Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells
H2-fed polymer electrolyte membrane fuel cells (PEMFCs) are the most advanced fuel cell technology to date and continue to be of great interest as prospective energy sources in numerous applications, including for low/zero-emission electric vehicles, distributed power generators in homes, and small...
Saved in:
Published in | Progress in materials science Vol. 82; pp. 445 - 498 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | H2-fed polymer electrolyte membrane fuel cells (PEMFCs) are the most advanced fuel cell technology to date and continue to be of great interest as prospective energy sources in numerous applications, including for low/zero-emission electric vehicles, distributed power generators in homes, and small portable electronic devices. However, the commercialization of PEMFC technology has been greatly hindered by certain challenges, mainly the sluggish kinetics of the oxygen reduction reaction at the cathode and the high cost of Pt-based cathode catalysts, the latter presently accounting for over 55% of the total PEMFC cost. To overcome the limited stability of state-of-the-art Pt/C, Pt and Pt-alloy catalysts supported on modified carbon materials have garnered significant interest in recent years. It is therefore timely to compile a review that focuses on Pt and Pt-alloy catalysts supported on modified carbon materials, examining their current R&D status, applications, challenges, and future prospects. This review provides a systematic and comprehensive survey of current Pt and Pt-alloy PEMFC cathode catalysts in terms of materials selection and design, synthesis methods, and structural features, emphasizing how these various aspects relate to the catalysts' physicochemical characterization and performance, and with the aim of shedding light on the future direction of PEMFC research. |
---|---|
AbstractList | H2-fed polymer electrolyte membrane fuel cells (PEMFCs) are the most advanced fuel cell technology to date and continue to be of great interest as prospective energy sources in numerous applications, including for low/zero-emission electric vehicles, distributed power generators in homes, and small portable electronic devices. However, the commercialization of PEMFC technology has been greatly hindered by certain challenges, mainly the sluggish kinetics of the oxygen reduction reaction at the cathode and the high cost of Pt-based cathode catalysts, the latter presently accounting for over 55% of the total PEMFC cost. To overcome the limited stability of state-of-the-art Pt/C, Pt and Pt-alloy catalysts supported on modified carbon materials have garnered significant interest in recent years. It is therefore timely to compile a review that focuses on Pt and Pt-alloy catalysts supported on modified carbon materials, examining their current R&D status, applications, challenges, and future prospects. This review provides a systematic and comprehensive survey of current Pt and Pt-alloy PEMFC cathode catalysts in terms of materials selection and design, synthesis methods, and structural features, emphasizing how these various aspects relate to the catalysts' physicochemical characterization and performance, and with the aim of shedding light on the future direction of PEMFC research. |
Author | Fang, Baizeng Li, Hui Wang, Haijiang Wang, Yan-Jie Bi, Xiaotao T. |
Author_xml | – sequence: 1 givenname: Yan-Jie surname: Wang fullname: Wang, Yan-Jie – sequence: 2 givenname: Baizeng surname: Fang fullname: Fang, Baizeng – sequence: 3 givenname: Hui surname: Li fullname: Li, Hui – sequence: 4 givenname: Xiaotao T. surname: Bi fullname: Bi, Xiaotao T. – sequence: 5 givenname: Haijiang surname: Wang fullname: Wang, Haijiang |
BookMark | eNqFUM1KxDAYzGEFd9VHEHL00po0TdriSRb_YME96Dmk6VfNkjY1yR724rObunvyIgwMAzPDMCu0GN0ICF1TklNCxe0unwYVgzZ5kWROEkixQEtCqiYTZcHP0SqEHUmakmaJvrfefXgIAZsRD64zvYEOa-VbN-KwnybnI06N4I2yAffO423EauwSZcpad0jm-Ok6mFnZQ4i_VZOzhwE8Bgs6-iQi4AGG1qsRcL8HizVYGy7RWZ964erEF-j98eFt_ZxtXp9e1vebTDNexKxlgrV1IWjVMhC8axhn0ENNy05w0TWFJiUIUBVTohW0U5q0mgOtVNNTVrfsAt0ceyfvvvYQohxMmBekOW4fJK0Z5zWhZZ2sd0er9i4ED73UJqpo3Bi9MlZSIuen5U6enpbz05IkkCKl-Z_05M2g_OGf3A9LOo1F |
CitedBy_id | crossref_primary_10_3390_mi12101195 crossref_primary_10_1021_acsaem_8b01242 crossref_primary_10_5796_electrochemistry_24_00069 crossref_primary_10_3390_nano13212818 crossref_primary_10_1007_s10800_016_1003_8 crossref_primary_10_1039_D4TA00838C crossref_primary_10_3390_ma17061384 crossref_primary_10_1088_2631_7990_acc6a7 crossref_primary_10_1039_D0RA05738J crossref_primary_10_1016_j_ccr_2024_216191 crossref_primary_10_1021_jacs_7b12353 crossref_primary_10_1134_S003602442109003X crossref_primary_10_1021_acsaem_4c03350 crossref_primary_10_1016_j_ijhydene_2019_02_161 crossref_primary_10_3390_mi12111327 crossref_primary_10_1016_j_apcatb_2017_02_019 crossref_primary_10_1016_j_ijhydene_2018_02_154 crossref_primary_10_1021_acsami_8b03832 crossref_primary_10_1002_ange_202014857 crossref_primary_10_1021_acssuschemeng_1c02472 crossref_primary_10_1039_C8RA10462J crossref_primary_10_1016_j_cclet_2019_02_020 crossref_primary_10_3390_en15176335 crossref_primary_10_1016_j_apcatb_2018_06_057 crossref_primary_10_1016_j_jpowsour_2019_03_097 crossref_primary_10_1016_j_scib_2017_11_017 crossref_primary_10_1016_j_ijhydene_2021_09_042 crossref_primary_10_1021_acssuschemeng_1c04259 crossref_primary_10_1016_j_jcis_2021_12_080 crossref_primary_10_1021_acs_energyfuels_4c02482 crossref_primary_10_1016_j_ijhydene_2021_02_078 crossref_primary_10_1016_j_jpowsour_2022_231895 crossref_primary_10_1016_j_energy_2018_01_069 crossref_primary_10_1002_adfm_202203883 crossref_primary_10_1021_acsaem_1c00406 crossref_primary_10_3390_catal11030335 crossref_primary_10_1002_rpm_20240028 crossref_primary_10_1021_acsaem_2c03543 crossref_primary_10_1016_j_apcatb_2022_122017 crossref_primary_10_1016_j_jelechem_2019_113508 crossref_primary_10_1134_S1070363223010115 crossref_primary_10_31857_S0044460X23010183 crossref_primary_10_3390_membranes13100832 crossref_primary_10_3390_nano11123462 crossref_primary_10_1021_acsaem_9b00506 crossref_primary_10_3390_mi13111825 crossref_primary_10_1002_smll_202102288 crossref_primary_10_1016_j_apcatb_2019_117905 crossref_primary_10_1039_D1NJ06098H crossref_primary_10_1002_macp_202400092 crossref_primary_10_1021_acsomega_3c02283 crossref_primary_10_1021_acs_energyfuels_1c01439 crossref_primary_10_1039_C8TA10985K crossref_primary_10_1016_j_jpowsour_2024_234478 crossref_primary_10_1021_acsami_7b15682 crossref_primary_10_1002_ppsc_202400069 crossref_primary_10_1016_j_apsusc_2018_02_042 crossref_primary_10_1039_D1RA03362J crossref_primary_10_1016_j_apenergy_2018_04_049 crossref_primary_10_1039_D1RA06549A crossref_primary_10_1016_j_ijhydene_2024_08_472 crossref_primary_10_20964_2018_03_62 crossref_primary_10_1016_j_jcat_2022_11_028 crossref_primary_10_1039_D1RA06347B crossref_primary_10_1039_D1SE01871J crossref_primary_10_1039_C9SE00082H crossref_primary_10_1016_j_jksus_2022_102118 crossref_primary_10_1039_D0SE00560F crossref_primary_10_1016_j_rser_2020_110304 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1002_ente_202200680 crossref_primary_10_1021_acs_energyfuels_1c00758 crossref_primary_10_3390_c10040105 crossref_primary_10_1016_j_pmatsci_2021_100884 crossref_primary_10_1016_j_electacta_2021_138617 crossref_primary_10_1039_C7TA03690F crossref_primary_10_1007_s10800_020_01399_z crossref_primary_10_3934_matersci_2024020 crossref_primary_10_1021_acs_jpcc_0c03460 crossref_primary_10_3390_nano15050342 crossref_primary_10_1002_anie_202014857 crossref_primary_10_1038_s41598_021_91958_x crossref_primary_10_1007_s11708_017_0492_4 crossref_primary_10_1039_C7TA00980A crossref_primary_10_1016_j_cej_2019_122603 crossref_primary_10_1016_j_ijhydene_2019_05_058 crossref_primary_10_1007_s42154_021_00149_x crossref_primary_10_1002_adfm_202306100 crossref_primary_10_1016_j_apsusc_2017_10_185 crossref_primary_10_1039_D3GC05136F crossref_primary_10_1007_s42452_023_05293_z crossref_primary_10_3389_fenrg_2021_824733 crossref_primary_10_1016_j_jpowsour_2022_232277 crossref_primary_10_3390_nano10122412 crossref_primary_10_1016_j_compositesb_2018_02_013 crossref_primary_10_1002_celc_201600856 crossref_primary_10_1039_D0RA04289G crossref_primary_10_1039_D4LF00404C crossref_primary_10_1007_s10562_017_2243_x crossref_primary_10_1039_C9RA08762A crossref_primary_10_1007_s10853_020_04808_y crossref_primary_10_1016_j_pmatsci_2021_100812 crossref_primary_10_1016_j_ijhydene_2022_03_218 crossref_primary_10_1016_j_jcis_2020_03_070 crossref_primary_10_1021_acs_energyfuels_2c03447 crossref_primary_10_1016_j_ijhydene_2019_06_141 crossref_primary_10_1016_j_enss_2024_02_005 crossref_primary_10_3390_catal10080932 crossref_primary_10_1002_cctc_202101096 crossref_primary_10_1016_j_physe_2019_113880 crossref_primary_10_1016_j_ijhydene_2020_11_075 crossref_primary_10_1039_D3CP02565A crossref_primary_10_1016_j_electacta_2019_135474 crossref_primary_10_1021_acs_langmuir_9b02391 crossref_primary_10_1016_j_mser_2018_10_001 crossref_primary_10_1002_cctc_201801094 crossref_primary_10_1088_1757_899X_504_1_012025 crossref_primary_10_1016_j_inoche_2020_108130 crossref_primary_10_1039_D2SE00857B crossref_primary_10_5796_electrochemistry_22_66077 crossref_primary_10_1016_j_jechem_2024_10_041 crossref_primary_10_1007_s12274_023_5399_2 crossref_primary_10_1016_j_diamond_2022_109267 crossref_primary_10_1016_j_electacta_2021_138518 crossref_primary_10_1016_j_jece_2021_106429 crossref_primary_10_1039_C6RA24314B crossref_primary_10_1016_j_jallcom_2024_177039 crossref_primary_10_1021_acssuschemeng_7b03046 crossref_primary_10_1039_C7EE02444D crossref_primary_10_1002_celc_202000595 crossref_primary_10_3390_en16020833 crossref_primary_10_1016_j_ijhydene_2021_01_116 crossref_primary_10_1016_j_jclepro_2020_122829 crossref_primary_10_1002_sus2_38 crossref_primary_10_1039_D1CY00882J crossref_primary_10_1007_s40242_024_4133_2 crossref_primary_10_1002_admi_202200349 crossref_primary_10_20964_2021_01_32 crossref_primary_10_1016_j_nanoso_2020_100443 crossref_primary_10_1134_S1023193523010111 crossref_primary_10_1007_s41918_018_0002_3 crossref_primary_10_1007_s10800_021_01629_y crossref_primary_10_1007_s10008_023_05556_0 crossref_primary_10_1016_j_electacta_2018_07_237 crossref_primary_10_1016_j_electacta_2025_145841 crossref_primary_10_3390_catal15010097 crossref_primary_10_1007_s11581_019_03327_4 crossref_primary_10_1007_s00449_025_03134_4 crossref_primary_10_1039_D1RA05577A crossref_primary_10_1016_j_ijhydene_2018_06_009 crossref_primary_10_1039_C6RA28703D crossref_primary_10_3390_ma16020840 crossref_primary_10_1002_admt_201700201 crossref_primary_10_1016_j_diamond_2024_111204 crossref_primary_10_3390_catal12050525 crossref_primary_10_1039_D1RA06643A crossref_primary_10_1016_j_ijhydene_2017_07_093 crossref_primary_10_1021_acsaem_1c03143 crossref_primary_10_1002_aenm_201901997 crossref_primary_10_1016_j_susc_2017_11_001 crossref_primary_10_1007_s11664_021_09165_3 crossref_primary_10_1016_j_ijhydene_2021_09_133 crossref_primary_10_1039_D0NR05050D crossref_primary_10_31857_S0424857023010255 crossref_primary_10_1002_ente_202101007 crossref_primary_10_1016_j_mtener_2017_10_003 crossref_primary_10_1007_s42452_021_04343_8 crossref_primary_10_1016_j_carbon_2018_04_061 crossref_primary_10_1016_j_jiec_2023_03_004 crossref_primary_10_1007_s13738_018_1382_3 |
Cites_doi | 10.1021/nn203393d 10.1016/j.fuel.2015.02.002 10.1016/j.jelechem.2014.02.023 10.1016/j.jcat.2014.02.002 10.1021/acscatal.5b00117 10.1016/j.electacta.2012.03.039 10.1016/j.apcatb.2004.06.021 10.1103/PhysRevA.34.4586 10.1016/j.jpowsour.2009.04.020 10.1039/C4EE00440J 10.1021/am508982d 10.1016/S0022-3115(02)00986-8 10.1016/j.nanoen.2012.07.008 10.1016/j.elecom.2005.07.007 10.1016/j.jpowsour.2007.10.049 10.1016/j.ceramint.2011.05.033 10.1016/0965-9773(95)00265-G 10.1039/b819006b 10.1016/S0009-2614(02)01250-2 10.1016/j.apcatb.2013.07.007 10.1016/j.electacta.2009.06.068 10.1016/j.ceramint.2011.05.124 10.1149/1.3486172 10.1021/cm101568z 10.1021/la051736i 10.1039/c0cp02167a 10.1039/C1CC15812K 10.1021/ja306501x 10.1002/(SICI)1521-4095(199906)11:8<655::AID-ADMA655>3.0.CO;2-6 10.1016/j.jpowsour.2006.11.003 10.1016/0013-4686(86)80069-X 10.1016/0008-6223(94)00096-I 10.1021/ma051158c 10.1111/j.1551-2916.2005.00687.x 10.1016/j.actamat.2003.08.004 10.1039/c001423k 10.1039/c1nr10436e 10.1021/jp022505c 10.1039/C4EE03172E 10.1016/j.cplett.2008.08.001 10.1039/c3ta11238a 10.1021/jp054523a 10.1021/cr100060r 10.1016/0008-6223(95)00154-6 10.1002/adma.201100040 10.1002/anie.201200024 10.1016/j.carbon.2007.08.028 10.1126/science.181.4099.547 10.1023/A:1024771618027 10.1149/1.2191147 10.1021/am301187h 10.1016/j.apcata.2005.01.029 10.1038/nmat3087 10.1016/j.jcat.2008.06.007 10.1021/jp0365099 10.1007/BF00802639 10.1016/j.carbon.2008.05.007 10.1039/c0an00262c 10.1016/j.jpowsour.2005.09.009 10.1039/C1CP23367J 10.1016/j.apcatb.2007.09.047 10.1016/j.jpowsour.2013.03.093 10.1021/ar010151m 10.1039/c1ee01153g 10.1016/j.jpowsour.2010.01.027 10.1038/nature11115 10.1016/j.jpowsour.2003.09.033 10.1016/j.matlet.2007.04.088 10.1016/j.nanoen.2015.01.033 10.1016/j.jpowsour.2006.04.041 10.1016/j.jpowsour.2004.08.042 10.1016/j.jpowsour.2010.06.109 10.1021/nn1017395 10.1126/science.1170377 10.1039/C0EE00475H 10.1039/C4TA05552G 10.1021/jp9720101 10.1126/science.1168049 10.1021/cr020730k 10.1021/jp046697i 10.1021/jp300881p 10.1039/c0nr00387e 10.1016/S0040-6090(01)01785-0 10.1039/c3ta10298j 10.1016/j.catcom.2012.09.016 10.1021/ie901741c 10.1039/C2TA00606E 10.1021/cm061256s 10.1039/C2CS35319A 10.1016/j.apcatb.2008.09.030 10.1039/C1RA01121A 10.1016/j.elecom.2007.08.002 10.1021/nn200195k 10.1021/la2003589 10.1002/adma.201001029 10.1016/j.carbon.2007.03.023 10.1021/jp800186p 10.1021/jp3118874 10.1038/372159a0 10.1039/c39950000173 10.1246/cl.2002.638 10.1016/j.jpowsour.2012.02.093 10.1016/j.jpowsour.2009.10.033 10.1016/j.carbon.2007.10.034 10.1016/j.electacta.2014.05.145 10.1016/0021-9517(73)90199-1 10.1016/j.ces.2008.12.013 10.1016/j.rser.2014.01.012 10.1016/j.jpowsour.2013.03.149 10.1016/S0378-7753(02)00112-X 10.1016/0021-9517(85)90169-1 10.1021/cs500182h 10.1016/j.synthmet.2012.11.005 10.1016/j.electacta.2013.12.075 10.1038/srep01775 10.1016/j.jpowsour.2015.06.126 10.1016/S0039-6028(01)01430-3 10.1039/C5CS00302D 10.1016/j.ijhydene.2012.02.100 10.1016/j.elecom.2008.05.025 10.1002/adma.200702949 10.1039/B512090J 10.1038/srep02257 10.1016/j.jpowsour.2004.11.067 10.1016/j.apcata.2015.03.008 10.1002/adma.200400626 10.1021/ja0495819 10.1016/j.apcata.2005.03.043 10.1002/fuce.200290000 10.1021/jp908322h 10.1007/BF02756940 10.1016/j.electacta.2007.01.007 10.1021/jp060513d 10.1016/j.jpowsour.2006.05.014 10.1016/j.elecom.2005.11.021 10.1021/jp0116196 10.1149/1.2423517 10.1021/cs100140s 10.1021/j150655a029 10.1016/j.jpowsour.2011.10.093 10.1039/B409682G 10.1021/jp108864y 10.1016/j.jelechem.2014.06.024 10.1142/S0219581X02000309 10.1016/S1872-2067(09)60034-6 10.1149/05801.1809ecst 10.1016/j.apcata.2013.05.039 10.1016/S0009-2614(02)01789-X 10.1016/j.jpowsour.2009.01.086 10.1149/1.1838101 10.1039/f19787400440 10.1016/j.ijhydene.2014.02.109 10.1016/j.elecom.2013.04.017 10.1016/j.electacta.2010.04.056 10.1021/jp106814j 10.1016/j.electacta.2012.02.105 10.1016/j.jpowsour.2012.07.080 10.1016/j.cplett.2003.08.021 10.1021/ja01539a017 10.1016/j.jpowsour.2006.01.030 10.1016/j.elecom.2009.09.008 10.1016/S0009-2614(01)00650-9 10.1021/am506916y 10.1021/jp0379953 10.1039/C4TA02062F 10.1021/ar000110a 10.1007/s10008-007-0398-x 10.1149/1.3152325 10.1016/j.jpowsour.2005.04.035 10.1039/C4NJ01162G 10.1016/j.jpowsour.2011.10.024 10.1021/cr0204606 10.1039/B715859A 10.1016/j.jelechem.2004.11.022 10.1016/j.electacta.2015.01.173 10.1016/j.jare.2011.05.007 10.1016/j.electacta.2004.03.018 10.1039/c4ta00618f 10.1039/C2TA00076H 10.1016/j.nantod.2014.05.003 10.1021/jp711280j 10.1021/cm070294o 10.1149/1.2050055 10.1016/j.elecom.2009.02.033 10.1021/cm801467y 10.1016/j.jpowsour.2003.12.055 10.1039/c0jm00952k 10.1016/j.jpowsour.2011.04.026 10.1021/cm049708t 10.1021/la7029278 10.1039/b910924b 10.1016/j.elecom.2011.11.033 10.1016/j.jpowsour.2015.03.146 10.1021/ar400001n 10.1016/j.carbon.2005.06.043 10.1016/S0926-860X(97)00071-9 10.1021/la047268e 10.1016/S0013-4686(03)00521-8 10.1016/j.carbon.2013.09.001 10.1002/anie.201400294 10.1002/ppsc.201300121 10.1021/nn9014483 10.1039/c2jm15014j 10.1039/c0ee00139b 10.1021/cs5003492 10.1021/cm031095h 10.1016/j.carbon.2005.12.007 10.1016/0920-5861(90)85012-D 10.1021/cr050569o 10.1149/1.3635611 10.1007/s12633-009-9016-0 10.1007/BF01042450 10.1063/1.2430993 10.1016/j.jpcs.2013.06.004 10.1021/la00015a025 10.1039/c3ta14251e 10.1149/1.3491341 10.1007/978-1-4899-8059-5 10.1021/jp408979h 10.1063/1.2428411 10.1016/j.apcatb.2012.07.023 10.1038/nmat1849 10.1021/jp111180e 10.1088/0957-4484/21/26/265707 10.1039/C5RA08068A 10.1021/ar3002238 10.1039/c1cc15426e 10.1016/j.carbon.2010.10.055 10.1002/anie.201004718 10.1016/j.apcatb.2013.06.031 10.1016/j.apcatb.2010.08.025 10.1038/srep02431 10.1016/j.electacta.2006.05.019 10.1016/S0013-4686(96)00425-2 10.1002/cctc.201300647 10.1002/adfm.201200591 10.1021/nl900397t 10.1016/j.jpowsour.2012.02.011 10.1016/j.electacta.2012.04.111 10.1016/j.carbon.2005.11.027 10.1016/j.jcat.2010.02.016 10.1039/c2jm34361d 10.1021/jp0653510 10.1021/nl034524j 10.1002/adma.19920040213 10.1016/j.catcom.2011.08.038 10.1016/j.carbon.2013.10.012 10.1039/C1DT11711D 10.1021/jp505417e 10.1016/j.jpowsour.2006.12.108 10.1016/j.enconman.2008.03.025 10.1039/c0cp02495c 10.1016/j.ijhydene.2011.05.156 10.1016/j.ssi.2009.03.007 10.1126/science.1170051 10.1149/1.3489412 10.1039/c1jm13796d 10.1016/j.electacta.2013.05.128 10.1016/j.jpowsour.2012.09.042 10.1021/ja107719u 10.1016/0013-4686(84)85006-9 10.1021/ja2039562 10.1016/j.electacta.2011.12.109 10.1039/b819820a 10.1021/ja2104334 10.1021/am403432h 10.1039/C3TA12744C 10.1006/jcat.2002.3637 10.1039/b809227c 10.1016/j.carbon.2010.02.005 10.1063/1.1941473 10.1016/j.ssi.2004.08.030 10.1016/j.apcatb.2010.07.030 10.1006/jcat.1996.0360 10.1016/j.carbon.2014.04.005 10.1002/pssb.200669166 10.1021/jp807989b 10.1039/c003710a 10.1088/0957-4484/16/7/013 10.1021/jp0540003 10.1039/c1jm10847f 10.1038/srep01646 10.1021/cm0518978 10.1021/ja905749e 10.1016/j.electacta.2015.03.120 10.1039/b919494k 10.1016/j.jpowsour.2012.08.025 10.1016/S0378-7753(01)00987-9 10.1016/j.electacta.2013.10.088 10.1088/1742-6596/433/1/012008 10.1021/jp983478m 10.1016/j.elecom.2007.06.027 10.1016/j.apcata.2007.08.030 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N 10.1021/cr500519c 10.1016/j.carbon.2013.03.053 10.1002/adma.200701408 10.1016/j.carbon.2010.06.043 10.1039/C5CP00369E 10.1039/c1ee01094h 10.1016/0920-5861(92)80175-M 10.1039/C3EE43886D 10.1002/fuce.201400134 10.1016/S0254-0584(02)00389-9 10.1016/0021-9517(76)90293-1 10.5796/electrochemistry.75.103 10.1016/j.apcatb.2012.12.005 10.1039/C4EE04086D 10.1149/1.3268126 10.1039/c0jm01600d 10.1016/S0921-4526(02)01002-5 10.1021/cs500116h 10.1039/C4RA13389G 10.1016/j.carbon.2012.03.048 10.1002/fuce.201200204 10.1016/j.elecom.2013.08.007 10.1007/s12274-014-0695-5 10.1016/j.jcat.2006.01.022 10.1021/cm400304q 10.1021/ja3031449 10.1016/j.electacta.2014.06.141 10.1039/B610391J 10.1016/j.jpowsour.2014.09.142 10.1021/cm801356a 10.1149/1.3483106 10.1016/j.jpowsour.2010.04.015 10.1088/0957-4484/19/26/265601 10.1002/anie.200501272 10.1016/j.ijhydene.2011.11.079 10.1039/C5RA02585K 10.1016/j.apcatb.2013.08.024 10.1039/c4ra02542c 10.1149/1.1993388 10.1002/smll.200800094 10.1016/S0166-9834(00)81051-9 10.1016/j.apcata.2009.12.037 10.1007/s10800-006-9120-4 10.1007/s10800-007-9466-2 10.1039/C4CP04974H 10.1016/j.jelechem.2005.01.041 10.1002/cphc.200400193 10.1016/j.catcom.2012.02.013 10.1039/c3cs60053j 10.1016/j.elecom.2007.06.001 10.1021/ja904810h 10.1021/jp907160v 10.1021/jp062216e 10.1039/c2jm32866f 10.1039/b925776d 10.1016/j.electacta.2006.09.060 10.1016/S0920-5861(98)00043-1 10.1016/j.diamond.2008.01.116 10.1149/2.050401jes 10.3390/catal5020966 10.1016/j.msec.2012.10.029 10.1149/1.1543567 10.1021/ic951325x 10.1021/jp802371p 10.1039/C2TA00278G 10.1016/j.electacta.2014.11.164 10.1016/j.elecom.2008.12.013 10.1038/srep03968 10.1021/ja00469a029 10.1016/j.apcata.2012.02.041 10.1002/pc.10488 10.1002/adma.200900677 10.1016/j.ijhydene.2010.05.076 10.1021/cs200652y 10.1016/j.carbon.2010.10.056 10.1016/j.jpowsour.2014.06.036 10.1039/c3nr00585b 10.1016/j.ijhydene.2013.06.089 10.1021/nn901850u 10.1016/j.jpowsour.2014.07.179 10.1021/la9806505 10.1021/jp044442z 10.1016/S0926-860X(98)00187-2 10.1021/ja00439a020 10.1002/adma.201205332 10.1007/s100080000116 10.1016/j.electacta.2012.05.100 10.1149/2.0961414jes 10.1039/b915667d 10.1021/ar300254b 10.1149/1.1938107 10.1002/elan.201100506 10.1021/jp202797q 10.1002/smll.201303892 10.1016/j.elecom.2010.12.008 10.1149/1.3247351 10.1021/cm050107r 10.1149/1.2722563 10.1149/1.1837369 10.1039/C4NR00402G 10.1016/j.electacta.2008.05.047 10.1002/aenm.201100077 10.1039/c39950001355 10.1016/j.ijhydene.2014.01.202 10.1016/j.matlet.2014.12.011 10.1021/ja308570c 10.1002/adfm.201102544 10.1021/nl302520m 10.1002/fuce.201100130 10.1016/j.jpowsour.2005.07.069 10.1002/adem.200500179 10.1016/j.jpowsour.2014.11.093 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.pmatsci.2016.06.002 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EndPage | 498 |
ExternalDocumentID | 10_1016_j_pmatsci_2016_06_002 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO AAYXX ABFNM ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSH SSM SSZ T5K T9H WH7 WUQ XPP ZE2 ZMT ~02 ~G- 7SR 8BQ 8FD AFXIZ EFKBS JG9 |
ID | FETCH-LOGICAL-c352t-b363b82617b3e65d9353efe814d656d92c04e6ea73a6b61dac0bc5e17a9f138b3 |
ISSN | 0079-6425 |
IngestDate | Tue Aug 05 11:07:48 EDT 2025 Tue Jul 01 03:50:38 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-b363b82617b3e65d9353efe814d656d92c04e6ea73a6b61dac0bc5e17a9f138b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1835580148 |
PQPubID | 23500 |
PageCount | 54 |
ParticipantIDs | proquest_miscellaneous_1835580148 crossref_citationtrail_10_1016_j_pmatsci_2016_06_002 crossref_primary_10_1016_j_pmatsci_2016_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-00 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-00 |
PublicationDecade | 2010 |
PublicationTitle | Progress in materials science |
PublicationYear | 2016 |
References | Poh (10.1016/j.pmatsci.2016.06.002_b0480) 2008; 176 Cheng (10.1016/j.pmatsci.2016.06.002_b1045) 2015; 3 Zhao (10.1016/j.pmatsci.2016.06.002_b1850) 2015; 17 Lv (10.1016/j.pmatsci.2016.06.002_b1530) 2010; 100 Sun (10.1016/j.pmatsci.2016.06.002_b0895) 2002; 1 Carmo (10.1016/j.pmatsci.2016.06.002_b0400) 2009; 191 Hsu (10.1016/j.pmatsci.2016.06.002_b1490) 2012; 48 Hillenbrand (10.1016/j.pmatsci.2016.06.002_b1955) 1965; 112 Kimmel (10.1016/j.pmatsci.2016.06.002_b1380) 2014; 312 Wang (10.1016/j.pmatsci.2016.06.002_b0120) 2015; 5 Yao (10.1016/j.pmatsci.2016.06.002_b1950) 2012; 22 Longoni (10.1016/j.pmatsci.2016.06.002_b2070) 1976; 98 Liu (10.1016/j.pmatsci.2016.06.002_b0930) 2003; 367 Teranishi (10.1016/j.pmatsci.2016.06.002_b1540) 1999; 103 Garcia (10.1016/j.pmatsci.2016.06.002_b1745) 2013; 106 Yu (10.1016/j.pmatsci.2016.06.002_b1830) 1999; 15 Wang (10.1016/j.pmatsci.2016.06.002_b0910) 2006; 44 Job (10.1016/j.pmatsci.2016.06.002_b0265) 2008; 49 Humbert (10.1016/j.pmatsci.2016.06.002_b0765) 2010; 271 Cameron (10.1016/j.pmatsci.2016.06.002_b0470) 1990; 7 Yun (10.1016/j.pmatsci.2016.06.002_b2145) 2012; 162 Poh (10.1016/j.pmatsci.2016.06.002_b1740) 2013; 2 Akalework (10.1016/j.pmatsci.2016.06.002_b0805) 2012; 22 Seo (10.1016/j.pmatsci.2016.06.002_b1630) 2011; 13 Yang (10.1016/j.pmatsci.2016.06.002_b1385) 2015; 287 Du (10.1016/j.pmatsci.2016.06.002_b2040) 2008; 17 Winter (10.1016/j.pmatsci.2016.06.002_b0035) 2004; 104 Jafri (10.1016/j.pmatsci.2016.06.002_b1120) 2010; 195 Cheng (10.1016/j.pmatsci.2016.06.002_b1965) 2014; 39 McGee (10.1016/j.pmatsci.2016.06.002_b0650) 2005; 284 Zoltowski (10.1016/j.pmatsci.2016.06.002_b1445) 1986; 31 Liu (10.1016/j.pmatsci.2016.06.002_b0075) 2006; 155 McIntyre (10.1016/j.pmatsci.2016.06.002_b1425) 2002; 107 Lepró (10.1016/j.pmatsci.2016.06.002_b0600) 2008; 46 Liu (10.1016/j.pmatsci.2016.06.002_b0270) 2010; 195 Lago (10.1016/j.pmatsci.2016.06.002_b0835) 1995 He (10.1016/j.pmatsci.2016.06.002_b1785) 2011; 3 Scofield (10.1016/j.pmatsci.2016.06.002_b0005) 2015; 44 Venkataraman (10.1016/j.pmatsci.2016.06.002_b1435) 2003; 150 Liu (10.1016/j.pmatsci.2016.06.002_b1240) 2014; 268 Jung (10.1016/j.pmatsci.2016.06.002_b1335) 2015; 167 Sharma (10.1016/j.pmatsci.2016.06.002_b0045) 2012; 208 Sun (10.1016/j.pmatsci.2016.06.002_b0560) 2005; 17 Deng (10.1016/j.pmatsci.2016.06.002_b0575) 2002; 406 Zhu (10.1016/j.pmatsci.2016.06.002_b0635) 2015; 158 Fraga (10.1016/j.pmatsci.2016.06.002_b0850) 2002; 209 Kim (10.1016/j.pmatsci.2016.06.002_b0750) 2011; 5 Qu (10.1016/j.pmatsci.2016.06.002_b1125) 2010; 4 Hatano (10.1016/j.pmatsci.2016.06.002_b1470) 2002; 307–311 Manzo-Robledo (10.1016/j.pmatsci.2016.06.002_b2075) 2002; 2 Wagner (10.1016/j.pmatsci.2016.06.002_b0380) 2009; vol. 5 Wang (10.1016/j.pmatsci.2016.06.002_b0915) 2008; 19 Yang (10.1016/j.pmatsci.2016.06.002_b1205) 2006; 110 Liu (10.1016/j.pmatsci.2016.06.002_b1060) 2014; 6 Saha (10.1016/j.pmatsci.2016.06.002_b1295) 2009; 11 Ganesan (10.1016/j.pmatsci.2016.06.002_b0350) 2006; 157 Sharaf (10.1016/j.pmatsci.2016.06.002_b0040) 2014; 32 Virkar (10.1016/j.pmatsci.2016.06.002_b0390) 2007; 154 Liu (10.1016/j.pmatsci.2016.06.002_b1495) 2011; 1 Choi (10.1016/j.pmatsci.2016.06.002_b1695) 2007; 45 Wu (10.1016/j.pmatsci.2016.06.002_b1970) 2014; 4 Jha (10.1016/j.pmatsci.2016.06.002_b2115) 2013; 3 Maldonado (10.1016/j.pmatsci.2016.06.002_b0540) 2005; 109 Shrestha (10.1016/j.pmatsci.2016.06.002_b1140) 2013; 60 Lee (10.1016/j.pmatsci.2016.06.002_b2015) 2010; 375 Banis (10.1016/j.pmatsci.2016.06.002_b1300) 2013; 117 Li (10.1016/j.pmatsci.2016.06.002_b0425) 2008 Lee (10.1016/j.pmatsci.2016.06.002_b0210) 2012; 12 He (10.1016/j.pmatsci.2016.06.002_b0865) 2011; 27 Cao (10.1016/j.pmatsci.2016.06.002_b0010) 2014; 6 Kim (10.1016/j.pmatsci.2016.06.002_b1330) 2015; 273 Sun (10.1016/j.pmatsci.2016.06.002_b0885) 2003; 379 Guerrero-Ruiz (10.1016/j.pmatsci.2016.06.002_b0495) 1998; 173 Guo (10.1016/j.pmatsci.2016.06.002_b1610) 2012; 134 Rao (10.1016/j.pmatsci.2016.06.002_b1635) 2011; 49 Fang (10.1016/j.pmatsci.2016.06.002_b1025) 2009; 131 Tsang (10.1016/j.pmatsci.2016.06.002_b0830) 1994; 372 Elezović (10.1016/j.pmatsci.2016.06.002_b1515) 2012; 69 Litster (10.1016/j.pmatsci.2016.06.002_b0415) 2004; 130 Ruiz-Camacho (10.1016/j.pmatsci.2016.06.002_b1865) 2014; 39 He (10.1016/j.pmatsci.2016.06.002_b1985) 2013; 1 Kimmel (10.1016/j.pmatsci.2016.06.002_b1395) 2012; 37 Wiggins-Camacho (10.1016/j.pmatsci.2016.06.002_b0590) 2009; 113 Matarredona (10.1016/j.pmatsci.2016.06.002_b0975) 2003; 107 He (10.1016/j.pmatsci.2016.06.002_b1095) 2013; 35 Ho (10.1016/j.pmatsci.2016.06.002_b0795) 2011; 133 Kharlamov (10.1016/j.pmatsci.2016.06.002_b1340) 1983; 22 Xu (10.1016/j.pmatsci.2016.06.002_b1935) 2013; 1 Chhina (10.1016/j.pmatsci.2016.06.002_b1925) 2006; 161 Barnett (10.1016/j.pmatsci.2016.06.002_b1420) 1997; 42 Ganesan (10.1016/j.pmatsci.2016.06.002_b0355) 2007; 9 Tian (10.1016/j.pmatsci.2016.06.002_b0745) 2015; 5 Wang (10.1016/j.pmatsci.2016.06.002_b0060) 2013; 221 Palaniselvam (10.1016/j.pmatsci.2016.06.002_b2140) 2012; 116 Kumar (10.1016/j.pmatsci.2016.06.002_b0365) 2014; 4 Haile (10.1016/j.pmatsci.2016.06.002_b0410) 2003; 51 Galeano (10.1016/j.pmatsci.2016.06.002_b1130) 2014; 4 Shanmugam (10.1016/j.pmatsci.2016.06.002_b1840) 2009; 113 Kim (10.1016/j.pmatsci.2016.06.002_b0625) 2007; 90 Yan (10.1016/j.pmatsci.2016.06.002_b1770) 2014; 2 Chhina (10.1016/j.pmatsci.2016.06.002_b0780) 2007; 164 Higgins (10.1016/j.pmatsci.2016.06.002_b1975) 2012; 22 Hara (10.1016/j.pmatsci.2016.06.002_b0360) 2007; 332 Shaikjee (10.1016/j.pmatsci.2016.06.002_b0225) 2012; 3 Cui (10.1016/j.pmatsci.2016.06.002_b0655) 2013; 33 Terrones (10.1016/j.pmatsci.2016.06.002_b0565) 1999; 11 Guo (10.1016/j.pmatsci.2016.06.002_b1615) 2010; 4 Lee (10.1016/j.pmatsci.2016.06.002_b0715) 2006; 36 Ralph (10.1016/j.pmatsci.2016.06.002_b0420) 1997; 144 Li (10.1016/j.pmatsci.2016.06.002_b0050) 2015; 8 Xia (10.1016/j.pmatsci.2016.06.002_b0690) 2012; 14 Lima (10.1016/j.pmatsci.2016.06.002_b1175) 2006; 52 Suzuki (10.1016/j.pmatsci.2016.06.002_b1760) 2013; 223 Kim (10.1016/j.pmatsci.2016.06.002_b0515) 2006; 159 Kou (10.1016/j.pmatsci.2016.06.002_b1640) 2009; 11 Levy (10.1016/j.pmatsci.2016.06.002_b1345) 1973; 181 Hummers (10.1016/j.pmatsci.2016.06.002_b1675) 1958; 80 Guo (10.1016/j.pmatsci.2016.06.002_b1710) 2015; 5 Porter (10.1016/j.pmatsci.2016.06.002_b0140) 2013; 46 Pels (10.1016/j.pmatsci.2016.06.002_b0580) 1995; 33 Justin (10.1016/j.pmatsci.2016.06.002_b1565) 2014; 144 Soo (10.1016/j.pmatsci.2016.06.002_b0615) 2015; 497 Jin (10.1016/j.pmatsci.2016.06.002_b0315) 2010; 48 Kim (10.1016/j.pmatsci.2016.06.002_b0520) 2007; 52 Cheekatamarla (10.1016/j.pmatsci.2016.06.002_b1825) 2005; 287 Geim (10.1016/j.pmatsci.2016.06.002_b1605) 2007; 6 Fan (10.1016/j.pmatsci.2016.06.002_b1990) 2010; 22 Dhiman (10.1016/j.pmatsci.2016.06.002_b1535) 2011; 37 Antolini (10.1016/j.pmatsci.2016.06.002_b1195) 2001; 5 Sun (10.1016/j.pmatsci.2016.06.002_b0890) 2002; 363 Dhand (10.1016/j.pmatsci.2016.06.002_b0290) 2013; 33 Fialkov (10.1016/j.pmatsci.2016.06.002_b0730) 2000; 36 Wang (10.1016/j.pmatsci.2016.06.002_b1720) 2011; 21 Antolini (10.1016/j.pmatsci.2016.06.002_b0055) 2010; 100 Wang (10.1016/j.pmatsci.2016.06.002_b0815) 2015; 152 Vedrine (10.1016/j.pmatsci.2016.06.002_b0430) 1978; 74 Tauster (10.1016/j.pmatsci.2016.06.002_b0705) 1978; 100 Zhang (10.1016/j.pmatsci.2016.06.002_b0105) 2014; 7 Cheng (10.1016/j.pmatsci.2016.06.002_b0790) 2015; 8 Qu (10.1016/j.pmatsci.2016.06.002_b1555) 2013; 13 Moore (10.1016/j.pmatsci.2016.06.002_b0970) 2003; 3 Xie (10.1016/j.pmatsci.2016.06.002_b1315) 2014; 161 Parrondo (10.1016/j.pmatsci.2016.06.002_b1905) 2010; 195 Hwu (10.1016/j.pmatsci.2016.06.002_b1410) 2001; 105 Fang (10.1016/j.pmatsci.2016.06.002_b0130) 2011; 21 Wang (10.1016/j.pmatsci.2016.06.002_b1035) 2012; 2 Feng (10.1016/j.pmatsci.2016.06.002_b0740) 2010; 20 Golikand (10.1016/j.pmatsci.2016.06.002_b0595) 2011; 36 Ignaszak (10.1016/j.pmatsci.2016.06.002_b1590) 2012; 69 Moore (10.1016/j.pmatsci.2016.06.002_b0320) 2012; 2 Vinayan (10.1016/j.pmatsci.2016.06.002_b1680) 2011; 115 Park (10.1016/j.pmatsci.2016.06.002_b0345) 2007; 9 Yang (10.1016/j.pmatsci.2016.06.002_b0660) 2013; 25 Vinayan (10.1016/j.pmatsci.2016.06.002_b1105) 2012; 22 Lefevre (10.1016/j.pmatsci.2016.06.002_b1690) 2009; 324 Zhou (10.1016/j.pmatsci.2016.06.002_b0905) 2007; 52 Bonhote (10.1016/j.pmatsci.2016.06.002_b0880) 1996; 35 Liu (10.1016/j.pmatsci.2016.06.002_b1275) 2012; 29 Shanmugam (10.1016/j.pmatsci.2016.06.002_b1460) 2005; 109 Coloma (10.1016/j.pmatsci.2016.06.002_b0505) 1994; 10 Antolini (10.1016/j.pmatsci.2016.06.002_b0090) 2003; 78 Poh (10.1016/j.pmatsci.2016.06.002_b0670) 2014; 118 Takasu (10.1016/j.pmatsci.2016.06.002_b1075) 2003; 48 Marinkas (10.1016/j.pmatsci.2016.06.002_b1660) 2015; 295 Matter (10.1016/j.pmatsci.2016.06.002_b1215) 2006; 239 Wang (10.1016/j.pmatsci.2016.06.002_b0490) 2006; 44 Wang (10.1016/j.pmatsci.2016.06.002_b0095) 2015; 115 Fang (10.1016/j.pmatsci.2016.06.002_b0125) 2009; 21 Rajalakshmi (10.1016/j.pmatsci.2016.06.002_b0450) 2005; 140 Smiljanic (10.1016/j.pmatsci.2016.06.002_b0900) 2001; 342 Ramesh (10.1016/j.pmatsci.2016.06.002_b1670) 2008; 112 Trogadas (10.1016/j.pmatsci.2016.06.002_b0440) 2014; 75 Maldonado (10.1016/j.pmatsci.2016.06.002_b0555) 2006; 44 Kusunoki (10.1016/j.pmatsci.2016.06.002_b0570) 2001; 492 Li (10.1016/j.pmatsci.2016.06.002_b1995) 2008; 10 Su (10.1016/j.pmatsci.2016.06.002_b0335) 2007; 19 Aravind (10.1016/j.pmatsci.2016.06.002_b1685) 2012; 4 Higgins (10.1016/j.pmatsci.2016.06.002_b1155) 2010; 114 Suffner (10.1016/j.pmatsci.2016.06.002_b1920) 2011; 1 Antolini (10.1016/j.pmatsci.2016.06.002_b0085) 2003; 38 Xu (10.1016/j.pmatsci.2016.06.002_b1020) 2008; 112 Hirsch (10.1016/j.pmatsci.2016.06.002_b0460) 2002; 41 Chen (10.1016/j.pmatsci.2016.06.002_b1055) 2011; 115 Kuo (10.1016/j.pmatsci.2016.06.002_b1715) 2012; 12 Wang (10.1016/j.pmatsci.2016.06.002_b0940) 2011; 13 Tasis (10.1016/j.pmatsci.2016.06.002_b0465) 2006; 106 Chen (10.1016/j.pmatsci.2016.06.002_b1165) 2006; 110 Dylla (10.1016/j.pmatsci.2016.06.002_b1845) 2011; 47 Yu (10.1016/j.pmatsci.2016.06.002_b1185) 2005; 144 Zang (10.1016/j.pmatsci.2016.06.002_b1765) 2014; 144 Derbyshire (10.1016/j.pmatsci.2016. |
References_xml | – volume: 6 start-page: 205 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1260 article-title: Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction publication-title: ACS Nano doi: 10.1021/nn203393d – volume: 150 start-page: 645 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1855 article-title: Stability study of ultra-low Pt thin film on TiO2–C core–shell structure and TiO2 encapsulated in carbon nanospheres as cathode catalyst in PEMFC publication-title: Fuel doi: 10.1016/j.fuel.2015.02.002 – volume: 720–721 start-page: 34 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1775 article-title: Electrocatalysis of oxygen reduction with platinum supported on molybdenum carbide–carbon composite publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2014.02.023 – volume: 312 start-page: 216 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1380 article-title: Theoretical prediction and experimental verification of low loading of platinum on titanium carbide as low-cost and stable electrocatalysts publication-title: J Catal doi: 10.1016/j.jcat.2014.02.002 – volume: 5 start-page: 2903 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1710 article-title: Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction publication-title: ACS Catal doi: 10.1021/acscatal.5b00117 – volume: 69 start-page: 397 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1590 article-title: Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.039 – volume: 56 start-page: 9 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0070 article-title: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2004.06.021 – volume: 34 start-page: 4586 year: 1986 ident: 10.1016/j.pmatsci.2016.06.002_b1280 article-title: Various functionals for the kinetic energy density of an atom or molecule publication-title: Phys Rev A doi: 10.1103/PhysRevA.34.4586 – volume: 193 start-page: 501 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1580 article-title: Cyclic voltammetry and X-ray photoelectron spectroscopy studies of electrochemical stability of clean and Pt-modified tungsten and molybdenum carbide (WC and Mo2C) electrocatalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.04.020 – volume: 7 start-page: 2255 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b2110 article-title: New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism publication-title: Energy Environ Sci doi: 10.1039/C4EE00440J – volume: 7 start-page: 6153 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1520 article-title: Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells publication-title: ACS Appl Mater Interfaces doi: 10.1021/am508982d – volume: 307–311 start-page: 1339 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b1470 article-title: Solid state reaction between tungsten and amorphous carbon publication-title: J Nucl Mater doi: 10.1016/S0022-3115(02)00986-8 – volume: 2 start-page: 28 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1740 article-title: Pt-WxC nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.07.008 – volume: 7 start-page: 905 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0535 article-title: Nitrogen containing carbon nanotubes as supports for Pt-alternate anodes for fuel cell applications publication-title: Electrochem Commun doi: 10.1016/j.elecom.2005.07.007 – volume: 176 start-page: 70 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0480 article-title: Citric acid functionalized carbon materials for fuel cell applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.10.049 – volume: 37 start-page: 3055 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1810 article-title: Oxidation resistance of multi-walled carbon nanotubes coated with polycarbosilane-derived SiCxOy ceramic publication-title: Ceram Int doi: 10.1016/j.ceramint.2011.05.033 – volume: 5 start-page: 555 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b1465 article-title: Low temperature carburization of high surface area tungsten powders publication-title: Nanostruct Mater doi: 10.1016/0965-9773(95)00265-G – volume: 19 start-page: 1803 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b2010 article-title: Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells publication-title: J Mater Chem doi: 10.1039/b819006b – volume: 363 start-page: 415 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0890 article-title: Growth of carbon nanotubes on carbon paper by Ohmically heating silane-dispersed catalytic sites publication-title: Chem Phys Lett doi: 10.1016/S0009-2614(02)01250-2 – volume: 144 start-page: 112 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1940 article-title: Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2013.07.007 – volume: 54 start-page: 6850 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1230 article-title: Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.06.068 – volume: 37 start-page: 3281 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1535 article-title: Conversion of wooden structures into porous SiC with shape memory synthesis publication-title: Ceram Int doi: 10.1016/j.ceramint.2011.05.124 – volume: 157 start-page: B1679 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b2060 article-title: Mesoporous carbon and poly(3,4-ethylenedioxythiophene) composite as catalyst support for polymer electrolyte fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.3486172 – volume: 23 start-page: 1079 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0935 article-title: Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation publication-title: Chem Mater doi: 10.1021/cm101568z – volume: 22 start-page: 74 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1000 article-title: Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes publication-title: Langmuir doi: 10.1021/la051736i – ident: 10.1016/j.pmatsci.2016.06.002_b0250 – volume: 13 start-page: 5569 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1790 article-title: Synthesis of octahedral Pt–Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02167a – volume: 48 start-page: 1063 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1490 article-title: Atomic layer deposition synthesis of platinum–tungsten carbide core–shell catalysts for the hydrogen evolution reaction publication-title: Chem Commun doi: 10.1039/C1CC15812K – volume: 134 start-page: 13252 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0870 article-title: Nanostructured polyaniline-decorated Pt/C@PANI core–shell catalyst with enhanced durability and activity publication-title: J Am Chem Soc doi: 10.1021/ja306501x – volume: 11 start-page: 655 year: 1999 ident: 10.1016/j.pmatsci.2016.06.002_b0565 article-title: Carbon nitride nanocomposites: formation of aligned CxNy nanofibers publication-title: Adv Mater doi: 10.1002/(SICI)1521-4095(199906)11:8<655::AID-ADMA655>3.0.CO;2-6 – volume: 164 start-page: 431 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0780 article-title: Thermal and electrochemical stability of tungsten carbide catalyst supports publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.11.003 – volume: 31 start-page: 103 year: 1986 ident: 10.1016/j.pmatsci.2016.06.002_b1445 article-title: The mechanism of the activation process of the tungsten carbide electrode publication-title: Electrochim Acta doi: 10.1016/0013-4686(86)80069-X – volume: 33 start-page: 3 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b0510 article-title: Metal-support interaction in Pt/C catalysts. Influence of the support surface chemistry and the metal precursor publication-title: Carbon doi: 10.1016/0008-6223(94)00096-I – volume: 38 start-page: 10542 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0995 article-title: Polyelectrolyte multilayer formation on neutral hydrophobic surfaces publication-title: Macromolecules doi: 10.1021/ma051158c – volume: 89 start-page: 156 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b2035 article-title: Fabrication and characterization of carbon nanotube–titanium nitride composites with enhanced electrical and electrochemical properties publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2005.00687.x – volume: 51 start-page: 5981 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0410 article-title: Fuel cell materials and components publication-title: Acta Mater doi: 10.1016/j.actamat.2003.08.004 – volume: 3 start-page: 1121 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1750 article-title: Nanostructured WCx/CNTs as highly efficient support of electrocatalysts with low Pt loading for oxygen reduction reaction publication-title: Energy Environ Sci doi: 10.1039/c001423k – volume: 3 start-page: 3578 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1785 article-title: A universal method to synthesize nanoscale carbides as electrocatalyst supports towards oxygen reduction reaction publication-title: Nanoscale doi: 10.1039/c1nr10436e – volume: 107 start-page: 6292 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b2045 article-title: Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells publication-title: J Phys Chem B doi: 10.1021/jp022505c – volume: 8 start-page: 897 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0260 article-title: Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior publication-title: Energy Environ Sci doi: 10.1039/C4EE03172E – volume: 46 start-page: 124 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0600 article-title: Efficient anchorage of Pt clusters on N-doped carbon nanotubes and their catalytic activity publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2008.08.001 – start-page: 77 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b1455 – volume: 1 start-page: 9737 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1935 article-title: Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions publication-title: J Mater Chem A doi: 10.1039/c3ta11238a – volume: 109 start-page: 22705 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1730 article-title: Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction publication-title: J Phys Chem B doi: 10.1021/jp054523a – volume: 111 start-page: 7625 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0015 article-title: Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts publication-title: Chem Rev doi: 10.1021/cr100060r – volume: 33 start-page: 1641 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b0580 article-title: Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis publication-title: Carbon doi: 10.1016/0008-6223(95)00154-6 – volume: 23 start-page: 3100 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0695 article-title: A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization publication-title: Adv Mater doi: 10.1002/adma.201100040 – volume: 51 start-page: 7577 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0325 article-title: Carbide-derived carbon monoliths with hierarchical pore architectures publication-title: Angew Chem Int Ed doi: 10.1002/anie.201200024 – volume: 45 start-page: 2496 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b1695 article-title: Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation publication-title: Carbon doi: 10.1016/j.carbon.2007.08.028 – volume: 181 start-page: 547 year: 1973 ident: 10.1016/j.pmatsci.2016.06.002_b1345 article-title: Platinum-like behavior of tungsten carbide in surface catalysis publication-title: Science doi: 10.1126/science.181.4099.547 – volume: 38 start-page: 2995 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0085 article-title: Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells publication-title: J Mater Sci doi: 10.1023/A:1024771618027 – volume: 153 start-page: A1093 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1560 article-title: Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions publication-title: J Electrochem Soc doi: 10.1149/1.2191147 – volume: 4 start-page: 3805 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1685 article-title: Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell publication-title: ACS Appl Mater Interfaces doi: 10.1021/am301187h – year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0205 – volume: 284 start-page: 139 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0650 article-title: Basic properties of molybdenum and tungsten nitride catalysts publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2005.01.029 – volume: 10 start-page: 780 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1645 article-title: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction publication-title: Nat Mater doi: 10.1038/nmat3087 – volume: 258 start-page: 143 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1915 article-title: Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells publication-title: J Catal doi: 10.1016/j.jcat.2008.06.007 – volume: 107 start-page: 13357 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0975 article-title: Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS publication-title: J Phys Chem B doi: 10.1021/jp0365099 – volume: 22 start-page: 123 year: 1983 ident: 10.1016/j.pmatsci.2016.06.002_b1340 article-title: Catalytic properties of powdered refractory compounds of transition elements. Carbides and nitrides—a review publication-title: Powder Metall Met Ceram doi: 10.1007/BF00802639 – volume: 46 start-page: 1276 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0200 article-title: The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques publication-title: Carbon doi: 10.1016/j.carbon.2008.05.007 – volume: 135 start-page: 2790 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1265 article-title: Graphene versus carbon nanotubes for chemical sensor and fuel cell applications publication-title: Analyst doi: 10.1039/c0an00262c – volume: 158 start-page: 477 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1820 article-title: Catalytic activity of molybdenum carbide for hydrogen generation via diesel reforming publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.09.009 – volume: 14 start-page: 473 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0690 article-title: Formation of Pt–TiO2–rGO3-phase junctions with significantly enhanced electro-activity for methanol oxidation publication-title: Phys Chem Chem Phys doi: 10.1039/C1CP23367J – volume: vol. A5 start-page: 95 year: 1986 ident: 10.1016/j.pmatsci.2016.06.002_b0160 – volume: 79 start-page: 89 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1705 article-title: Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2007.09.047 – volume: 238 start-page: 144 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1900 article-title: Pt–SnO2/nitrogen-doped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): effects of crystalline and amorphous SnO2 by atomic layer deposition publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.093 – volume: 35 start-page: 1008 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0950 article-title: Multiwall carbon nanotubes: synthesis and application publication-title: Acc Chem Res doi: 10.1021/ar010151m – volume: 4 start-page: 1892 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1285 article-title: Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells publication-title: Energ Environ Sci doi: 10.1039/c1ee01153g – volume: 195 start-page: 3977 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1905 article-title: Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.01.027 – volume: 486 start-page: 43 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0025 article-title: Electrocatalyst approaches and challenges for automotive fuel cells publication-title: Nature doi: 10.1038/nature11115 – volume: 127 start-page: 127 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0385 article-title: Aging mechanisms and lifetime of PEFC and DMFC publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.09.033 – volume: 62 start-page: 1 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1500 article-title: Solid-state synthesis of tungsten carbide from tungsten oxide and carbon, and its catalysis by nickel publication-title: Mater Lett doi: 10.1016/j.matlet.2007.04.088 – volume: 12 start-page: 657 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0280 article-title: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.033 – volume: 159 start-page: 42 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0515 article-title: Effects of chemical treatment of carbon supports on electrochemical behaviors for platinum catalysts of fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.04.041 – volume: 140 start-page: 250 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0450 article-title: Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.08.042 – volume: 195 start-page: 8080 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1120 article-title: Nitrogen-doped multi-walled carbon nanocoils as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.06.109 – volume: 5 start-page: 805 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0750 article-title: Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene publication-title: ACS Nano doi: 10.1021/nn1017395 – volume: 324 start-page: 1302 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1795 article-title: Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction publication-title: Science doi: 10.1126/science.1170377 – volume: 4 start-page: 728 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0685 article-title: Ultrahigh stable carbon riveted Pt/TiO2–C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell publication-title: Energy Environ Sci doi: 10.1039/C0EE00475H – volume: 3 start-page: 1492 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1045 article-title: Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures publication-title: J Mater Chem A doi: 10.1039/C4TA05552G – volume: 101 start-page: 11037 year: 1997 ident: 10.1016/j.pmatsci.2016.06.002_b2050 article-title: Thermal and electromagnetic behavior of doped poly(3,4-ethylenedioxythiophene) films publication-title: J Phys Chem B doi: 10.1021/jp9720101 – volume: 323 start-page: 760 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1700 article-title: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction publication-title: Science doi: 10.1126/science.1168049 – volume: 104 start-page: 4245 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0035 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem Rev doi: 10.1021/cr020730k – volume: 108 start-page: 19255 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0455 article-title: Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes publication-title: J Phys Chem B doi: 10.1021/jp046697i – volume: vol. 11 year: 1982 ident: 10.1016/j.pmatsci.2016.06.002_b0710 – volume: 116 start-page: 14754 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b2140 article-title: Activity modulated low platinum content oxygen reduction electrocatalysts prepared by inducing nano-order dislocations on carbon nanofiber through N2-doping publication-title: J Phys Chem C doi: 10.1021/jp300881p – volume: 2 start-page: 2538 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0295 article-title: Single-walled carbon nanohorns and their applications publication-title: Nanoscale doi: 10.1039/c0nr00387e – volume: 406 start-page: 46 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0575 article-title: Synthesis and thermal decomposition of carbon nitride films prepared by nitrogen ion implantation into graphite publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01785-0 – volume: 1 start-page: 7463 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1960 article-title: Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis publication-title: J Mater Chem A doi: 10.1039/c3ta10298j – volume: 29 start-page: 11 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1275 article-title: Design of Pt catalyst with high electrocatalytic activity and well tolerance to methanol for oxygen reduction in acidic medium publication-title: Catal Commun doi: 10.1016/j.catcom.2012.09.016 – volume: 49 start-page: 4169 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1780 article-title: Microwave-assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction publication-title: Ind Eng Chem Res doi: 10.1021/ie901741c – volume: 1 start-page: 2126 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1985 article-title: Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability publication-title: J Mater Chem A doi: 10.1039/C2TA00606E – volume: 18 start-page: 5033 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0920 article-title: XPS demonstration of π–π interaction between benzyl mercaptan and multiwalled carbon nanotubes and their use in the adhesion of Pt nanoparticles publication-title: Chem Mater doi: 10.1021/cm061256s – volume: 42 start-page: 2880 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0145 article-title: Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications publication-title: Chem Soc Rev doi: 10.1039/C2CS35319A – volume: 88 start-page: 1 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0155 article-title: Carbon supports for low-temperature fuel cell catalysts publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2008.09.030 – volume: 2 start-page: 1669 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0320 article-title: Evaluation of porous carbon substrates as catalyst supports for the cathode of direct methanol fuel cells publication-title: RSC Adv doi: 10.1039/C1RA01121A – volume: 9 start-page: 2576 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0355 article-title: Platinized mesoporous tungsten carbide for electrochemical methanol oxidation publication-title: Electrochem Commun doi: 10.1016/j.elecom.2007.08.002 – volume: 5 start-page: 2787 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b2005 article-title: Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition: high-performance anode materials for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn200195k – volume: 27 start-page: 5582 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0865 article-title: Polyaniline-functionalized carbon nanotube supported platinum catalysts publication-title: Langmuir doi: 10.1021/la2003589 – volume: 22 start-page: 3723 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1990 article-title: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors publication-title: Adv Mater doi: 10.1002/adma.201001029 – volume: 45 start-page: 1506 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0840 article-title: Surface-modified carbons as platinum catalyst support for PEM fuel cells publication-title: Carbon doi: 10.1016/j.carbon.2007.03.023 – volume: 112 start-page: 5784 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1010 article-title: Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support publication-title: J Phys Chem C doi: 10.1021/jp800186p – volume: 117 start-page: 15457 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1300 article-title: TiSi2Ox coated N-doped carbon nanotubes as Pt catalyst support for the oxygen reduction reaction in PEMFCs publication-title: J Phys Chem C doi: 10.1021/jp3118874 – volume: 372 start-page: 159 year: 1994 ident: 10.1016/j.pmatsci.2016.06.002_b0830 article-title: A simple chemical method of opening and filling carbon nanotubes publication-title: Nature doi: 10.1038/372159a0 – start-page: 173 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b0825 article-title: Efficient cleavage of carbon graphene layers by oxidants publication-title: J Chem Soc Chem Commun doi: 10.1039/c39950000173 – volume: 31 start-page: 638 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0965 article-title: Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion publication-title: Chem Lett doi: 10.1246/cl.2002.638 – volume: 210 start-page: 15 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b2135 article-title: Application of a composite structure of carbon nanoparticles and Nb–TiO2 nanofibers as electrocatalyst support for PEM fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.02.093 – volume: 195 start-page: 1812 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0270 article-title: Carbon xerogels as Pt catalyst supports for polymer electrolyte membrane fuel-cell applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.10.033 – volume: 46 start-page: 138 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1210 article-title: Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2007.10.034 – volume: 8 start-page: 25 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1910 article-title: Improvement of cathode materials for polymer electrolyte fuel cell publication-title: J New Mater Electrochem Syst – volume: 137 start-page: 41 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1050 article-title: Enhanced oxygen reduction activities of Pt supported on nitrogen-doped carbon nanocapsules publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.05.145 – volume: 29 start-page: 31 year: 1973 ident: 10.1016/j.pmatsci.2016.06.002_b0735 article-title: The state of supported iridium in a hydrazine decomposition catalyst publication-title: J Catal doi: 10.1016/0021-9517(73)90199-1 – volume: 64 start-page: 1536 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0275 article-title: Synthesis of carbon xerogel particles and fractal-like structures publication-title: Chem Eng Sci doi: 10.1016/j.ces.2008.12.013 – volume: 32 start-page: 810 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0040 article-title: An overview of fuel cell technology: fundamentals and applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.01.012 – volume: 240 start-page: 60 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1100 article-title: Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.149 – volume: 109 start-page: 477 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0310 article-title: Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells publication-title: J Power Sources doi: 10.1016/S0378-7753(02)00112-X – volume: 93 start-page: 216 year: 1985 ident: 10.1016/j.pmatsci.2016.06.002_b0700 article-title: Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts publication-title: J Catal doi: 10.1016/0021-9517(85)90169-1 – year: 1996 ident: 10.1016/j.pmatsci.2016.06.002_b0445 – volume: 4 start-page: 1558 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1550 article-title: Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts publication-title: ACS Catal doi: 10.1021/cs500182h – volume: 162 start-page: 2337 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b2145 article-title: Sulfur-enriched hierarchically nanoporous carbonaceous materials for sodium-ion storage publication-title: Synthetic Met doi: 10.1016/j.synthmet.2012.11.005 – volume: 121 start-page: 421 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1895 article-title: Tin oxide - mesoporous carbon composites as platinum catalyst supports for ethanol oxidation and oxygen reduction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.12.075 – volume: 3 start-page: 1775 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1570 article-title: Single-atom catalysis using Pt/graphene achieved through atomic layer deposition publication-title: Sci Rep doi: 10.1038/srep01775 – volume: 295 start-page: 79 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1660 article-title: Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.06.126 – volume: 492 start-page: 315 year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b0570 article-title: XPS study of nitridation of diamond and graphite with a nitrogen ion beam publication-title: Surf Sci doi: 10.1016/S0039-6028(01)01430-3 – volume: 44 start-page: 5836 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0005 article-title: A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes publication-title: Chem Soc Rev doi: 10.1039/C5CS00302D – volume: 37 start-page: 8154 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1080 article-title: Rapid formation of nanoscale tungsten carbide on graphitized carbon for electrocatalysis publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.02.100 – volume: 10 start-page: 1101 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1995 article-title: Anchoring metal nanoparticles on hydrofluoric acid treated multiwalled carbon nanotubes as stable electrocatalysts publication-title: Electrochem Commun doi: 10.1016/j.elecom.2008.05.025 – volume: 20 start-page: 2579 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0945 article-title: Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction publication-title: Adv Mater doi: 10.1002/adma.200702949 – volume: 16 start-page: 22 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0990 article-title: Carbon nanotubes as templates for one-dimensional nanoparticle assemblies publication-title: J Mater Chem doi: 10.1039/B512090J – volume: 3 start-page: 2257 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b2115 article-title: Functionalized single-walled carbon nanotube-based fuel cell benchmarked against US DOE 2017 technical targets publication-title: Sci Rep doi: 10.1038/srep02257 – volume: 144 start-page: 11 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1185 article-title: PtCo/C cathode catalyst for improved durability in PEMFCs publication-title: J Power Sources doi: 10.1016/j.jpowsour.2004.11.067 – volume: 497 start-page: 198 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0615 article-title: An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2015.03.008 – volume: 16 start-page: 2179 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0985 article-title: Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates publication-title: Adv Mater doi: 10.1002/adma.200400626 – volume: 126 start-page: 8028 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b1065 article-title: Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism publication-title: J Am Chem Soc doi: 10.1021/ja0495819 – volume: 287 start-page: 176 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1825 article-title: Poisoning effect of thiophene on the catalytic activity of molybdenum carbide during tri-methyl pentane reforming for hydrogen generation publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2005.03.043 – volume: 2 start-page: 109 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b2075 article-title: Electro-oxidation of carbon monoxide and methanol on carbon-supported Pt–Sn nanoparticles: a DEMS study publication-title: Fuel Cells doi: 10.1002/fuce.200290000 – start-page: 9 year: 1996 ident: 10.1016/j.pmatsci.2016.06.002_b1365 – volume: 113 start-page: 18707 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1840 article-title: Synthesis and electrochemical oxygen reduction of platinum nanoparticles supported on mesoporous TiO2 publication-title: J Phys Chem C doi: 10.1021/jp908322h – volume: 36 start-page: 345 year: 2000 ident: 10.1016/j.pmatsci.2016.06.002_b0730 article-title: Carbon application in chemical power sources publication-title: Russ J Electrochem doi: 10.1007/BF02756940 – volume: 52 start-page: 4691 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0905 article-title: CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation publication-title: Electrochim Acta doi: 10.1016/j.electacta.2007.01.007 – volume: 110 start-page: 8348 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1205 article-title: Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite publication-title: J Phys Chem B doi: 10.1021/jp060513d – volume: 161 start-page: 893 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1925 article-title: An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.05.014 – volume: 8 start-page: 245 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0875 article-title: Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes publication-title: Electrochem Commun doi: 10.1016/j.elecom.2005.11.021 – volume: 105 start-page: 10037 year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b1410 article-title: Potential application of tungsten carbides as electrocatalysts. 1. Decomposition of methanol over carbide-modified W(111) publication-title: J Phys Chem B doi: 10.1021/jp0116196 – year: 1992 ident: 10.1016/j.pmatsci.2016.06.002_b2095 – volume: 112 start-page: 249 year: 1965 ident: 10.1016/j.pmatsci.2016.06.002_b1955 article-title: The platinum-on-carbon catalyst system for hydrogen anodes: II. Chemical requirements of the carbon surface publication-title: J Electrochem Soc doi: 10.1149/1.2423517 – volume: 1 start-page: 212 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1495 article-title: Structural and electrochemical studies of Pt clusters supported on high-surface-area tungsten carbide for oxygen reduction publication-title: ACS Catal doi: 10.1021/cs100140s – volume: 88 start-page: 2330 year: 1984 ident: 10.1016/j.pmatsci.2016.06.002_b0800 article-title: Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 X-ray absorption edge spectra publication-title: J Phys Chem doi: 10.1021/j150655a029 – volume: 202 start-page: 11 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1585 article-title: Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.093 – ident: 10.1016/j.pmatsci.2016.06.002_b2125 – volume: 15 start-page: 260 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b2030 article-title: Carbon nanotubes–metal nitride composites: a new class of nanocomposites with enhanced electrical properties publication-title: J Mater Chem doi: 10.1039/B409682G – volume: 115 start-page: 3769 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1055 article-title: Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells publication-title: J Phys Chem C doi: 10.1021/jp108864y – volume: 728 start-page: 41 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1110 article-title: Preparation of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for oxygen reduction and methanol oxidation publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2014.06.024 – volume: 1 start-page: 223 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0895 article-title: Formation of carbon nanotubes on carbon paper and stainless steel screen by Ohmically heating catalytic sites publication-title: Int J Nanosci doi: 10.1142/S0219581X02000309 – volume: 3 start-page: 12 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0170 article-title: Review of new carbon materials as catalyst supports in direct alcohol fuel cells publication-title: Chin J Catal doi: 10.1016/S1872-2067(09)60034-6 – volume: 58 start-page: 1809 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0810 article-title: Composite carbon nanotube and titania catalyst supports for enhanced activity and durability publication-title: ECS Trans doi: 10.1149/05801.1809ecst – volume: 464–465 start-page: 233 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1145 article-title: Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2013.05.039 – volume: 367 start-page: 747 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0930 article-title: Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker publication-title: Chem Phys Lett doi: 10.1016/S0009-2614(02)01789-X – volume: 191 start-page: 330 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0400 article-title: A novel electrocatalyst support with proton conductive properties for polymer electrolyte membrane fuel cell applications publication-title: J Power Sources doi: 10.1016/j.jpowsour.2009.01.086 – volume: 144 start-page: 3845 year: 1997 ident: 10.1016/j.pmatsci.2016.06.002_b0420 article-title: Low cost electrodes for proton exchange membrane fuel cells: performance in single cells and Ballard stacks publication-title: J Electrochem Soc doi: 10.1149/1.1838101 – year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0425 – volume: 74 start-page: 440 year: 1978 ident: 10.1016/j.pmatsci.2016.06.002_b0430 article-title: X-ray photoelectron spectroscopy study of Pd and Pt ions in type Y-zeolite. Electron transfer between metal aggregates and the support as evidenced by X-ray photoelectron spectroscopy and electron spin resonance publication-title: J Chem Soc Faraday Trans doi: 10.1039/f19787400440 – volume: 39 start-page: 16731 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1865 article-title: Kinetic study of oxygen reduction reaction and PEM fuel cell performance of Pt/TiO2-C electrocatalyst publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.109 – volume: 33 start-page: 63 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0655 article-title: Mo2N/C hybrid material as a promising support for the electro-oxidation of methanol and formic acid publication-title: Electrochem Commun doi: 10.1016/j.elecom.2013.04.017 – volume: 55 start-page: 5318 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0645 article-title: A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.04.056 – volume: 114 start-page: 21982 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1155 article-title: Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells publication-title: J Phys Chem C doi: 10.1021/jp106814j – volume: 69 start-page: 239 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1515 article-title: Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.02.105 – volume: 220 start-page: 1 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1875 article-title: Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.080 – volume: vol. 5 start-page: 250 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0380 article-title: Catalyst and catalyst-support durability – volume: 379 start-page: 99 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0885 article-title: Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings publication-title: Chem Phys Lett doi: 10.1016/j.cplett.2003.08.021 – year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b1220 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.pmatsci.2016.06.002_b1675 article-title: Preparation of graphitic oxide publication-title: J Am Chem Soc doi: 10.1021/ja01539a017 – volume: 155 start-page: 95 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0075 article-title: A review of anode catalysis in the direct methanol fuel cell publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.01.030 – volume: 11 start-page: 2071 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0550 article-title: Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells publication-title: Electrochem Commun doi: 10.1016/j.elecom.2009.09.008 – volume: 342 start-page: 503 year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b0900 article-title: Growth of carbon nanotubes on Ohmically heated carbon paper publication-title: Chem Phys Lett doi: 10.1016/S0009-2614(01)00650-9 – volume: 7 start-page: 1170 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0755 article-title: Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction publication-title: ACS Appl Mater Interfaces doi: 10.1021/am506916y – volume: 108 start-page: 10955 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b1505 article-title: Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles publication-title: J Phys Chem doi: 10.1021/jp0379953 – volume: 2 start-page: 12681 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0065 article-title: Ta and Nb co-doped TiO2 and its carbon-hybrid materials for supporting Pt-Pd alloy electrocatalysts for PEM fuel cell oxygen reduction reaction publication-title: J Mater Chem A doi: 10.1039/C4TA02062F – volume: 34 start-page: 181 year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b2085 article-title: Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis publication-title: Acc Chem Res doi: 10.1021/ar000110a – volume: 12 start-page: 569 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b2065 article-title: Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials publication-title: J Solid State Electrochem doi: 10.1007/s10008-007-0398-x – volume: 12 start-page: B119 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1885 article-title: Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells publication-title: Electrochem Solid-State Lett doi: 10.1149/1.3152325 – volume: 155 start-page: 118 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0955 article-title: Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.04.035 – volume: 38 start-page: 5521 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1135 article-title: Nitrogen-doped mesoporous carbon hollow spheres as a novel carbon support for oxygen reduction reaction publication-title: New J Chem doi: 10.1039/C4NJ01162G – volume: 199 start-page: 46 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1485 article-title: Rotating disk electrode measurements of activity and stability of monolayer Pt on tungsten carbide disks for oxygen reduction reaction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.10.024 – volume: 105 start-page: 185 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1350 article-title: Surface chemistry of transition metal carbides publication-title: Chem Rev doi: 10.1021/cr0204606 – start-page: 67 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b2020 article-title: High performance platinized titanium nitride catalyst for methanol oxidation publication-title: Chem Commun doi: 10.1039/B715859A – volume: 577 start-page: 107 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b2100 article-title: Thickness effects of a carbon-supported platinum catalyst layer on the electrochemical reduction of oxygen in sulfuric acid solution publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2004.11.022 – volume: 158 start-page: 374 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0635 article-title: Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.01.173 – volume: 3 start-page: 195 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0225 article-title: The synthesis, properties and used of carbon materials with helical morphology publication-title: J Adv Res doi: 10.1016/j.jare.2011.05.007 – volume: 49 start-page: 3479 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b1450 article-title: Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst publication-title: Electrochim Acta doi: 10.1016/j.electacta.2004.03.018 – volume: 2 start-page: 10146 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1600 article-title: A Ti-coated nano-SiC supported platinum electrocatalyst for improved activity and durability in direct methanol fuel cell publication-title: J Mater Chem A doi: 10.1039/c4ta00618f – volume: 1 start-page: 1270 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1665 article-title: Ordered mesoporous carbon–carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells publication-title: J Mater Chem A doi: 10.1039/C2TA00076H – volume: 9 start-page: 305 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0030 article-title: Tailored design of functional nanoporous carbon materials toward fuel cell applications publication-title: Nano Today doi: 10.1016/j.nantod.2014.05.003 – ident: 10.1016/j.pmatsci.2016.06.002_b1370 – volume: 112 start-page: 9089 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1670 article-title: SWNT–MWNT hybrid architecture for proton exchange membrane fuel cell cathodes publication-title: J Phys Chem C doi: 10.1021/jp711280j – volume: 19 start-page: 3325 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0335 article-title: Hierarchical multimodal mesoporous carbon materials with parallel macrochannels publication-title: Chem Mater doi: 10.1021/cm070294o – volume: 142 start-page: 2572 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b0305 article-title: Influences of both carbon supports and heat – treatment of supported catalyst on electrochemical oxidation of methanol publication-title: J Electrochem Soc doi: 10.1149/1.2050055 – volume: 11 start-page: 954 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1640 article-title: Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction publication-title: Electrochem Commun doi: 10.1016/j.elecom.2009.02.033 – volume: 21 start-page: 789 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0125 article-title: Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell publication-title: Chem Mater doi: 10.1021/cm801467y – volume: 130 start-page: 61 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0415 article-title: PEM fuel cell electrodes publication-title: J Power Sources doi: 10.1016/j.jpowsour.2003.12.055 – volume: 20 start-page: 7551 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0610 article-title: Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity publication-title: J Mater Chem doi: 10.1039/c0jm00952k – volume: 196 start-page: 7426 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0785 article-title: Tungsten carbide modified high surface area carbon as fuel cell catalyst support publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.04.026 – ident: 10.1016/j.pmatsci.2016.06.002_b1325 – volume: 16 start-page: 3904 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b1005 article-title: Polymer/single-walled carbon nanotube films assembled via donor–acceptor interactions and their use as scaffolds for silica deposition publication-title: Chem Mater doi: 10.1021/cm049708t – volume: 24 start-page: 3566 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1250 article-title: Well-dispersed high-loading pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation publication-title: Langmuir doi: 10.1021/la7029278 – volume: 19 start-page: 7830 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0545 article-title: Improving PEM fuel cell catalyst activity and durability using nitrogen-doped carbon supports: observations from model Pt/HOPG systems publication-title: J Mater Chem doi: 10.1039/b910924b – volume: 16 start-page: 73 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1270 article-title: Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells publication-title: Electrochem Commun doi: 10.1016/j.elecom.2011.11.033 – volume: 287 start-page: 196 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1385 article-title: Effect of pretreatment atmosphere on the particle size and oxygen reduction activity of low-loading platinum impregnated titanium carbide powder electrocatalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.03.146 – volume: 46 start-page: 1858 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0080 article-title: Particle size and support effects in electrocatalysis publication-title: Acc Chem Res doi: 10.1021/ar400001n – volume: 44 start-page: 133 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0490 article-title: Effects of ozone treatment of carbon support on Pt–Ru/C catalysts performance for direct methanol fuel cell publication-title: Carbon doi: 10.1016/j.carbon.2005.06.043 – volume: 161 start-page: 213 year: 1997 ident: 10.1016/j.pmatsci.2016.06.002_b0485 article-title: Effect of the carbon pre-treatment on the properties and performance for nitrobenzene hydrogenation of Pt/C catalysts publication-title: Appl Catal A: Gen doi: 10.1016/S0926-860X(97)00071-9 – volume: 21 start-page: 4185 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0725 article-title: Sonochemical oxidation of multiwalled carbon nanotubes publication-title: Langmuir doi: 10.1021/la047268e – volume: 48 start-page: 3861 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b1075 article-title: Effects of the surface area of carbon support on the characteristics of highly-dispersed PtRu particles as catalysts for methanol oxidation publication-title: Electrochim Acta doi: 10.1016/S0013-4686(03)00521-8 – volume: 66 start-page: 272 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0285 article-title: Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions publication-title: Carbon doi: 10.1016/j.carbon.2013.09.001 – volume: 53 start-page: 5131 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0665 article-title: Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis publication-title: Angew Chem Int Ed doi: 10.1002/anie.201400294 – volume: 30 start-page: 864 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1190 article-title: Nitrogen-doped carbon with mesopore confinement efficiently enhances the tolerance, sensitivity, and stability of a Pt catalyst for the oxygen reduction reaction publication-title: Part Part Syst Charact doi: 10.1002/ppsc.201300121 – volume: 4 start-page: 547 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1615 article-title: Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation publication-title: ACS Nano doi: 10.1021/nn9014483 – volume: 22 start-page: 3727 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1975 article-title: Titanium nitride–carbon nanotube core–shell composites as effective electrocatalyst supports for low temperature fuel cells publication-title: J Mater Chem doi: 10.1039/c2jm15014j – volume: 3 start-page: 1286 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0925 article-title: Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells publication-title: Energ Environ Sci doi: 10.1039/c0ee00139b – volume: 4 start-page: 3856 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1130 article-title: Nitrogen-doped hollow carbon spheres as a support for platinum-based electrocatalysts publication-title: ACS Catal doi: 10.1021/cs5003492 – volume: 16 start-page: 100 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b1160 article-title: Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures publication-title: Chem Mater doi: 10.1021/cm031095h – volume: 44 start-page: 1336 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0910 article-title: Super-hydrophobic ordered mesoporous carbon monolith publication-title: Carbon doi: 10.1016/j.carbon.2005.12.007 – volume: 7 start-page: 113 year: 1990 ident: 10.1016/j.pmatsci.2016.06.002_b0470 article-title: Carbons as supports for precious metal catalysts publication-title: Catal Today doi: 10.1016/0920-5861(90)85012-D – ident: 10.1016/j.pmatsci.2016.06.002_b0255 – volume: 106 start-page: 1105 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0465 article-title: Chemistry of carbon nanotubes publication-title: Chem Rev doi: 10.1021/cr050569o – volume: 41 start-page: 775 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1545 article-title: Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG publication-title: ECS Trans doi: 10.1149/1.3635611 – volume: 1 start-page: 125 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1805 article-title: A new technique for coating silicon carbide carbon nanotubes using a polycarbosilane precursor publication-title: Silicon doi: 10.1007/s12633-009-9016-0 – volume: 21 start-page: 848 year: 1991 ident: 10.1016/j.pmatsci.2016.06.002_b0395 article-title: The electrochemistry of magnéli phase titanium oxide ceramic electrodes. Part I. The deposition and properties of metal coatings publication-title: J Appl Electrochem doi: 10.1007/BF01042450 – volume: 90 start-page: 023114 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0625 article-title: Defect-induced loading of Pt nanoparticles on carbon nanotubes publication-title: Appl Phys Lett doi: 10.1063/1.2430993 – volume: 74 start-page: 1608 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1085 article-title: Electrocatalytic oxidation of methanol on Pt catalyst supported on nitrogen-doped graphene induced by hydrazine reduction publication-title: J Phys Chem Solids doi: 10.1016/j.jpcs.2013.06.004 – volume: 10 start-page: 750 year: 1994 ident: 10.1016/j.pmatsci.2016.06.002_b0505 article-title: Preparation of platinum supported on pregraphitized carbon blacks publication-title: Langmuir doi: 10.1021/la00015a025 – volume: 2 start-page: 4014 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1770 article-title: MoC–graphite composite as a Pt electrocatalyst support for highly active methanol oxidation and oxygen reduction reaction publication-title: J Mater Chem A doi: 10.1039/c3ta14251e – volume: 157 start-page: F179 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1480 article-title: Electrochemical stability of tungsten and tungsten monocarbide (WC) over wide pH and potential ranges publication-title: J Electrochem Soc doi: 10.1149/1.3491341 – year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0180 doi: 10.1007/978-1-4899-8059-5 – volume: 118 start-page: 3890 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1090 article-title: Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode publication-title: J Phys Chem C doi: 10.1021/jp408979h – volume: 90 start-page: 013103 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b1170 article-title: Nitrogen-mediated fabrication of transition metal-carbon nanotube hybrid materials publication-title: Appl Phys Lett doi: 10.1063/1.2428411 – volume: 126 start-page: 225 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1375 article-title: Comparative study of IVB–VIB transition metal compound electrocatalysts for the hydrogen evolution reaction publication-title: Appl Catal B doi: 10.1016/j.apcatb.2012.07.023 – volume: 6 start-page: 183 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b1605 article-title: The rise of graphene publication-title: Nat Mater doi: 10.1038/nmat1849 – volume: 115 start-page: 3709 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0775 article-title: Atomic layer deposition of Pt on tungsten monocarbide (WC) for the oxygen reduction reaction publication-title: J Phys Chem C doi: 10.1021/jp111180e – volume: 21 start-page: 265707 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0215 article-title: Temperature dependence of carbon nanofiber resistance publication-title: Nanotechnology doi: 10.1088/0957-4484/21/26/265707 – volume: 5 start-page: 56570 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0120 article-title: Effect of different solvent ratio (ethylene glycol/water) on the preparation of Pt/C catalyst and its activity toward oxygen reduction reaction publication-title: RSC Adv doi: 10.1039/C5RA08068A – volume: 46 start-page: 1867 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0140 article-title: Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals publication-title: Acc Chem Res doi: 10.1021/ar3002238 – volume: 47 start-page: 12104 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1845 article-title: Facile formation of Pt and PtPd nanoparticles on reactive carbon–TiO2 nanosheet substrates publication-title: Chem Commun doi: 10.1039/c1cc15426e – volume: 49 start-page: 904 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1650 article-title: Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation publication-title: Carbon doi: 10.1016/j.carbon.2010.10.055 – volume: 49 start-page: 9859 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1475 article-title: Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates publication-title: Angew Chem Int Ed doi: 10.1002/anie.201004718 – volume: 144 start-page: 166 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1765 article-title: Core–shell structured SiC@C supported platinum electrocatalysts for direct methanol fuel cells publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2013.06.031 – volume: 100 start-page: 413 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0055 article-title: Composite materials: an emerging class of fuel cell catalyst supports publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2010.08.025 – volume: 3 start-page: 2431 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1255 article-title: Controlled growth of platinum nanowire arrays on sulfur doped graphene as high performance electrocatalyst publication-title: Sci Rep doi: 10.1038/srep02431 – volume: 52 start-page: 385 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1175 article-title: Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes publication-title: Electrochim Acta doi: 10.1016/j.electacta.2006.05.019 – volume: 42 start-page: 2381 year: 1997 ident: 10.1016/j.pmatsci.2016.06.002_b1420 article-title: Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds publication-title: Electrochim Acta doi: 10.1016/S0013-4686(96)00425-2 – volume: 6 start-page: 26 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0010 article-title: Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reactions publication-title: ChemCatChem doi: 10.1002/cctc.201300647 – volume: 22 start-page: 4634 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0245 article-title: Hierarchically structured porous materials for energy conversion and storage publication-title: Adv Funct Mater doi: 10.1002/adfm.201200591 – volume: 9 start-page: 2255 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1620 article-title: Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface publication-title: Nano Lett doi: 10.1021/nl900397t – volume: 208 start-page: 96 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0045 article-title: Support materials for PEMFC and DMFC electrocatalysts – a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.02.011 – volume: 75 start-page: 220 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0135 article-title: Carbon–Nb0.07Ti0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.04.111 – volume: 44 start-page: 1429 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0555 article-title: Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping publication-title: Carbon doi: 10.1016/j.carbon.2005.11.027 – volume: 271 start-page: 132 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0765 article-title: Replacing bulk Pt in Pt–Ni–Pt bimetallic structures with tungsten monocarbide (WC): hydrogen adsorption and cyclohexene hydrogenation on Pt–Ni–WC publication-title: J Catal doi: 10.1016/j.jcat.2010.02.016 – volume: 22 start-page: 20977 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0805 article-title: Ultrathin TiO2-coated MWCNTs with excellent conductivity and SMSI nature as Pt catalyst support for oxygen reduction reaction in PEMFCs publication-title: J Mater Chem doi: 10.1039/c2jm34361d – volume: 110 start-page: 23489 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1180 article-title: Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC–XPS publication-title: J Phys Chem B doi: 10.1021/jp0653510 – volume: 3 start-page: 1379 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0970 article-title: Individually suspended single-walled carbon nanotubes in various surfactants publication-title: Nano Lett doi: 10.1021/nl034524j – volume: 4 start-page: 116 year: 1992 ident: 10.1016/j.pmatsci.2016.06.002_b2055 article-title: Poly(alkylenedioxythiophene)s—new, very stable conducting polymers publication-title: Adv Mater doi: 10.1002/adma.19920040213 – volume: 16 start-page: 35 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1245 article-title: Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium publication-title: Catal Commun doi: 10.1016/j.catcom.2011.08.038 – volume: 67 start-page: 409 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1755 article-title: Platinum nanoparticles supported on epitaxial TiC/nanodiamond as an electrocatalyst with enhanced durability for fuel cells publication-title: Carbon doi: 10.1016/j.carbon.2013.10.012 – volume: 41 start-page: 1187 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0115 article-title: Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction publication-title: Dalton Trans doi: 10.1039/C1DT11711D – volume: 118 start-page: 14115 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0855 article-title: Electrochemical behavior of platinum nanoparticles on a carbon xerogel support modified with a [(trifluoromethyl)-benzenesulfonyl]imide electrolyte publication-title: J Phys Chem B doi: 10.1021/jp505417e – volume: 166 start-page: 310 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b1735 article-title: High activity PtPd-WC/C electrocatalyst for hydrogen evolution reaction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2006.12.108 – volume: 49 start-page: 2461 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0265 article-title: Carbon xerogels as catalyst supports for PEM fuel cell cathode publication-title: Energ Convers Manage doi: 10.1016/j.enconman.2008.03.025 – ident: 10.1016/j.pmatsci.2016.06.002_b0165 – start-page: 291 year: 1981 ident: 10.1016/j.pmatsci.2016.06.002_b0190 – volume: 13 start-page: 6883 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0940 article-title: Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02495c – volume: 36 start-page: 11085 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1575 article-title: Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.156 – volume: 180 start-page: 746 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0340 article-title: Ceramic materials as supports for low-temperature fuel cell catalysts publication-title: Solid State Ionics doi: 10.1016/j.ssi.2009.03.007 – volume: 324 start-page: 71 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1690 article-title: Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells publication-title: Science doi: 10.1126/science.1170051 – volume: 157 start-page: B1665 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1510 article-title: Properties of nitrogen-functionalized ordered mesoporous carbon prepared using polypyrrole precursor publication-title: J Electrochem Soc doi: 10.1149/1.3489412 – volume: 21 start-page: 18195 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1720 article-title: 3D boron doped carbon nanorods/carbon-microfiber hybrid composites: synthesis and applications in a highly stable proton exchange membrane fuel cell publication-title: J Mater Chem doi: 10.1039/c1jm13796d – volume: 106 start-page: 453 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1745 article-title: Investigation of the oxygen reduction reaction on Pt–WC/C electrocatalysts in alkaline media publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.05.128 – volume: 223 start-page: 79 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1760 article-title: Improvement in stability of carbon support for platinum catalyst by applying silicon carbide coating publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.09.042 – volume: 133 start-page: 2541 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0680 article-title: Stabilization of electrocatalytic metal nanoparticles at metal–metal oxide–graphene triple junction points publication-title: J Am Chem Soc doi: 10.1021/ja107719u – volume: 29 start-page: 1527 year: 1984 ident: 10.1016/j.pmatsci.2016.06.002_b2090 article-title: Electrocatalysts for O2 reduction publication-title: Electrochim Acta doi: 10.1016/0013-4686(84)85006-9 – volume: 133 start-page: 11716 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0795 article-title: Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction publication-title: J Am Chem Soc doi: 10.1021/ja2039562 – volume: 66 start-page: 1 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1890 article-title: The effect of Sn content in Pt–SnO2/CNTs for methanol electro-oxidation publication-title: Electrochim Acta doi: 10.1016/j.electacta.2011.12.109 – volume: 19 start-page: 3661 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0240 article-title: Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors publication-title: J Mater Chem doi: 10.1039/b819820a – volume: 134 start-page: 2492 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1610 article-title: FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction publication-title: J Am Chem Soc doi: 10.1021/ja2104334 – volume: 6 start-page: 819 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1060 article-title: Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction publication-title: ACS Appl Mater Interfaces doi: 10.1021/am403432h – volume: 1 start-page: 15509 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1525 article-title: Oxygen reduction and methanol oxidation behaviour of SiC based Pt nanocatalysts for proton exchange membrane fuel cells publication-title: J Mater Chem A doi: 10.1039/C3TA12744C – volume: 209 start-page: 355 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0850 article-title: Properties of carbon-supported platinum catalysts: role of carbon surface sites publication-title: J Catal doi: 10.1006/jcat.2002.3637 – volume: 10 start-page: 6796 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0845 article-title: Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: the influence of functionalization of the support publication-title: Phys Chem Chem Phys doi: 10.1039/b809227c – volume: 48 start-page: 1985 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0315 article-title: KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties publication-title: Carbon doi: 10.1016/j.carbon.2010.02.005 – volume: 86 start-page: 224104 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1440 article-title: Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells publication-title: Appl Phys Lett doi: 10.1063/1.1941473 – volume: 175 start-page: 809 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0435 article-title: Influence of metal–support interaction in Pt/C on CO and methanol oxidation reactions publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.08.030 – volume: 100 start-page: 190 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1530 article-title: Nano-silicon carbide supported catalysts for PEM fuel cells with high electrochemical stability and improved performance by addition of carbon publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2010.07.030 – volume: 164 start-page: 36 year: 1996 ident: 10.1016/j.pmatsci.2016.06.002_b1015 article-title: CO-stabilized supported Pt catalysts for fuel cells: radiolytic synthesis publication-title: J Catal doi: 10.1006/jcat.1996.0360 – volume: 75 start-page: 5 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0440 article-title: Carbon as catalyst and support for electrochemical energy conversion publication-title: Carbon doi: 10.1016/j.carbon.2014.04.005 – volume: 13 start-page: 3472 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1200 article-title: Structural and electronic properties of Ptn (n = 3, 7, 13) clusters on metallic single wall carbon nanotube publication-title: Phys Status Solidi doi: 10.1002/pssb.200669166 – volume: 112 start-page: 19841 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1020 article-title: Graphene–metal particle nanocomposites publication-title: J Phys Chem C doi: 10.1021/jp807989b – volume: 3 start-page: 1437 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0605 article-title: Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports publication-title: Energy Environ Sci doi: 10.1039/c003710a – volume: 16 start-page: S395 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0860 article-title: Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells publication-title: Nanotechnology doi: 10.1088/0957-4484/16/7/013 – volume: 109 start-page: 19056 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1460 article-title: Solid state synthesis of tungsten carbide nanorods and nanoplatelets by a single-step pyrolysis publication-title: J Phys Chem B doi: 10.1021/jp0540003 – volume: 21 start-page: 8066 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0130 article-title: High Pt loading on functionalized multiwall carbon nanotubes as a highly efficient cathode electrocatalyst for proton exchange membrane fuel cells publication-title: J Mater Chem doi: 10.1039/c1jm10847f – volume: 3 start-page: 1646 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1725 article-title: Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis publication-title: Sci Rep doi: 10.1038/srep01646 – volume: 18 start-page: 1780 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0720 article-title: Pt nanoparticle binding on functionalized multiwalled carbon nanotubes publication-title: Chem Mater doi: 10.1021/cm0518978 – volume: 131 start-page: 15330 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1025 article-title: Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell publication-title: J Am Chem Soc doi: 10.1021/ja905749e – volume: 167 start-page: 1 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1335 article-title: Highly active and durable Co-doped Pt/CCC cathode catalyst for polymer electrolyte membrane fuel cells publication-title: Electrochim Acta doi: 10.1016/j.electacta.2015.03.120 – volume: 20 start-page: 2826 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0960 article-title: Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst publication-title: J Mater Chem doi: 10.1039/b919494k – volume: 221 start-page: 232 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0060 article-title: Synthesis of Pd and Nb-doped TiO2 composite supports and their corresponding Pt-Pd alloy catalysts by a two-step procedure for the oxygen reduction reaction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.08.025 – volume: 107 start-page: 67 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b1425 article-title: Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide publication-title: J Power Sources doi: 10.1016/S0378-7753(01)00987-9 – volume: 114 start-page: 582 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0620 article-title: The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts publication-title: Electrochim Acta doi: 10.1016/j.electacta.2013.10.088 – volume: 433 start-page: 012008 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0235 article-title: Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/433/1/012008 – volume: 103 start-page: 3818 year: 1999 ident: 10.1016/j.pmatsci.2016.06.002_b1540 article-title: Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition publication-title: J Phys Chem B doi: 10.1021/jp983478m – volume: 9 start-page: 2256 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0345 article-title: Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells publication-title: Electrochem Commun doi: 10.1016/j.elecom.2007.06.027 – volume: 332 start-page: 289 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0360 article-title: New synthesis of tungsten carbide particles and the synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2007.08.030 – volume: 41 start-page: 1853 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0460 article-title: Functionalization of single-walled carbon nanotubes publication-title: Angew Chem Int Ed doi: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N – volume: 115 start-page: 3433 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0095 article-title: Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity publication-title: Chem Rev doi: 10.1021/cr500519c – volume: 60 start-page: 28 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1140 article-title: Effects of pore structure in nitrogen functionalized mesoporous carbon on oxygen reduction reaction activity of platinum nanoparticles publication-title: Carbon doi: 10.1016/j.carbon.2013.03.053 – volume: 20 start-page: 571 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1310 article-title: Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires publication-title: Adv Mater doi: 10.1002/adma.200701408 – volume: 48 start-page: 3802 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1800 article-title: Fabrication of core–shell structured MWCNT–Ti(TiC) using a one-pot reaction from a mixture of TiCl3, TiH2, and MWCNTs publication-title: Carbon doi: 10.1016/j.carbon.2010.06.043 – volume: 17 start-page: 10767 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1850 article-title: Very low amount of TiO2 on N-doped carbon nanotubes significantly improves oxygen reduction activity and stability of supported Pt nanoparticles publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP00369E – volume: 4 start-page: 1866 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b2000 article-title: Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes publication-title: Energy Environ Sci doi: 10.1039/c1ee01094h – volume: 15 start-page: 179 year: 1992 ident: 10.1016/j.pmatsci.2016.06.002_b1355 article-title: Preparation and catalytic properties of transition metal carbides and nitrides publication-title: Catal Today doi: 10.1016/0920-5861(92)80175-M – volume: 8 start-page: 611 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0175 article-title: Platinum/carbon/polyaniline based nanocomposites as catalysts for fuel cell technology publication-title: J Optoelectron Adv Mater – volume: 7 start-page: 2535 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0105 article-title: An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells publication-title: Energy Environ Sci doi: 10.1039/C3EE43886D – volume: 15 start-page: 278 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1115 article-title: Highly durable platinum based cathode electrocatalysts for PEMFC application using oxygen and nitrogen functional groups attached nanocarbon supports publication-title: Fuel Cells doi: 10.1002/fuce.201400134 – volume: 78 start-page: 563 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b0090 article-title: Formation of carbon-supported PtM alloys for low temperature fuel cells: a review publication-title: Mater Chem Phys doi: 10.1016/S0254-0584(02)00389-9 – ident: 10.1016/j.pmatsci.2016.06.002_b1320 – volume: 43 start-page: 61 year: 1976 ident: 10.1016/j.pmatsci.2016.06.002_b0500 article-title: Carbon as a support for catalysts: I. Effect of surface heterogeneity of carbon on dispersion of platinum publication-title: J Catal doi: 10.1016/0021-9517(76)90293-1 – year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0475 article-title: Purification and functionalization of single-walled carbon nanotube (SWNT) in a mild polyphosphoric acid – volume: 75 start-page: 103 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0375 article-title: Proton exchange fuel cell materials and R&D needs for future market success publication-title: Electrochemistry doi: 10.5796/electrochemistry.75.103 – volume: 132–133 start-page: 379 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1040 article-title: Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2012.12.005 – volume: 8 start-page: 1450 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0790 article-title: Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts publication-title: Energy Environ Sci doi: 10.1039/C4EE04086D – volume: 157 start-page: B251 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1930 article-title: Electrocatalytic properties of indium tin oxide-supported Pt nanoparticles for methanol electro-oxidation publication-title: J Electrochem Soc doi: 10.1149/1.3268126 – volume: 20 start-page: 10643 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b2025 article-title: Platinum particles supported on titanium nitride: an efficient electrode material for the oxidation of methanol in alkaline media publication-title: J Mater Chem doi: 10.1039/c0jm01600d – volume: 323 start-page: 352 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0230 article-title: Mechanical and electrical properties of carbon tubule nanocoils publication-title: Physica B doi: 10.1016/S0921-4526(02)01002-5 – volume: 4 start-page: 1516 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0365 article-title: Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts publication-title: ACS Catal doi: 10.1021/cs500116h – volume: 5 start-page: 1103 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1235 article-title: Improved electrode durability using a boron-doped diamond catalyst support for proton exchange membrane fuel cells publication-title: RSC Adv doi: 10.1039/C4RA13389G – volume: 50 start-page: 3739 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0640 article-title: Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells publication-title: Carbon doi: 10.1016/j.carbon.2012.03.048 – volume: 13 start-page: 149 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1555 article-title: ZrC–C and ZrO2–C as novel supports of Pd catalysts for formic acid electrooxidation publication-title: Fuel Cells doi: 10.1002/fuce.201200204 – volume: 35 start-page: 80 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1095 article-title: Synthesis of the nitrogen-doped carbon nanotube (NCNT) bouquets and their electrochemical properties publication-title: Electrochem Commun doi: 10.1016/j.elecom.2013.08.007 – volume: 8 start-page: 418 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0050 article-title: Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells publication-title: Nano Res doi: 10.1007/s12274-014-0695-5 – volume: 239 start-page: 83 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1215 article-title: The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction publication-title: J Catal doi: 10.1016/j.jcat.2006.01.022 – volume: 25 start-page: 1783 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0660 article-title: Mesoporous chromium nitride as high performance catalyst support for methanol electrooxidation publication-title: Chem Mater doi: 10.1021/cm400304q – volume: 134 start-page: 12326 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0370 article-title: Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite publication-title: J Am Chem Soc doi: 10.1021/ja3031449 – volume: 141 start-page: 89 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0760 article-title: Pd nanoparticles deposited on nitrogen-doped HOPG: new insights into the Pd-catalyzed oxygen reduction reaction publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.06.141 – volume: 8 start-page: 5437 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1595 article-title: Electrochemical properties of core-shell TiC–TiO2 nanoparticle films immobilized at ITO electrode surfaces publication-title: Phys Chem Chem Phys doi: 10.1039/B610391J – volume: 273 start-page: 761 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1330 article-title: Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.09.142 – volume: 20 start-page: 6792 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1625 article-title: Exfoliated graphene separated by platinum nanoparticles publication-title: Chem Mater doi: 10.1021/cm801356a – volume: 157 start-page: B1529 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b2105 article-title: Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.3483106 – volume: 195 start-page: 6255 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0110 article-title: Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.04.015 – volume: 19 start-page: 265601 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0915 article-title: Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation publication-title: Nanotechnology doi: 10.1088/0957-4484/19/26/265601 – volume: 44 start-page: 6557 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1430 article-title: Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation publication-title: Angew Chem Int Ed doi: 10.1002/anie.200501272 – volume: 37 start-page: 3019 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1395 article-title: Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.11.079 – volume: 5 start-page: 34070 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0745 article-title: High stability and superior catalytic reactivity of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for the oxygen reduction reaction: a density functional theory study publication-title: RSC Adv doi: 10.1039/C5RA02585K – volume: 144 start-page: 767 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1565 article-title: Activated zirconium carbide promoted Pt/C electrocatalyst for oxygen reduction publication-title: Appl Catal B: Environ doi: 10.1016/j.apcatb.2013.08.024 – volume: 4 start-page: 26140 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1655 article-title: Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell publication-title: RSC Adv doi: 10.1039/c4ra02542c – volume: 8 start-page: A464 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1945 article-title: Tin nanoparticles formed in the presence of cellulose fibers exhibit excellent electrochemical performance as anode materials in lithium-ion batteries publication-title: Electrochem Solid-State Lett doi: 10.1149/1.1993388 – volume: 4 start-page: 1133 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1835 article-title: Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer publication-title: Small doi: 10.1002/smll.200800094 – volume: 27 start-page: 117 year: 1986 ident: 10.1016/j.pmatsci.2016.06.002_b0820 article-title: The influence of surface functionality on the activity of carbon-supported catalysts publication-title: Appl Catal doi: 10.1016/S0166-9834(00)81051-9 – volume: 375 start-page: 149 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b2015 article-title: Methanol electrooxidation of Pt catalyst on titanium nitride nanostructured support publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2009.12.037 – volume: 36 start-page: 507 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0715 article-title: Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis publication-title: J Appl Electrochem doi: 10.1007/s10800-006-9120-4 – volume: 38 start-page: 515 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b2080 article-title: Immobilization of dendrimer-encapsulated platinum nanoparticles on pretreated carbon-fiber surfaces and their application for oxygen reduction publication-title: J Appl Electrochem doi: 10.1007/s10800-007-9466-2 – volume: 17 start-page: 4250 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0770 article-title: Platinum–carbide interactions: core–shells for catalytic us publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP04974H – volume: 583 start-page: 69 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1225 article-title: Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode publication-title: J Electroanal Chem doi: 10.1016/j.jelechem.2005.01.041 – volume: 5 start-page: 1084 year: 2004 ident: 10.1016/j.pmatsci.2016.06.002_b0980 article-title: Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics publication-title: ChemPhysChem doi: 10.1002/cphc.200400193 – volume: 22 start-page: 34 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1030 article-title: Enhanced methanol oxidation activity of Pt catalyst supported on the phosphorus-doped multiwalled carbon nanotubes in alkaline medium publication-title: Catal Commun doi: 10.1016/j.catcom.2012.02.013 – volume: 42 start-page: 5768 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0020 article-title: Alkaline polymer electrolyte membranes for fuel cell applications publication-title: Chem Soc Rev doi: 10.1039/c3cs60053j – volume: 9 start-page: 2128 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b1360 article-title: Tungsten based electrocatalyst for fuel cell applications publication-title: Electrochem Commun doi: 10.1016/j.elecom.2007.06.001 – volume: 131 start-page: 13898 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1980 article-title: Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications publication-title: J Am Chem Soc doi: 10.1021/ja904810h – volume: 113 start-page: 19082 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b0590 article-title: Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes publication-title: J Phys Chem C doi: 10.1021/jp907160v – volume: 110 start-page: 16422 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b1165 article-title: Synergism of C5N six-membered ring and vapor–liquid–solid growth of CNx nanotubes with pyridine precursor publication-title: J Phys Chem B doi: 10.1021/jp062216e – volume: 22 start-page: 16560 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1950 article-title: Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis publication-title: J Mater Chem doi: 10.1039/c2jm32866f – volume: 20 start-page: 4223 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0220 article-title: Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells publication-title: J Mater Chem doi: 10.1039/b925776d – volume: 52 start-page: 3013 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0520 article-title: Effect of acid/base treatment to carbon blacks on preparation of carbon-supported platinum nanoclusters publication-title: Electrochim Acta doi: 10.1016/j.electacta.2006.09.060 – volume: 41 start-page: 129 year: 1998 ident: 10.1016/j.pmatsci.2016.06.002_b1390 article-title: Supported metal catalysts preparation publication-title: Catal Today doi: 10.1016/S0920-5861(98)00043-1 – volume: 17 start-page: 535 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b2040 article-title: Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation publication-title: Diamond Relat Mater doi: 10.1016/j.diamond.2008.01.116 – ident: 10.1016/j.pmatsci.2016.06.002_b2120 – volume: 161 start-page: F77 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1405 article-title: Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer Process publication-title: J Electrochem Soc doi: 10.1149/2.050401jes – volume: 5 start-page: 966 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1400 article-title: Oxygen reduction reaction activity and durability of Pt catalysts supported on titanium carbide publication-title: Catalysts doi: 10.3390/catal5020966 – volume: 33 start-page: 758 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0290 article-title: Flame synthesis of carbon nano onions using liquefied petroleum gas without catalyst publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2012.10.029 – volume: 150 start-page: A278 year: 2003 ident: 10.1016/j.pmatsci.2016.06.002_b1435 article-title: Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.1543567 – volume: 35 start-page: 1168 year: 1996 ident: 10.1016/j.pmatsci.2016.06.002_b0880 article-title: Hydrophobic, highly conductive ambient-temperature molten salts publication-title: Inorg Chem doi: 10.1021/ic951325x – volume: 112 start-page: 11717 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b1305 article-title: A facile route for the self-organized high-density decoration of Pt nanoparticles on carbon nanotubes publication-title: J Phys Chem C doi: 10.1021/jp802371p – volume: 1 start-page: 14 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0330 article-title: A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications publication-title: J Mater Chem A doi: 10.1039/C2TA00278G – volume: 152 start-page: 383 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0815 article-title: Enabling carbon nanofibers with significantly improved graphitization and homogeneous catalyst deposition for high performance electrocatalysts publication-title: Electrochim Acta doi: 10.1016/j.electacta.2014.11.164 – volume: 11 start-page: 438 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1295 article-title: 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper publication-title: Electrochem Commun doi: 10.1016/j.elecom.2008.12.013 – volume: 4 start-page: 3968 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1970 article-title: Nano conductive ceramic wedged graphene composites as highly efficient metal supports for oxygen reduction publication-title: Sci Rep doi: 10.1038/srep03968 – volume: 100 start-page: 170 year: 1978 ident: 10.1016/j.pmatsci.2016.06.002_b0705 article-title: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide publication-title: J Am Chem Soc doi: 10.1021/ja00469a029 – volume: 423–424 start-page: 192 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1815 article-title: Hydrogenation of CO on molybdenum and cobalt molybdenum carbides publication-title: Appl Catal A: Gen doi: 10.1016/j.apcata.2012.02.041 – volume: 23 start-page: 911 year: 2002 ident: 10.1016/j.pmatsci.2016.06.002_b0185 article-title: Synergistic effect of carbon fillers in electrically conductive nylon 6,6 and polycarbonate based resins publication-title: Polym Compos doi: 10.1002/pc.10488 – volume: 21 start-page: 4953 year: 2009 ident: 10.1016/j.pmatsci.2016.06.002_b1150 article-title: Facile construction of Pt-Co/CNx nanotube electrocatalysts and their application to the oxygen reduction reaction publication-title: Adv Mater doi: 10.1002/adma.200900677 – volume: 36 start-page: 13317 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b0595 article-title: Study of oxygen reduction reaction kinetics on multi-walled carbon nano-tubes supported Pt–Pd catalysts under various conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.076 – volume: 2 start-page: 781 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1035 article-title: Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications publication-title: ACS Catal doi: 10.1021/cs200652y – volume: 49 start-page: 931 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1635 article-title: Synthesis and electrocatalytic oxygen reduction activity of graphene-supported Pt3Co and Pt3Cr alloy nanoparticles publication-title: Carbon doi: 10.1016/j.carbon.2010.10.056 – volume: 268 start-page: 171 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1240 article-title: Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.06.036 – volume: 5 start-page: 5109 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b2130 article-title: Platinum–TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications publication-title: Nanoscale doi: 10.1039/c3nr00585b – volume: 38 start-page: 11406 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1290 article-title: Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.06.089 – volume: 4 start-page: 1321 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b1125 article-title: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 271 start-page: 76 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0675 article-title: Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.179 – volume: 15 start-page: 6 year: 1999 ident: 10.1016/j.pmatsci.2016.06.002_b1830 article-title: Synthesis of nanoscale platinum colloids by microwave dielectric heating publication-title: Langmuir doi: 10.1021/la9806505 – volume: 109 start-page: 4707 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0540 article-title: Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes publication-title: J Phys Chem B doi: 10.1021/jp044442z – volume: 173 start-page: 313 year: 1998 ident: 10.1016/j.pmatsci.2016.06.002_b0495 article-title: Study of some factors affecting the Ru and Pt dispersions over high surface area graphite-supported catalysts publication-title: Appl Catal A: Gen doi: 10.1016/S0926-860X(98)00187-2 – volume: 98 start-page: 7225 year: 1976 ident: 10.1016/j.pmatsci.2016.06.002_b2070 article-title: Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2− (n = ∼10, 6, 5, 4, 3, 2, 1). A new series of inorganic oligomers publication-title: J Am Chem Soc doi: 10.1021/ja00439a020 – volume: 25 start-page: 2474 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b1070 article-title: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors publication-title: Adv Mater doi: 10.1002/adma.201205332 – volume: 5 start-page: 131 year: 2001 ident: 10.1016/j.pmatsci.2016.06.002_b1195 article-title: Physical and morphological characteristics and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts publication-title: J Solid State Electrochem doi: 10.1007/s100080000116 – volume: 77 start-page: 225 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1880 article-title: Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.05.100 – volume: 161 start-page: F1489 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1315 article-title: Development of highly active and durable hybrid cathode catalysts for polymer electrolyte membrane fuel cells publication-title: J Electrochem Soc doi: 10.1149/2.0961414jes – volume: 20 start-page: 1702 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0740 article-title: Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study publication-title: J Mater Chem doi: 10.1039/b915667d – volume: 46 start-page: 1427 year: 2013 ident: 10.1016/j.pmatsci.2016.06.002_b0150 article-title: Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications publication-title: Acc Chem Res doi: 10.1021/ar300254b – volume: 152 start-page: A1483 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b1415 article-title: Potential application of tungsten carbides as electrocatalysts: synergistic effect by supporting Pt on C/W(110) for the reactions of methanol, water, and CO publication-title: J Electrochem Soc doi: 10.1149/1.1938107 – volume: 24 start-page: 699 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1870 article-title: Study on platinum and copper nanosheets alloys supported on mesoporous titanium dioxide doped with carbon black as electrocatalysts in PEM fuel cells publication-title: Electroanalysis doi: 10.1002/elan.201100506 – volume: 115 start-page: 15679 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1680 article-title: Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene publication-title: J Phys Chem C doi: 10.1021/jp202797q – volume: 11 start-page: 352 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0300 article-title: Nitrogen-induced surface area and conductivity modulation of carbon nanohorn and its function as an efficient metal-free oxygen reduction electrocatalyst for anion-exchange membrane fuel cells publication-title: Small doi: 10.1002/smll.201303892 – volume: 13 start-page: 182 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1630 article-title: The graphene-supported Pd and Pt catalysts for highly active oxygen reduction reaction in an alkaline condition publication-title: Electrochem Commun doi: 10.1016/j.elecom.2010.12.008 – volume: 157 start-page: B71 year: 2010 ident: 10.1016/j.pmatsci.2016.06.002_b0405 article-title: Sputter-deposited nanoparticle PEM fuel cell cathodes: limited proton conductivity through electrode dewetting publication-title: J Electrochem Soc doi: 10.1149/1.3247351 – volume: 17 start-page: 3749 year: 2005 ident: 10.1016/j.pmatsci.2016.06.002_b0560 article-title: Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity publication-title: Chem Mater doi: 10.1021/cm050107r – volume: 154 start-page: B540 year: 2007 ident: 10.1016/j.pmatsci.2016.06.002_b0390 article-title: Mechanism of catalyst degradation in proton exchange membrane fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.2722563 – volume: 144 start-page: 90 year: 1997 ident: 10.1016/j.pmatsci.2016.06.002_b0530 article-title: A new fuel cell electrocatalyst based on carbonized polyacrylonitrile foam: the nature of platinum-support interactions publication-title: J Electrochem Soc doi: 10.1149/1.1837369 – volume: 6 start-page: 5063 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0100 article-title: Nano-ceramic support materials for low temperature fuel cell catalysts publication-title: Nanoscale doi: 10.1039/C4NR00402G – volume: 53 start-page: 7875 year: 2008 ident: 10.1016/j.pmatsci.2016.06.002_b0585 article-title: Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles publication-title: Electrochim Acta doi: 10.1016/j.electacta.2008.05.047 – volume: 1 start-page: 648 year: 2011 ident: 10.1016/j.pmatsci.2016.06.002_b1920 article-title: Sb-doped SnO2 hollow spheres offering micro- and nanoporosity in fuel cell electrode structures publication-title: Adv Energy Mater doi: 10.1002/aenm.201100077 – start-page: 1355 year: 1995 ident: 10.1016/j.pmatsci.2016.06.002_b0835 article-title: Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups publication-title: J Chem Soc Chem Commun doi: 10.1039/c39950001355 – volume: 39 start-page: 15967 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b1965 article-title: High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.01.202 – volume: 142 start-page: 115 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b0630 article-title: Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium publication-title: Mater Lett doi: 10.1016/j.matlet.2014.12.011 – volume: 134 start-page: 20457 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0195 publication-title: J Am Chem Soc doi: 10.1021/ja308570c – volume: 22 start-page: 3519 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1105 article-title: Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications publication-title: Adv Funct Mater doi: 10.1002/adfm.201102544 – volume: 12 start-page: 6078 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b0210 article-title: Uniform graphene quantum dots patterned from self-assembled silica nanodots publication-title: Nano Lett doi: 10.1021/nl302520m – volume: 12 start-page: 649 year: 2012 ident: 10.1016/j.pmatsci.2016.06.002_b1715 article-title: Controllable-nitrogen doped carbon layer surrounding carbon nanotubes as novel carbon support for oxygen reduction reaction publication-title: Fuel Cells doi: 10.1002/fuce.201100130 – volume: 157 start-page: 217 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0350 article-title: An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.07.069 – volume: 118 start-page: 13525 year: 2014 ident: 10.1016/j.pmatsci.2016.06.002_b0670 article-title: Tungsten carbide supports for single-atom platinum-based fuel-cell catalysts: first-principles study on the metal–support interactions and O2 dissociation on WxC low-index surfaces publication-title: J Phys Chem – volume: 8 start-page: 73 year: 2006 ident: 10.1016/j.pmatsci.2016.06.002_b0525 article-title: Influence of the surface treatment on the deposition of platinum nanoparticles on the carbon nanotubes publication-title: Adv Eng Mater doi: 10.1002/adem.200500179 – volume: 276 start-page: 80 year: 2015 ident: 10.1016/j.pmatsci.2016.06.002_b1860 article-title: Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.11.093 |
SSID | ssj0007109 |
Score | 2.5629427 |
SecondaryResourceType | review_article |
Snippet | H2-fed polymer electrolyte membrane fuel cells (PEMFCs) are the most advanced fuel cell technology to date and continue to be of great interest as prospective... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 445 |
SubjectTerms | Carbon Catalysis Catalysts Cathodes Cost engineering Materials science Materials selection Proton exchange membrane fuel cells |
Title | Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells |
URI | https://www.proquest.com/docview/1835580148 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA_DiqAH0VVxXZUI3krrtE0z7XEVl2VBmcMsjKeSpCl0mWmHmfYwe9j_wv_X95r0Y3RR10spgaZJ3y_vI_3lPUI-iFArHSjfBTBol2VJ6EqWwbrS4EsIobluk1V__cYvrtjlMlpOJj9GrKWmlp66ufNcyf9IFdpArnhK9h6S7TuFBrgH-cIVJAzXf5LxHMlVqKqKEkvaFDn6k0psJYh012zQtXbAIzVDaQmFc0Mon9cu_nDfO5i1tcqQ-1VjcpLasMqr1X6tt44tkbPa19pZ6zXE1eCR5o1eObjdvxv7tQcj6d9ozeuwaW8Uy3dRupdF33xumz-J4kZbQ4oUIVNPuymGfXxsWBaiqkXlLLzxhoXPe0ZWr4RniQthTzRWwqYCkdWizGSYtAaZmTLVv-l6s-1w7W1gWjAfpOnxNhfrNBiMW_dD_xeb1zMRO5LbdWq7SbGbtCX7gWV_EED0gYUxvNuBOYT01dbA23kMB8M-3jmaQ5fn0OK3bsziKXli4w96ZsD0jEx0eUwej7JSHpOHLStY7Z6T206stChpBzBqAEYtwGgvbgoAo_OaAsBoBzBqAUZ7gGFXFmB0BDDaAYwiwGgLsBfk6vzL4vOFawt2uAr8-NqVIQ9ljDn-Zah5BAs_CnWuY59lEDZkSaCmDFa_mIWCS-5nQk2lirQ_E0nuh7EMX5Kjsir1K0IZl7nOVZBwrI4eMxmD9hDM13AHEfD0hLDum6bKZrPHoiqr9I8SPSFe_9jGpHP52wPvO4GloHhx9vApqmaXgi2MIsy9FL--b6en5NGwMN6Qo3rb6Lfg29byXYu0n5HgquA |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+modified+carbon+support+materials+for+Pt+and+Pt-alloy+cathode+catalysts+in+polymer+electrolyte+membrane+fuel+cells&rft.jtitle=Progress+in+materials+science&rft.au=Wang%2C+Yan-Jie&rft.au=Fang%2C+Baizeng&rft.au=Li%2C+Hui&rft.au=Bi%2C+Xiaotao+T.&rft.date=2016-09-01&rft.issn=0079-6425&rft.volume=82&rft.spage=445&rft.epage=498&rft_id=info:doi/10.1016%2Fj.pmatsci.2016.06.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pmatsci_2016_06_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6425&client=summon |