Adaptive Decentralized Control for Constrained Strong Interconnected Nonlinear Systems and Its Application to Inverted Pendulum
This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with t...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 7; pp. 10110 - 10120 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme. |
---|---|
AbstractList | This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme. This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme.This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme. |
Author | Feng, Zhiguang Wu, Ligang Li, Rui-Bing |
Author_xml | – sequence: 1 givenname: Zhiguang orcidid: 0000-0003-1037-1529 surname: Feng fullname: Feng, Zhiguang email: congdian@gmail.com organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Rui-Bing orcidid: 0000-0003-3944-9166 surname: Li fullname: Li, Rui-Bing email: heu_mrlrb@hrbeu.edu.cn organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Ligang orcidid: 0000-0001-8198-5267 surname: Wu fullname: Wu, Ligang email: ligangwu@hit.edu.cn organization: School of Astronautics, Harbin Institute of Technology, Harbin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37022270$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuLFDEUhYOMOOM4f0BECty46TaPqkqybNpXQ9MKPYK7kE5uSYaqpExSA-PGv25qukdkFmaTm3PPdwn3PEdnPnhA6CXBS0KwfHe92233S4opWzLKhCDyCbqgpKWL-XX2t-bfz9FVSje4nBY3bS2foXPGMaWU4wv0e2X1mN0tVO_BgM9R9-4X2GodSh36qgtxrlNpOF_0fVH9j2rjM0QTvAeTi7oLvi9tHav9XcowpEp7W21yqlbj2Dujswu-yqFwtxBn4it4O_XT8AI97XSf4Op0X6JvHz9crz8vtl8-bdar7cKwhubFgRPDDlhoYQ3wljSSHAzWnNDatkayusGdlaAtZprWGlvcgOSamI40AuqGXaK3x7ljDD8nSFkNLhnoe-0hTElRLjmpRctlsb55ZL0JU_Tld4phLrBsuKDF9frkmg4DWDVGN-h4px5WWwziaDAxpBShU8bl-0XMu-wVwWoOUt0HqeYg1SnIgtJH6MP0_0KvjpADgH8AzCghgv0BeFyqdg |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_ins_2023_03_126 crossref_primary_10_3390_electronics13091763 crossref_primary_10_1080_00207721_2024_2313653 crossref_primary_10_1007_s00034_024_02982_x crossref_primary_10_1002_acs_3882 crossref_primary_10_1080_00207721_2023_2272218 crossref_primary_10_1109_ACCESS_2024_3452417 crossref_primary_10_3390_e25081158 crossref_primary_10_1007_s00034_024_02891_z crossref_primary_10_1109_TASE_2024_3457028 crossref_primary_10_1109_TSMC_2024_3485651 crossref_primary_10_1002_rnc_7853 crossref_primary_10_1109_JAS_2024_124617 crossref_primary_10_1016_j_jfranklin_2025_107525 crossref_primary_10_1049_cth2_12655 crossref_primary_10_1002_rnc_7497 crossref_primary_10_1016_j_jfranklin_2024_107499 crossref_primary_10_1177_01423312241299533 |
Cites_doi | 10.1016/S0005-1098(03)00199-7 10.1109/9.554396 10.1007/s12555-014-0018-3 10.1109/TNNLS.2019.2955438 10.1016/j.automatica.2008.11.017 10.1109/tcyb.2020.2988897 10.1109/TSMC.2022.3143359 10.1109/TNNLS.2019.2919697 10.1007/s00521-014-1650-9 10.1109/TNNLS.2017.2712698 10.1016/s0076-5392(08)x6200-9 10.1109/TFUZZ.2018.2798577 10.1109/TCYB.2018.2856747 10.1109/TNNLS.2019.2933409 10.1109/TCYB.2016.2581173 10.1109/TCYB.2019.2894024 10.1109/tnnls.2021.3105681 10.1080/00207179.2011.631192 10.1109/TAC.2018.2845707 10.1109/TSMCB.2003.817039 10.1109/tcyb.2020.2974775 10.1016/j.automatica.2019.05.032 10.1109/TCYB.2018.2865499 10.1109/9.580893 10.1109/TCYB.2015.2411285 10.1109/TNN.2005.857948 10.1016/j.automatica.2020.109102 10.1109/TSMC.2016.2633007 10.1109/TCYB.2017.2692384 10.1016/S0005-1098(01)00086-3 10.1016/j.automatica.2015.10.034 10.1049/iet-cta.2019.0283 10.1109/TCYB.2017.2681683 10.1109/9.827370 10.1016/j.automatica.2018.09.032 10.1109/TSMC.2019.2918351 10.1109/tnnls.2021.3129228 10.1016/j.automatica.2005.02.010 10.1049/iet-cta.2016.0333 10.1109/TAC.2020.3014292 10.1109/9.956061 10.1109/TSMC.2015.2508962 10.1109/TAC.2016.2600343 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2023.3238819 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 10120 |
ExternalDocumentID | 37022270 10_1109_TNNLS_2023_3238819 10032118 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 3072022TS0402 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 62073094 funderid: 10.13039/501100001809 – fundername: National Science and Technology Project Technology Filed Foundation |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c352t-b71c3b08a8dce761591bc0a7124d6c93450fd9ead03a24a0d05e97a1cf158e453 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 01:25:00 EDT 2025 Mon Jun 30 06:36:00 EDT 2025 Thu Jul 24 03:25:39 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 00:27:49 EDT 2025 Wed Aug 27 02:05:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-b71c3b08a8dce761591bc0a7124d6c93450fd9ead03a24a0d05e97a1cf158e453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3944-9166 0000-0001-8198-5267 0000-0003-1037-1529 |
PMID | 37022270 |
PQID | 3078095782 |
PQPubID | 85436 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2797148679 crossref_primary_10_1109_TNNLS_2023_3238819 crossref_citationtrail_10_1109_TNNLS_2023_3238819 pubmed_primary_37022270 ieee_primary_10032118 proquest_journals_3078095782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 Krstic (ref43) 1995 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref10 doi: 10.1016/S0005-1098(03)00199-7 – ident: ref11 doi: 10.1109/9.554396 – ident: ref23 doi: 10.1007/s12555-014-0018-3 – ident: ref40 doi: 10.1109/TNNLS.2019.2955438 – ident: ref18 doi: 10.1016/j.automatica.2008.11.017 – ident: ref24 doi: 10.1109/tcyb.2020.2988897 – ident: ref37 doi: 10.1109/TSMC.2022.3143359 – ident: ref2 doi: 10.1109/TNNLS.2019.2919697 – ident: ref34 doi: 10.1007/s00521-014-1650-9 – ident: ref6 doi: 10.1109/TNNLS.2017.2712698 – ident: ref1 doi: 10.1016/s0076-5392(08)x6200-9 – ident: ref20 doi: 10.1109/TFUZZ.2018.2798577 – ident: ref35 doi: 10.1109/TCYB.2018.2856747 – ident: ref39 doi: 10.1109/TNNLS.2019.2933409 – ident: ref30 doi: 10.1109/TCYB.2016.2581173 – ident: ref7 doi: 10.1109/TCYB.2019.2894024 – ident: ref21 doi: 10.1109/tnnls.2021.3105681 – ident: ref32 doi: 10.1080/00207179.2011.631192 – ident: ref42 doi: 10.1109/TAC.2018.2845707 – ident: ref15 doi: 10.1109/TSMCB.2003.817039 – ident: ref25 doi: 10.1109/tcyb.2020.2974775 – ident: ref44 doi: 10.1016/j.automatica.2019.05.032 – ident: ref29 doi: 10.1109/TCYB.2018.2865499 – ident: ref12 doi: 10.1109/9.580893 – ident: ref19 doi: 10.1109/TCYB.2015.2411285 – ident: ref14 doi: 10.1109/TNN.2005.857948 – ident: ref36 doi: 10.1016/j.automatica.2020.109102 – ident: ref28 doi: 10.1109/TSMC.2016.2633007 – ident: ref5 doi: 10.1109/TCYB.2017.2692384 – ident: ref8 doi: 10.1016/S0005-1098(01)00086-3 – ident: ref22 doi: 10.1016/j.automatica.2015.10.034 – ident: ref33 doi: 10.1049/iet-cta.2019.0283 – ident: ref16 doi: 10.1109/TCYB.2017.2681683 – ident: ref17 doi: 10.1109/9.827370 – ident: ref38 doi: 10.1016/j.automatica.2018.09.032 – ident: ref27 doi: 10.1109/TSMC.2019.2918351 – ident: ref41 doi: 10.1109/tnnls.2021.3129228 – ident: ref13 doi: 10.1016/j.automatica.2005.02.010 – ident: ref26 doi: 10.1049/iet-cta.2016.0333 – ident: ref3 doi: 10.1109/TAC.2020.3014292 – ident: ref9 doi: 10.1109/9.956061 – ident: ref31 doi: 10.1109/TSMC.2015.2508962 – ident: ref4 doi: 10.1109/TAC.2016.2600343 – volume-title: Nonlinear and Adaptive Control Design year: 1995 ident: ref43 |
SSID | ssj0000605649 |
Score | 2.5843194 |
Snippet | This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints.... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10110 |
SubjectTerms | Adaptive control Adaptive systems Asymmetric time-varying constraints Asymmetry Backstepping Constraints Coordinate transformations Decentralized control Error analysis feasibility conditions Gaussian process Interconnected systems Neural networks Nonlinear control Nonlinear systems Process control Radial basis function Time-varying systems Tracking control Tracking errors Trajectory unknown strong interconnections |
Title | Adaptive Decentralized Control for Constrained Strong Interconnected Nonlinear Systems and Its Application to Inverted Pendulum |
URI | https://ieeexplore.ieee.org/document/10032118 https://www.ncbi.nlm.nih.gov/pubmed/37022270 https://www.proquest.com/docview/3078095782 https://www.proquest.com/docview/2797148679 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHlAvlEeBlIKMxA0l2HEcx8dVoSoIIqS20t4iv4IqULbqZi-98Nc7tpPlIRVxixI7sTUzmW_G8wB4U6FW8U6bvPQ9GiiKs9z0ZZ9LUcq-R32odMh3_tLWpxfVp6VYTsnqMRfGex-Dz3wRLuNZvlvZTXCVoYRTjgZLswM7aLmlZK2tQ4UiMK8j3C1ZXeYll8s5SYaqd-dt-_msCL3CC45aCvXgHtznMqaC0j90UmyycjfejHrnZB_aecUp3OR7sRlNYW_-Kub431t6CA8mBEoWiWUewT0_PIb9ubsDmYT9CfxcOH0VfobkvZ9COC9vvCPHKbidINoN1-vYZALvnwWn-jcSXYw2hM9YBLOkTaU4NL441UYnenDk47gmi19H52RckVDw4zrM-OoHF1ySB3Bx8uH8-DSf2jXkFlHcmBvJLDe00Y2zXiJSUsxYqiUiCFdbxStBe6eQcynXZaWpo8IrqZntmWh8JfhT2B1Wg38OxCqN2IFZ6tFa5IKhVWeEYV65uu69EBmwmWCdnWqZh93-6KJNQ1UX6d0FencTvTN4u51zlSp5_HP0QSDWbyMTnTI4mhmjm6R93eF_skGoimArg9fbxyin4fBFD361WXelVJLF8oYZPEsMtX35zIeHd3z0Bezh2qoUJXwEu-P1xr9ELDSaV1EGbgG0hQNX |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXyqOUQAEjcUPZ2nEcx8dVodrCNkLqVtpb5NgOQlTZqpu99MJfZ2wny0Mq4hYldmJrZjLfjOcB8C5HreKsbtLMtWigKM7Sps3aVIpMti3qQ6V9vvNZVcwu8k9LsRyS1UMujHMuBJ-5ib8MZ_l2ZTbeVYYSTjkaLOVduIeKX7CYrrV1qVCE5kUAvBkrsjTjcjmmyVB1tKiq-fnEdwufcNRTqAl34T6XIRmU_qGVQpuV2xFn0Dwne1CNa44BJ98nm76ZmJu_yjn-96YewcMBg5JpZJrHcMd1T2Bv7O9ABnF_Cj-mVl_53yH54IYgzm83zpLjGN5OEO_663VoM4H3z71b_SsJTkbjA2gMwllSxWIcGl8cq6MT3Vly2q_J9NfhOelXxJf8uPYzvrjOeqfkPlycfFwcz9KhYUNqEMf1aSOZ4Q0tdWmNk4iVFGsM1RIxhC2M4rmgrVXIu5TrLNfUUuGU1My0TJQuF_wZ7HSrzj0HYpRG9MAMdWgvcsHQrmtEw5yyRdE6IRJgI8FqM1Qz97u9rINVQ1Ud6F17etcDvRN4v51zFWt5_HP0vifWbyMjnRI4HBmjHuR9XeOfskSwinArgbfbxyip_vhFd261WdeZVJKFAocJHESG2r585MMXt3z0DTyYLc7m9fy0-vwSdnGdeYwZPoSd_nrjXiEy6pvXQR5-Al0rBqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Decentralized+Control+for+Constrained+Strong+Interconnected+Nonlinear+Systems+and+Its+Application+to+Inverted+Pendulum&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Feng%2C+Zhiguang&rft.au=Li%2C+Rui-Bing&rft.au=Wu%2C+Ligang&rft.date=2024-07-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2023.3238819&rft_id=info%3Apmid%2F37022270&rft.externalDocID=37022270 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |