– volume: 47
  start-page: 27
  year: 2016
  ident: 10.1016/j.imavis.2016.01.002_bb0265
  article-title: Approaching human level facial landmark localization by deep learning
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2015.11.004
– start-page: 1867
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0120
  article-title: One millisecond face alignment with an ensemble of regression trees
– start-page: 3438
  year: 2014
  ident: 10.1016/j.imavis.2016.01.002_bb0035
  article-title: Bayesian active appearance models
– start-page: 386
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0240
  article-title: Extensive facial landmark localization with coarse-to-fine convolutional network cascade
– volume: 23
  start-page: 1080
  issue: 12
  year: 2005
  ident: 10.1016/j.imavis.2016.01.002_bb0200
  article-title: Generic vs. person specific active appearance models
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2005.07.009
– start-page: 392
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0235
  article-title: Learn to combine multiple hypotheses for accurate face alignment
– start-page: 1
  year: 2008
  ident: 10.1016/j.imavis.2016.01.002_bb0195
  article-title: Adaptive and constrained algorithms for inverse compositional active appearance model fitting
– volume: 47
  start-page: 45
  year: 2016
  ident: 10.1016/j.imavis.2016.01.002_bb0275
  article-title: Multi-view facial landmark detector learned by the structured output SVM
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2016.02.004
– start-page: 370
  year: 2013
  ident: 10.1016/j.imavis.2016.01.002_bb0215
  article-title: Guided unsupervised learning of mode specific models for facial point detection in the wild
SSID ssj0007079
Score 2.6448052
Snippet Computer Vision has recently witnessed great research advance towards automatic facial points detection. Numerous methodologies have been proposed during the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Challenge
Facial database
Facial landmark localization
Semi-automatic annotation tool
Title 300 Faces In-The-Wild Challenge: database and results
URI https://dx.doi.org/10.1016/j.imavis.2016.01.002
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvejBR1Wsj7IHr7FJNs2m3kqxtAq9aKG3JfsIVGosNr36251JNloRFDwm7MIyzMz3zfLNLMC1jVSQpFimJmk_86JQY8zZTHgmzRANEWSVKgWy03g8i-7nvXkDhnUvDMkqXe6vcnqZrd2frrNmd7VYdB-xegiTBPE_Lok-dZRHkSAvv3n_knnQBLjqngVPgavr9rlS47V4oVZ-EnjF5fBOd7nyA562IGd0CPuOK7JBdZwjaNi8BQeONzIXlesW7G0NFTyGHvd9NiKlFZvkHroBaWING9avptwyUoUSerE0NwzL7c2yWJ_AbHT3NBx77nEETyNnKjylwoxjBKoksTFiuOkj9wqt0DyLeMiF8mON1MTEgVapTqyOhcHo1IGi3tIs4KfQzF9zewaMByq1RKyEVZHAIE-VwEImNH7m69DwNvDaJlK7yeH0gMVS1hKxZ1lZUpIlpR9ItGQbvM9dq2pyxh_rRW1u-c0DJCb3X3ee_3vnBezSV6Upu4Rm8baxV0gyCtUpvagDO4PJw3j6AWTyzk8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14bWi7pVu8ESIpglyEhNum-2iCwUqk_H9n2y3BmGjitdtJNpOd-b7ZfDML8KAD4UUJlqlR0k2dwJcYczpljkpSREMEWSEKgewkjGfB87wzr0G_6oUxskqb-8ucXmRr-6VtvdleLRbtV6we_ChC_A8Los_2oGGmU3Xq0OgNR_Fkm5DNELjyqgU3ggZVB10h81q8m25-o_EKi_md9n7lB0LtoM7gBI4sXSS9ckenUNNZE44tdSQ2MNdNONyZK3gGHeq6ZGDEVmSYOXgSjCxWkX71cMojMcJQA2AkyRTBinuzzNfnMBs8TfuxY99HcCTSptwRwk8pBqGIIh0ijKsu0i9fM0nTgPqUCTeUyE5U6EmRyEjLkCkMUOkJ016aevQC6tlHpi-BUE8k2nArpkXAMM4TwbCW8ZWbutJXtAW08gmXdni4ecNiySuV2BsvPcmNJ7nrcfRkC5yt1aocnvHH_6xyN_92CDjm918tr_5teQ_78fRlzMfDyegaDsxKKTG7gXr-udG3yDlycWfP1BeP19EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=300+Faces+In-The-Wild+Challenge%3A+database+and+results&rft.jtitle=Image+and+vision+computing&rft.au=Sagonas%2C+Christos&rft.au=Antonakos%2C+Epameinondas&rft.au=Tzimiropoulos%2C+Georgios&rft.au=Zafeiriou%2C+Stefanos&rft.date=2016-03-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=47&rft.spage=3&rft.epage=18&rft_id=info:doi/10.1016%2Fj.imavis.2016.01.002&rft.externalDocID=S0262885616000147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon