Urban traffic flow prediction techniques: A review

In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related t...

Full description

Saved in:
Bibliographic Details
Published inSustainable computing informatics and systems Vol. 35; p. 100739
Main Authors Medina-Salgado, Boris, Sánchez-DelaCruz, Eddy, Pozos-Parra, Pilar, Sierra, Javier E.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN2210-5379
DOI10.1016/j.suscom.2022.100739

Cover

Loading…
Abstract In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach. •A bibliographic review of computational techniques for the prediction of urban traffic flow was carried out.•Various computational techniques used in the prediction of urban traffic flow are presented.•The precision results of the different urban traffic flow prediction techniques are compared.•Areas of opportunity are identified within the revised methods, which can be taken into account to help improve forecasting performance.
AbstractList In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach. •A bibliographic review of computational techniques for the prediction of urban traffic flow was carried out.•Various computational techniques used in the prediction of urban traffic flow are presented.•The precision results of the different urban traffic flow prediction techniques are compared.•Areas of opportunity are identified within the revised methods, which can be taken into account to help improve forecasting performance.
ArticleNumber 100739
Author Pozos-Parra, Pilar
Medina-Salgado, Boris
Sánchez-DelaCruz, Eddy
Sierra, Javier E.
Author_xml – sequence: 1
  givenname: Boris
  orcidid: 0000-0003-4495-2276
  surname: Medina-Salgado
  fullname: Medina-Salgado, Boris
  organization: Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla 93821, Mexico
– sequence: 2
  givenname: Eddy
  surname: Sánchez-DelaCruz
  fullname: Sánchez-DelaCruz, Eddy
  email: eddsacx@gmail.com
  organization: Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla 93821, Mexico
– sequence: 3
  givenname: Pilar
  surname: Pozos-Parra
  fullname: Pozos-Parra, Pilar
  organization: Universidad Autónoma de Baja California, Street Universidad 14418, 22424 Tijuana, B.C, Mexico
– sequence: 4
  givenname: Javier E.
  surname: Sierra
  fullname: Sierra, Javier E.
  organization: Faculty of Engineering, University of Sucre, Sincelejo 700001, Colombia
BookMark eNqFkMtOwzAQRb0oEqX0D1jkBxL8iJO4C6SqAopUiQ1dW7YzFo7SuNgpFX-Pq7BiAbMZ6Urnas7coNngB0DojuCCYFLdd0U8ReMPBcWUpgjXTMzQnFKCc85qcY2WMXY4Da-IYOUc0X3QasjGoKx1JrO9P2fHAK0zo_MpB_M-uI8TxFW2zgJ8Ojjfoiur-gjLn71A-6fHt802370-v2zWu9wwTsdcMwytFrzRjFCtmGXKcuC2NqRNB2jGiYGmEk1dM0xKzLW1QjMLmArcas4WqJx6TfAxBrDyGNxBhS9JsLzoyk5OuvKiKyfdhK1-YcaN6mKTJF3_H_wwwZDEkmyQ0TgYTHpIADPK1ru_C74BjgB28A
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119000
crossref_primary_10_1109_ACCESS_2023_3311818
crossref_primary_10_1109_TIV_2024_3467910
crossref_primary_10_48084_etasr_8714
crossref_primary_10_1109_TETCI_2024_3406734
crossref_primary_10_3389_fmats_2024_1431179
crossref_primary_10_1007_s11042_024_19479_z
crossref_primary_10_56294_dm2024378
crossref_primary_10_3389_fenvs_2024_1461656
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_7717_peerj_cs_2645
crossref_primary_10_5753_jisa_2024_4006
crossref_primary_10_1186_s13705_025_00517_z
crossref_primary_10_1109_TITS_2024_3487982
crossref_primary_10_1109_ACCESS_2024_3393981
crossref_primary_10_1057_s41278_024_00300_5
crossref_primary_10_1080_19427867_2023_2207278
crossref_primary_10_1007_s40825_024_00253_4
crossref_primary_10_1080_17538947_2024_2353123
crossref_primary_10_1109_ACCESS_2023_3270395
crossref_primary_10_1155_2024_5577278
crossref_primary_10_1051_bioconf_202414802034
crossref_primary_10_1007_s10489_025_06377_6
crossref_primary_10_1007_s11831_024_10189_1
crossref_primary_10_1080_03081060_2023_2245389
crossref_primary_10_1109_TITS_2023_3326954
crossref_primary_10_2174_0126671212330496240821114216
crossref_primary_10_1109_MITS_2024_3400679
crossref_primary_10_5937_ror2401057Z
crossref_primary_10_2478_amns_2024_2777
crossref_primary_10_1080_01441647_2023_2171151
Cites_doi 10.1155/2017/6575947
10.3390/rs13020208
10.1016/j.comnet.2020.107530
10.1109/JSEN.2017.2737825
10.1016/j.trc.2018.03.001
10.1145/3394486.3403118
10.1609/aaai.v34i04.5758
10.3390/s19132946
10.1016/j.datak.2021.101912
10.1016/j.trc.2019.02.002
10.1609/aaai.v33i01.33013656
10.1609/aaai.v33i01.3301922
10.3390/su13010118
10.24963/ijcai.2018/505
10.1609/aaai.v33i01.3301485
10.1016/j.jsr.2021.04.007
10.3390/su13010364
10.1016/j.physa.2019.03.007
10.1049/iet-its.2019.0873
10.1145/3340531.3411873
10.1016/j.trc.2019.09.008
10.3390/fi11040094
10.3390/electronics9091474
10.1016/j.neucom.2019.04.094
10.1109/ACCESS.2020.2986278
10.1016/j.physa.2018.08.034
10.1609/aaai.v33i01.33015668
10.1016/j.simpat.2019.102025
10.3390/su12010142
10.1016/j.matcom.2019.12.013
10.1016/j.trc.2015.11.002
10.1609/aaai.v34i01.5470
10.1177/0361198120927393
10.1145/3394486.3403122
10.1016/j.sbspro.2012.09.856
10.1016/j.tranpol.2021.01.012
10.3390/s17040818
10.1016/j.physa.2019.121065
10.1007/s10707-019-00366-x
10.1609/aaai.v30i1.10011
10.1609/aaai.v34i01.5438
10.1016/j.compenvurbsys.2018.05.009
10.1155/2021/6622028
10.1016/j.trc.2019.09.006
10.1016/j.trc.2014.01.005
10.1609/aaai.v34i01.5477
10.1109/ACCESS.2018.2845863
10.1109/ACCESS.2021.3062114
10.1016/j.inffus.2020.01.002
10.3390/ijgi6110321
10.3390/app9245504
10.3390/s17071501
10.1109/ACCESS.2020.3014901
10.1109/JIOT.2020.2983089
10.1609/aaai.v33i01.33011020
10.1016/j.trc.2020.102912
10.3390/s19102229
10.1049/iet-its.2017.0313
10.1155/2020/8871998
10.1609/aaai.v31i1.10735
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.suscom.2022.100739
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_suscom_2022_100739
S2210537922000725
GroupedDBID --K
--M
.~1
0R~
1~.
4.4
457
4G.
6I.
7-5
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AARJD
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HZ~
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSR
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c352t-b30edb958b312ba3f3af5e5f7c1d000b351ce869877301405bff9b3fe0290db53
IEDL.DBID .~1
ISSN 2210-5379
IngestDate Tue Jul 01 01:35:20 EDT 2025
Thu Apr 24 22:57:54 EDT 2025
Fri Feb 23 02:40:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Deep learning
Urban traffic flow
Review
Forecasting
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-b30edb958b312ba3f3af5e5f7c1d000b351ce869877301405bff9b3fe0290db53
ORCID 0000-0003-4495-2276
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2210537922000725
ParticipantIDs crossref_primary_10_1016_j_suscom_2022_100739
crossref_citationtrail_10_1016_j_suscom_2022_100739
elsevier_sciencedirect_doi_10_1016_j_suscom_2022_100739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Sustainable computing informatics and systems
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Emami, Sarvi, Bagloee (b14) 2020; 102
J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.
Marinello, Lolli, Gamberini (b96) 2021; 13
Zhang, Kabuka (b6) 2018; 12
C. Zheng, X. Fan, C. Wang, J. Qi, Gman: A graph multi-attention network for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1234–1241.
Q. Zhang, J. Chang, G. Meng, S. Xiang, C. Pan, Spatio-temporal graph structure learning for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1177–1185.
Chen, Qin, Zhang, Albanwan (b93) 2021; 13
Hou, Leng, Ma, Liu, Cheng (b17) 2019; 527
Cai, Wang, Lu, Chen, Ding, Sun (b81) 2016; 62
Zhang, Liu, Tang, Cheng, Qi, Wang (b30) 2018; 512
Ye, Zhao, Ye, Xu (b72) 2020
Wu, Pan, Long, Jiang, Zhang (b44) 2019
Wei, Wu, Ma (b57) 2019; 19
Xu, Han, Qi, Du, Lin, Shu (b2) 2020
Vijayalakshmi, Ramar, Jhanjhi, Verma, Kaliappan, Vijayalakshmi, Vimal, Ghosh (b53) 2020
Wang, Yang, Ning (b63) 2018
Levin, Peres (b27) 2017
Shen, Wang, Shen, Zhu, Fardoun, Lou (b20) 2020; 398
Jia, Wu, Du, Qi (b48) 2014
Lv, Li, Dong, Li, Xu (b100) 2021; 135
Tempelmeier, Dietze, Demidova (b19) 2020; 24
S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 922–929.
Wang, Chen, He (b47) 2019; 100
Liu, Ma, An, Liang (b31) 2020; 2020
Liu, Gao, Qiu, Liu, Yan, Lu (b28) 2017; 6
Alotaibi (b89) 2020; 8
Bruna, Zaremba, Szlam, LeCun (b56) 2013
C. Song, Y. Lin, S. Guo, H. Wan, Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 01, 2020, pp. 914–921.
Simunek, Smutny, Dolezel (b94) 2021; 2021
Fouladgar, Parchami, Elmasri, Ghaderi (b25) 2017
Z. Lin, J. Feng, Z. Lu, Y. Li, D. Jin, Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1020–1027.
B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, in: IJCAI, 2018.
Delissen (b23) 2020
Wang, Li, Jin, Wang (b49) 2018
Yu, Wu, Wang, Wang, Ma (b64) 2017; 17
ONU (b1) 2019
C. Chen, K. Li, S.G. Teo, X. Zou, K. Wang, J. Wang, Z. Zeng, Gated residual recurrent graph neural networks for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 485–492.
Cheng, Lu, Peng, Wu (b26) 2018; 71
Liapis, Christantonis, Chazan-Pantzalis, Manos, Elizabeth Filippidou, Tjortjis (b99) 2021
W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng, Multi-range attentive bicomponent graph convolutional network for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 3529–3536.
Chong, Ng (b4) 2016
Tipping (b32) 2001; 1
L.S.M. Altin, Identification of Offensive Language in Social Media, in: Proceedings of the Doctoral Symposium of the XXXV International Conference of the Spanish Society for Natural Language Processing, SEPLN 2019, 2019, pp. 50–55.
Impedovo, Dentamaro, Pirlo, Sarcinella (b40) 2019; 9
Tao, Sun, Boukerche (b24) 2019
Zhu, Wang, Tao, Deng, Zhao, Li (b70) 2021; 9
Katrakazas, Michelaraki, Sekadakis, Ziakopoulos, Kontaxi, Yannis (b95) 2021
Vlahogianni, Karlaftis, Golias (b92) 2014; 43
Liu, Liu, Meng, Cheng (b33) 2019; 108
Wu, Tan, Qin, Ran, Jiang (b34) 2018; 90
Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b41) 2016
Lu, Huang, Song, Jiang, Zhou, Qin (b42) 2020; 9
Zhou, Yang, Zhong, Chen, Zhang (b77) 2020
Lv, Hong, Chen, Chen, Zhu, Ji (b68) 2020
Tang, Chen, Hu, Zong, Han, Li (b29) 2019; 534
Zhang, Chen, Cui, Guo, Zhu (b69) 2020
Zhou, Li, Zhang, Trajcevski (b78) 2021; 124
Jia, Wu, Xu (b18) 2017; 2017
Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the Dots: Multivariate time series forecasting with graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763.
Duan, Yang, Zhang, Ni, Bajgain (b86) 2018; 6
Joshi, Joshi, Tayade, Shinde, Rokade (b3) 2016
Cui, Henrickson, Ke, Wang (b13) 2019
Fang, Fei, Xu, Tsao (b83) 2017; 17
X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3656–3663.
Wu, Tan (b59) 2016
Zantalis, Koulouras, Karabetsos, Kandris (b11) 2019; 11
Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, B.Y. Zhao, Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1665–1674.
Ai, Jia, Hong, Zhang (b90) 2020; 8
Eisenmann, Nobis, Kolarova, Lenz, Winkler (b98) 2021; 103
L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting, in: 34th Conference on Neural Information Processing Systems, 2020.
Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, in: International Conference on Learning Representations, 2018.
Przybylowski, Stelmak, Suchanek (b97) 2021; 13
Estupiñan, Scorcia, Navas, Zegras, Rodríguez, Vergel-Tovar, Gakenheimer, Azán Otero, Vasconcellos (b7) 2018
Fu, Zhang, Li (b82) 2016
Do, Vu, Vo, Liu, Phung (b35) 2019; 108
Yao, Wu, Ke, Tang, Jia, Lu, Gong, Li, Ye, Chuxing (b38) 2018
T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, Y. Zheng, Autost: Efficient neural architecture search for spatio-temporal prediction, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 794–802.
Zhou, Yang, Zhang, Trajcevski, Zhong, Khokhar (b76) 2020
Majumdar, Subhani, Roullier, Anjum, Zhu (b12) 2020; 64
Bratsas, Koupidis, Salanova, Giannakopoulos, Kaloudis, Aifadopoulou (b22) 2020; 12
Ata, Khan, Abbas, Khan, Ahmad (b5) 2020
Ma, Dai, He, Ma, Wang, Wang (b84) 2017; 17
Xie, Li, Liu, Du, Yang, Zhang (b16) 2020; 59
TomTom (b8) 2019
Du, Li, Gong, Yang, Horng (b52) 2017
Siddiqui, Khan, Abbas, Khan (b61) 2020
Wang, Zhang, Li, Guo, Huang, Wei, Cao (b51) 2020; 171
Zhang, Yao, Hu, Zhao, Li, Hu (b62) 2019; 19
Sun, Yang, Han, Ma, Zhang (b15) 2020; 2674
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: Conference on ICLR 2017, 2017.
Fu, Zhou, Chen (b75) 2020
Giuffrè, Siniscalchi, Tesoriere (b60) 2012; 53
Q. Chen, X. Song, H. Yamada, R. Shibasaki, Learning deep representation from big and heterogeneous data for traffic accident inference, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, 2016.
Lin, Li, Wang, Wang, Ma (b21) 2020; 34
Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b67) 2019
Wang, Xu, Wang, Chen, Ren (b45) 2018
Boukerche, Wang (b9) 2020; 181
Swarnamugi, Chinnaiyan (b10) 2018
H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 5668–5675.
Kouziokas (b50) 2020
10.1016/j.suscom.2022.100739_b58
Shen (10.1016/j.suscom.2022.100739_b20) 2020; 398
10.1016/j.suscom.2022.100739_b55
10.1016/j.suscom.2022.100739_b54
Katrakazas (10.1016/j.suscom.2022.100739_b95) 2021
Zhou (10.1016/j.suscom.2022.100739_b78) 2021; 124
Duan (10.1016/j.suscom.2022.100739_b86) 2018; 6
Liu (10.1016/j.suscom.2022.100739_b31) 2020; 2020
Cui (10.1016/j.suscom.2022.100739_b13) 2019
Zhao (10.1016/j.suscom.2022.100739_b67) 2019
Zhang (10.1016/j.suscom.2022.100739_b30) 2018; 512
Zantalis (10.1016/j.suscom.2022.100739_b11) 2019; 11
Giuffrè (10.1016/j.suscom.2022.100739_b60) 2012; 53
Hou (10.1016/j.suscom.2022.100739_b17) 2019; 527
Fu (10.1016/j.suscom.2022.100739_b75) 2020
Levin (10.1016/j.suscom.2022.100739_b27) 2017
10.1016/j.suscom.2022.100739_b66
10.1016/j.suscom.2022.100739_b65
Liapis (10.1016/j.suscom.2022.100739_b99) 2021
Tempelmeier (10.1016/j.suscom.2022.100739_b19) 2020; 24
Wang (10.1016/j.suscom.2022.100739_b45) 2018
Estupiñan (10.1016/j.suscom.2022.100739_b7) 2018
Fang (10.1016/j.suscom.2022.100739_b83) 2017; 17
10.1016/j.suscom.2022.100739_b73
10.1016/j.suscom.2022.100739_b74
10.1016/j.suscom.2022.100739_b71
10.1016/j.suscom.2022.100739_b37
10.1016/j.suscom.2022.100739_b36
10.1016/j.suscom.2022.100739_b39
Emami (10.1016/j.suscom.2022.100739_b14) 2020; 102
Bruna (10.1016/j.suscom.2022.100739_b56) 2013
Chen (10.1016/j.suscom.2022.100739_b93) 2021; 13
Wang (10.1016/j.suscom.2022.100739_b47) 2019; 100
Simunek (10.1016/j.suscom.2022.100739_b94) 2021; 2021
Wei (10.1016/j.suscom.2022.100739_b57) 2019; 19
Du (10.1016/j.suscom.2022.100739_b52) 2017
Fouladgar (10.1016/j.suscom.2022.100739_b25) 2017
Wang (10.1016/j.suscom.2022.100739_b49) 2018
Swarnamugi (10.1016/j.suscom.2022.100739_b10) 2018
10.1016/j.suscom.2022.100739_b43
10.1016/j.suscom.2022.100739_b46
Tipping (10.1016/j.suscom.2022.100739_b32) 2001; 1
Zhu (10.1016/j.suscom.2022.100739_b70) 2021; 9
Delissen (10.1016/j.suscom.2022.100739_b23) 2020
Yu (10.1016/j.suscom.2022.100739_b64) 2017; 17
Lu (10.1016/j.suscom.2022.100739_b42) 2020; 9
Zhou (10.1016/j.suscom.2022.100739_b76) 2020
Majumdar (10.1016/j.suscom.2022.100739_b12) 2020; 64
Wu (10.1016/j.suscom.2022.100739_b59) 2016
Siddiqui (10.1016/j.suscom.2022.100739_b61) 2020
Vlahogianni (10.1016/j.suscom.2022.100739_b92) 2014; 43
Sun (10.1016/j.suscom.2022.100739_b15) 2020; 2674
Ma (10.1016/j.suscom.2022.100739_b84) 2017; 17
ONU (10.1016/j.suscom.2022.100739_b1) 2019
Zhou (10.1016/j.suscom.2022.100739_b77) 2020
Liu (10.1016/j.suscom.2022.100739_b33) 2019; 108
Alotaibi (10.1016/j.suscom.2022.100739_b89) 2020; 8
Xu (10.1016/j.suscom.2022.100739_b2) 2020
Tang (10.1016/j.suscom.2022.100739_b29) 2019; 534
Yao (10.1016/j.suscom.2022.100739_b38) 2018
Oord (10.1016/j.suscom.2022.100739_b41) 2016
Vijayalakshmi (10.1016/j.suscom.2022.100739_b53) 2020
Kouziokas (10.1016/j.suscom.2022.100739_b50) 2020
Impedovo (10.1016/j.suscom.2022.100739_b40) 2019; 9
Wu (10.1016/j.suscom.2022.100739_b34) 2018; 90
Przybylowski (10.1016/j.suscom.2022.100739_b97) 2021; 13
Tao (10.1016/j.suscom.2022.100739_b24) 2019
Chong (10.1016/j.suscom.2022.100739_b4) 2016
Ata (10.1016/j.suscom.2022.100739_b5) 2020
Jia (10.1016/j.suscom.2022.100739_b18) 2017; 2017
Bratsas (10.1016/j.suscom.2022.100739_b22) 2020; 12
Lv (10.1016/j.suscom.2022.100739_b100) 2021; 135
Zhang (10.1016/j.suscom.2022.100739_b69) 2020
Cai (10.1016/j.suscom.2022.100739_b81) 2016; 62
10.1016/j.suscom.2022.100739_b79
Joshi (10.1016/j.suscom.2022.100739_b3) 2016
Do (10.1016/j.suscom.2022.100739_b35) 2019; 108
Cheng (10.1016/j.suscom.2022.100739_b26) 2018; 71
Zhang (10.1016/j.suscom.2022.100739_b62) 2019; 19
Ai (10.1016/j.suscom.2022.100739_b90) 2020; 8
Liu (10.1016/j.suscom.2022.100739_b28) 2017; 6
Lv (10.1016/j.suscom.2022.100739_b68) 2020
Fu (10.1016/j.suscom.2022.100739_b82) 2016
Zhang (10.1016/j.suscom.2022.100739_b6) 2018; 12
10.1016/j.suscom.2022.100739_b85
10.1016/j.suscom.2022.100739_b80
Marinello (10.1016/j.suscom.2022.100739_b96) 2021; 13
Wang (10.1016/j.suscom.2022.100739_b51) 2020; 171
10.1016/j.suscom.2022.100739_b88
Boukerche (10.1016/j.suscom.2022.100739_b9) 2020; 181
10.1016/j.suscom.2022.100739_b87
Wang (10.1016/j.suscom.2022.100739_b63) 2018
Jia (10.1016/j.suscom.2022.100739_b48) 2014
Eisenmann (10.1016/j.suscom.2022.100739_b98) 2021; 103
TomTom (10.1016/j.suscom.2022.100739_b8) 2019
Xie (10.1016/j.suscom.2022.100739_b16) 2020; 59
Ye (10.1016/j.suscom.2022.100739_b72) 2020
10.1016/j.suscom.2022.100739_b91
Lin (10.1016/j.suscom.2022.100739_b21) 2020; 34
Wu (10.1016/j.suscom.2022.100739_b44) 2019
References_xml – reference: T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, Y. Zheng, Autost: Efficient neural architecture search for spatio-temporal prediction, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 794–802.
– start-page: 2588
  year: 2018
  end-page: 2595
  ident: b38
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
  publication-title: 32nd AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2016
  end-page: 6
  ident: b4
  article-title: Development of IoT device for traffic management system
  publication-title: 2016 IEEE Student Conference on Research and Development
– reference: B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, in: IJCAI, 2018.
– reference: X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3656–3663.
– volume: 103
  start-page: 60
  year: 2021
  end-page: 67
  ident: b98
  article-title: Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground
  publication-title: Transp. Policy
– reference: Z. Lin, J. Feng, Z. Lu, Y. Li, D. Jin, Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1020–1027.
– reference: Q. Chen, X. Song, H. Yamada, R. Shibasaki, Learning deep representation from big and heterogeneous data for traffic accident inference, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, 2016.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b63
  article-title: Deepstcl: A deep spatio-temporal convlstm for travel demand prediction
  publication-title: 2018 International Joint Conference on Neural Networks
– volume: 12
  start-page: 578
  year: 2018
  end-page: 585
  ident: b6
  article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach
  publication-title: IET Intell. Transp. Syst.
– start-page: 802
  year: 2018
  end-page: 806
  ident: b10
  article-title: IoT hybrid computing model for intelligent transportation system (ITS)
  publication-title: 2018 Second International Conference on Computing Methodologies and Communication
– volume: 2017
  year: 2017
  ident: b18
  article-title: Traffic flow prediction with rainfall impact using a deep learning method
  publication-title: J. Adv. Transp.
– reference: Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the Dots: Multivariate time series forecasting with graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763.
– volume: 34
  start-page: 257
  year: 2020
  end-page: 265
  ident: b21
  article-title: Traffic flow prediction using SPGAPSO-CKRVM model
  publication-title: Rev. D’Intell. Artif.
– volume: 8
  start-page: 69461
  year: 2020
  end-page: 69470
  ident: b90
  article-title: Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow
  publication-title: IEEE Access
– volume: 64
  year: 2020
  ident: b12
  article-title: Congestion prediction for smart sustainable cities using IoT and machine learning approaches
  publication-title: Sustainable Cities Soc.
– volume: 43
  start-page: 3
  year: 2014
  end-page: 19
  ident: b92
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transp. Res. C
– volume: 17
  start-page: 6111
  year: 2017
  end-page: 6118
  ident: b83
  article-title: Learning transportation modes from smartphone sensors based on deep neural network
  publication-title: IEEE Sens. J.
– volume: 108
  start-page: 130
  year: 2019
  end-page: 150
  ident: b33
  article-title: A tailored machine learning approach for urban transport network flow estimation
  publication-title: Transp. Res. C
– volume: 9
  start-page: 1474
  year: 2020
  ident: b42
  article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting
  publication-title: Electronics
– year: 2020
  ident: b53
  article-title: An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city
  publication-title: Int. J. Commun. Syst.
– year: 2016
  ident: b59
  article-title: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
– volume: 59
  start-page: 1
  year: 2020
  end-page: 12
  ident: b16
  article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey
  publication-title: Inf. Fusion
– start-page: 1
  year: 2019
  end-page: 6
  ident: b24
  article-title: A novel travel-delay aware short-term vehicular traffic flow prediction scheme for vanet
  publication-title: 2019 IEEE Wireless Communications and Networking Conference
– start-page: 324
  year: 2016
  end-page: 328
  ident: b82
  article-title: Using LSTM and GRU neural network methods for traffic flow prediction
  publication-title: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
– volume: 17
  start-page: 1501
  year: 2017
  ident: b64
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
– volume: 2021
  year: 2021
  ident: b94
  article-title: The impact of the covid-19 movement restrictions on the road traffic in the czech Republic during the state of emergency
  publication-title: J. Adv. Transp.
– reference: S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 922–929.
– year: 2019
  ident: b8
  article-title: Tomtom traffic index
– volume: 17
  start-page: 818
  year: 2017
  ident: b84
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
– year: 2020
  ident: b23
  article-title: Predicting Customs Value for Fulfilment Shipments in E-Commerce Using Regression Machine Learning Algorithms
– year: 2020
  ident: b72
  article-title: How to build a graph-based deep learning architecture in traffic domain: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 181
  year: 2020
  ident: b9
  article-title: Machine learning-based traffic prediction models for intelligent transportation systems
  publication-title: Comput. Netw.
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: b32
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 145552
  year: 2020
  end-page: 145563
  ident: b89
  article-title: Transportation mode detection by embedded sensors based on ensemble learning
  publication-title: IEEE Access
– year: 2020
  ident: b77
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 100
  start-page: 372
  year: 2019
  end-page: 385
  ident: b47
  article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach
  publication-title: Transp. Res. C
– reference: H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 5668–5675.
– volume: 12
  start-page: 142
  year: 2020
  ident: b22
  article-title: A comparison of machine learning methods for the prediction of traffic speed in urban places
  publication-title: Sustainability
– year: 2016
  ident: b3
  article-title: IoT based smart traffic density alarming indicator
  publication-title: IJACSA Int. J. Adv. Comput. Sci. Appl.
– volume: 13
  start-page: 118
  year: 2021
  ident: b96
  article-title: The impact of the COVID-19 emergency on local vehicular traffic and its consequences for the environment: The case of the city of reggio emilia (Italy)
  publication-title: Sustainability
– start-page: 1
  year: 2017
  end-page: 6
  ident: b52
  article-title: Traffic flow forecasting based on hybrid deep learning framework
  publication-title: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering
– year: 2013
  ident: b56
  article-title: Spectral networks and locally connected networks on graphs
– volume: 11
  start-page: 94
  year: 2019
  ident: b11
  article-title: A review of machine learning and IoT in smart transportation
  publication-title: Future Internet
– volume: 512
  start-page: 537
  year: 2018
  end-page: 551
  ident: b30
  article-title: Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach
  publication-title: Physica A
– volume: 2020
  year: 2020
  ident: b31
  article-title: Urban traffic flow prediction model with CPSO/SSVM algorithm under the edge computing framework
  publication-title: Wirel. Commun. Mob. Comput.
– start-page: 329
  year: 2018
  end-page: 338
  ident: b45
  article-title: A deep prediction architecture for traffic flow with precipitation information
  publication-title: International Conference on Sensing and Imaging
– volume: 71
  start-page: 186
  year: 2018
  end-page: 198
  ident: b26
  article-title: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity
  publication-title: Comput. Environ. Urban Syst.
– year: 2017
  ident: b27
  article-title: Markov Chains and Mixing Times, Vol. 107
– volume: 534
  year: 2019
  ident: b29
  article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes
  publication-title: Physica A
– year: 2014
  ident: b48
  article-title: Impacts of rainfall weather on urban traffic in Beijing: analysis and modeling
– volume: 13
  start-page: 208
  year: 2021
  ident: b93
  article-title: Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images
  publication-title: Remote Sens.
– year: 2020
  ident: b61
  article-title: Smart occupancy detection for road traffic parking using deep extreme learning machine
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– reference: L.S.M. Altin, Identification of Offensive Language in Social Media, in: Proceedings of the Doctoral Symposium of the XXXV International Conference of the Spanish Society for Natural Language Processing, SEPLN 2019, 2019, pp. 50–55.
– volume: 9
  start-page: 35973
  year: 2021
  end-page: 35983
  ident: b70
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
– reference: L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting, in: 34th Conference on Neural Information Processing Systems, 2020.
– year: 2019
  ident: b1
  article-title: World Population Prospects 2019: Highlights
– reference: C. Chen, K. Li, S.G. Teo, X. Zou, K. Wang, J. Wang, Z. Zeng, Gated residual recurrent graph neural networks for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 485–492.
– volume: 6
  start-page: 321
  year: 2017
  ident: b28
  article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes
  publication-title: ISPRS Int. J. Geo-Inf.
– year: 2020
  ident: b76
  article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting
  publication-title: IEEE Internet Things J.
– volume: 53
  start-page: 16
  year: 2012
  end-page: 28
  ident: b60
  article-title: A novel architecture of parking management for smart cities
  publication-title: Procedia-Soc. Behav. Sci.
– reference: Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, B.Y. Zhao, Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1665–1674.
– volume: 90
  start-page: 166
  year: 2018
  end-page: 180
  ident: b34
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transp. Res. C
– volume: 2674
  start-page: 78
  year: 2020
  end-page: 89
  ident: b15
  article-title: Bidirectional spatial–temporal network for traffic prediction with multisource data
  publication-title: Transp. Res. Rec.
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: Conference on ICLR 2017, 2017.
– volume: 6
  start-page: 31820
  year: 2018
  end-page: 31827
  ident: b86
  article-title: Improved deep hybrid networks for urban traffic flow prediction using trajectory data
  publication-title: IEEE Access
– reference: Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, in: International Conference on Learning Representations, 2018.
– year: 2019
  ident: b13
  article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 2251
  year: 2017
  end-page: 2258
  ident: b25
  article-title: Scalable deep traffic flow neural networks for urban traffic congestion prediction
  publication-title: 2017 International Joint Conference on Neural Networks
– year: 2020
  ident: b75
  article-title: BayesIan spatio-temporal graph convolutional network for traffic forecasting
– start-page: 171
  year: 2020
  end-page: 180
  ident: b50
  article-title: Deep bidirectional and unidirectional LSTM neural networks in traffic flow forecasting from environmental factors
  publication-title: Conference on Sustainable Urban Mobility
– volume: 102
  year: 2020
  ident: b14
  article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors
  publication-title: Simul. Model. Pract. Theory
– reference: Q. Zhang, J. Chang, G. Meng, S. Xiang, C. Pan, Spatio-temporal graph structure learning for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1177–1185.
– reference: C. Song, Y. Lin, S. Guo, H. Wan, Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 01, 2020, pp. 914–921.
– year: 2020
  ident: b68
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: C. Zheng, X. Fan, C. Wang, J. Qi, Gman: A graph multi-attention network for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1234–1241.
– volume: 19
  start-page: 2229
  year: 2019
  ident: b62
  article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks
  publication-title: Sensors
– volume: 398
  start-page: 477
  year: 2020
  end-page: 484
  ident: b20
  article-title: A novel learning method for multi-intersections aware traffic flow forecasting
  publication-title: Neurocomputing
– year: 2018
  ident: b7
  article-title: Transporte Y Desarrollo En América Latina
– year: 2019
  ident: b44
  article-title: Graph wavenet for deep spatial-temporal graph modeling
– year: 2016
  ident: b41
  article-title: Wavenet: A generative model for raw audio
– volume: 9
  start-page: 5504
  year: 2019
  ident: b40
  article-title: TrafficWave: Generative deep learning architecture for vehicular traffic flow prediction
  publication-title: Appl. Sci.
– volume: 19
  start-page: 2946
  year: 2019
  ident: b57
  article-title: An autoencoder and LSTM-based traffic flow prediction method
  publication-title: Sensors
– volume: 13
  start-page: 364
  year: 2021
  ident: b97
  article-title: Mobility behaviour in view of the impact of the COVID-19 pandemic—public transport users in gdansk case study
  publication-title: Sustainability
– volume: 108
  start-page: 12
  year: 2019
  end-page: 28
  ident: b35
  article-title: An effective spatial-temporal attention based neural network for traffic flow prediction
  publication-title: Transp. Res. C
– year: 2020
  ident: b2
  article-title: A hybrid machine learning model for demand prediction of edge-computing based bike sharing system using internet of things
  publication-title: IEEE Internet Things J.
– volume: 527
  year: 2019
  ident: b17
  article-title: An adaptive hybrid model for short-term urban traffic flow prediction
  publication-title: Physica A
– year: 2019
  ident: b67
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1134
  year: 2018
  end-page: 1139
  ident: b49
  article-title: Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture trafficnet
  publication-title: 2018 13th IEEE Conference on Industrial Electronics and Applications
– year: 2020
  ident: b69
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.
– volume: 62
  start-page: 21
  year: 2016
  end-page: 34
  ident: b81
  article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting
  publication-title: Transp. Res. C
– year: 2021
  ident: b95
  article-title: Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting
  publication-title: J. Saf. Res.
– volume: 124
  year: 2021
  ident: b78
  article-title: Urban flow prediction with spatial–temporal neural ODEs
  publication-title: Transp. Res. C
– year: 2020
  ident: b5
  article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm
  publication-title: Comput. J.
– reference: W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng, Multi-range attentive bicomponent graph convolutional network for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 3529–3536.
– volume: 135
  year: 2021
  ident: b100
  article-title: Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index
  publication-title: Data Knowl. Eng.
– volume: 171
  start-page: 264
  year: 2020
  end-page: 278
  ident: b51
  article-title: An interpretable model for short term traffic flow prediction
  publication-title: Math. Comput. Simulation
– start-page: 1
  year: 2021
  end-page: 19
  ident: b99
  article-title: A methodology using classification for traffic prediction: Featuring the impact of COVID-19
  publication-title: Integr. Comput.-Aided Eng.
– volume: 24
  start-page: 339
  year: 2020
  end-page: 370
  ident: b19
  article-title: Crosstown traffic-supervised prediction of impact of planned special events on urban traffic
  publication-title: GeoInformatica
– volume: 2017
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b18
  article-title: Traffic flow prediction with rainfall impact using a deep learning method
  publication-title: J. Adv. Transp.
  doi: 10.1155/2017/6575947
– volume: 13
  start-page: 208
  issue: 2
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b93
  article-title: Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images
  publication-title: Remote Sens.
  doi: 10.3390/rs13020208
– volume: 181
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b9
  article-title: Machine learning-based traffic prediction models for intelligent transportation systems
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107530
– volume: 17
  start-page: 6111
  issue: 18
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b83
  article-title: Learning transportation modes from smartphone sensors based on deep neural network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2737825
– volume: 90
  start-page: 166
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b34
  article-title: A hybrid deep learning based traffic flow prediction method and its understanding
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2018.03.001
– ident: 10.1016/j.suscom.2022.100739_b66
  doi: 10.1145/3394486.3403118
– start-page: 1
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b24
  article-title: A novel travel-delay aware short-term vehicular traffic flow prediction scheme for vanet
– ident: 10.1016/j.suscom.2022.100739_b74
  doi: 10.1609/aaai.v34i04.5758
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b75
– year: 2019
  ident: 10.1016/j.suscom.2022.100739_b8
– volume: 19
  start-page: 2946
  issue: 13
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b57
  article-title: An autoencoder and LSTM-based traffic flow prediction method
  publication-title: Sensors
  doi: 10.3390/s19132946
– start-page: 1
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b63
  article-title: Deepstcl: A deep spatio-temporal convlstm for travel demand prediction
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b53
  article-title: An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city
  publication-title: Int. J. Commun. Syst.
– volume: 135
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b100
  article-title: Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2021.101912
– volume: 100
  start-page: 372
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b47
  article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.02.002
– ident: 10.1016/j.suscom.2022.100739_b54
  doi: 10.1609/aaai.v33i01.33013656
– ident: 10.1016/j.suscom.2022.100739_b88
  doi: 10.1609/aaai.v33i01.3301922
– start-page: 1
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b52
  article-title: Traffic flow forecasting based on hybrid deep learning framework
– year: 2016
  ident: 10.1016/j.suscom.2022.100739_b3
  article-title: IoT based smart traffic density alarming indicator
  publication-title: IJACSA Int. J. Adv. Comput. Sci. Appl.
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b77
  article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 13
  start-page: 118
  issue: 1
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b96
  article-title: The impact of the COVID-19 emergency on local vehicular traffic and its consequences for the environment: The case of the city of reggio emilia (Italy)
  publication-title: Sustainability
  doi: 10.3390/su13010118
– ident: 10.1016/j.suscom.2022.100739_b80
  doi: 10.24963/ijcai.2018/505
– ident: 10.1016/j.suscom.2022.100739_b85
– start-page: 1134
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b49
  article-title: Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture trafficnet
– ident: 10.1016/j.suscom.2022.100739_b87
  doi: 10.1609/aaai.v33i01.3301485
– start-page: 329
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b45
  article-title: A deep prediction architecture for traffic flow with precipitation information
– year: 2021
  ident: 10.1016/j.suscom.2022.100739_b95
  article-title: Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.04.007
– volume: 13
  start-page: 364
  issue: 1
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b97
  article-title: Mobility behaviour in view of the impact of the COVID-19 pandemic—public transport users in gdansk case study
  publication-title: Sustainability
  doi: 10.3390/su13010364
– start-page: 2251
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b25
  article-title: Scalable deep traffic flow neural networks for urban traffic congestion prediction
– year: 2014
  ident: 10.1016/j.suscom.2022.100739_b48
– year: 2019
  ident: 10.1016/j.suscom.2022.100739_b44
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b76
  article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting
  publication-title: IEEE Internet Things J.
– year: 2016
  ident: 10.1016/j.suscom.2022.100739_b59
– volume: 534
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b29
  article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.03.007
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b69
  article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1049/iet-its.2019.0873
– start-page: 2588
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b38
  article-title: Deep multi-view spatial-temporal network for taxi demand prediction
– volume: 34
  start-page: 257
  issue: 3
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b21
  article-title: Traffic flow prediction using SPGAPSO-CKRVM model
  publication-title: Rev. D’Intell. Artif.
– ident: 10.1016/j.suscom.2022.100739_b71
  doi: 10.1145/3340531.3411873
– volume: 1
  start-page: 211
  issue: Jun
  year: 2001
  ident: 10.1016/j.suscom.2022.100739_b32
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 108
  start-page: 12
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b35
  article-title: An effective spatial-temporal attention based neural network for traffic flow prediction
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.09.008
– volume: 11
  start-page: 94
  issue: 4
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b11
  article-title: A review of machine learning and IoT in smart transportation
  publication-title: Future Internet
  doi: 10.3390/fi11040094
– volume: 9
  start-page: 1474
  issue: 9
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b42
  article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting
  publication-title: Electronics
  doi: 10.3390/electronics9091474
– year: 2019
  ident: 10.1016/j.suscom.2022.100739_b67
  article-title: T-gcn: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 398
  start-page: 477
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b20
  article-title: A novel learning method for multi-intersections aware traffic flow forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.094
– start-page: 1
  year: 2016
  ident: 10.1016/j.suscom.2022.100739_b4
  article-title: Development of IoT device for traffic management system
– volume: 8
  start-page: 69461
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b90
  article-title: Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2986278
– volume: 512
  start-page: 537
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b30
  article-title: Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.08.034
– ident: 10.1016/j.suscom.2022.100739_b73
– start-page: 802
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b10
  article-title: IoT hybrid computing model for intelligent transportation system (ITS)
– ident: 10.1016/j.suscom.2022.100739_b55
  doi: 10.1609/aaai.v33i01.33015668
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b68
  article-title: Temporal multi-graph convolutional network for traffic flow prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 102
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b14
  article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.102025
– volume: 12
  start-page: 142
  issue: 1
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b22
  article-title: A comparison of machine learning methods for the prediction of traffic speed in urban places
  publication-title: Sustainability
  doi: 10.3390/su12010142
– volume: 171
  start-page: 264
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b51
  article-title: An interpretable model for short term traffic flow prediction
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2019.12.013
– year: 2019
  ident: 10.1016/j.suscom.2022.100739_b1
– volume: 62
  start-page: 21
  year: 2016
  ident: 10.1016/j.suscom.2022.100739_b81
  article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.11.002
– ident: 10.1016/j.suscom.2022.100739_b79
  doi: 10.1609/aaai.v34i01.5470
– volume: 2674
  start-page: 78
  issue: 8
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b15
  article-title: Bidirectional spatial–temporal network for traffic prediction with multisource data
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198120927393
– ident: 10.1016/j.suscom.2022.100739_b39
  doi: 10.1145/3394486.3403122
– ident: 10.1016/j.suscom.2022.100739_b46
– volume: 53
  start-page: 16
  year: 2012
  ident: 10.1016/j.suscom.2022.100739_b60
  article-title: A novel architecture of parking management for smart cities
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.09.856
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b61
  article-title: Smart occupancy detection for road traffic parking using deep extreme learning machine
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 103
  start-page: 60
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b98
  article-title: Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2021.01.012
– volume: 17
  start-page: 818
  issue: 4
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b84
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
  doi: 10.3390/s17040818
– volume: 527
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b17
  article-title: An adaptive hybrid model for short-term urban traffic flow prediction
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121065
– volume: 24
  start-page: 339
  issue: 2
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b19
  article-title: Crosstown traffic-supervised prediction of impact of planned special events on urban traffic
  publication-title: GeoInformatica
  doi: 10.1007/s10707-019-00366-x
– ident: 10.1016/j.suscom.2022.100739_b58
  doi: 10.1609/aaai.v30i1.10011
– start-page: 171
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b50
  article-title: Deep bidirectional and unidirectional LSTM neural networks in traffic flow forecasting from environmental factors
– ident: 10.1016/j.suscom.2022.100739_b91
  doi: 10.1609/aaai.v34i01.5438
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b5
  article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm
  publication-title: Comput. J.
– volume: 71
  start-page: 186
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b26
  article-title: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2018.05.009
– volume: 2021
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b94
  article-title: The impact of the covid-19 movement restrictions on the road traffic in the czech Republic during the state of emergency
  publication-title: J. Adv. Transp.
  doi: 10.1155/2021/6622028
– volume: 108
  start-page: 130
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b33
  article-title: A tailored machine learning approach for urban transport network flow estimation
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2019.09.006
– volume: 43
  start-page: 3
  year: 2014
  ident: 10.1016/j.suscom.2022.100739_b92
  article-title: Short-term traffic forecasting: Where we are and where we’re going
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.01.005
– ident: 10.1016/j.suscom.2022.100739_b65
  doi: 10.1609/aaai.v34i01.5477
– ident: 10.1016/j.suscom.2022.100739_b43
– volume: 6
  start-page: 31820
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b86
  article-title: Improved deep hybrid networks for urban traffic flow prediction using trajectory data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2845863
– volume: 9
  start-page: 35973
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b70
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062114
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b23
– volume: 59
  start-page: 1
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b16
  article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.002
– volume: 6
  start-page: 321
  issue: 11
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b28
  article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi6110321
– volume: 9
  start-page: 5504
  issue: 24
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b40
  article-title: TrafficWave: Generative deep learning architecture for vehicular traffic flow prediction
  publication-title: Appl. Sci.
  doi: 10.3390/app9245504
– volume: 17
  start-page: 1501
  issue: 7
  year: 2017
  ident: 10.1016/j.suscom.2022.100739_b64
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors
  doi: 10.3390/s17071501
– year: 2016
  ident: 10.1016/j.suscom.2022.100739_b41
– volume: 8
  start-page: 145552
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b89
  article-title: Transportation mode detection by embedded sensors based on ensemble learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014901
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b2
  article-title: A hybrid machine learning model for demand prediction of edge-computing based bike sharing system using internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2983089
– start-page: 324
  year: 2016
  ident: 10.1016/j.suscom.2022.100739_b82
  article-title: Using LSTM and GRU neural network methods for traffic flow prediction
– year: 2018
  ident: 10.1016/j.suscom.2022.100739_b7
– ident: 10.1016/j.suscom.2022.100739_b36
  doi: 10.1609/aaai.v33i01.33011020
– year: 2017
  ident: 10.1016/j.suscom.2022.100739_b27
– volume: 124
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b78
  article-title: Urban flow prediction with spatial–temporal neural ODEs
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2020.102912
– volume: 19
  start-page: 2229
  issue: 10
  year: 2019
  ident: 10.1016/j.suscom.2022.100739_b62
  article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks
  publication-title: Sensors
  doi: 10.3390/s19102229
– year: 2020
  ident: 10.1016/j.suscom.2022.100739_b72
  article-title: How to build a graph-based deep learning architecture in traffic domain: A survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 12
  start-page: 578
  issue: 7
  year: 2018
  ident: 10.1016/j.suscom.2022.100739_b6
  article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2017.0313
– year: 2013
  ident: 10.1016/j.suscom.2022.100739_b56
– volume: 64
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b12
  article-title: Congestion prediction for smart sustainable cities using IoT and machine learning approaches
  publication-title: Sustainable Cities Soc.
– year: 2019
  ident: 10.1016/j.suscom.2022.100739_b13
  article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 2020
  year: 2020
  ident: 10.1016/j.suscom.2022.100739_b31
  article-title: Urban traffic flow prediction model with CPSO/SSVM algorithm under the edge computing framework
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2020/8871998
– start-page: 1
  issue: Preprint
  year: 2021
  ident: 10.1016/j.suscom.2022.100739_b99
  article-title: A methodology using classification for traffic prediction: Featuring the impact of COVID-19
  publication-title: Integr. Comput.-Aided Eng.
– ident: 10.1016/j.suscom.2022.100739_b37
  doi: 10.1609/aaai.v31i1.10735
SSID ssj0000561934
Score 2.599559
Snippet In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100739
SubjectTerms Deep learning
Forecasting
Machine learning
Review
Urban traffic flow
Title Urban traffic flow prediction techniques: A review
URI https://dx.doi.org/10.1016/j.suscom.2022.100739
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lB6-xu3lsNt5KsVTFXrTQ25LZTaBStmW7xZu_3WQfRUEUPG7IwOab7Mxk880MQjcmTDPGuSWR1JTwiGkCQWiJcboPmKUSqnZvz5NoPOWPMzHroGGbC-NplY3tr216Za2bkX6DZn81n_dfqDutCCYV9dkmkvpEc1-9zu3p249w-5_FR8iqulz284kXaDPoKprXerP2tBHqfFnFGPBdw3_yUF-8zugA7TXhIh7Ub3SIOiY_QvttKwbcfJnHiE4L0DkuC-1LQmC7WL7jVeEvYTzweFupdX2HB7hOVzlB09H963BMmnYIJHVRUkmABSYDJWJgIQXNLNNWGGFlGmZuncBEmJo4UrGU1blJgLUKmDUBVUEGgp2ibr7MzRnCTgVaQKDDWDJuuIo18BAEFZkSnKZwjlgLQZI2tcJ9y4pF0pLC3pIauMQDl9TAnSOylVrVtTL-mC9bdJNvOk-cOf9V8uLfkpdo1z_VLLEr1C2Ljbl2YUUJvWrf9NDO4OFpPPkEZdzLCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-9-B1abKPbOKtFEtqHxdb6C3sJrtQKWlJW_z7ZvMoCqLgNclA8k0yM5v9Zj6AJ-3GCWXMYE9IgplHJVaOa7DOfe9QQ4Qq5N7GEy-csdc5nzegV_fCWFplFfvLmF5E6-pIp0Kzs14sOm8kX61wKgJiu00E4QfQstOpWBNa3cEwnOx_tdgiOSj2l60JtjZ1E13B9NrsNpY5QvJ0VpAGrHD4T0nqS-Lpn8JxVTGibnlTZ9DQ6Tmc1GoMqPo4L4DMMiVTtM2knQqBzHL1gdaZ3Yex2KP9sNbNM-qismPlEmb9l2kvxJUiAo7zQmmLFXV0ogLuK-oSJamh0nDNjYjdJH9ORbkba98LfCGKpRNXxgSKGu2QwEkUp1fQTFepvgaUe0Fy5UjXF5RpFvhSMVdxwpOAMxKrNtAagiiuxoVb1YplVPPC3qMSuMgCF5XAtQHvrdbluIw_rhc1utE3t0d5RP_V8ubflo9wGE7Ho2g0mAxv4cieKUljd9DcZjt9n1cZW_VQvUWfcMzNuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+traffic+flow+prediction+techniques%3A+A+review&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Medina-Salgado%2C+Boris&rft.au=S%C3%A1nchez-DelaCruz%2C+Eddy&rft.au=Pozos-Parra%2C+Pilar&rft.au=Sierra%2C+Javier+E.&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=35&rft_id=info:doi/10.1016%2Fj.suscom.2022.100739&rft.externalDocID=S2210537922000725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon