Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition
•By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform ba...
Saved in:
Published in | Pattern recognition Vol. 130; p. 108833 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2022.108833 |
Cover
Loading…
Abstract | •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform baseline.•The student model taught by the labels and the visual knowledge produces results with statistical significance against its counterpart without knowledge distillation.•To the best of the authors’ knowledge, this is the first work on visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition.•The code is to be publicly available.
Visual modality is one of the most dominant modalities for current continuous emotion recognition methods. Compared to which the EEG modality is relatively less sound due to its intrinsic limitation such as subject bias and low spatial resolution. This work attempts to improve the continuous prediction of the EEG modality by using the dark knowledge from the visual modality. The teacher model is built by a cascade convolutional neural network - temporal convolutional network (CNN-TCN) architecture, and the student model is built by TCNs. They are fed by video frames and EEG average band power features, respectively. Two data partitioning schemes are employed, i.e., the trial-level random shuffling (TRS) and the leave-one-subject-out (LOSO). The standalone teacher and student can produce continuous prediction superior to the baseline method, and the employment of the visual-to-EEG cross-modal KD further improves the prediction with statistical significance, i.e., p-value <0.01 for TRS and p-value <0.05 for LOSO partitioning. The saliency maps of the trained student model show that the brain areas associated with the active valence state are not located in precise brain areas. Instead, it results from synchronized activity among various brain areas. And the fast beta and gamma waves, with the frequency of 18−30Hz and 30−45Hz, contribute the most to the human emotion process compared to other bands. The code is available at https://github.com/sucv/Visual_to_EEG_Cross_Modal_KD_for_CER. |
---|---|
AbstractList | •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform baseline.•The student model taught by the labels and the visual knowledge produces results with statistical significance against its counterpart without knowledge distillation.•To the best of the authors’ knowledge, this is the first work on visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition.•The code is to be publicly available.
Visual modality is one of the most dominant modalities for current continuous emotion recognition methods. Compared to which the EEG modality is relatively less sound due to its intrinsic limitation such as subject bias and low spatial resolution. This work attempts to improve the continuous prediction of the EEG modality by using the dark knowledge from the visual modality. The teacher model is built by a cascade convolutional neural network - temporal convolutional network (CNN-TCN) architecture, and the student model is built by TCNs. They are fed by video frames and EEG average band power features, respectively. Two data partitioning schemes are employed, i.e., the trial-level random shuffling (TRS) and the leave-one-subject-out (LOSO). The standalone teacher and student can produce continuous prediction superior to the baseline method, and the employment of the visual-to-EEG cross-modal KD further improves the prediction with statistical significance, i.e., p-value <0.01 for TRS and p-value <0.05 for LOSO partitioning. The saliency maps of the trained student model show that the brain areas associated with the active valence state are not located in precise brain areas. Instead, it results from synchronized activity among various brain areas. And the fast beta and gamma waves, with the frequency of 18−30Hz and 30−45Hz, contribute the most to the human emotion process compared to other bands. The code is available at https://github.com/sucv/Visual_to_EEG_Cross_Modal_KD_for_CER. |
ArticleNumber | 108833 |
Author | Zhang, Su Tang, Chuangao Guan, Cuntai |
Author_xml | – sequence: 1 givenname: Su orcidid: 0000-0001-6395-2429 surname: Zhang fullname: Zhang, Su email: sorazcn@gmail.com organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore – sequence: 2 givenname: Chuangao orcidid: 0000-0002-3653-136X surname: Tang fullname: Tang, Chuangao email: 230169620@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China – sequence: 3 givenname: Cuntai surname: Guan fullname: Guan, Cuntai email: ctguan@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gdRkMjNJXQhSahUEF_5sQya5U1LTpCSp4ts77bhyoat7uZdzOOeboJEPHhC6pGRGCW2uNrOdyjqsZyUpy_4kBGMnaEwFZ7imVTlCY0IYxawk7AxNUtoQQnn_GKPnN5v2yuEc8HK5KnQMKeFtMMoV7z58OjBrKIxN2Tqnsg2-6EIsdPDZ-n3YpwK24XiO0Afw9rCfo9NOuQQXP3OKXu-WL4t7_Pi0eljcPmLN6jLjVpB503HVN1B1PacVrxkAqSohaNmaOWsMaTsBTAAANbXmXGihOYBRulUNm6Jq8D2mjtDJXbRbFb8kJfIARm7kAEYewMgBTC-7_iXTNh-75ais-098M4ihL_ZhIcqkLXgNxvYEsjTB_m3wDU68hTQ |
CitedBy_id | crossref_primary_10_1109_JBHI_2024_3392564 crossref_primary_10_1016_j_patcog_2024_110331 crossref_primary_10_1016_j_patcog_2024_111222 crossref_primary_10_1016_j_jksuci_2023_101907 crossref_primary_10_1016_j_dajour_2023_100280 crossref_primary_10_1109_LSP_2024_3427730 crossref_primary_10_11834_jig_230031 crossref_primary_10_1142_S0218001424520177 crossref_primary_10_1016_j_neunet_2024_107003 crossref_primary_10_1016_j_specom_2024_103140 crossref_primary_10_1016_j_eswa_2024_124001 crossref_primary_10_1109_TETCI_2024_3406422 crossref_primary_10_1016_j_patcog_2023_109794 crossref_primary_10_1109_ACCESS_2024_3452781 crossref_primary_10_1109_TCSVT_2023_3322470 crossref_primary_10_3390_tomography10120144 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1109_RBME_2023_3296938 crossref_primary_10_1016_j_bspc_2024_106046 crossref_primary_10_1016_j_bspc_2025_107511 crossref_primary_10_2139_ssrn_4349266 crossref_primary_10_1016_j_buildenv_2022_109678 crossref_primary_10_1016_j_patcog_2023_109338 crossref_primary_10_1049_cit2_12346 crossref_primary_10_1016_j_patcog_2023_109915 |
Cites_doi | 10.1016/j.patcog.2021.108102 10.1109/TAFFC.2017.2714671 10.1016/j.patcog.2019.107108 10.1177/1745691610388781 10.1109/T-AFFC.2011.25 10.1109/TAFFC.2015.2436926 10.1016/j.patcog.2017.02.003 10.1016/j.imavis.2016.11.020 10.1109/FG47880.2020.00126 10.1016/j.patcog.2019.107127 10.1016/j.neuroscience.2005.09.018 10.1016/j.patcog.2020.107626 10.1177/1745691610388779 10.1109/TMM.2010.2052239 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.108833 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_108833 S0031320322003144 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-b8096f7a016a55914753ee0448812bd936d0bf8e38eee1d5c778c8c7eedacba63 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:07:47 EDT 2025 Tue Jul 01 02:36:38 EDT 2025 Fri Feb 23 02:39:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cross-modality Knowledge distillation Continuous emotion recognition |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-b8096f7a016a55914753ee0448812bd936d0bf8e38eee1d5c778c8c7eedacba63 |
ORCID | 0000-0002-3653-136X 0000-0001-6395-2429 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0031320322003144 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2022_108833 crossref_citationtrail_10_1016_j_patcog_2022_108833 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jiang, Ho, Cheheb, Al-Maadeed, Al-Maadeed, Bouridane (bib0001) 2017; 67 Roheda, Riggan, Krim, Dai (bib0015) 2018 Hussein, Gavves, Smeulders (bib0017) 2019 Ringeval, Schuller, Valstar, Gratch, Cowie, Scherer, Mozgai, Cummins, Schmitt, Pantic (bib0037) 2017 Somandepalli, Gupta, Nasir, Booth, Lee, Narayanan (bib0020) 2016 Garcia, Morerio, Murino (bib0013) 2018 Alexandre, Soares, Thé (bib0029) 2020; 100 Zhao, Li, Liang, Chen, Jin (bib0024) 2019 Deng, Chen, Shi (bib0025) 2020 Thoker, Gall (bib0012) 2019 Ringeval, Schuller, Valstar, Cowie, Kaya, Schmitt, Amiriparian, Cummins, Lalanne, Michaud (bib0038) 2018 Zhao, Li, Abu Alsheikh, Tian, Zhao, Torralba, Katabi (bib0011) 2018 Wataraka Gamage, Dang, Sethu, Epps, Ambikairajah (bib0022) 2018 Zhou, Zhu, Ye, Qiu, Jiao (bib0041) 2018 Ringeval, Schuller, Valstar, Cummins, Cowie, Tavabi, Schmitt, Alisamir, Amiriparian, Messner (bib0039) 2019 Shimamura (bib0044) 2010; 5 Hoffman, Gupta, Leong, Guadarrama, Darrell (bib0009) 2016 D. Kollias, A. Schulc, E. Hajiyev, S. Zafeiriou, Analysing affective behavior in the first ABAW 2020 competition, in: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG), 794–800. Uttal (bib0045) 2001 Fanelli, Gall, Romsdorfer, Weise, Van Gool (bib0030) 2010; 12 Chen, Deng, Cheng, Wang, Jiang, Sahli (bib0023) 2019 Wang, Girshick, Gupta, He (bib0033) 2018 Gupta, Hoffman, Malik (bib0010) 2016 Soleymani, Lichtenauer, Pun, Pantic (bib0026) 2011; 3 Bai, Wang, Liu, Liu, Song, Sebe, Kim (bib0042) 2021; 120 Jaiswal, Bara, Luo, Burzo, Mihalcea, Provost (bib0027) 2020 Faraki, Yu, Tsai, Suh, Chandraker (bib0002) 2021 Sankaran, Mohan, Lakshminarayana, Setlur, Govindaraju (bib0018) 2020; 102 Guo, Zhang, Hu, He, Gao (bib0031) 2016 Beck (bib0043) 2010; 5 Tian, Krishnan, Isola (bib0014) 2020 Barsoum, Zhang, Ferrer, Zhang (bib0035) 2016 Wang, Yoon (bib0006) 2021 Ekman, Rosenberg (bib0003) 1997 D.G. Myers, Psychology, 2004. Han, Zhang, Cummins, Ringeval, Schuller (bib0021) 2017; 65 Soleymani, Asghari-Esfeden, Fu, Pantic (bib0019) 2015; 7 Romero, Ballas, Ebrahimi Kahou, Chassang, Gatta, Bengio (bib0034) 2014 Müller, Knight (bib0028) 2006; 139 Wang, Qiu, Ma, He (bib0004) 2021; 110 Nagrani, Albanie, Zisserman (bib0008) 2018 Cao, Shen, Xie, Parkhi, Zisserman (bib0032) 2018 Afouras, Chung, Zisserman (bib0007) 2020 Valstar, Gratch, Schuller, Ringeval, Lalanne, Torres Torres, Scherer, Stratou, Cowie, Pantic (bib0036) 2016 Alarcao, Fonseca (bib0005) 2017; 10 Alexandre (10.1016/j.patcog.2022.108833_bib0029) 2020; 100 Hussein (10.1016/j.patcog.2022.108833_bib0017) 2019 Faraki (10.1016/j.patcog.2022.108833_bib0002) 2021 Ringeval (10.1016/j.patcog.2022.108833_bib0039) 2019 Guo (10.1016/j.patcog.2022.108833_bib0031) 2016 Roheda (10.1016/j.patcog.2022.108833_bib0015) 2018 Alarcao (10.1016/j.patcog.2022.108833_bib0005) 2017; 10 Zhao (10.1016/j.patcog.2022.108833_bib0024) 2019 Gupta (10.1016/j.patcog.2022.108833_bib0010) 2016 Han (10.1016/j.patcog.2022.108833_bib0021) 2017; 65 Afouras (10.1016/j.patcog.2022.108833_bib0007) 2020 Beck (10.1016/j.patcog.2022.108833_bib0043) 2010; 5 Soleymani (10.1016/j.patcog.2022.108833_bib0026) 2011; 3 Müller (10.1016/j.patcog.2022.108833_bib0028) 2006; 139 Somandepalli (10.1016/j.patcog.2022.108833_bib0020) 2016 Nagrani (10.1016/j.patcog.2022.108833_bib0008) 2018 10.1016/j.patcog.2022.108833_bib0016 Fanelli (10.1016/j.patcog.2022.108833_bib0030) 2010; 12 Tian (10.1016/j.patcog.2022.108833_bib0014) 2020 Thoker (10.1016/j.patcog.2022.108833_bib0012) 2019 Barsoum (10.1016/j.patcog.2022.108833_bib0035) 2016 Wang (10.1016/j.patcog.2022.108833_bib0004) 2021; 110 Hoffman (10.1016/j.patcog.2022.108833_bib0009) 2016 Shimamura (10.1016/j.patcog.2022.108833_bib0044) 2010; 5 Jiang (10.1016/j.patcog.2022.108833_bib0001) 2017; 67 Ringeval (10.1016/j.patcog.2022.108833_bib0038) 2018 Ekman (10.1016/j.patcog.2022.108833_bib0003) 1997 Soleymani (10.1016/j.patcog.2022.108833_bib0019) 2015; 7 Uttal (10.1016/j.patcog.2022.108833_bib0045) 2001 Wang (10.1016/j.patcog.2022.108833_bib0006) 2021 Cao (10.1016/j.patcog.2022.108833_bib0032) 2018 Chen (10.1016/j.patcog.2022.108833_bib0023) 2019 Jaiswal (10.1016/j.patcog.2022.108833_bib0027) 2020 Garcia (10.1016/j.patcog.2022.108833_bib0013) 2018 Romero (10.1016/j.patcog.2022.108833_sbref0034) 2014 Ringeval (10.1016/j.patcog.2022.108833_bib0037) 2017 Zhao (10.1016/j.patcog.2022.108833_bib0011) 2018 Valstar (10.1016/j.patcog.2022.108833_bib0036) 2016 Wataraka Gamage (10.1016/j.patcog.2022.108833_bib0022) 2018 Wang (10.1016/j.patcog.2022.108833_bib0033) 2018 Sankaran (10.1016/j.patcog.2022.108833_bib0018) 2020; 102 Deng (10.1016/j.patcog.2022.108833_bib0025) 2020 10.1016/j.patcog.2022.108833_bib0040 Zhou (10.1016/j.patcog.2022.108833_bib0041) 2018 Bai (10.1016/j.patcog.2022.108833_bib0042) 2021; 120 |
References_xml | – start-page: 3 year: 2017 end-page: 9 ident: bib0037 article-title: AVEC 2017: real-life depression, and affect recognition workshop and challenge publication-title: Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge – start-page: 3 year: 2016 end-page: 10 ident: bib0036 article-title: AVEC 2016: depression, mood, and emotion recognition workshop and challenge publication-title: Proceedings of the 6th International on Audio/Visual Emotion Challenge and Workshop – volume: 5 start-page: 772 year: 2010 end-page: 775 ident: bib0044 article-title: Bridging psychological and biological science: the good, bad, and ugly publication-title: Perspect. Psychol. Sci. – start-page: 3 year: 2018 end-page: 13 ident: bib0038 article-title: AVEC 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition publication-title: Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop – volume: 110 start-page: 107626 year: 2021 ident: bib0004 article-title: A prototype-based SPD matrix network for domain adaptation eeg emotion recognition publication-title: Pattern Recognit. – start-page: 2827 year: 2016 end-page: 2836 ident: bib0010 article-title: Cross modal distillation for supervision transfer publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – volume: 139 start-page: 51 year: 2006 end-page: 58 ident: bib0028 article-title: The functional neuroanatomy of working memory: contributions of human brain lesion studies publication-title: Neuroscience – year: 1997 ident: bib0003 article-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression using the Facial Action Coding System (FACS) – volume: 5 start-page: 762 year: 2010 end-page: 766 ident: bib0043 article-title: The appeal of the brain in the popular press publication-title: Perspect. Psychol. Sci. – year: 2001 ident: bib0045 article-title: The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain – start-page: 3 year: 2019 end-page: 12 ident: bib0039 article-title: AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop – volume: 10 start-page: 374 year: 2017 end-page: 393 ident: bib0005 article-title: Emotions recognition using eeg signals: a survey publication-title: IEEE Trans. Affect. Comput. – volume: 100 start-page: 107108 year: 2020 ident: bib0029 article-title: Systematic review of 3D facial expression recognition methods publication-title: Pattern Recognit. – start-page: 8427 year: 2018 end-page: 8436 ident: bib0008 article-title: Seeing voices and hearing faces: cross-modal biometric matching publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – start-page: 5032 year: 2016 end-page: 5039 ident: bib0009 article-title: Cross-modal adaptation for RGB-D detection publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA) – reference: D.G. Myers, Psychology, 2004. – start-page: 2143 year: 2020 end-page: 2147 ident: bib0007 article-title: ASR is all you need: cross-modal distillation for lip reading publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – start-page: 1 year: 2021 ident: bib0006 article-title: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – start-page: 15292 year: 2021 end-page: 15301 ident: bib0002 article-title: Cross-domain similarity learning for face recognition in unseen domains publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 67 year: 2018 end-page: 74 ident: bib0032 article-title: VGGFace2: A dataset for recognising faces across pose and age publication-title: 2018 13th IEEE international conference on Automatic Face & Gesture Recognition (FG 2018) – volume: 65 start-page: 76 year: 2017 end-page: 86 ident: bib0021 article-title: Strength modelling for real-worldautomatic continuous affect recognition from audiovisual signals publication-title: Image Vis. Comput. – volume: 67 start-page: 245 year: 2017 end-page: 251 ident: bib0001 article-title: Emotion recognition from scrambled facial images via many graph embedding publication-title: Pattern Recognit. – start-page: 7794 year: 2018 end-page: 7803 ident: bib0033 article-title: Non-local neural networks publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition – volume: 120 start-page: 108102 year: 2021 ident: bib0042 article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments publication-title: Pattern Recognit. – start-page: 7356 year: 2018 end-page: 7365 ident: bib0011 article-title: Through-wall human pose estimation using radio signals publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 19 year: 2019 end-page: 26 ident: bib0023 article-title: Efficient spatial temporal convolutional features for audiovisual continuous affect recognition publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop – year: 2014 ident: bib0034 article-title: FitNets: hints for thin deep nets publication-title: arXiv e-prints – start-page: 103 year: 2018 end-page: 118 ident: bib0013 article-title: Modality distillation with multiple stream networks for action recognition publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 254 year: 2019 end-page: 263 ident: bib0017 article-title: Timeception for complex action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 59 year: 2016 end-page: 66 ident: bib0020 article-title: Online affect tracking with multimodal kalman filters publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge – start-page: 6 year: 2019 end-page: 10 ident: bib0012 article-title: Cross-modal knowledge distillation for action recognition publication-title: 2019 IEEE International Conference on Image Processing (ICIP) – volume: 7 start-page: 17 year: 2015 end-page: 28 ident: bib0019 article-title: Analysis of eeg signals and facial expressions for continuous emotion detection publication-title: IEEE Trans. Affect. Comput. – year: 2020 ident: bib0014 article-title: Contrastive representation distillation publication-title: International Conference on Learning Representations – start-page: 279 year: 2016 end-page: 283 ident: bib0035 article-title: Training deep networks for facial expression recognition with crowd-sourced label distribution publication-title: Proceedings of the 18th ACM International Conference on Multimodal Interaction – start-page: 87 year: 2016 end-page: 102 ident: bib0031 article-title: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition publication-title: European Conference on Computer Vision – start-page: 2926 year: 2018 end-page: 2930 ident: bib0015 article-title: Cross-modality distillation: a case for conditional generative adversarial networks publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 102 start-page: 107127 year: 2020 ident: bib0018 article-title: Domain adaptive representation learning for facial action unit recognition publication-title: Pattern Recognit. – start-page: 47 year: 2018 end-page: 55 ident: bib0022 article-title: Speech-based continuous emotion prediction by learning perception responses related to salient events: a study based on vocal affect bursts and cross-cultural affect in AVEC 2018 publication-title: Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop – start-page: 1499 year: 2020 end-page: 1510 ident: bib0027 article-title: Muse: a multimodal dataset of stressed emotion publication-title: Proceedings of The 12th Language Resources and Evaluation Conference – start-page: 37 year: 2019 end-page: 45 ident: bib0024 article-title: Adversarial domain adaption for multi-cultural dimensional emotion recognition in dyadic interactions publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop – start-page: 592 year: 2020 end-page: 599 ident: bib0025 article-title: Multitask emotion recognition with incomplete labels publication-title: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) – reference: D. Kollias, A. Schulc, E. Hajiyev, S. Zafeiriou, Analysing affective behavior in the first ABAW 2020 competition, in: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG), 794–800. – start-page: 3791 year: 2018 end-page: 3800 ident: bib0041 article-title: Weakly supervised instance segmentation using class peak response publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 3 start-page: 42 year: 2011 end-page: 55 ident: bib0026 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect Comput. – volume: 12 start-page: 591 year: 2010 end-page: 598 ident: bib0030 article-title: A 3-D audio-visual corpus of affective communication publication-title: IEEE Trans. Multimedia – volume: 120 start-page: 108102 year: 2021 ident: 10.1016/j.patcog.2022.108833_bib0042 article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108102 – volume: 10 start-page: 374 issue: 3 year: 2017 ident: 10.1016/j.patcog.2022.108833_bib0005 article-title: Emotions recognition using eeg signals: a survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2714671 – volume: 100 start-page: 107108 year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0029 article-title: Systematic review of 3D facial expression recognition methods publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107108 – volume: 5 start-page: 772 issue: 6 year: 2010 ident: 10.1016/j.patcog.2022.108833_bib0044 article-title: Bridging psychological and biological science: the good, bad, and ugly publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691610388781 – start-page: 7356 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0011 article-title: Through-wall human pose estimation using radio signals – start-page: 3791 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0041 article-title: Weakly supervised instance segmentation using class peak response – start-page: 2143 year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0007 article-title: ASR is all you need: cross-modal distillation for lip reading – start-page: 37 year: 2019 ident: 10.1016/j.patcog.2022.108833_bib0024 article-title: Adversarial domain adaption for multi-cultural dimensional emotion recognition in dyadic interactions – start-page: 3 year: 2019 ident: 10.1016/j.patcog.2022.108833_bib0039 article-title: AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition – volume: 3 start-page: 42 issue: 1 year: 2011 ident: 10.1016/j.patcog.2022.108833_bib0026 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect Comput. doi: 10.1109/T-AFFC.2011.25 – volume: 7 start-page: 17 issue: 1 year: 2015 ident: 10.1016/j.patcog.2022.108833_bib0019 article-title: Analysis of eeg signals and facial expressions for continuous emotion detection publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2436926 – start-page: 87 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0031 article-title: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition – start-page: 254 year: 2019 ident: 10.1016/j.patcog.2022.108833_bib0017 article-title: Timeception for complex action recognition – start-page: 2827 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0010 article-title: Cross modal distillation for supervision transfer – start-page: 47 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0022 article-title: Speech-based continuous emotion prediction by learning perception responses related to salient events: a study based on vocal affect bursts and cross-cultural affect in AVEC 2018 – start-page: 3 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0036 article-title: AVEC 2016: depression, mood, and emotion recognition workshop and challenge – ident: 10.1016/j.patcog.2022.108833_bib0016 – volume: 67 start-page: 245 year: 2017 ident: 10.1016/j.patcog.2022.108833_bib0001 article-title: Emotion recognition from scrambled facial images via many graph embedding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.003 – start-page: 59 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0020 article-title: Online affect tracking with multimodal kalman filters – volume: 65 start-page: 76 year: 2017 ident: 10.1016/j.patcog.2022.108833_bib0021 article-title: Strength modelling for real-worldautomatic continuous affect recognition from audiovisual signals publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2016.11.020 – start-page: 6 year: 2019 ident: 10.1016/j.patcog.2022.108833_bib0012 article-title: Cross-modal knowledge distillation for action recognition – start-page: 2926 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0015 article-title: Cross-modality distillation: a case for conditional generative adversarial networks – year: 2014 ident: 10.1016/j.patcog.2022.108833_sbref0034 article-title: FitNets: hints for thin deep nets publication-title: arXiv e-prints – start-page: 3 year: 2017 ident: 10.1016/j.patcog.2022.108833_bib0037 article-title: AVEC 2017: real-life depression, and affect recognition workshop and challenge – start-page: 19 year: 2019 ident: 10.1016/j.patcog.2022.108833_bib0023 article-title: Efficient spatial temporal convolutional features for audiovisual continuous affect recognition – ident: 10.1016/j.patcog.2022.108833_bib0040 doi: 10.1109/FG47880.2020.00126 – start-page: 8427 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0008 article-title: Seeing voices and hearing faces: cross-modal biometric matching – start-page: 592 year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0025 article-title: Multitask emotion recognition with incomplete labels – volume: 102 start-page: 107127 year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0018 article-title: Domain adaptive representation learning for facial action unit recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107127 – start-page: 15292 year: 2021 ident: 10.1016/j.patcog.2022.108833_bib0002 article-title: Cross-domain similarity learning for face recognition in unseen domains – start-page: 5032 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0009 article-title: Cross-modal adaptation for RGB-D detection – start-page: 7794 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0033 article-title: Non-local neural networks – volume: 139 start-page: 51 issue: 1 year: 2006 ident: 10.1016/j.patcog.2022.108833_bib0028 article-title: The functional neuroanatomy of working memory: contributions of human brain lesion studies publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.09.018 – year: 1997 ident: 10.1016/j.patcog.2022.108833_bib0003 – volume: 110 start-page: 107626 year: 2021 ident: 10.1016/j.patcog.2022.108833_bib0004 article-title: A prototype-based SPD matrix network for domain adaptation eeg emotion recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107626 – start-page: 1 issue: 01 year: 2021 ident: 10.1016/j.patcog.2022.108833_bib0006 article-title: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2001 ident: 10.1016/j.patcog.2022.108833_bib0045 – start-page: 1499 year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0027 article-title: Muse: a multimodal dataset of stressed emotion – start-page: 67 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0032 article-title: VGGFace2: A dataset for recognising faces across pose and age – start-page: 103 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0013 article-title: Modality distillation with multiple stream networks for action recognition – start-page: 3 year: 2018 ident: 10.1016/j.patcog.2022.108833_bib0038 article-title: AVEC 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition – volume: 5 start-page: 762 issue: 6 year: 2010 ident: 10.1016/j.patcog.2022.108833_bib0043 article-title: The appeal of the brain in the popular press publication-title: Perspect. Psychol. Sci. doi: 10.1177/1745691610388779 – year: 2020 ident: 10.1016/j.patcog.2022.108833_bib0014 article-title: Contrastive representation distillation – start-page: 279 year: 2016 ident: 10.1016/j.patcog.2022.108833_bib0035 article-title: Training deep networks for facial expression recognition with crowd-sourced label distribution – volume: 12 start-page: 591 issue: 6 year: 2010 ident: 10.1016/j.patcog.2022.108833_bib0030 article-title: A 3-D audio-visual corpus of affective communication publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2010.2052239 |
SSID | ssj0017142 |
Score | 2.5374637 |
Snippet | •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108833 |
SubjectTerms | Continuous emotion recognition Cross-modality Knowledge distillation |
Title | Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition |
URI | https://dx.doi.org/10.1016/j.patcog.2022.108833 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD6ymSe3EZqyqlgKiCxR1i-zEQUElqSBd-e3cxUkEEgKJzYl8UfLpfI_ouztCLoxVIU9EyLTyNRMi9WAlNLMilVJrLAbBQuH7WTidi9tFsOiQUVMLg7TK2vY7m15Z6_pOv0azv8oyrPHFtoMeaCSuBPYExe51oNOXHy3NA-d7u47h3Ge4uymfqzheKzB3xTNkiYMBku0U5z-7py8uZ7JDtupYkQ7d6-ySjs33yHYzh4HWx3KfPDxl72u9ZGXBxuNrWj2ZvRYJyLa_zGiCh3npmG8UIlWKJPUsX0PmT62b5UNbNlGRH5D5ZPw4mrJ6WAKLIYYqmVGQjKRSw4dpyBJ8QIJb60H2BS7cJFc8TDyTKgvYW-snQSylilUswUfq2OiQH5JuXuT2iFCecq2MFkFiAyFTpSBm9EJlZCKMH2v_mPAGoyiuO4njQItl1FDGXiKHbITIRg7ZY8JaqZXrpPHHftnAH33TiAiM_a-SJ_-WPCWbeOXIemekW76t7TkEHaXpVVrVIxvDm7vp7BOuXdfs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXjd0LJLdz0SAoI8LoLh1uy2W4PBlmj5_86yLdHEaOJt03aa9svsPNpvZgDutJEBi3lAlfQV5TzxcMUVNTwRQilbDGILhceToD_jj_PWvAKdshbG0ioL2-9s-sZaF0caBZqN1WJha3xt20EPNdKuON-Bmu1OxatQaw-G_cn2Z4LwuWsaznxqBcoKug3Na4UWL3vBRLHZtHw7ydjPHuqL1-kdwn4RLpK2e6IjqJj0GA7KUQyk2Jkn8PS8-FirJc0z2u0-kM2d6VsWo-z2qxmJ7X5eOvIbwWCVWJ76Il1j8k-MG-dDtoSiLD2FWa877fRpMS-BRhhG5VRLzEcSofDFFCYKPsdUxBgPEzD04jq-Z0Hs6UQahN8YP25FQshIRgLdpIq0CtgZVNMsNedAWMKU1Iq3YoOQJlJi2OgFUouYaz9Sfh1YiVEYFc3E7UyLZViyxl5Dh2xokQ0dsnWgW6mVa6bxx_WihD_8phQh2vtfJS_-LXkLu_3peBSOBpPhJezZM467dwXV_H1trjEGyfVNoWOfHy_anQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual-to-EEG+cross-modal+knowledge+distillation+for+continuous+emotion+recognition&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Su&rft.au=Tang%2C+Chuangao&rft.au=Guan%2C+Cuntai&rft.date=2022-10-01&rft.issn=0031-3203&rft.volume=130&rft.spage=108833&rft_id=info:doi/10.1016%2Fj.patcog.2022.108833&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |