Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition

•By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform ba...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 130; p. 108833
Main Authors Zhang, Su, Tang, Chuangao, Guan, Cuntai
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.108833

Cover

Loading…
Abstract •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform baseline.•The student model taught by the labels and the visual knowledge produces results with statistical significance against its counterpart without knowledge distillation.•To the best of the authors’ knowledge, this is the first work on visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition.•The code is to be publicly available. Visual modality is one of the most dominant modalities for current continuous emotion recognition methods. Compared to which the EEG modality is relatively less sound due to its intrinsic limitation such as subject bias and low spatial resolution. This work attempts to improve the continuous prediction of the EEG modality by using the dark knowledge from the visual modality. The teacher model is built by a cascade convolutional neural network - temporal convolutional network (CNN-TCN) architecture, and the student model is built by TCNs. They are fed by video frames and EEG average band power features, respectively. Two data partitioning schemes are employed, i.e., the trial-level random shuffling (TRS) and the leave-one-subject-out (LOSO). The standalone teacher and student can produce continuous prediction superior to the baseline method, and the employment of the visual-to-EEG cross-modal KD further improves the prediction with statistical significance, i.e., p-value <0.01 for TRS and p-value <0.05 for LOSO partitioning. The saliency maps of the trained student model show that the brain areas associated with the active valence state are not located in precise brain areas. Instead, it results from synchronized activity among various brain areas. And the fast beta and gamma waves, with the frequency of 18−30Hz and 30−45Hz, contribute the most to the human emotion process compared to other bands. The code is available at https://github.com/sucv/Visual_to_EEG_Cross_Modal_KD_for_CER.
AbstractList •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based continuous emotion recognition using visual knowledge.•The standalone version of teacher and student without knowledge distillation can outperform baseline.•The student model taught by the labels and the visual knowledge produces results with statistical significance against its counterpart without knowledge distillation.•To the best of the authors’ knowledge, this is the first work on visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition.•The code is to be publicly available. Visual modality is one of the most dominant modalities for current continuous emotion recognition methods. Compared to which the EEG modality is relatively less sound due to its intrinsic limitation such as subject bias and low spatial resolution. This work attempts to improve the continuous prediction of the EEG modality by using the dark knowledge from the visual modality. The teacher model is built by a cascade convolutional neural network - temporal convolutional network (CNN-TCN) architecture, and the student model is built by TCNs. They are fed by video frames and EEG average band power features, respectively. Two data partitioning schemes are employed, i.e., the trial-level random shuffling (TRS) and the leave-one-subject-out (LOSO). The standalone teacher and student can produce continuous prediction superior to the baseline method, and the employment of the visual-to-EEG cross-modal KD further improves the prediction with statistical significance, i.e., p-value <0.01 for TRS and p-value <0.05 for LOSO partitioning. The saliency maps of the trained student model show that the brain areas associated with the active valence state are not located in precise brain areas. Instead, it results from synchronized activity among various brain areas. And the fast beta and gamma waves, with the frequency of 18−30Hz and 30−45Hz, contribute the most to the human emotion process compared to other bands. The code is available at https://github.com/sucv/Visual_to_EEG_Cross_Modal_KD_for_CER.
ArticleNumber 108833
Author Zhang, Su
Tang, Chuangao
Guan, Cuntai
Author_xml – sequence: 1
  givenname: Su
  orcidid: 0000-0001-6395-2429
  surname: Zhang
  fullname: Zhang, Su
  email: sorazcn@gmail.com
  organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore
– sequence: 2
  givenname: Chuangao
  orcidid: 0000-0002-3653-136X
  surname: Tang
  fullname: Tang, Chuangao
  email: 230169620@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Ministry of Education), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
– sequence: 3
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
  email: ctguan@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, 639798, Singapore
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gdRkMjNJXQhSahUEF_5sQya5U1LTpCSp4ts77bhyoat7uZdzOOeboJEPHhC6pGRGCW2uNrOdyjqsZyUpy_4kBGMnaEwFZ7imVTlCY0IYxawk7AxNUtoQQnn_GKPnN5v2yuEc8HK5KnQMKeFtMMoV7z58OjBrKIxN2Tqnsg2-6EIsdPDZ-n3YpwK24XiO0Afw9rCfo9NOuQQXP3OKXu-WL4t7_Pi0eljcPmLN6jLjVpB503HVN1B1PacVrxkAqSohaNmaOWsMaTsBTAAANbXmXGihOYBRulUNm6Jq8D2mjtDJXbRbFb8kJfIARm7kAEYewMgBTC-7_iXTNh-75ais-098M4ihL_ZhIcqkLXgNxvYEsjTB_m3wDU68hTQ
CitedBy_id crossref_primary_10_1109_JBHI_2024_3392564
crossref_primary_10_1016_j_patcog_2024_110331
crossref_primary_10_1016_j_patcog_2024_111222
crossref_primary_10_1016_j_jksuci_2023_101907
crossref_primary_10_1016_j_dajour_2023_100280
crossref_primary_10_1109_LSP_2024_3427730
crossref_primary_10_11834_jig_230031
crossref_primary_10_1142_S0218001424520177
crossref_primary_10_1016_j_neunet_2024_107003
crossref_primary_10_1016_j_specom_2024_103140
crossref_primary_10_1016_j_eswa_2024_124001
crossref_primary_10_1109_TETCI_2024_3406422
crossref_primary_10_1016_j_patcog_2023_109794
crossref_primary_10_1109_ACCESS_2024_3452781
crossref_primary_10_1109_TCSVT_2023_3322470
crossref_primary_10_3390_tomography10120144
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1016_j_bspc_2024_106046
crossref_primary_10_1016_j_bspc_2025_107511
crossref_primary_10_2139_ssrn_4349266
crossref_primary_10_1016_j_buildenv_2022_109678
crossref_primary_10_1016_j_patcog_2023_109338
crossref_primary_10_1049_cit2_12346
crossref_primary_10_1016_j_patcog_2023_109915
Cites_doi 10.1016/j.patcog.2021.108102
10.1109/TAFFC.2017.2714671
10.1016/j.patcog.2019.107108
10.1177/1745691610388781
10.1109/T-AFFC.2011.25
10.1109/TAFFC.2015.2436926
10.1016/j.patcog.2017.02.003
10.1016/j.imavis.2016.11.020
10.1109/FG47880.2020.00126
10.1016/j.patcog.2019.107127
10.1016/j.neuroscience.2005.09.018
10.1016/j.patcog.2020.107626
10.1177/1745691610388779
10.1109/TMM.2010.2052239
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108833
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108833
S0031320322003144
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-b8096f7a016a55914753ee0448812bd936d0bf8e38eee1d5c778c8c7eedacba63
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:07:47 EDT 2025
Tue Jul 01 02:36:38 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cross-modality
Knowledge distillation
Continuous emotion recognition
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b8096f7a016a55914753ee0448812bd936d0bf8e38eee1d5c778c8c7eedacba63
ORCID 0000-0002-3653-136X
0000-0001-6395-2429
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0031320322003144
ParticipantIDs crossref_primary_10_1016_j_patcog_2022_108833
crossref_citationtrail_10_1016_j_patcog_2022_108833
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiang, Ho, Cheheb, Al-Maadeed, Al-Maadeed, Bouridane (bib0001) 2017; 67
Roheda, Riggan, Krim, Dai (bib0015) 2018
Hussein, Gavves, Smeulders (bib0017) 2019
Ringeval, Schuller, Valstar, Gratch, Cowie, Scherer, Mozgai, Cummins, Schmitt, Pantic (bib0037) 2017
Somandepalli, Gupta, Nasir, Booth, Lee, Narayanan (bib0020) 2016
Garcia, Morerio, Murino (bib0013) 2018
Alexandre, Soares, Thé (bib0029) 2020; 100
Zhao, Li, Liang, Chen, Jin (bib0024) 2019
Deng, Chen, Shi (bib0025) 2020
Thoker, Gall (bib0012) 2019
Ringeval, Schuller, Valstar, Cowie, Kaya, Schmitt, Amiriparian, Cummins, Lalanne, Michaud (bib0038) 2018
Zhao, Li, Abu Alsheikh, Tian, Zhao, Torralba, Katabi (bib0011) 2018
Wataraka Gamage, Dang, Sethu, Epps, Ambikairajah (bib0022) 2018
Zhou, Zhu, Ye, Qiu, Jiao (bib0041) 2018
Ringeval, Schuller, Valstar, Cummins, Cowie, Tavabi, Schmitt, Alisamir, Amiriparian, Messner (bib0039) 2019
Shimamura (bib0044) 2010; 5
Hoffman, Gupta, Leong, Guadarrama, Darrell (bib0009) 2016
D. Kollias, A. Schulc, E. Hajiyev, S. Zafeiriou, Analysing affective behavior in the first ABAW 2020 competition, in: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG), 794–800.
Uttal (bib0045) 2001
Fanelli, Gall, Romsdorfer, Weise, Van Gool (bib0030) 2010; 12
Chen, Deng, Cheng, Wang, Jiang, Sahli (bib0023) 2019
Wang, Girshick, Gupta, He (bib0033) 2018
Gupta, Hoffman, Malik (bib0010) 2016
Soleymani, Lichtenauer, Pun, Pantic (bib0026) 2011; 3
Bai, Wang, Liu, Liu, Song, Sebe, Kim (bib0042) 2021; 120
Jaiswal, Bara, Luo, Burzo, Mihalcea, Provost (bib0027) 2020
Faraki, Yu, Tsai, Suh, Chandraker (bib0002) 2021
Sankaran, Mohan, Lakshminarayana, Setlur, Govindaraju (bib0018) 2020; 102
Guo, Zhang, Hu, He, Gao (bib0031) 2016
Beck (bib0043) 2010; 5
Tian, Krishnan, Isola (bib0014) 2020
Barsoum, Zhang, Ferrer, Zhang (bib0035) 2016
Wang, Yoon (bib0006) 2021
Ekman, Rosenberg (bib0003) 1997
D.G. Myers, Psychology, 2004.
Han, Zhang, Cummins, Ringeval, Schuller (bib0021) 2017; 65
Soleymani, Asghari-Esfeden, Fu, Pantic (bib0019) 2015; 7
Romero, Ballas, Ebrahimi Kahou, Chassang, Gatta, Bengio (bib0034) 2014
Müller, Knight (bib0028) 2006; 139
Wang, Qiu, Ma, He (bib0004) 2021; 110
Nagrani, Albanie, Zisserman (bib0008) 2018
Cao, Shen, Xie, Parkhi, Zisserman (bib0032) 2018
Afouras, Chung, Zisserman (bib0007) 2020
Valstar, Gratch, Schuller, Ringeval, Lalanne, Torres Torres, Scherer, Stratou, Cowie, Pantic (bib0036) 2016
Alarcao, Fonseca (bib0005) 2017; 10
Alexandre (10.1016/j.patcog.2022.108833_bib0029) 2020; 100
Hussein (10.1016/j.patcog.2022.108833_bib0017) 2019
Faraki (10.1016/j.patcog.2022.108833_bib0002) 2021
Ringeval (10.1016/j.patcog.2022.108833_bib0039) 2019
Guo (10.1016/j.patcog.2022.108833_bib0031) 2016
Roheda (10.1016/j.patcog.2022.108833_bib0015) 2018
Alarcao (10.1016/j.patcog.2022.108833_bib0005) 2017; 10
Zhao (10.1016/j.patcog.2022.108833_bib0024) 2019
Gupta (10.1016/j.patcog.2022.108833_bib0010) 2016
Han (10.1016/j.patcog.2022.108833_bib0021) 2017; 65
Afouras (10.1016/j.patcog.2022.108833_bib0007) 2020
Beck (10.1016/j.patcog.2022.108833_bib0043) 2010; 5
Soleymani (10.1016/j.patcog.2022.108833_bib0026) 2011; 3
Müller (10.1016/j.patcog.2022.108833_bib0028) 2006; 139
Somandepalli (10.1016/j.patcog.2022.108833_bib0020) 2016
Nagrani (10.1016/j.patcog.2022.108833_bib0008) 2018
10.1016/j.patcog.2022.108833_bib0016
Fanelli (10.1016/j.patcog.2022.108833_bib0030) 2010; 12
Tian (10.1016/j.patcog.2022.108833_bib0014) 2020
Thoker (10.1016/j.patcog.2022.108833_bib0012) 2019
Barsoum (10.1016/j.patcog.2022.108833_bib0035) 2016
Wang (10.1016/j.patcog.2022.108833_bib0004) 2021; 110
Hoffman (10.1016/j.patcog.2022.108833_bib0009) 2016
Shimamura (10.1016/j.patcog.2022.108833_bib0044) 2010; 5
Jiang (10.1016/j.patcog.2022.108833_bib0001) 2017; 67
Ringeval (10.1016/j.patcog.2022.108833_bib0038) 2018
Ekman (10.1016/j.patcog.2022.108833_bib0003) 1997
Soleymani (10.1016/j.patcog.2022.108833_bib0019) 2015; 7
Uttal (10.1016/j.patcog.2022.108833_bib0045) 2001
Wang (10.1016/j.patcog.2022.108833_bib0006) 2021
Cao (10.1016/j.patcog.2022.108833_bib0032) 2018
Chen (10.1016/j.patcog.2022.108833_bib0023) 2019
Jaiswal (10.1016/j.patcog.2022.108833_bib0027) 2020
Garcia (10.1016/j.patcog.2022.108833_bib0013) 2018
Romero (10.1016/j.patcog.2022.108833_sbref0034) 2014
Ringeval (10.1016/j.patcog.2022.108833_bib0037) 2017
Zhao (10.1016/j.patcog.2022.108833_bib0011) 2018
Valstar (10.1016/j.patcog.2022.108833_bib0036) 2016
Wataraka Gamage (10.1016/j.patcog.2022.108833_bib0022) 2018
Wang (10.1016/j.patcog.2022.108833_bib0033) 2018
Sankaran (10.1016/j.patcog.2022.108833_bib0018) 2020; 102
Deng (10.1016/j.patcog.2022.108833_bib0025) 2020
10.1016/j.patcog.2022.108833_bib0040
Zhou (10.1016/j.patcog.2022.108833_bib0041) 2018
Bai (10.1016/j.patcog.2022.108833_bib0042) 2021; 120
References_xml – start-page: 3
  year: 2017
  end-page: 9
  ident: bib0037
  article-title: AVEC 2017: real-life depression, and affect recognition workshop and challenge
  publication-title: Proceedings of the 7th Annual Workshop on Audio/Visual Emotion Challenge
– start-page: 3
  year: 2016
  end-page: 10
  ident: bib0036
  article-title: AVEC 2016: depression, mood, and emotion recognition workshop and challenge
  publication-title: Proceedings of the 6th International on Audio/Visual Emotion Challenge and Workshop
– volume: 5
  start-page: 772
  year: 2010
  end-page: 775
  ident: bib0044
  article-title: Bridging psychological and biological science: the good, bad, and ugly
  publication-title: Perspect. Psychol. Sci.
– start-page: 3
  year: 2018
  end-page: 13
  ident: bib0038
  article-title: AVEC 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition
  publication-title: Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop
– volume: 110
  start-page: 107626
  year: 2021
  ident: bib0004
  article-title: A prototype-based SPD matrix network for domain adaptation eeg emotion recognition
  publication-title: Pattern Recognit.
– start-page: 2827
  year: 2016
  end-page: 2836
  ident: bib0010
  article-title: Cross modal distillation for supervision transfer
  publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
– volume: 139
  start-page: 51
  year: 2006
  end-page: 58
  ident: bib0028
  article-title: The functional neuroanatomy of working memory: contributions of human brain lesion studies
  publication-title: Neuroscience
– year: 1997
  ident: bib0003
  article-title: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression using the Facial Action Coding System (FACS)
– volume: 5
  start-page: 762
  year: 2010
  end-page: 766
  ident: bib0043
  article-title: The appeal of the brain in the popular press
  publication-title: Perspect. Psychol. Sci.
– year: 2001
  ident: bib0045
  article-title: The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain
– start-page: 3
  year: 2019
  end-page: 12
  ident: bib0039
  article-title: AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition
  publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
– volume: 10
  start-page: 374
  year: 2017
  end-page: 393
  ident: bib0005
  article-title: Emotions recognition using eeg signals: a survey
  publication-title: IEEE Trans. Affect. Comput.
– volume: 100
  start-page: 107108
  year: 2020
  ident: bib0029
  article-title: Systematic review of 3D facial expression recognition methods
  publication-title: Pattern Recognit.
– start-page: 8427
  year: 2018
  end-page: 8436
  ident: bib0008
  article-title: Seeing voices and hearing faces: cross-modal biometric matching
  publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
– start-page: 5032
  year: 2016
  end-page: 5039
  ident: bib0009
  article-title: Cross-modal adaptation for RGB-D detection
  publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA)
– reference: D.G. Myers, Psychology, 2004.
– start-page: 2143
  year: 2020
  end-page: 2147
  ident: bib0007
  article-title: ASR is all you need: cross-modal distillation for lip reading
  publication-title: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 1
  year: 2021
  ident: bib0006
  article-title: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– start-page: 15292
  year: 2021
  end-page: 15301
  ident: bib0002
  article-title: Cross-domain similarity learning for face recognition in unseen domains
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 67
  year: 2018
  end-page: 74
  ident: bib0032
  article-title: VGGFace2: A dataset for recognising faces across pose and age
  publication-title: 2018 13th IEEE international conference on Automatic Face & Gesture Recognition (FG 2018)
– volume: 65
  start-page: 76
  year: 2017
  end-page: 86
  ident: bib0021
  article-title: Strength modelling for real-worldautomatic continuous affect recognition from audiovisual signals
  publication-title: Image Vis. Comput.
– volume: 67
  start-page: 245
  year: 2017
  end-page: 251
  ident: bib0001
  article-title: Emotion recognition from scrambled facial images via many graph embedding
  publication-title: Pattern Recognit.
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bib0033
  article-title: Non-local neural networks
  publication-title: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
– volume: 120
  start-page: 108102
  year: 2021
  ident: bib0042
  article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments
  publication-title: Pattern Recognit.
– start-page: 7356
  year: 2018
  end-page: 7365
  ident: bib0011
  article-title: Through-wall human pose estimation using radio signals
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 19
  year: 2019
  end-page: 26
  ident: bib0023
  article-title: Efficient spatial temporal convolutional features for audiovisual continuous affect recognition
  publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
– year: 2014
  ident: bib0034
  article-title: FitNets: hints for thin deep nets
  publication-title: arXiv e-prints
– start-page: 103
  year: 2018
  end-page: 118
  ident: bib0013
  article-title: Modality distillation with multiple stream networks for action recognition
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 254
  year: 2019
  end-page: 263
  ident: bib0017
  article-title: Timeception for complex action recognition
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 59
  year: 2016
  end-page: 66
  ident: bib0020
  article-title: Online affect tracking with multimodal kalman filters
  publication-title: Proceedings of the 6th International Workshop on Audio/Visual Emotion Challenge
– start-page: 6
  year: 2019
  end-page: 10
  ident: bib0012
  article-title: Cross-modal knowledge distillation for action recognition
  publication-title: 2019 IEEE International Conference on Image Processing (ICIP)
– volume: 7
  start-page: 17
  year: 2015
  end-page: 28
  ident: bib0019
  article-title: Analysis of eeg signals and facial expressions for continuous emotion detection
  publication-title: IEEE Trans. Affect. Comput.
– year: 2020
  ident: bib0014
  article-title: Contrastive representation distillation
  publication-title: International Conference on Learning Representations
– start-page: 279
  year: 2016
  end-page: 283
  ident: bib0035
  article-title: Training deep networks for facial expression recognition with crowd-sourced label distribution
  publication-title: Proceedings of the 18th ACM International Conference on Multimodal Interaction
– start-page: 87
  year: 2016
  end-page: 102
  ident: bib0031
  article-title: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition
  publication-title: European Conference on Computer Vision
– start-page: 2926
  year: 2018
  end-page: 2930
  ident: bib0015
  article-title: Cross-modality distillation: a case for conditional generative adversarial networks
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 102
  start-page: 107127
  year: 2020
  ident: bib0018
  article-title: Domain adaptive representation learning for facial action unit recognition
  publication-title: Pattern Recognit.
– start-page: 47
  year: 2018
  end-page: 55
  ident: bib0022
  article-title: Speech-based continuous emotion prediction by learning perception responses related to salient events: a study based on vocal affect bursts and cross-cultural affect in AVEC 2018
  publication-title: Proceedings of the 2018 on Audio/Visual Emotion Challenge and Workshop
– start-page: 1499
  year: 2020
  end-page: 1510
  ident: bib0027
  article-title: Muse: a multimodal dataset of stressed emotion
  publication-title: Proceedings of The 12th Language Resources and Evaluation Conference
– start-page: 37
  year: 2019
  end-page: 45
  ident: bib0024
  article-title: Adversarial domain adaption for multi-cultural dimensional emotion recognition in dyadic interactions
  publication-title: Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop
– start-page: 592
  year: 2020
  end-page: 599
  ident: bib0025
  article-title: Multitask emotion recognition with incomplete labels
  publication-title: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)
– reference: D. Kollias, A. Schulc, E. Hajiyev, S. Zafeiriou, Analysing affective behavior in the first ABAW 2020 competition, in: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG), 794–800.
– start-page: 3791
  year: 2018
  end-page: 3800
  ident: bib0041
  article-title: Weakly supervised instance segmentation using class peak response
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 3
  start-page: 42
  year: 2011
  end-page: 55
  ident: bib0026
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect Comput.
– volume: 12
  start-page: 591
  year: 2010
  end-page: 598
  ident: bib0030
  article-title: A 3-D audio-visual corpus of affective communication
  publication-title: IEEE Trans. Multimedia
– volume: 120
  start-page: 108102
  year: 2021
  ident: 10.1016/j.patcog.2022.108833_bib0042
  article-title: Explainable deep learning for efficient and robust pattern recognition: a survey of recent developments
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108102
– volume: 10
  start-page: 374
  issue: 3
  year: 2017
  ident: 10.1016/j.patcog.2022.108833_bib0005
  article-title: Emotions recognition using eeg signals: a survey
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 100
  start-page: 107108
  year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0029
  article-title: Systematic review of 3D facial expression recognition methods
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107108
– volume: 5
  start-page: 772
  issue: 6
  year: 2010
  ident: 10.1016/j.patcog.2022.108833_bib0044
  article-title: Bridging psychological and biological science: the good, bad, and ugly
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691610388781
– start-page: 7356
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0011
  article-title: Through-wall human pose estimation using radio signals
– start-page: 3791
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0041
  article-title: Weakly supervised instance segmentation using class peak response
– start-page: 2143
  year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0007
  article-title: ASR is all you need: cross-modal distillation for lip reading
– start-page: 37
  year: 2019
  ident: 10.1016/j.patcog.2022.108833_bib0024
  article-title: Adversarial domain adaption for multi-cultural dimensional emotion recognition in dyadic interactions
– start-page: 3
  year: 2019
  ident: 10.1016/j.patcog.2022.108833_bib0039
  article-title: AVEC 2019 workshop and challenge: state-of-mind, detecting depression with AI, and cross-cultural affect recognition
– volume: 3
  start-page: 42
  issue: 1
  year: 2011
  ident: 10.1016/j.patcog.2022.108833_bib0026
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect Comput.
  doi: 10.1109/T-AFFC.2011.25
– volume: 7
  start-page: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2022.108833_bib0019
  article-title: Analysis of eeg signals and facial expressions for continuous emotion detection
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2436926
– start-page: 87
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0031
  article-title: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition
– start-page: 254
  year: 2019
  ident: 10.1016/j.patcog.2022.108833_bib0017
  article-title: Timeception for complex action recognition
– start-page: 2827
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0010
  article-title: Cross modal distillation for supervision transfer
– start-page: 47
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0022
  article-title: Speech-based continuous emotion prediction by learning perception responses related to salient events: a study based on vocal affect bursts and cross-cultural affect in AVEC 2018
– start-page: 3
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0036
  article-title: AVEC 2016: depression, mood, and emotion recognition workshop and challenge
– ident: 10.1016/j.patcog.2022.108833_bib0016
– volume: 67
  start-page: 245
  year: 2017
  ident: 10.1016/j.patcog.2022.108833_bib0001
  article-title: Emotion recognition from scrambled facial images via many graph embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.003
– start-page: 59
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0020
  article-title: Online affect tracking with multimodal kalman filters
– volume: 65
  start-page: 76
  year: 2017
  ident: 10.1016/j.patcog.2022.108833_bib0021
  article-title: Strength modelling for real-worldautomatic continuous affect recognition from audiovisual signals
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2016.11.020
– start-page: 6
  year: 2019
  ident: 10.1016/j.patcog.2022.108833_bib0012
  article-title: Cross-modal knowledge distillation for action recognition
– start-page: 2926
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0015
  article-title: Cross-modality distillation: a case for conditional generative adversarial networks
– year: 2014
  ident: 10.1016/j.patcog.2022.108833_sbref0034
  article-title: FitNets: hints for thin deep nets
  publication-title: arXiv e-prints
– start-page: 3
  year: 2017
  ident: 10.1016/j.patcog.2022.108833_bib0037
  article-title: AVEC 2017: real-life depression, and affect recognition workshop and challenge
– start-page: 19
  year: 2019
  ident: 10.1016/j.patcog.2022.108833_bib0023
  article-title: Efficient spatial temporal convolutional features for audiovisual continuous affect recognition
– ident: 10.1016/j.patcog.2022.108833_bib0040
  doi: 10.1109/FG47880.2020.00126
– start-page: 8427
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0008
  article-title: Seeing voices and hearing faces: cross-modal biometric matching
– start-page: 592
  year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0025
  article-title: Multitask emotion recognition with incomplete labels
– volume: 102
  start-page: 107127
  year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0018
  article-title: Domain adaptive representation learning for facial action unit recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107127
– start-page: 15292
  year: 2021
  ident: 10.1016/j.patcog.2022.108833_bib0002
  article-title: Cross-domain similarity learning for face recognition in unseen domains
– start-page: 5032
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0009
  article-title: Cross-modal adaptation for RGB-D detection
– start-page: 7794
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0033
  article-title: Non-local neural networks
– volume: 139
  start-page: 51
  issue: 1
  year: 2006
  ident: 10.1016/j.patcog.2022.108833_bib0028
  article-title: The functional neuroanatomy of working memory: contributions of human brain lesion studies
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.09.018
– year: 1997
  ident: 10.1016/j.patcog.2022.108833_bib0003
– volume: 110
  start-page: 107626
  year: 2021
  ident: 10.1016/j.patcog.2022.108833_bib0004
  article-title: A prototype-based SPD matrix network for domain adaptation eeg emotion recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107626
– start-page: 1
  issue: 01
  year: 2021
  ident: 10.1016/j.patcog.2022.108833_bib0006
  article-title: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– year: 2001
  ident: 10.1016/j.patcog.2022.108833_bib0045
– start-page: 1499
  year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0027
  article-title: Muse: a multimodal dataset of stressed emotion
– start-page: 67
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0032
  article-title: VGGFace2: A dataset for recognising faces across pose and age
– start-page: 103
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0013
  article-title: Modality distillation with multiple stream networks for action recognition
– start-page: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.108833_bib0038
  article-title: AVEC 2018 workshop and challenge: Bipolar disorder and cross-cultural affect recognition
– volume: 5
  start-page: 762
  issue: 6
  year: 2010
  ident: 10.1016/j.patcog.2022.108833_bib0043
  article-title: The appeal of the brain in the popular press
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691610388779
– year: 2020
  ident: 10.1016/j.patcog.2022.108833_bib0014
  article-title: Contrastive representation distillation
– start-page: 279
  year: 2016
  ident: 10.1016/j.patcog.2022.108833_bib0035
  article-title: Training deep networks for facial expression recognition with crowd-sourced label distribution
– volume: 12
  start-page: 591
  issue: 6
  year: 2010
  ident: 10.1016/j.patcog.2022.108833_bib0030
  article-title: A 3-D audio-visual corpus of affective communication
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2010.2052239
SSID ssj0017142
Score 2.5374637
Snippet •By taking the above visual and EEG models as the teacher and student, we develop a cross-modal knowledge distillation method to improve the EEG-based...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108833
SubjectTerms Continuous emotion recognition
Cross-modality
Knowledge distillation
Title Visual-to-EEG cross-modal knowledge distillation for continuous emotion recognition
URI https://dx.doi.org/10.1016/j.patcog.2022.108833
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD6ymSe3EZqyqlgKiCxR1i-zEQUElqSBd-e3cxUkEEgKJzYl8UfLpfI_ouztCLoxVIU9EyLTyNRMi9WAlNLMilVJrLAbBQuH7WTidi9tFsOiQUVMLg7TK2vY7m15Z6_pOv0azv8oyrPHFtoMeaCSuBPYExe51oNOXHy3NA-d7u47h3Ge4uymfqzheKzB3xTNkiYMBku0U5z-7py8uZ7JDtupYkQ7d6-ySjs33yHYzh4HWx3KfPDxl72u9ZGXBxuNrWj2ZvRYJyLa_zGiCh3npmG8UIlWKJPUsX0PmT62b5UNbNlGRH5D5ZPw4mrJ6WAKLIYYqmVGQjKRSw4dpyBJ8QIJb60H2BS7cJFc8TDyTKgvYW-snQSylilUswUfq2OiQH5JuXuT2iFCecq2MFkFiAyFTpSBm9EJlZCKMH2v_mPAGoyiuO4njQItl1FDGXiKHbITIRg7ZY8JaqZXrpPHHftnAH33TiAiM_a-SJ_-WPCWbeOXIemekW76t7TkEHaXpVVrVIxvDm7vp7BOuXdfs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXjd0LJLdz0SAoI8LoLh1uy2W4PBlmj5_86yLdHEaOJt03aa9svsPNpvZgDutJEBi3lAlfQV5TzxcMUVNTwRQilbDGILhceToD_jj_PWvAKdshbG0ioL2-9s-sZaF0caBZqN1WJha3xt20EPNdKuON-Bmu1OxatQaw-G_cn2Z4LwuWsaznxqBcoKug3Na4UWL3vBRLHZtHw7ydjPHuqL1-kdwn4RLpK2e6IjqJj0GA7KUQyk2Jkn8PS8-FirJc0z2u0-kM2d6VsWo-z2qxmJ7X5eOvIbwWCVWJ76Il1j8k-MG-dDtoSiLD2FWa877fRpMS-BRhhG5VRLzEcSofDFFCYKPsdUxBgPEzD04jq-Z0Hs6UQahN8YP25FQshIRgLdpIq0CtgZVNMsNedAWMKU1Iq3YoOQJlJi2OgFUouYaz9Sfh1YiVEYFc3E7UyLZViyxl5Dh2xokQ0dsnWgW6mVa6bxx_WihD_8phQh2vtfJS_-LXkLu_3peBSOBpPhJezZM467dwXV_H1trjEGyfVNoWOfHy_anQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual-to-EEG+cross-modal+knowledge+distillation+for+continuous+emotion+recognition&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Su&rft.au=Tang%2C+Chuangao&rft.au=Guan%2C+Cuntai&rft.date=2022-10-01&rft.issn=0031-3203&rft.volume=130&rft.spage=108833&rft_id=info:doi/10.1016%2Fj.patcog.2022.108833&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_108833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon