Redox kinetics of nickel oxide foils: Structural evolution and rate-limiting steps
We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed reactor within 800–1000 °C, and samples were examined using SEM at different stages of conversion. We identify some key features or the process...
Saved in:
Published in | Combustion and flame Vol. 207; pp. 71 - 88 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.09.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed reactor within 800–1000 °C, and samples were examined using SEM at different stages of conversion. We identify some key features or the process that are used to guide model development: (1) Oxidation starts with the nucleation of oxide grains, followed by their rapid growth leading to overlap and the attenuation of fast diffusion pathways. (2) Reduction is impacted by the evolution of macro-pores which facilitate gas-oxide contact, and dense metallic clusters that shield the reactants. (3) The transitions between stages during conversion and the characteristics of grains, pores and clusters depend on the sample thickness. Guided by these observations, analytical models are formulated. Oxidation is modeled as a nucleation nucleation-growth process while reduction is characterized by an adsorption-surface reaction process. We extract the corresponding reaction parameters by training the model using the measurements and show that the model formulation captures the controlling mechanisms of the conversion. The oxidation rate is controlled by the rapid decay of oxygen transport across the products layer, and the dependency of the oxides grain structure on the sample thickness contributes to the rate of decay. The reduction rate is largely controlled by the accessibility of lattice oxygen to surface kinetics, and mostly by slow ionic diffusion. While using different foil thicknesses is useful in extracting the kinetics, if used in rapid redox processes applicable to chemical-looping applications, oxygen carriers (foils or other forms) with characteristic active metal thickness of ∼1 µm are recommended. |
---|---|
AbstractList | We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed reactor within 800–1000 °C, and samples were examined using SEM at different stages of conversion. We identify some key features or the process that are used to guide model development: (1) Oxidation starts with the nucleation of oxide grains, followed by their rapid growth leading to overlap and the attenuation of fast diffusion pathways. (2) Reduction is impacted by the evolution of macro-pores which facilitate gas-oxide contact, and dense metallic clusters that shield the reactants. (3) The transitions between stages during conversion and the characteristics of grains, pores and clusters depend on the sample thickness. Guided by these observations, analytical models are formulated. Oxidation is modeled as a nucleation nucleation-growth process while reduction is characterized by an adsorption-surface reaction process. We extract the corresponding reaction parameters by training the model using the measurements and show that the model formulation captures the controlling mechanisms of the conversion. The oxidation rate is controlled by the rapid decay of oxygen transport across the products layer, and the dependency of the oxides grain structure on the sample thickness contributes to the rate of decay. The reduction rate is largely controlled by the accessibility of lattice oxygen to surface kinetics, and mostly by slow ionic diffusion. While using different foil thicknesses is useful in extracting the kinetics, if used in rapid redox processes applicable to chemical-looping applications, oxygen carriers (foils or other forms) with characteristic active metal thickness of ∼1 µm are recommended. We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed reactor within 800–1000 °C, and samples were examined using SEM at different stages of conversion. We identify some key features or the process that are used to guide model development: (1) Oxidation starts with the nucleation of oxide grains, followed by their rapid growth leading to overlap and the attenuation of fast diffusion pathways. (2) Reduction is impacted by the evolution of macro-pores which facilitate gas-oxide contact, and dense metallic clusters that shield the reactants. (3) The transitions between stages during conversion and the characteristics of grains, pores and clusters depend on the sample thickness. Guided by these observations, analytical models are formulated. Oxidation is modeled as a nucleation nucleation-growth process while reduction is characterized by an adsorption-surface reaction process. We extract the corresponding reaction parameters by training the model using the measurements and show that the model formulation captures the controlling mechanisms of the conversion. The oxidation rate is controlled by the rapid decay of oxygen transport across the products layer, and the dependency of the oxides grain structure on the sample thickness contributes to the rate of decay. The reduction rate is largely controlled by the accessibility of lattice oxygen to surface kinetics, and mostly by slow ionic diffusion. While using different foil thicknesses is useful in extracting the kinetics, if used in rapid redox processes applicable to chemical-looping applications, oxygen carriers (foils or other forms) with characteristic active metal thickness of ~1 µm are recommended. |
Author | Uddi, Mruthunjaya Zhao, Zhenlong Ghoniem, Ahmed F. |
Author_xml | – sequence: 1 givenname: Zhenlong surname: Zhao fullname: Zhao, Zhenlong email: zhaozl@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA – sequence: 2 givenname: Mruthunjaya surname: Uddi fullname: Uddi, Mruthunjaya organization: Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487, USA – sequence: 3 givenname: Ahmed F. surname: Ghoniem fullname: Ghoniem, Ahmed F. email: ghoniem@mit.edu organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA |
BookMark | eNqNkElLxDAYhoMoOC7_Iei59cvWxZu4gyC4nEOafpWMnWRMUhn_vZXx4NHTe3kX3ueA7PrgkZATBiUDVp0tSxtW3ZTyMJoVlhxYW4IqgfEdsmBKVQVvOdslCwAGBWcN7JODlJYAUEshFuTpCfuwoe_OY3Y20TBQ7-w7jjRsXI90CG5M5_Q5x8nmKZqR4mcYp-yCp8b3NJqMxehWLjv_RlPGdToie4MZEx7_6iF5vbl-ubwrHh5v7y8vHgorFM9F1_K6sWwYuk7wTikpFRe9koyr1piKd9Cyysih7hsrsK1raYQUCLLpDQAycUhOt73rGD4mTFkvwxT9PKk5b7iUoq3E7DrfumwMKUUc9Dq6lYlfmoH-YaiX-i9D_cNQg9Izwzl8tQ3j_OPTYdTJOvQWexfRZt0H95-abz-qg14 |
CitedBy_id | crossref_primary_10_1016_j_ces_2021_117042 crossref_primary_10_1016_j_fuel_2022_124964 crossref_primary_10_1039_C9EE03793D crossref_primary_10_1016_j_proci_2022_07_156 crossref_primary_10_1016_j_fuproc_2022_107442 crossref_primary_10_1016_j_proci_2022_11_013 crossref_primary_10_1021_acs_jpca_2c07184 |
Cites_doi | 10.1016/j.ces.2008.05.028 10.1016/j.ces.2009.01.059 10.1023/A:1020170320020 10.1016/j.combustflame.2008.08.004 10.1016/j.fuel.2013.11.056 10.1021/ef060450y 10.1016/j.actamat.2011.06.032 10.1023/A:1020102604090 10.1007/s10853-012-7001-2 10.1016/j.proci.2018.09.002 10.1021/ie060364l 10.1021/ef950173n 10.1063/1.4789991 10.1016/j.ijhydene.2014.03.161 10.1021/ef3014103 10.1021/ef301411g 10.1016/j.fuel.2013.11.055 10.1007/BF02705604 10.1149/1.2404444 10.1021/ef1006963 10.1016/j.cej.2012.01.124 10.1007/BF00665630 10.1021/ie071588m 10.1021/acs.jpcc.6b01847 10.1002/aic.11967 10.1016/j.proci.2018.06.002 10.1103/RevModPhys.57.437 10.1016/j.combustflame.2009.02.005 10.1515/zpch-1933-2105 10.1021/acs.jpcc.5b04313 10.1021/ie060232s 10.1149/1.2134052 10.1021/ie061178i 10.1021/ie050919x 10.1016/j.ijggc.2015.07.023 10.1021/ef0504319 10.1016/j.apcata.2004.02.022 10.1002/aic.12093 10.1016/j.combustflame.2009.10.010 10.1137/S1052623496303470 10.1016/j.ces.2006.09.019 10.1016/j.pecs.2011.09.001 10.1016/S0926-860X(02)00669-5 10.1016/j.ijggc.2015.01.013 10.1016/j.actamat.2013.12.035 10.1021/es202244t 10.1088/0034-4885/12/1/308 10.1080/01418618208239905 10.1016/0040-6031(71)85051-7 10.1002/cjce.20072 10.1016/j.ijggc.2009.09.014 10.1016/0009-2509(62)80039-6 10.1002/aic.11188 |
ContentType | Journal Article |
Copyright | 2019 The Combustion Institute Copyright Elsevier BV Sep 2019 |
Copyright_xml | – notice: 2019 The Combustion Institute – notice: Copyright Elsevier BV Sep 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.combustflame.2019.05.012 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1556-2921 |
EndPage | 88 |
ExternalDocumentID | 10_1016_j_combustflame_2019_05_012 S0010218019302160 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c352t-b9278c1ffbb32b5544523d541259aa62b0916a4f7d8c3e9774a343e048da00e13 |
IEDL.DBID | AIKHN |
ISSN | 0010-2180 |
IngestDate | Thu Oct 10 19:58:25 EDT 2024 Thu Sep 26 21:08:18 EDT 2024 Fri Feb 23 02:33:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidation kinetics Reduction kinetics Nickel oxide Chemical-looping redox processes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-b9278c1ffbb32b5544523d541259aa62b0916a4f7d8c3e9774a343e048da00e13 |
PQID | 2282443963 |
PQPubID | 2045271 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2282443963 crossref_primary_10_1016_j_combustflame_2019_05_012 elsevier_sciencedirect_doi_10_1016_j_combustflame_2019_05_012 |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Combustion and flame |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Lagarias, Reeds, Wright, Wright (bib0058) 1998; 9 Galinski, Bieberle-Hütter, Rupp, Gauckler (bib0055) 2011; 59 Adánez, Abad (bib0004) 2019; 37 Kolbitsch, Bolhar-Nordenkampf, Proell, Hofbauer (bib0007) 2010; 4 Zhao, Ghoniem (bib0016) 2014; 121 Zhao, Chen, Ghoniem (bib0014) 2013; 27 Kiss, Harris, Wang, Vila-Comamala, Deriy, Chiu (bib0030) 2013; 102 Atkinson (bib0052) 1985; 57 Håkonsen, Blom (bib0013) 2011; 45 Caplan, Graham, Cohen (bib0051) 1972; 119 Adanez, Abad, Garcia-Labiano, Gayan, de Diego (bib0001) 2012; 38 Iloeje, Zhao, Ghoniem (bib0018) 2015; 35 Moghtaderi, Song (bib0040) 2010; 24 Zhao, Chen, Ghoniem (bib0015) 2013; 27 Adanez, Gayan, Celaya, de Diego, Garcia-Labiano, Abad (bib0006) 2006; 45 Ryu, Bae, Han, Lee, Jin, Choi (bib0032) 2001; 18 Ishida, Jin, Okamoto (bib0031) 1996; 10 Peraldi, Monceau, Pieraggi (bib0024) 2002; 58 Johansson, Mattisson, Lyngfelt (bib0005) 2006; 45 Jeangros, Hansen, Wagner, Dunin-Borkowski, Hébert, Van herle, Hessler-Wyser (bib0028) 2014; 67 Weast, Astle, Beyer (bib0049) 1988 Wagner (bib0053) 1933; B21 Hossain, de Lasa (bib0043) 2010; 65 Khoi, Smeltzer, Embury (bib0056) 1975; 122 Son, Kim (bib0033) 2006; 45 Zhao (bib0048) 2016 Manukyan, Avetisyan, Shuck, Chatilyan, Rouvimov, Kharatyan, Mukasyan (bib0050) 2015; 119 Sedor, Hossain, de Lasa (bib0038) 2008; 86 Dueso (bib0045) 2011 Abad, Adanez, Garca-Labiano, de Diego, Gayan, Kolbitsch, Proell (bib0044) 2010 Abad, Adanez, Garcia-Labiano, de, Gayan, Celaya (bib0035) 2007; 62 Richardson, Scates, Twigg (bib0059) 2003; 246 Ortiz (bib0046) 2011 Dueso, Ortiz, Abad, García-Labiano, Luis, Gayán, Adánez (bib0047) 2012; 188 Hossain, de Lasa (bib0003) 2008; 63 Abad, Adanez, Garcia-Labiano, de, Gayan (bib0009) 2010; 157 Morin, Dufour, Trudel (bib0026) 1992; 37 Bandrowski, Bickling, Yang, Hougen (bib0061) 1962; 17 Young (bib0022) 2008 Ghoniem, Zhao, Dimitrakopoulos (bib0002) 2018; 37 Zhao, Uddi, Tsvetkov, Yildiz, Ghoniem (bib0025) 2016; 120 Burke (bib0020) 1949; 180 Iloeje, Zhao, Ghoniem (bib0019) 2015; 41 Richardson, Scates, Twigg (bib0027) 2004; 267 Erri, Varma (bib0039) 2008; 48 Zhou, Han, Bollas (bib0042) 2014; 39 Hossain, de Lasa (bib0037) 2007; 53 Noorman, van Sint Annaland, Kuipers (bib0012) 2007; 46 Li, Zeng, Velazquez-Vargas, Yoscovits, Fan (bib0011) 2010; 56 Shen, Wu, Gao, Xiao (bib0008) 2009; 156 Šesták, Berggren (bib0060) 1971; 3 Peraldi, Monceau, Pieraggi (bib0023) 2002; 58 Readman, Olafsen, Smith, Blom (bib0034) 2006; 20 Cabrera, Mott (bib0054) 1949; 12 Birks, Meier, Pettit (bib0021) 2006 Jeangros, Hansen, Wagner, Damsgaard, Dunin-Borkowski, Hébert, Van herle, Hessler-Wyser (bib0029) 2013; 48 Shen, Wu, Xiao (bib0010) 2009; 156 Atkinson, Taylor, Hughes (bib0057) 1982; 45 Zafar, Abad, Mattisson, Gevert (bib0036) 2007; 21 Zhao, Iloeje, Chen, Ghoniem (bib0017) 2014; 121 Iliuta, Tahoces, Patience, Rifflart, Luck (bib0041) 2010; 56 Johansson (10.1016/j.combustflame.2019.05.012_bib0005) 2006; 45 Peraldi (10.1016/j.combustflame.2019.05.012_bib0023) 2002; 58 Sedor (10.1016/j.combustflame.2019.05.012_bib0038) 2008; 86 Zhao (10.1016/j.combustflame.2019.05.012_bib0015) 2013; 27 Adánez (10.1016/j.combustflame.2019.05.012_bib0004) 2019; 37 Atkinson (10.1016/j.combustflame.2019.05.012_bib0057) 1982; 45 Shen (10.1016/j.combustflame.2019.05.012_bib0010) 2009; 156 Abad (10.1016/j.combustflame.2019.05.012_bib0009) 2010; 157 Burke (10.1016/j.combustflame.2019.05.012_bib0020) 1949; 180 Šesták (10.1016/j.combustflame.2019.05.012_bib0060) 1971; 3 Zhao (10.1016/j.combustflame.2019.05.012_bib0014) 2013; 27 Hossain (10.1016/j.combustflame.2019.05.012_bib0003) 2008; 63 Son (10.1016/j.combustflame.2019.05.012_bib0033) 2006; 45 Manukyan (10.1016/j.combustflame.2019.05.012_bib0050) 2015; 119 Dueso (10.1016/j.combustflame.2019.05.012_bib0045) 2011 Richardson (10.1016/j.combustflame.2019.05.012_bib0027) 2004; 267 Young (10.1016/j.combustflame.2019.05.012_bib0022) 2008 Hossain (10.1016/j.combustflame.2019.05.012_bib0043) 2010; 65 Abad (10.1016/j.combustflame.2019.05.012_bib0035) 2007; 62 Galinski (10.1016/j.combustflame.2019.05.012_bib0055) 2011; 59 Dueso (10.1016/j.combustflame.2019.05.012_bib0047) 2012; 188 Hossain (10.1016/j.combustflame.2019.05.012_bib0037) 2007; 53 Bandrowski (10.1016/j.combustflame.2019.05.012_bib0061) 1962; 17 Richardson (10.1016/j.combustflame.2019.05.012_bib0059) 2003; 246 Wagner (10.1016/j.combustflame.2019.05.012_bib0053) 1933; B21 Noorman (10.1016/j.combustflame.2019.05.012_bib0012) 2007; 46 Atkinson (10.1016/j.combustflame.2019.05.012_bib0052) 1985; 57 Ghoniem (10.1016/j.combustflame.2019.05.012_bib0002) 2018; 37 Kolbitsch (10.1016/j.combustflame.2019.05.012_bib0007) 2010; 4 Zafar (10.1016/j.combustflame.2019.05.012_bib0036) 2007; 21 Morin (10.1016/j.combustflame.2019.05.012_bib0026) 1992; 37 Khoi (10.1016/j.combustflame.2019.05.012_bib0056) 1975; 122 Adanez (10.1016/j.combustflame.2019.05.012_bib0001) 2012; 38 Kiss (10.1016/j.combustflame.2019.05.012_bib0030) 2013; 102 Zhou (10.1016/j.combustflame.2019.05.012_bib0042) 2014; 39 Håkonsen (10.1016/j.combustflame.2019.05.012_bib0013) 2011; 45 Iloeje (10.1016/j.combustflame.2019.05.012_bib0018) 2015; 35 Iloeje (10.1016/j.combustflame.2019.05.012_bib0019) 2015; 41 Peraldi (10.1016/j.combustflame.2019.05.012_bib0024) 2002; 58 Ortiz (10.1016/j.combustflame.2019.05.012_bib0046) 2011 Cabrera (10.1016/j.combustflame.2019.05.012_bib0054) 1949; 12 Li (10.1016/j.combustflame.2019.05.012_bib0011) 2010; 56 Caplan (10.1016/j.combustflame.2019.05.012_bib0051) 1972; 119 Ryu (10.1016/j.combustflame.2019.05.012_bib0032) 2001; 18 Shen (10.1016/j.combustflame.2019.05.012_bib0008) 2009; 156 Birks (10.1016/j.combustflame.2019.05.012_bib0021) 2006 Abad (10.1016/j.combustflame.2019.05.012_bib0044) 2010 Zhao (10.1016/j.combustflame.2019.05.012_bib0048) 2016 Readman (10.1016/j.combustflame.2019.05.012_bib0034) 2006; 20 Jeangros (10.1016/j.combustflame.2019.05.012_bib0028) 2014; 67 Lagarias (10.1016/j.combustflame.2019.05.012_bib0058) 1998; 9 Iliuta (10.1016/j.combustflame.2019.05.012_bib0041) 2010; 56 Adanez (10.1016/j.combustflame.2019.05.012_bib0006) 2006; 45 Jeangros (10.1016/j.combustflame.2019.05.012_bib0029) 2013; 48 Weast (10.1016/j.combustflame.2019.05.012_bib0049) 1988 Zhao (10.1016/j.combustflame.2019.05.012_bib0016) 2014; 121 Moghtaderi (10.1016/j.combustflame.2019.05.012_bib0040) 2010; 24 Zhao (10.1016/j.combustflame.2019.05.012_bib0025) 2016; 120 Zhao (10.1016/j.combustflame.2019.05.012_bib0017) 2014; 121 Erri (10.1016/j.combustflame.2019.05.012_bib0039) 2008; 48 Ishida (10.1016/j.combustflame.2019.05.012_bib0031) 1996; 10 |
References_xml | – volume: 56 start-page: 1063 year: 2010 end-page: 1079 ident: bib0041 article-title: Chemical-looping combustion process: kinetics and mathematical modeling publication-title: AIChE J. contributor: fullname: Luck – volume: 180 start-page: 73 year: 1949 end-page: 91 ident: bib0020 article-title: Some factors affecting the rate of grain growth in metals publication-title: AIME Trans. contributor: fullname: Burke – volume: 37 start-page: 33 year: 2018 end-page: 56 ident: bib0002 article-title: Gas oxy combustion and conversion technologies for low carbon energy: fundamentals, modeling and reactors publication-title: Proc. Combust. Inst. contributor: fullname: Dimitrakopoulos – year: 2011 ident: bib0046 article-title: Reformado de metano con transportadores sólidos de oxígeno contributor: fullname: Ortiz – volume: 62 start-page: 533 year: 2007 end-page: 549 ident: bib0035 article-title: Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion publication-title: Chem. Eng. Sci. contributor: fullname: Celaya – year: 1988 ident: bib0049 article-title: CRC handbook of chemistry and physics contributor: fullname: Beyer – volume: 157 start-page: 602 year: 2010 end-page: 615 ident: bib0009 article-title: Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier publication-title: Combust. Flame contributor: fullname: Gayan – year: 2006 ident: bib0021 article-title: Introduction to the high temperature oxidation of metals contributor: fullname: Pettit – volume: 18 start-page: 831 year: 2001 end-page: 837 ident: bib0032 article-title: Oxidation and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model publication-title: Korean J. Chem. Eng. contributor: fullname: Choi – volume: 20 start-page: 1382 year: 2006 end-page: 1387 ident: bib0034 article-title: Chemical looping combustion using NiO/NiAlO: mechanisms and kinetics of reduction-oxidation (Red-Ox) reactions from in situ powder X-ray diffraction and thermogravimetry experiments publication-title: Energy Fuels contributor: fullname: Blom – volume: 4 start-page: 180 year: 2010 end-page: 185 ident: bib0007 article-title: Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit publication-title: Int. J. Greenh. Gas Control contributor: fullname: Hofbauer – volume: B21 start-page: 25 year: 1933 end-page: 41 ident: bib0053 article-title: Beitrag zur theorie des anlaufsvorgangs publication-title: Z. Phys. Chem. contributor: fullname: Wagner – volume: 58 start-page: 249 year: 2002 end-page: 273 ident: bib0023 article-title: Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. I. Morphologies and microstructures publication-title: Oxid. Metals contributor: fullname: Pieraggi – volume: 58 start-page: 275 year: 2002 end-page: 295 ident: bib0024 article-title: Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics publication-title: Oxid. Metals contributor: fullname: Pieraggi – volume: 120 start-page: 16271 year: 2016 end-page: 16289 ident: bib0025 article-title: Redox kinetics study of fuel reduced ceria for chemical-looping water splitting publication-title: J. Phys. Chem. C contributor: fullname: Ghoniem – volume: 45 start-page: 9619 year: 2011 end-page: 9626 ident: bib0013 article-title: Chemical looping combustion in a rotating bed reactor – finding optimal process conditions for prototype reactor publication-title: Environ. Sci. Technol. contributor: fullname: Blom – year: 2016 ident: bib0048 publication-title: Redox kinetics study for chemical-looping combustion, water and CO-splitting using nickel and cerium-based oxygen carrier contributor: fullname: Zhao – volume: 37 start-page: 39 year: 1992 end-page: 63 ident: bib0026 article-title: The growth of oxide platelets on nickel in pure oxygen. I. Morphology and oxidation kinetics publication-title: Oxid. Metals contributor: fullname: Trudel – volume: 57 start-page: 437 year: 1985 ident: bib0052 article-title: Transport processes during the growth of oxide films at elevated temperature publication-title: Rev. Mod. Phys. contributor: fullname: Atkinson – volume: 121 start-page: 327 year: 2014 end-page: 343 ident: bib0017 article-title: Design of a rotary reactor for chemical-looping combustion. Part 1: fundamentals and design methodology publication-title: Fuel contributor: fullname: Ghoniem – volume: 119 start-page: 1205 year: 1972 end-page: 1215 ident: bib0051 article-title: Effect of cold work on the oxidation of nickel at high temperature publication-title: J. Electrochem. Soc. contributor: fullname: Cohen – year: 2011 ident: bib0045 article-title: Chemical looping combustion of gaseous fuels with NiO-based oxygen carriers contributor: fullname: Dueso – volume: 21 start-page: 610 year: 2007 end-page: 618 ident: bib0036 article-title: Reaction kinetics of freeze-granulated NiO/MgAl publication-title: Energy Fuels contributor: fullname: Gevert – volume: 35 start-page: 56 year: 2015 end-page: 70 ident: bib0018 article-title: Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture publication-title: Int. J. Greenh. Gas Control contributor: fullname: Ghoniem – volume: 37 start-page: 4303 year: 2019 end-page: 4317 ident: bib0004 article-title: Chemical-looping combustion: status and research needs publication-title: Proc. Combust. Inst. contributor: fullname: Abad – volume: 46 start-page: 4212 year: 2007 end-page: 4220 ident: bib0012 article-title: Packed bed reactor technology for chemical-looping combustion publication-title: Ind. Eng. Chem. Res. contributor: fullname: Kuipers – volume: 48 start-page: 4 year: 2008 end-page: 6 ident: bib0039 article-title: Diffusional Effects in nickel oxide reduction kinetics publication-title: Ind. Eng. Chem. Res. contributor: fullname: Varma – volume: 45 start-page: 823 year: 1982 end-page: 833 ident: bib0057 article-title: A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals publication-title: Philos. Mag. A contributor: fullname: Hughes – volume: 121 start-page: 344 year: 2014 end-page: 360 ident: bib0016 article-title: Design of a rotary reactor for chemical-looping combustion. Part 2: comparison of copper-, nickel-, and iron-based oxygen carriers publication-title: Fuel contributor: fullname: Ghoniem – volume: 156 start-page: 721 year: 2009 end-page: 728 ident: bib0010 article-title: Experiments on chemical looping combustion of coal with a NiO based oxygen carrier publication-title: Combust. Flame contributor: fullname: Xiao – volume: 45 start-page: 2689 year: 2006 end-page: 2696 ident: bib0033 article-title: Chemical-looping combustion with NiO and Fe publication-title: Ind. Eng. Chem. Res. contributor: fullname: Kim – year: 2008 ident: bib0022 article-title: High temperature oxidation and corrosion of metals contributor: fullname: Young – volume: 246 start-page: 137 year: 2003 end-page: 150 ident: bib0059 article-title: X-ray diffraction study of nickel oxide reduction by hydrogen publication-title: Appl. Catal. A contributor: fullname: Twigg – volume: 67 start-page: 362 year: 2014 end-page: 372 ident: bib0028 article-title: Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope publication-title: Acta Mater. contributor: fullname: Hessler-Wyser – volume: 102 year: 2013 ident: bib0030 article-title: In-situ observation of nickel oxidation using synchrotron based full-field transmission X-ray microscopy publication-title: Appl. Phys. Lett. contributor: fullname: Chiu – volume: 39 start-page: 8535 year: 2014 end-page: 8556 ident: bib0042 article-title: Kinetics of NiO reduction by H publication-title: Int. J. Hydrogen Energy contributor: fullname: Bollas – volume: 188 start-page: 142 year: 2012 end-page: 154 ident: bib0047 article-title: Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming publication-title: Chem. Eng. J. contributor: fullname: Adánez – volume: 3 start-page: 1 year: 1971 end-page: 12 ident: bib0060 article-title: Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures publication-title: Thermochim. Acta contributor: fullname: Berggren – volume: 38 start-page: 215 year: 2012 end-page: 282 ident: bib0001 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. contributor: fullname: de Diego – volume: 10 start-page: 958 year: 1996 end-page: 963 ident: bib0031 article-title: A fundamental study of a new kind of medium material for chemical-looping combustion publication-title: Energy Fuels contributor: fullname: Okamoto – volume: 122 start-page: 1495 year: 1975 end-page: 1503 ident: bib0056 article-title: Growth and structure of nickel oxide on nickel crystal faces publication-title: J. Electrochem. Soc. contributor: fullname: Embury – volume: 12 start-page: 163 year: 1949 ident: bib0054 article-title: Theory of the oxidation of metals publication-title: Rep. Prog. Phys. contributor: fullname: Mott – volume: 119 start-page: 16131 year: 2015 end-page: 16138 ident: bib0050 article-title: Nickel oxide reduction by hydrogen: kinetics and structural transformations publication-title: J. Phys. Chem. C contributor: fullname: Mukasyan – volume: 65 start-page: 98 year: 2010 end-page: 106 ident: bib0043 article-title: Reduction and oxidation kinetics of Co-Ni/Al publication-title: Chem. Eng. Sci. contributor: fullname: de Lasa – volume: 17 start-page: 379 year: 1962 end-page: 390 ident: bib0061 article-title: Kinetics of the reduction of nickel oxide by hydrogen publication-title: Chem. Eng. Sci. contributor: fullname: Hougen – volume: 156 start-page: 1377 year: 2009 end-page: 1385 ident: bib0008 article-title: Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor publication-title: Combust. Flame contributor: fullname: Xiao – volume: 267 start-page: 35 year: 2004 end-page: 46 ident: bib0027 article-title: X-ray diffraction study of the hydrogen reduction of NiO/α-Al publication-title: Appl. Catal. A contributor: fullname: Twigg – volume: 59 start-page: 6239 year: 2011 end-page: 6245 ident: bib0055 article-title: Nonlinear oxidation kinetics of nickel cermets publication-title: Acta Mater. contributor: fullname: Gauckler – volume: 48 start-page: 2893 year: 2013 end-page: 2907 ident: bib0029 article-title: Reduction of nickel oxide particles by hydrogen studied in an environmental TEM publication-title: J. Mater. Sci. contributor: fullname: Hessler-Wyser – volume: 27 start-page: 344 year: 2013 end-page: 359 ident: bib0015 article-title: Rotary bed reactor for chemical-looping combustion with carbon capture. Part 2: base case and sensitivity analysis publication-title: Energy Fuels contributor: fullname: Ghoniem – volume: 63 start-page: 4433 year: 2008 end-page: 4451 ident: bib0003 article-title: Chemical-looping combustion (CLC) for inherent CO publication-title: Chem. Eng. Sci. contributor: fullname: de Lasa – volume: 56 start-page: 2186 year: 2010 end-page: 2199 ident: bib0011 article-title: Syngas chemical looping gasification process: bench-scale studies and reactor simulations publication-title: AIChE J. contributor: fullname: Fan – volume: 86 start-page: 323 year: 2008 end-page: 334 ident: bib0038 article-title: Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion publication-title: Can. J. Chem. Eng. contributor: fullname: de Lasa – volume: 27 start-page: 327 year: 2013 end-page: 343 ident: bib0014 article-title: Rotary bed reactor for chemical-looping combustion with carbon capture. Part 1: reactor design and model development publication-title: Energy Fuels contributor: fullname: Ghoniem – volume: 9 start-page: 112 year: 1998 end-page: 147 ident: bib0058 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM J. Optim. contributor: fullname: Wright – volume: 45 start-page: 5911 year: 2006 end-page: 5919 ident: bib0005 article-title: Use of NiO/NiAl publication-title: Ind. Eng. Chem. Res. contributor: fullname: Lyngfelt – volume: 24 start-page: 5359 year: 2010 end-page: 5368 ident: bib0040 article-title: Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion publication-title: Energy Fuels contributor: fullname: Song – volume: 53 start-page: 1817 year: 2007 end-page: 1829 ident: bib0037 article-title: Reactivity and stability of Co-Ni/Al publication-title: AlChE J. contributor: fullname: de Lasa – volume: 41 start-page: 302 year: 2015 end-page: 315 ident: bib0019 article-title: Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors publication-title: Int. J. Greenh. Gas Control contributor: fullname: Ghoniem – year: 2010 ident: bib0044 article-title: CLC Modeling the fuel reactor at fast fluidization – conversion of CH publication-title: 1st International Conference on Chemical Looping contributor: fullname: Proell – volume: 45 start-page: 6075 year: 2006 end-page: 6080 ident: bib0006 article-title: Chemical looping combustion in a 10 kWth prototype using a CuO/Al publication-title: Ind. Eng. Chem. Res. contributor: fullname: Abad – volume: 63 start-page: 4433 year: 2008 ident: 10.1016/j.combustflame.2019.05.012_bib0003 article-title: Chemical-looping combustion (CLC) for inherent CO2 separations – a review publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.05.028 contributor: fullname: Hossain – volume: 65 start-page: 98 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0043 article-title: Reduction and oxidation kinetics of Co-Ni/Al2O3 oxygen carrier involved in a chemical-looping combustion cycles publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.059 contributor: fullname: Hossain – volume: 58 start-page: 249 year: 2002 ident: 10.1016/j.combustflame.2019.05.012_bib0023 article-title: Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. I. Morphologies and microstructures publication-title: Oxid. Metals doi: 10.1023/A:1020170320020 contributor: fullname: Peraldi – volume: 156 start-page: 721 year: 2009 ident: 10.1016/j.combustflame.2019.05.012_bib0010 article-title: Experiments on chemical looping combustion of coal with a NiO based oxygen carrier publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.08.004 contributor: fullname: Shen – volume: 121 start-page: 327 year: 2014 ident: 10.1016/j.combustflame.2019.05.012_bib0017 article-title: Design of a rotary reactor for chemical-looping combustion. Part 1: fundamentals and design methodology publication-title: Fuel doi: 10.1016/j.fuel.2013.11.056 contributor: fullname: Zhao – volume: 21 start-page: 610 year: 2007 ident: 10.1016/j.combustflame.2019.05.012_bib0036 article-title: Reaction kinetics of freeze-granulated NiO/MgAl2O4 oxygen carrier particles for chemical-looping combustion publication-title: Energy Fuels doi: 10.1021/ef060450y contributor: fullname: Zafar – year: 2008 ident: 10.1016/j.combustflame.2019.05.012_bib0022 contributor: fullname: Young – volume: 59 start-page: 6239 year: 2011 ident: 10.1016/j.combustflame.2019.05.012_bib0055 article-title: Nonlinear oxidation kinetics of nickel cermets publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.06.032 contributor: fullname: Galinski – volume: 58 start-page: 275 year: 2002 ident: 10.1016/j.combustflame.2019.05.012_bib0024 article-title: Correlations between growth kinetics and microstructure for scales formed by high-temperature oxidation of pure nickel. II. Growth kinetics publication-title: Oxid. Metals doi: 10.1023/A:1020102604090 contributor: fullname: Peraldi – volume: 48 start-page: 2893 year: 2013 ident: 10.1016/j.combustflame.2019.05.012_bib0029 article-title: Reduction of nickel oxide particles by hydrogen studied in an environmental TEM publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-7001-2 contributor: fullname: Jeangros – volume: 37 start-page: 4303 year: 2019 ident: 10.1016/j.combustflame.2019.05.012_bib0004 article-title: Chemical-looping combustion: status and research needs publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.002 contributor: fullname: Adánez – volume: 45 start-page: 6075 year: 2006 ident: 10.1016/j.combustflame.2019.05.012_bib0006 article-title: Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 Oxygen carrier: effect of operating conditions on methane combustion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060364l contributor: fullname: Adanez – volume: 10 start-page: 958 year: 1996 ident: 10.1016/j.combustflame.2019.05.012_bib0031 article-title: A fundamental study of a new kind of medium material for chemical-looping combustion publication-title: Energy Fuels doi: 10.1021/ef950173n contributor: fullname: Ishida – volume: 102 year: 2013 ident: 10.1016/j.combustflame.2019.05.012_bib0030 article-title: In-situ observation of nickel oxidation using synchrotron based full-field transmission X-ray microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4789991 contributor: fullname: Kiss – volume: 39 start-page: 8535 year: 2014 ident: 10.1016/j.combustflame.2019.05.012_bib0042 article-title: Kinetics of NiO reduction by H2 and Ni oxidation at conditions relevant to chemical-looping combustion and reforming publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.03.161 contributor: fullname: Zhou – volume: 27 start-page: 327 year: 2013 ident: 10.1016/j.combustflame.2019.05.012_bib0014 article-title: Rotary bed reactor for chemical-looping combustion with carbon capture. Part 1: reactor design and model development publication-title: Energy Fuels doi: 10.1021/ef3014103 contributor: fullname: Zhao – volume: 27 start-page: 344 year: 2013 ident: 10.1016/j.combustflame.2019.05.012_bib0015 article-title: Rotary bed reactor for chemical-looping combustion with carbon capture. Part 2: base case and sensitivity analysis publication-title: Energy Fuels doi: 10.1021/ef301411g contributor: fullname: Zhao – volume: 121 start-page: 344 year: 2014 ident: 10.1016/j.combustflame.2019.05.012_bib0016 article-title: Design of a rotary reactor for chemical-looping combustion. Part 2: comparison of copper-, nickel-, and iron-based oxygen carriers publication-title: Fuel doi: 10.1016/j.fuel.2013.11.055 contributor: fullname: Zhao – volume: 18 start-page: 831 year: 2001 ident: 10.1016/j.combustflame.2019.05.012_bib0032 article-title: Oxidation and reduction characteristics of oxygen carrier particles and reaction kinetics by unreacted core model publication-title: Korean J. Chem. Eng. doi: 10.1007/BF02705604 contributor: fullname: Ryu – volume: 119 start-page: 1205 year: 1972 ident: 10.1016/j.combustflame.2019.05.012_bib0051 article-title: Effect of cold work on the oxidation of nickel at high temperature publication-title: J. Electrochem. Soc. doi: 10.1149/1.2404444 contributor: fullname: Caplan – volume: 24 start-page: 5359 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0040 article-title: Reduction properties of physically mixed metallic oxide oxygen carriers in chemical looping combustion publication-title: Energy Fuels doi: 10.1021/ef1006963 contributor: fullname: Moghtaderi – year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0044 article-title: CLC Modeling the fuel reactor at fast fluidization – conversion of CH4 using a NiO-based oxygen carrier in a 120 kWth unit contributor: fullname: Abad – volume: 188 start-page: 142 year: 2012 ident: 10.1016/j.combustflame.2019.05.012_bib0047 article-title: Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-looping combustion and chemical-looping reforming publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.01.124 contributor: fullname: Dueso – volume: 37 start-page: 39 year: 1992 ident: 10.1016/j.combustflame.2019.05.012_bib0026 article-title: The growth of oxide platelets on nickel in pure oxygen. I. Morphology and oxidation kinetics publication-title: Oxid. Metals doi: 10.1007/BF00665630 contributor: fullname: Morin – volume: 48 start-page: 4 year: 2008 ident: 10.1016/j.combustflame.2019.05.012_bib0039 article-title: Diffusional Effects in nickel oxide reduction kinetics publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071588m contributor: fullname: Erri – volume: 120 start-page: 16271 year: 2016 ident: 10.1016/j.combustflame.2019.05.012_bib0025 article-title: Redox kinetics study of fuel reduced ceria for chemical-looping water splitting publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01847 contributor: fullname: Zhao – year: 2006 ident: 10.1016/j.combustflame.2019.05.012_bib0021 contributor: fullname: Birks – volume: 56 start-page: 1063 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0041 article-title: Chemical-looping combustion process: kinetics and mathematical modeling publication-title: AIChE J. doi: 10.1002/aic.11967 contributor: fullname: Iliuta – volume: 37 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.combustflame.2019.05.012_bib0002 article-title: Gas oxy combustion and conversion technologies for low carbon energy: fundamentals, modeling and reactors publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.06.002 contributor: fullname: Ghoniem – volume: 57 start-page: 437 year: 1985 ident: 10.1016/j.combustflame.2019.05.012_bib0052 article-title: Transport processes during the growth of oxide films at elevated temperature publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.437 contributor: fullname: Atkinson – volume: 156 start-page: 1377 year: 2009 ident: 10.1016/j.combustflame.2019.05.012_bib0008 article-title: Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.02.005 contributor: fullname: Shen – year: 1988 ident: 10.1016/j.combustflame.2019.05.012_bib0049 contributor: fullname: Weast – volume: B21 start-page: 25 year: 1933 ident: 10.1016/j.combustflame.2019.05.012_bib0053 article-title: Beitrag zur theorie des anlaufsvorgangs publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1933-2105 contributor: fullname: Wagner – volume: 119 start-page: 16131 year: 2015 ident: 10.1016/j.combustflame.2019.05.012_bib0050 article-title: Nickel oxide reduction by hydrogen: kinetics and structural transformations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04313 contributor: fullname: Manukyan – year: 2016 ident: 10.1016/j.combustflame.2019.05.012_bib0048 contributor: fullname: Zhao – volume: 45 start-page: 5911 year: 2006 ident: 10.1016/j.combustflame.2019.05.012_bib0005 article-title: Use of NiO/NiAl2O4 particles in a 10 kW chemical-looping combustor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie060232s contributor: fullname: Johansson – volume: 122 start-page: 1495 year: 1975 ident: 10.1016/j.combustflame.2019.05.012_bib0056 article-title: Growth and structure of nickel oxide on nickel crystal faces publication-title: J. Electrochem. Soc. doi: 10.1149/1.2134052 contributor: fullname: Khoi – volume: 46 start-page: 4212 year: 2007 ident: 10.1016/j.combustflame.2019.05.012_bib0012 article-title: Packed bed reactor technology for chemical-looping combustion publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie061178i contributor: fullname: Noorman – volume: 45 start-page: 2689 year: 2006 ident: 10.1016/j.combustflame.2019.05.012_bib0033 article-title: Chemical-looping combustion with NiO and Fe2O3 in a thermobalance and circulating fluidized bed reactor with double loops publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050919x contributor: fullname: Son – volume: 41 start-page: 302 year: 2015 ident: 10.1016/j.combustflame.2019.05.012_bib0019 article-title: Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2015.07.023 contributor: fullname: Iloeje – volume: 20 start-page: 1382 year: 2006 ident: 10.1016/j.combustflame.2019.05.012_bib0034 article-title: Chemical looping combustion using NiO/NiAlO: mechanisms and kinetics of reduction-oxidation (Red-Ox) reactions from in situ powder X-ray diffraction and thermogravimetry experiments publication-title: Energy Fuels doi: 10.1021/ef0504319 contributor: fullname: Readman – volume: 267 start-page: 35 year: 2004 ident: 10.1016/j.combustflame.2019.05.012_bib0027 article-title: X-ray diffraction study of the hydrogen reduction of NiO/α-Al2O3 steam reforming catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2004.02.022 contributor: fullname: Richardson – volume: 56 start-page: 2186 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0011 article-title: Syngas chemical looping gasification process: bench-scale studies and reactor simulations publication-title: AIChE J. doi: 10.1002/aic.12093 contributor: fullname: Li – volume: 157 start-page: 602 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0009 article-title: Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.10.010 contributor: fullname: Abad – volume: 9 start-page: 112 year: 1998 ident: 10.1016/j.combustflame.2019.05.012_bib0058 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM J. Optim. doi: 10.1137/S1052623496303470 contributor: fullname: Lagarias – year: 2011 ident: 10.1016/j.combustflame.2019.05.012_bib0046 contributor: fullname: Ortiz – volume: 62 start-page: 533 year: 2007 ident: 10.1016/j.combustflame.2019.05.012_bib0035 article-title: Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.09.019 contributor: fullname: Abad – year: 2011 ident: 10.1016/j.combustflame.2019.05.012_bib0045 contributor: fullname: Dueso – volume: 38 start-page: 215 year: 2012 ident: 10.1016/j.combustflame.2019.05.012_bib0001 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2011.09.001 contributor: fullname: Adanez – volume: 246 start-page: 137 year: 2003 ident: 10.1016/j.combustflame.2019.05.012_bib0059 article-title: X-ray diffraction study of nickel oxide reduction by hydrogen publication-title: Appl. Catal. A doi: 10.1016/S0926-860X(02)00669-5 contributor: fullname: Richardson – volume: 35 start-page: 56 year: 2015 ident: 10.1016/j.combustflame.2019.05.012_bib0018 article-title: Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2015.01.013 contributor: fullname: Iloeje – volume: 67 start-page: 362 year: 2014 ident: 10.1016/j.combustflame.2019.05.012_bib0028 article-title: Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.12.035 contributor: fullname: Jeangros – volume: 45 start-page: 9619 year: 2011 ident: 10.1016/j.combustflame.2019.05.012_bib0013 article-title: Chemical looping combustion in a rotating bed reactor – finding optimal process conditions for prototype reactor publication-title: Environ. Sci. Technol. doi: 10.1021/es202244t contributor: fullname: Håkonsen – volume: 12 start-page: 163 year: 1949 ident: 10.1016/j.combustflame.2019.05.012_bib0054 article-title: Theory of the oxidation of metals publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/12/1/308 contributor: fullname: Cabrera – volume: 45 start-page: 823 year: 1982 ident: 10.1016/j.combustflame.2019.05.012_bib0057 article-title: A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals publication-title: Philos. Mag. A doi: 10.1080/01418618208239905 contributor: fullname: Atkinson – volume: 3 start-page: 1 year: 1971 ident: 10.1016/j.combustflame.2019.05.012_bib0060 article-title: Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures publication-title: Thermochim. Acta doi: 10.1016/0040-6031(71)85051-7 contributor: fullname: Šesták – volume: 180 start-page: 73 year: 1949 ident: 10.1016/j.combustflame.2019.05.012_bib0020 article-title: Some factors affecting the rate of grain growth in metals publication-title: AIME Trans. contributor: fullname: Burke – volume: 86 start-page: 323 year: 2008 ident: 10.1016/j.combustflame.2019.05.012_bib0038 article-title: Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20072 contributor: fullname: Sedor – volume: 4 start-page: 180 year: 2010 ident: 10.1016/j.combustflame.2019.05.012_bib0007 article-title: Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2009.09.014 contributor: fullname: Kolbitsch – volume: 17 start-page: 379 year: 1962 ident: 10.1016/j.combustflame.2019.05.012_bib0061 article-title: Kinetics of the reduction of nickel oxide by hydrogen publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(62)80039-6 contributor: fullname: Bandrowski – volume: 53 start-page: 1817 year: 2007 ident: 10.1016/j.combustflame.2019.05.012_bib0037 article-title: Reactivity and stability of Co-Ni/Al2O3 oxygen carrier in multicycle CLC publication-title: AlChE J. doi: 10.1002/aic.11188 contributor: fullname: Hossain |
SSID | ssj0007433 |
Score | 2.385061 |
Snippet | We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed... We examine the redox activity of nickel/nickel oxide foils. Thin nickel foils (2.5 µm, 10 µm, and 100 µm) were subjected to redox conditions in a fixed-bed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 71 |
SubjectTerms | Attenuation Chemical-looping redox processes Clusters Conversion Decay rate Dependence Diffusion rate Evolution Grain structure Ion diffusion Mathematical models Metal foils Nickel Nickel oxide Nickel oxides Nucleation Organic chemistry Oxidation Oxidation kinetics Oxidation rate Oxygen Reaction kinetics Reduction Reduction kinetics Surface kinetics Thickness |
Title | Redox kinetics of nickel oxide foils: Structural evolution and rate-limiting steps |
URI | https://dx.doi.org/10.1016/j.combustflame.2019.05.012 https://www.proquest.com/docview/2282443963 |
Volume | 207 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NSwMxEB1qe1APolWxWksOXtd2N_speCjFUhV6qBZ6C8kmgdWyW9gqPfnbneyHVEEQPC0bSFjeTN7MsJMXgCtPRRiFuPk1yCkWKAHyoKbS8nmkBw4fDGJVdFtM_cncfVh4iwaM6rMwpq2y4v6S0wu2rkb6FZr9VZKYM77mWmpk2Iji08e6vYXhyHWb0BreP06mX4SMQbL80YyUYybU2qNFmxcuL97ytUb8jWqmHZVCns5vceoHYxdhaHwIB1X-SIblJx5BQ6Vt2B3V17a1YX9LYfAYZjMlsw15xRGjx0wyTdIEN-6SZJtEKqKzZJnfkKdCRdYocBD1Xjkj4akkRkjCWppDULgcQY9Y5ScwH989jyZWdY2CFWN2tbZE5ARhbGstBHWEZ9R3HCo9F1ObiHPfEWgsn7s6kGFMlckHOXWpwq0t0VbKpqfQTLNUnQExFVQcaiwTMZPRth8KaUvqRdIP0BkctwO0Bo2tSrUMVreRvbBtqJmBmg08hlB34LbGl32zPUNa_9P8bm0UVu3AnDlYS7qYbfn0_J_LX8CeeSsby7rQRIuoS8xE1qIHO9cfdq_yt0_3Fd45 |
link.rule.ids | 315,786,790,4521,24144,27955,27956,45618,45712 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPVQPolWxWnUPXmOTbJ6CBymWqrWH2kJvyya7C9GSFFKlJ3-7M3lgFQTBUyCPJczMfvMNO_stIZeuCiELCVwaFAwKFB9wUDNpeCLUpi1MM1ZFt8XYG86ch7k7b5B-vRcG2yor7C8xvUDr6k6vsmZvmSS4xxePpQaEDRlcPajbt5ANYF_X1cdXnwekyHKZGQAHX6-VR4smLxg8estXGqyPmplWWMp42r9lqR94XSShwR7ZrdgjvS1_cJ80VNomrX59aFub7GzoCx6QyUTJbE1f4Q6qMdNM0zSBabug2TqRiuosWeTX9LnQkEX9Dareq1CkIpUUZSSMBW6BguEoxMMyPySzwd20PzSqQxSMGLjVyohC2w9iS-soYnbkovaOzaTrALEJhfDsCFzlCUf7MoiZQjYomMMUTGwJnlIWOyLNNEvVMaFYP8WBhiIReIy2vCCSlmRuKD0fQsF2OoTVRuPLUiuD101kL3zT1BxNzU2Xg6k75Ka2L__meQ6g_qfvu7VTeDX_cm5DJekA1_LYyT-HvyCt4fRpxEf348dTso1PyhazLmmCd9QZcJJVdF7E3CfwX98O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+kinetics+of+nickel+oxide+foils%3A+Structural+evolution+and+rate-limiting+steps&rft.jtitle=Combustion+and+flame&rft.au=Zhao%2C+Zhenlong&rft.au=Uddi%2C+Mruthunjaya&rft.au=Ghoniem%2C+Ahmed+F.&rft.date=2019-09-01&rft.issn=0010-2180&rft.volume=207&rft.spage=71&rft.epage=88&rft_id=info:doi/10.1016%2Fj.combustflame.2019.05.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2019_05_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |