Adaptive Decentralized Control for Constrained Strong Interconnected Nonlinear Systems and Its Application to Inverted Pendulum

This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 7; pp. 10110 - 10120
Main Authors Feng, Zhiguang, Li, Rui-Bing, Wu, Ligang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme.
AbstractList This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme.
This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme.This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints. Currently, there are few related studies on unknown strongly interconnected nonlinear systems with asymmetric time-varying constraints. To deal with the assumptions of the interconnection terms in the design process, which include upper functions and structural restrictions, the properties of Gaussian function in radial basis function (RBF) neural networks are applied to overcome this difficulty. By constructing the nonlinear state-dependent function (NSDF) and using a new coordinate transformation, the conservative step that the original state constraint converts into a new boundary of the tracking error is removed. Meanwhile, the virtual controller's feasibility condition is removed. It is proven that all the signals are bounded, especially the original tracking error and the new tracking error, which are both bounded. In the end, simulation studies are carried out to verify the effectiveness and benefits of the proposed control scheme.
Author Feng, Zhiguang
Wu, Ligang
Li, Rui-Bing
Author_xml – sequence: 1
  givenname: Zhiguang
  orcidid: 0000-0003-1037-1529
  surname: Feng
  fullname: Feng, Zhiguang
  email: congdian@gmail.com
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Rui-Bing
  orcidid: 0000-0003-3944-9166
  surname: Li
  fullname: Li, Rui-Bing
  email: heu_mrlrb@hrbeu.edu.cn
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Ligang
  orcidid: 0000-0001-8198-5267
  surname: Wu
  fullname: Wu, Ligang
  email: ligangwu@hit.edu.cn
  organization: School of Astronautics, Harbin Institute of Technology, Harbin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022270$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOOM4f0BECty46TaPqkqybNpXQ9MKPYK7kE5uSYaqpExSA-PGv25qukdkFmaTm3PPdwn3PEdnPnhA6CXBS0KwfHe92233S4opWzLKhCDyCbqgpKWL-XX2t-bfz9FVSje4nBY3bS2foXPGMaWU4wv0e2X1mN0tVO_BgM9R9-4X2GodSh36qgtxrlNpOF_0fVH9j2rjM0QTvAeTi7oLvi9tHav9XcowpEp7W21yqlbj2Dujswu-yqFwtxBn4it4O_XT8AI97XSf4Op0X6JvHz9crz8vtl8-bdar7cKwhubFgRPDDlhoYQ3wljSSHAzWnNDatkayusGdlaAtZprWGlvcgOSamI40AuqGXaK3x7ljDD8nSFkNLhnoe-0hTElRLjmpRctlsb55ZL0JU_Tld4phLrBsuKDF9frkmg4DWDVGN-h4px5WWwziaDAxpBShU8bl-0XMu-wVwWoOUt0HqeYg1SnIgtJH6MP0_0KvjpADgH8AzCghgv0BeFyqdg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_ins_2023_03_126
crossref_primary_10_3390_electronics13091763
crossref_primary_10_1080_00207721_2024_2313653
crossref_primary_10_1007_s00034_024_02982_x
crossref_primary_10_1002_acs_3882
crossref_primary_10_1080_00207721_2023_2272218
crossref_primary_10_1109_ACCESS_2024_3452417
crossref_primary_10_3390_e25081158
crossref_primary_10_1007_s00034_024_02891_z
crossref_primary_10_1109_TASE_2024_3457028
crossref_primary_10_1109_TSMC_2024_3485651
crossref_primary_10_1002_rnc_7853
crossref_primary_10_1109_JAS_2024_124617
crossref_primary_10_1016_j_jfranklin_2025_107525
crossref_primary_10_1049_cth2_12655
crossref_primary_10_1002_rnc_7497
crossref_primary_10_1016_j_jfranklin_2024_107499
crossref_primary_10_1177_01423312241299533
Cites_doi 10.1016/S0005-1098(03)00199-7
10.1109/9.554396
10.1007/s12555-014-0018-3
10.1109/TNNLS.2019.2955438
10.1016/j.automatica.2008.11.017
10.1109/tcyb.2020.2988897
10.1109/TSMC.2022.3143359
10.1109/TNNLS.2019.2919697
10.1007/s00521-014-1650-9
10.1109/TNNLS.2017.2712698
10.1016/s0076-5392(08)x6200-9
10.1109/TFUZZ.2018.2798577
10.1109/TCYB.2018.2856747
10.1109/TNNLS.2019.2933409
10.1109/TCYB.2016.2581173
10.1109/TCYB.2019.2894024
10.1109/tnnls.2021.3105681
10.1080/00207179.2011.631192
10.1109/TAC.2018.2845707
10.1109/TSMCB.2003.817039
10.1109/tcyb.2020.2974775
10.1016/j.automatica.2019.05.032
10.1109/TCYB.2018.2865499
10.1109/9.580893
10.1109/TCYB.2015.2411285
10.1109/TNN.2005.857948
10.1016/j.automatica.2020.109102
10.1109/TSMC.2016.2633007
10.1109/TCYB.2017.2692384
10.1016/S0005-1098(01)00086-3
10.1016/j.automatica.2015.10.034
10.1049/iet-cta.2019.0283
10.1109/TCYB.2017.2681683
10.1109/9.827370
10.1016/j.automatica.2018.09.032
10.1109/TSMC.2019.2918351
10.1109/tnnls.2021.3129228
10.1016/j.automatica.2005.02.010
10.1049/iet-cta.2016.0333
10.1109/TAC.2020.3014292
10.1109/9.956061
10.1109/TSMC.2015.2508962
10.1109/TAC.2016.2600343
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2023.3238819
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10120
ExternalDocumentID 37022270
10_1109_TNNLS_2023_3238819
10032118
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 3072022TS0402
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62073094
  funderid: 10.13039/501100001809
– fundername: National Science and Technology Project Technology Filed Foundation
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c352t-b71c3b08a8dce761591bc0a7124d6c93450fd9ead03a24a0d05e97a1cf158e453
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 01:25:00 EDT 2025
Mon Jun 30 06:36:00 EDT 2025
Thu Jul 24 03:25:39 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Tue Jul 01 00:27:49 EDT 2025
Wed Aug 27 02:05:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b71c3b08a8dce761591bc0a7124d6c93450fd9ead03a24a0d05e97a1cf158e453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3944-9166
0000-0001-8198-5267
0000-0003-1037-1529
PMID 37022270
PQID 3078095782
PQPubID 85436
PageCount 11
ParticipantIDs proquest_miscellaneous_2797148679
crossref_primary_10_1109_TNNLS_2023_3238819
crossref_citationtrail_10_1109_TNNLS_2023_3238819
pubmed_primary_37022270
ieee_primary_10032118
proquest_journals_3078095782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
Krstic (ref43) 1995
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1016/S0005-1098(03)00199-7
– ident: ref11
  doi: 10.1109/9.554396
– ident: ref23
  doi: 10.1007/s12555-014-0018-3
– ident: ref40
  doi: 10.1109/TNNLS.2019.2955438
– ident: ref18
  doi: 10.1016/j.automatica.2008.11.017
– ident: ref24
  doi: 10.1109/tcyb.2020.2988897
– ident: ref37
  doi: 10.1109/TSMC.2022.3143359
– ident: ref2
  doi: 10.1109/TNNLS.2019.2919697
– ident: ref34
  doi: 10.1007/s00521-014-1650-9
– ident: ref6
  doi: 10.1109/TNNLS.2017.2712698
– ident: ref1
  doi: 10.1016/s0076-5392(08)x6200-9
– ident: ref20
  doi: 10.1109/TFUZZ.2018.2798577
– ident: ref35
  doi: 10.1109/TCYB.2018.2856747
– ident: ref39
  doi: 10.1109/TNNLS.2019.2933409
– ident: ref30
  doi: 10.1109/TCYB.2016.2581173
– ident: ref7
  doi: 10.1109/TCYB.2019.2894024
– ident: ref21
  doi: 10.1109/tnnls.2021.3105681
– ident: ref32
  doi: 10.1080/00207179.2011.631192
– ident: ref42
  doi: 10.1109/TAC.2018.2845707
– ident: ref15
  doi: 10.1109/TSMCB.2003.817039
– ident: ref25
  doi: 10.1109/tcyb.2020.2974775
– ident: ref44
  doi: 10.1016/j.automatica.2019.05.032
– ident: ref29
  doi: 10.1109/TCYB.2018.2865499
– ident: ref12
  doi: 10.1109/9.580893
– ident: ref19
  doi: 10.1109/TCYB.2015.2411285
– ident: ref14
  doi: 10.1109/TNN.2005.857948
– ident: ref36
  doi: 10.1016/j.automatica.2020.109102
– ident: ref28
  doi: 10.1109/TSMC.2016.2633007
– ident: ref5
  doi: 10.1109/TCYB.2017.2692384
– ident: ref8
  doi: 10.1016/S0005-1098(01)00086-3
– ident: ref22
  doi: 10.1016/j.automatica.2015.10.034
– ident: ref33
  doi: 10.1049/iet-cta.2019.0283
– ident: ref16
  doi: 10.1109/TCYB.2017.2681683
– ident: ref17
  doi: 10.1109/9.827370
– ident: ref38
  doi: 10.1016/j.automatica.2018.09.032
– ident: ref27
  doi: 10.1109/TSMC.2019.2918351
– ident: ref41
  doi: 10.1109/tnnls.2021.3129228
– ident: ref13
  doi: 10.1016/j.automatica.2005.02.010
– ident: ref26
  doi: 10.1049/iet-cta.2016.0333
– ident: ref3
  doi: 10.1109/TAC.2020.3014292
– ident: ref9
  doi: 10.1109/9.956061
– ident: ref31
  doi: 10.1109/TSMC.2015.2508962
– ident: ref4
  doi: 10.1109/TAC.2016.2600343
– volume-title: Nonlinear and Adaptive Control Design
  year: 1995
  ident: ref43
SSID ssj0000605649
Score 2.5843194
Snippet This work is dedicated to adaptive decentralized tracking control for a class of strong interconnected nonlinear systems with asymmetric constraints....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10110
SubjectTerms Adaptive control
Adaptive systems
Asymmetric time-varying constraints
Asymmetry
Backstepping
Constraints
Coordinate transformations
Decentralized control
Error analysis
feasibility conditions
Gaussian process
Interconnected systems
Neural networks
Nonlinear control
Nonlinear systems
Process control
Radial basis function
Time-varying systems
Tracking control
Tracking errors
Trajectory
unknown strong interconnections
Title Adaptive Decentralized Control for Constrained Strong Interconnected Nonlinear Systems and Its Application to Inverted Pendulum
URI https://ieeexplore.ieee.org/document/10032118
https://www.ncbi.nlm.nih.gov/pubmed/37022270
https://www.proquest.com/docview/3078095782
https://www.proquest.com/docview/2797148679
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHlAvlEeBlIKMxA0l2HEcx8dVoSoIIqS20t4iv4IqULbqZi-98Nc7tpPlIRVxixI7sTUzmW_G8wB4U6FW8U6bvPQ9GiiKs9z0ZZ9LUcq-R32odMh3_tLWpxfVp6VYTsnqMRfGex-Dz3wRLuNZvlvZTXCVoYRTjgZLswM7aLmlZK2tQ4UiMK8j3C1ZXeYll8s5SYaqd-dt-_msCL3CC45aCvXgHtznMqaC0j90UmyycjfejHrnZB_aecUp3OR7sRlNYW_-Kub431t6CA8mBEoWiWUewT0_PIb9ubsDmYT9CfxcOH0VfobkvZ9COC9vvCPHKbidINoN1-vYZALvnwWn-jcSXYw2hM9YBLOkTaU4NL441UYnenDk47gmi19H52RckVDw4zrM-OoHF1ySB3Bx8uH8-DSf2jXkFlHcmBvJLDe00Y2zXiJSUsxYqiUiCFdbxStBe6eQcynXZaWpo8IrqZntmWh8JfhT2B1Wg38OxCqN2IFZ6tFa5IKhVWeEYV65uu69EBmwmWCdnWqZh93-6KJNQ1UX6d0FencTvTN4u51zlSp5_HP0QSDWbyMTnTI4mhmjm6R93eF_skGoimArg9fbxyin4fBFD361WXelVJLF8oYZPEsMtX35zIeHd3z0Bezh2qoUJXwEu-P1xr9ELDSaV1EGbgG0hQNX
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAXyqOUQAEjcUPZ2nEcx8dVodrCNkLqVtpb5NgOQlTZqpu99MJfZ2wny0Mq4hYldmJrZjLfjOcB8C5HreKsbtLMtWigKM7Sps3aVIpMti3qQ6V9vvNZVcwu8k9LsRyS1UMujHMuBJ-5ib8MZ_l2ZTbeVYYSTjkaLOVduIeKX7CYrrV1qVCE5kUAvBkrsjTjcjmmyVB1tKiq-fnEdwufcNRTqAl34T6XIRmU_qGVQpuV2xFn0Dwne1CNa44BJ98nm76ZmJu_yjn-96YewcMBg5JpZJrHcMd1T2Bv7O9ABnF_Cj-mVl_53yH54IYgzm83zpLjGN5OEO_663VoM4H3z71b_SsJTkbjA2gMwllSxWIcGl8cq6MT3Vly2q_J9NfhOelXxJf8uPYzvrjOeqfkPlycfFwcz9KhYUNqEMf1aSOZ4Q0tdWmNk4iVFGsM1RIxhC2M4rmgrVXIu5TrLNfUUuGU1My0TJQuF_wZ7HSrzj0HYpRG9MAMdWgvcsHQrmtEw5yyRdE6IRJgI8FqM1Qz97u9rINVQ1Ud6F17etcDvRN4v51zFWt5_HP0vifWbyMjnRI4HBmjHuR9XeOfskSwinArgbfbxyip_vhFd261WdeZVJKFAocJHESG2r585MMXt3z0DTyYLc7m9fy0-vwSdnGdeYwZPoSd_nrjXiEy6pvXQR5-Al0rBqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Decentralized+Control+for+Constrained+Strong+Interconnected+Nonlinear+Systems+and+Its+Application+to+Inverted+Pendulum&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Feng%2C+Zhiguang&rft.au=Li%2C+Rui-Bing&rft.au=Wu%2C+Ligang&rft.date=2024-07-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2023.3238819&rft_id=info%3Apmid%2F37022270&rft.externalDocID=37022270
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon