Urban traffic flow prediction techniques: A review
In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related t...
Saved in:
Published in | Sustainable computing informatics and systems Vol. 35; p. 100739 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2210-5379 |
DOI | 10.1016/j.suscom.2022.100739 |
Cover
Loading…
Abstract | In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach.
•A bibliographic review of computational techniques for the prediction of urban traffic flow was carried out.•Various computational techniques used in the prediction of urban traffic flow are presented.•The precision results of the different urban traffic flow prediction techniques are compared.•Areas of opportunity are identified within the revised methods, which can be taken into account to help improve forecasting performance. |
---|---|
AbstractList | In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to the increase in the population in urban areas that require the use of these means of transport. This has led to increased problems related to congestion control, which has a direct impact on citizens: air pollution, fuel consumption, violation of traffic rules, noise pollution, accidents and loss of time. In Latin America, the disorderly growth of cities increases distances and routes, likewise, there is an accelerated increase in the number of cars and motorcycles, which increases the problem. In this sense, intelligent transport systems are an alternative to improve the traffic environment, they incorporate the internet of things and intelligent algorithms, for the collection of data from multiple sources and information processing, respectively, in order to improve the efficiency of the transport flow. However, the processing and modeling of traffic data is challenging due to the complexity of road networks, the space–time dependencies between them, and heterogeneous traffic patterns. In this review study, (i) the smart techniques used for the analysis of mobility data in the prediction of traffic flow in urban areas are grouped, likewise, (ii) the results of implementing said techniques are shown, in addition, (iii) The procedures performed are described and analyzed to understand the benefits and limitations of these smart techniques. Given the above, (iv) the data sets used in the literature and available for use are shown, in addition, (v) the quantifiable results of precision of the various techniques were compared, highlighting advantages and limitations, which allows us to (vi) identify the related challenges and, from there, (vii) propose a general taxonomy in which the knowledge acquired in this traffic flow review converges from a computational approach.
•A bibliographic review of computational techniques for the prediction of urban traffic flow was carried out.•Various computational techniques used in the prediction of urban traffic flow are presented.•The precision results of the different urban traffic flow prediction techniques are compared.•Areas of opportunity are identified within the revised methods, which can be taken into account to help improve forecasting performance. |
ArticleNumber | 100739 |
Author | Pozos-Parra, Pilar Medina-Salgado, Boris Sánchez-DelaCruz, Eddy Sierra, Javier E. |
Author_xml | – sequence: 1 givenname: Boris orcidid: 0000-0003-4495-2276 surname: Medina-Salgado fullname: Medina-Salgado, Boris organization: Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla 93821, Mexico – sequence: 2 givenname: Eddy surname: Sánchez-DelaCruz fullname: Sánchez-DelaCruz, Eddy email: eddsacx@gmail.com organization: Division of Postgraduate Studies and Research, Tecnológico Nacional de México/Instituto Tecnológico Superior de Misantla, Misantla 93821, Mexico – sequence: 3 givenname: Pilar surname: Pozos-Parra fullname: Pozos-Parra, Pilar organization: Universidad Autónoma de Baja California, Street Universidad 14418, 22424 Tijuana, B.C, Mexico – sequence: 4 givenname: Javier E. surname: Sierra fullname: Sierra, Javier E. organization: Faculty of Engineering, University of Sucre, Sincelejo 700001, Colombia |
BookMark | eNqFkMtOwzAQRb0oEqX0D1jkBxL8iJO4C6SqAopUiQ1dW7YzFo7SuNgpFX-Pq7BiAbMZ6Urnas7coNngB0DojuCCYFLdd0U8ReMPBcWUpgjXTMzQnFKCc85qcY2WMXY4Da-IYOUc0X3QasjGoKx1JrO9P2fHAK0zo_MpB_M-uI8TxFW2zgJ8Ojjfoiur-gjLn71A-6fHt802370-v2zWu9wwTsdcMwytFrzRjFCtmGXKcuC2NqRNB2jGiYGmEk1dM0xKzLW1QjMLmArcas4WqJx6TfAxBrDyGNxBhS9JsLzoyk5OuvKiKyfdhK1-YcaN6mKTJF3_H_wwwZDEkmyQ0TgYTHpIADPK1ru_C74BjgB28A |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119000 crossref_primary_10_1109_ACCESS_2023_3311818 crossref_primary_10_1109_TIV_2024_3467910 crossref_primary_10_48084_etasr_8714 crossref_primary_10_1109_TETCI_2024_3406734 crossref_primary_10_3389_fmats_2024_1431179 crossref_primary_10_1007_s11042_024_19479_z crossref_primary_10_56294_dm2024378 crossref_primary_10_3389_fenvs_2024_1461656 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_7717_peerj_cs_2645 crossref_primary_10_5753_jisa_2024_4006 crossref_primary_10_1186_s13705_025_00517_z crossref_primary_10_1109_TITS_2024_3487982 crossref_primary_10_1109_ACCESS_2024_3393981 crossref_primary_10_1057_s41278_024_00300_5 crossref_primary_10_1080_19427867_2023_2207278 crossref_primary_10_1007_s40825_024_00253_4 crossref_primary_10_1080_17538947_2024_2353123 crossref_primary_10_1109_ACCESS_2023_3270395 crossref_primary_10_1155_2024_5577278 crossref_primary_10_1051_bioconf_202414802034 crossref_primary_10_1007_s10489_025_06377_6 crossref_primary_10_1007_s11831_024_10189_1 crossref_primary_10_1080_03081060_2023_2245389 crossref_primary_10_1109_TITS_2023_3326954 crossref_primary_10_2174_0126671212330496240821114216 crossref_primary_10_1109_MITS_2024_3400679 crossref_primary_10_5937_ror2401057Z crossref_primary_10_2478_amns_2024_2777 crossref_primary_10_1080_01441647_2023_2171151 |
Cites_doi | 10.1155/2017/6575947 10.3390/rs13020208 10.1016/j.comnet.2020.107530 10.1109/JSEN.2017.2737825 10.1016/j.trc.2018.03.001 10.1145/3394486.3403118 10.1609/aaai.v34i04.5758 10.3390/s19132946 10.1016/j.datak.2021.101912 10.1016/j.trc.2019.02.002 10.1609/aaai.v33i01.33013656 10.1609/aaai.v33i01.3301922 10.3390/su13010118 10.24963/ijcai.2018/505 10.1609/aaai.v33i01.3301485 10.1016/j.jsr.2021.04.007 10.3390/su13010364 10.1016/j.physa.2019.03.007 10.1049/iet-its.2019.0873 10.1145/3340531.3411873 10.1016/j.trc.2019.09.008 10.3390/fi11040094 10.3390/electronics9091474 10.1016/j.neucom.2019.04.094 10.1109/ACCESS.2020.2986278 10.1016/j.physa.2018.08.034 10.1609/aaai.v33i01.33015668 10.1016/j.simpat.2019.102025 10.3390/su12010142 10.1016/j.matcom.2019.12.013 10.1016/j.trc.2015.11.002 10.1609/aaai.v34i01.5470 10.1177/0361198120927393 10.1145/3394486.3403122 10.1016/j.sbspro.2012.09.856 10.1016/j.tranpol.2021.01.012 10.3390/s17040818 10.1016/j.physa.2019.121065 10.1007/s10707-019-00366-x 10.1609/aaai.v30i1.10011 10.1609/aaai.v34i01.5438 10.1016/j.compenvurbsys.2018.05.009 10.1155/2021/6622028 10.1016/j.trc.2019.09.006 10.1016/j.trc.2014.01.005 10.1609/aaai.v34i01.5477 10.1109/ACCESS.2018.2845863 10.1109/ACCESS.2021.3062114 10.1016/j.inffus.2020.01.002 10.3390/ijgi6110321 10.3390/app9245504 10.3390/s17071501 10.1109/ACCESS.2020.3014901 10.1109/JIOT.2020.2983089 10.1609/aaai.v33i01.33011020 10.1016/j.trc.2020.102912 10.3390/s19102229 10.1049/iet-its.2017.0313 10.1155/2020/8871998 10.1609/aaai.v31i1.10735 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.suscom.2022.100739 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_suscom_2022_100739 S2210537922000725 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 6I. 7-5 8P~ AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AARJD AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA GBOLZ HZ~ J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSR SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c352t-b30edb958b312ba3f3af5e5f7c1d000b351ce869877301405bff9b3fe0290db53 |
IEDL.DBID | .~1 |
ISSN | 2210-5379 |
IngestDate | Tue Jul 01 01:35:20 EDT 2025 Thu Apr 24 22:57:54 EDT 2025 Fri Feb 23 02:40:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Keywords | Deep learning Urban traffic flow Review Forecasting Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-b30edb958b312ba3f3af5e5f7c1d000b351ce869877301405bff9b3fe0290db53 |
ORCID | 0000-0003-4495-2276 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2210537922000725 |
ParticipantIDs | crossref_primary_10_1016_j_suscom_2022_100739 crossref_citationtrail_10_1016_j_suscom_2022_100739 elsevier_sciencedirect_doi_10_1016_j_suscom_2022_100739 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable computing informatics and systems |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Emami, Sarvi, Bagloee (b14) 2020; 102 J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017. Marinello, Lolli, Gamberini (b96) 2021; 13 Zhang, Kabuka (b6) 2018; 12 C. Zheng, X. Fan, C. Wang, J. Qi, Gman: A graph multi-attention network for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1234–1241. Q. Zhang, J. Chang, G. Meng, S. Xiang, C. Pan, Spatio-temporal graph structure learning for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1177–1185. Chen, Qin, Zhang, Albanwan (b93) 2021; 13 Hou, Leng, Ma, Liu, Cheng (b17) 2019; 527 Cai, Wang, Lu, Chen, Ding, Sun (b81) 2016; 62 Zhang, Liu, Tang, Cheng, Qi, Wang (b30) 2018; 512 Ye, Zhao, Ye, Xu (b72) 2020 Wu, Pan, Long, Jiang, Zhang (b44) 2019 Wei, Wu, Ma (b57) 2019; 19 Xu, Han, Qi, Du, Lin, Shu (b2) 2020 Vijayalakshmi, Ramar, Jhanjhi, Verma, Kaliappan, Vijayalakshmi, Vimal, Ghosh (b53) 2020 Wang, Yang, Ning (b63) 2018 Levin, Peres (b27) 2017 Shen, Wang, Shen, Zhu, Fardoun, Lou (b20) 2020; 398 Jia, Wu, Du, Qi (b48) 2014 Lv, Li, Dong, Li, Xu (b100) 2021; 135 Tempelmeier, Dietze, Demidova (b19) 2020; 24 S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 922–929. Wang, Chen, He (b47) 2019; 100 Liu, Ma, An, Liang (b31) 2020; 2020 Liu, Gao, Qiu, Liu, Yan, Lu (b28) 2017; 6 Alotaibi (b89) 2020; 8 Bruna, Zaremba, Szlam, LeCun (b56) 2013 C. Song, Y. Lin, S. Guo, H. Wan, Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 01, 2020, pp. 914–921. Simunek, Smutny, Dolezel (b94) 2021; 2021 Fouladgar, Parchami, Elmasri, Ghaderi (b25) 2017 Z. Lin, J. Feng, Z. Lu, Y. Li, D. Jin, Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1020–1027. B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, in: IJCAI, 2018. Delissen (b23) 2020 Wang, Li, Jin, Wang (b49) 2018 Yu, Wu, Wang, Wang, Ma (b64) 2017; 17 ONU (b1) 2019 C. Chen, K. Li, S.G. Teo, X. Zou, K. Wang, J. Wang, Z. Zeng, Gated residual recurrent graph neural networks for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 485–492. Cheng, Lu, Peng, Wu (b26) 2018; 71 Liapis, Christantonis, Chazan-Pantzalis, Manos, Elizabeth Filippidou, Tjortjis (b99) 2021 W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng, Multi-range attentive bicomponent graph convolutional network for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 3529–3536. Chong, Ng (b4) 2016 Tipping (b32) 2001; 1 L.S.M. Altin, Identification of Offensive Language in Social Media, in: Proceedings of the Doctoral Symposium of the XXXV International Conference of the Spanish Society for Natural Language Processing, SEPLN 2019, 2019, pp. 50–55. Impedovo, Dentamaro, Pirlo, Sarcinella (b40) 2019; 9 Tao, Sun, Boukerche (b24) 2019 Zhu, Wang, Tao, Deng, Zhao, Li (b70) 2021; 9 Katrakazas, Michelaraki, Sekadakis, Ziakopoulos, Kontaxi, Yannis (b95) 2021 Vlahogianni, Karlaftis, Golias (b92) 2014; 43 Liu, Liu, Meng, Cheng (b33) 2019; 108 Wu, Tan, Qin, Ran, Jiang (b34) 2018; 90 Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b41) 2016 Lu, Huang, Song, Jiang, Zhou, Qin (b42) 2020; 9 Zhou, Yang, Zhong, Chen, Zhang (b77) 2020 Lv, Hong, Chen, Chen, Zhu, Ji (b68) 2020 Tang, Chen, Hu, Zong, Han, Li (b29) 2019; 534 Zhang, Chen, Cui, Guo, Zhu (b69) 2020 Zhou, Li, Zhang, Trajcevski (b78) 2021; 124 Jia, Wu, Xu (b18) 2017; 2017 Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the Dots: Multivariate time series forecasting with graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763. Duan, Yang, Zhang, Ni, Bajgain (b86) 2018; 6 Joshi, Joshi, Tayade, Shinde, Rokade (b3) 2016 Cui, Henrickson, Ke, Wang (b13) 2019 Fang, Fei, Xu, Tsao (b83) 2017; 17 X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3656–3663. Wu, Tan (b59) 2016 Zantalis, Koulouras, Karabetsos, Kandris (b11) 2019; 11 Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, B.Y. Zhao, Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1665–1674. Ai, Jia, Hong, Zhang (b90) 2020; 8 Eisenmann, Nobis, Kolarova, Lenz, Winkler (b98) 2021; 103 L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting, in: 34th Conference on Neural Information Processing Systems, 2020. Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, in: International Conference on Learning Representations, 2018. Przybylowski, Stelmak, Suchanek (b97) 2021; 13 Estupiñan, Scorcia, Navas, Zegras, Rodríguez, Vergel-Tovar, Gakenheimer, Azán Otero, Vasconcellos (b7) 2018 Fu, Zhang, Li (b82) 2016 Do, Vu, Vo, Liu, Phung (b35) 2019; 108 Yao, Wu, Ke, Tang, Jia, Lu, Gong, Li, Ye, Chuxing (b38) 2018 T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, Y. Zheng, Autost: Efficient neural architecture search for spatio-temporal prediction, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 794–802. Zhou, Yang, Zhang, Trajcevski, Zhong, Khokhar (b76) 2020 Majumdar, Subhani, Roullier, Anjum, Zhu (b12) 2020; 64 Bratsas, Koupidis, Salanova, Giannakopoulos, Kaloudis, Aifadopoulou (b22) 2020; 12 Ata, Khan, Abbas, Khan, Ahmad (b5) 2020 Ma, Dai, He, Ma, Wang, Wang (b84) 2017; 17 Xie, Li, Liu, Du, Yang, Zhang (b16) 2020; 59 TomTom (b8) 2019 Du, Li, Gong, Yang, Horng (b52) 2017 Siddiqui, Khan, Abbas, Khan (b61) 2020 Wang, Zhang, Li, Guo, Huang, Wei, Cao (b51) 2020; 171 Zhang, Yao, Hu, Zhao, Li, Hu (b62) 2019; 19 Sun, Yang, Han, Ma, Zhang (b15) 2020; 2674 T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: Conference on ICLR 2017, 2017. Fu, Zhou, Chen (b75) 2020 Giuffrè, Siniscalchi, Tesoriere (b60) 2012; 53 Q. Chen, X. Song, H. Yamada, R. Shibasaki, Learning deep representation from big and heterogeneous data for traffic accident inference, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, 2016. Lin, Li, Wang, Wang, Ma (b21) 2020; 34 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b67) 2019 Wang, Xu, Wang, Chen, Ren (b45) 2018 Boukerche, Wang (b9) 2020; 181 Swarnamugi, Chinnaiyan (b10) 2018 H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 5668–5675. Kouziokas (b50) 2020 10.1016/j.suscom.2022.100739_b58 Shen (10.1016/j.suscom.2022.100739_b20) 2020; 398 10.1016/j.suscom.2022.100739_b55 10.1016/j.suscom.2022.100739_b54 Katrakazas (10.1016/j.suscom.2022.100739_b95) 2021 Zhou (10.1016/j.suscom.2022.100739_b78) 2021; 124 Duan (10.1016/j.suscom.2022.100739_b86) 2018; 6 Liu (10.1016/j.suscom.2022.100739_b31) 2020; 2020 Cui (10.1016/j.suscom.2022.100739_b13) 2019 Zhao (10.1016/j.suscom.2022.100739_b67) 2019 Zhang (10.1016/j.suscom.2022.100739_b30) 2018; 512 Zantalis (10.1016/j.suscom.2022.100739_b11) 2019; 11 Giuffrè (10.1016/j.suscom.2022.100739_b60) 2012; 53 Hou (10.1016/j.suscom.2022.100739_b17) 2019; 527 Fu (10.1016/j.suscom.2022.100739_b75) 2020 Levin (10.1016/j.suscom.2022.100739_b27) 2017 10.1016/j.suscom.2022.100739_b66 10.1016/j.suscom.2022.100739_b65 Liapis (10.1016/j.suscom.2022.100739_b99) 2021 Tempelmeier (10.1016/j.suscom.2022.100739_b19) 2020; 24 Wang (10.1016/j.suscom.2022.100739_b45) 2018 Estupiñan (10.1016/j.suscom.2022.100739_b7) 2018 Fang (10.1016/j.suscom.2022.100739_b83) 2017; 17 10.1016/j.suscom.2022.100739_b73 10.1016/j.suscom.2022.100739_b74 10.1016/j.suscom.2022.100739_b71 10.1016/j.suscom.2022.100739_b37 10.1016/j.suscom.2022.100739_b36 10.1016/j.suscom.2022.100739_b39 Emami (10.1016/j.suscom.2022.100739_b14) 2020; 102 Bruna (10.1016/j.suscom.2022.100739_b56) 2013 Chen (10.1016/j.suscom.2022.100739_b93) 2021; 13 Wang (10.1016/j.suscom.2022.100739_b47) 2019; 100 Simunek (10.1016/j.suscom.2022.100739_b94) 2021; 2021 Wei (10.1016/j.suscom.2022.100739_b57) 2019; 19 Du (10.1016/j.suscom.2022.100739_b52) 2017 Fouladgar (10.1016/j.suscom.2022.100739_b25) 2017 Wang (10.1016/j.suscom.2022.100739_b49) 2018 Swarnamugi (10.1016/j.suscom.2022.100739_b10) 2018 10.1016/j.suscom.2022.100739_b43 10.1016/j.suscom.2022.100739_b46 Tipping (10.1016/j.suscom.2022.100739_b32) 2001; 1 Zhu (10.1016/j.suscom.2022.100739_b70) 2021; 9 Delissen (10.1016/j.suscom.2022.100739_b23) 2020 Yu (10.1016/j.suscom.2022.100739_b64) 2017; 17 Lu (10.1016/j.suscom.2022.100739_b42) 2020; 9 Zhou (10.1016/j.suscom.2022.100739_b76) 2020 Majumdar (10.1016/j.suscom.2022.100739_b12) 2020; 64 Wu (10.1016/j.suscom.2022.100739_b59) 2016 Siddiqui (10.1016/j.suscom.2022.100739_b61) 2020 Vlahogianni (10.1016/j.suscom.2022.100739_b92) 2014; 43 Sun (10.1016/j.suscom.2022.100739_b15) 2020; 2674 Ma (10.1016/j.suscom.2022.100739_b84) 2017; 17 ONU (10.1016/j.suscom.2022.100739_b1) 2019 Zhou (10.1016/j.suscom.2022.100739_b77) 2020 Liu (10.1016/j.suscom.2022.100739_b33) 2019; 108 Alotaibi (10.1016/j.suscom.2022.100739_b89) 2020; 8 Xu (10.1016/j.suscom.2022.100739_b2) 2020 Tang (10.1016/j.suscom.2022.100739_b29) 2019; 534 Yao (10.1016/j.suscom.2022.100739_b38) 2018 Oord (10.1016/j.suscom.2022.100739_b41) 2016 Vijayalakshmi (10.1016/j.suscom.2022.100739_b53) 2020 Kouziokas (10.1016/j.suscom.2022.100739_b50) 2020 Impedovo (10.1016/j.suscom.2022.100739_b40) 2019; 9 Wu (10.1016/j.suscom.2022.100739_b34) 2018; 90 Przybylowski (10.1016/j.suscom.2022.100739_b97) 2021; 13 Tao (10.1016/j.suscom.2022.100739_b24) 2019 Chong (10.1016/j.suscom.2022.100739_b4) 2016 Ata (10.1016/j.suscom.2022.100739_b5) 2020 Jia (10.1016/j.suscom.2022.100739_b18) 2017; 2017 Bratsas (10.1016/j.suscom.2022.100739_b22) 2020; 12 Lv (10.1016/j.suscom.2022.100739_b100) 2021; 135 Zhang (10.1016/j.suscom.2022.100739_b69) 2020 Cai (10.1016/j.suscom.2022.100739_b81) 2016; 62 10.1016/j.suscom.2022.100739_b79 Joshi (10.1016/j.suscom.2022.100739_b3) 2016 Do (10.1016/j.suscom.2022.100739_b35) 2019; 108 Cheng (10.1016/j.suscom.2022.100739_b26) 2018; 71 Zhang (10.1016/j.suscom.2022.100739_b62) 2019; 19 Ai (10.1016/j.suscom.2022.100739_b90) 2020; 8 Liu (10.1016/j.suscom.2022.100739_b28) 2017; 6 Lv (10.1016/j.suscom.2022.100739_b68) 2020 Fu (10.1016/j.suscom.2022.100739_b82) 2016 Zhang (10.1016/j.suscom.2022.100739_b6) 2018; 12 10.1016/j.suscom.2022.100739_b85 10.1016/j.suscom.2022.100739_b80 Marinello (10.1016/j.suscom.2022.100739_b96) 2021; 13 Wang (10.1016/j.suscom.2022.100739_b51) 2020; 171 10.1016/j.suscom.2022.100739_b88 Boukerche (10.1016/j.suscom.2022.100739_b9) 2020; 181 10.1016/j.suscom.2022.100739_b87 Wang (10.1016/j.suscom.2022.100739_b63) 2018 Jia (10.1016/j.suscom.2022.100739_b48) 2014 Eisenmann (10.1016/j.suscom.2022.100739_b98) 2021; 103 TomTom (10.1016/j.suscom.2022.100739_b8) 2019 Xie (10.1016/j.suscom.2022.100739_b16) 2020; 59 Ye (10.1016/j.suscom.2022.100739_b72) 2020 10.1016/j.suscom.2022.100739_b91 Lin (10.1016/j.suscom.2022.100739_b21) 2020; 34 Wu (10.1016/j.suscom.2022.100739_b44) 2019 |
References_xml | – reference: T. Li, J. Zhang, K. Bao, Y. Liang, Y. Li, Y. Zheng, Autost: Efficient neural architecture search for spatio-temporal prediction, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 794–802. – start-page: 2588 year: 2018 end-page: 2595 ident: b38 article-title: Deep multi-view spatial-temporal network for taxi demand prediction publication-title: 32nd AAAI Conference on Artificial Intelligence – start-page: 1 year: 2016 end-page: 6 ident: b4 article-title: Development of IoT device for traffic management system publication-title: 2016 IEEE Student Conference on Research and Development – reference: B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, in: IJCAI, 2018. – reference: X. Geng, Y. Li, L. Wang, L. Zhang, Q. Yang, J. Ye, Y. Liu, Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 3656–3663. – volume: 103 start-page: 60 year: 2021 end-page: 67 ident: b98 article-title: Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground publication-title: Transp. Policy – reference: Z. Lin, J. Feng, Z. Lu, Y. Li, D. Jin, Deepstn+: Context-aware spatial-temporal neural network for crowd flow prediction in metropolis, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 1020–1027. – reference: Q. Chen, X. Song, H. Yamada, R. Shibasaki, Learning deep representation from big and heterogeneous data for traffic accident inference, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, No. 1, 2016. – start-page: 1 year: 2018 end-page: 8 ident: b63 article-title: Deepstcl: A deep spatio-temporal convlstm for travel demand prediction publication-title: 2018 International Joint Conference on Neural Networks – volume: 12 start-page: 578 year: 2018 end-page: 585 ident: b6 article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach publication-title: IET Intell. Transp. Syst. – start-page: 802 year: 2018 end-page: 806 ident: b10 article-title: IoT hybrid computing model for intelligent transportation system (ITS) publication-title: 2018 Second International Conference on Computing Methodologies and Communication – volume: 2017 year: 2017 ident: b18 article-title: Traffic flow prediction with rainfall impact using a deep learning method publication-title: J. Adv. Transp. – reference: Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, C. Zhang, Connecting the Dots: Multivariate time series forecasting with graph neural networks, in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 753–763. – volume: 34 start-page: 257 year: 2020 end-page: 265 ident: b21 article-title: Traffic flow prediction using SPGAPSO-CKRVM model publication-title: Rev. D’Intell. Artif. – volume: 8 start-page: 69461 year: 2020 end-page: 69470 ident: b90 article-title: Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow publication-title: IEEE Access – volume: 64 year: 2020 ident: b12 article-title: Congestion prediction for smart sustainable cities using IoT and machine learning approaches publication-title: Sustainable Cities Soc. – volume: 43 start-page: 3 year: 2014 end-page: 19 ident: b92 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp. Res. C – volume: 17 start-page: 6111 year: 2017 end-page: 6118 ident: b83 article-title: Learning transportation modes from smartphone sensors based on deep neural network publication-title: IEEE Sens. J. – volume: 108 start-page: 130 year: 2019 end-page: 150 ident: b33 article-title: A tailored machine learning approach for urban transport network flow estimation publication-title: Transp. Res. C – volume: 9 start-page: 1474 year: 2020 ident: b42 article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting publication-title: Electronics – year: 2020 ident: b53 article-title: An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city publication-title: Int. J. Commun. Syst. – year: 2016 ident: b59 article-title: Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework – volume: 59 start-page: 1 year: 2020 end-page: 12 ident: b16 article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey publication-title: Inf. Fusion – start-page: 1 year: 2019 end-page: 6 ident: b24 article-title: A novel travel-delay aware short-term vehicular traffic flow prediction scheme for vanet publication-title: 2019 IEEE Wireless Communications and Networking Conference – start-page: 324 year: 2016 end-page: 328 ident: b82 article-title: Using LSTM and GRU neural network methods for traffic flow prediction publication-title: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation – volume: 17 start-page: 1501 year: 2017 ident: b64 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors – volume: 2021 year: 2021 ident: b94 article-title: The impact of the covid-19 movement restrictions on the road traffic in the czech Republic during the state of emergency publication-title: J. Adv. Transp. – reference: S. Guo, Y. Lin, N. Feng, C. Song, H. Wan, Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 922–929. – year: 2019 ident: b8 article-title: Tomtom traffic index – volume: 17 start-page: 818 year: 2017 ident: b84 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors – year: 2020 ident: b23 article-title: Predicting Customs Value for Fulfilment Shipments in E-Commerce Using Regression Machine Learning Algorithms – year: 2020 ident: b72 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 181 year: 2020 ident: b9 article-title: Machine learning-based traffic prediction models for intelligent transportation systems publication-title: Comput. Netw. – volume: 1 start-page: 211 year: 2001 end-page: 244 ident: b32 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 145552 year: 2020 end-page: 145563 ident: b89 article-title: Transportation mode detection by embedded sensors based on ensemble learning publication-title: IEEE Access – year: 2020 ident: b77 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans. Ind. Inf. – volume: 100 start-page: 372 year: 2019 end-page: 385 ident: b47 article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach publication-title: Transp. Res. C – reference: H. Yao, X. Tang, H. Wei, G. Zheng, Z. Li, Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 5668–5675. – volume: 12 start-page: 142 year: 2020 ident: b22 article-title: A comparison of machine learning methods for the prediction of traffic speed in urban places publication-title: Sustainability – year: 2016 ident: b3 article-title: IoT based smart traffic density alarming indicator publication-title: IJACSA Int. J. Adv. Comput. Sci. Appl. – volume: 13 start-page: 118 year: 2021 ident: b96 article-title: The impact of the COVID-19 emergency on local vehicular traffic and its consequences for the environment: The case of the city of reggio emilia (Italy) publication-title: Sustainability – start-page: 1 year: 2017 end-page: 6 ident: b52 article-title: Traffic flow forecasting based on hybrid deep learning framework publication-title: 2017 12th International Conference on Intelligent Systems and Knowledge Engineering – year: 2013 ident: b56 article-title: Spectral networks and locally connected networks on graphs – volume: 11 start-page: 94 year: 2019 ident: b11 article-title: A review of machine learning and IoT in smart transportation publication-title: Future Internet – volume: 512 start-page: 537 year: 2018 end-page: 551 ident: b30 article-title: Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach publication-title: Physica A – volume: 2020 year: 2020 ident: b31 article-title: Urban traffic flow prediction model with CPSO/SSVM algorithm under the edge computing framework publication-title: Wirel. Commun. Mob. Comput. – start-page: 329 year: 2018 end-page: 338 ident: b45 article-title: A deep prediction architecture for traffic flow with precipitation information publication-title: International Conference on Sensing and Imaging – volume: 71 start-page: 186 year: 2018 end-page: 198 ident: b26 article-title: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity publication-title: Comput. Environ. Urban Syst. – year: 2017 ident: b27 article-title: Markov Chains and Mixing Times, Vol. 107 – volume: 534 year: 2019 ident: b29 article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes publication-title: Physica A – year: 2014 ident: b48 article-title: Impacts of rainfall weather on urban traffic in Beijing: analysis and modeling – volume: 13 start-page: 208 year: 2021 ident: b93 article-title: Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images publication-title: Remote Sens. – year: 2020 ident: b61 article-title: Smart occupancy detection for road traffic parking using deep extreme learning machine publication-title: J. King Saud Univ. Comput. Inf. Sci. – reference: L.S.M. Altin, Identification of Offensive Language in Social Media, in: Proceedings of the Doctoral Symposium of the XXXV International Conference of the Spanish Society for Natural Language Processing, SEPLN 2019, 2019, pp. 50–55. – volume: 9 start-page: 35973 year: 2021 end-page: 35983 ident: b70 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access – reference: L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting, in: 34th Conference on Neural Information Processing Systems, 2020. – year: 2019 ident: b1 article-title: World Population Prospects 2019: Highlights – reference: C. Chen, K. Li, S.G. Teo, X. Zou, K. Wang, J. Wang, Z. Zeng, Gated residual recurrent graph neural networks for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. No. 01, 2019, pp. 485–492. – volume: 6 start-page: 321 year: 2017 ident: b28 article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes publication-title: ISPRS Int. J. Geo-Inf. – year: 2020 ident: b76 article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting publication-title: IEEE Internet Things J. – volume: 53 start-page: 16 year: 2012 end-page: 28 ident: b60 article-title: A novel architecture of parking management for smart cities publication-title: Procedia-Soc. Behav. Sci. – reference: Q. Xie, T. Guo, Y. Chen, Y. Xiao, X. Wang, B.Y. Zhao, Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction, in: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020, pp. 1665–1674. – volume: 90 start-page: 166 year: 2018 end-page: 180 ident: b34 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transp. Res. C – volume: 2674 start-page: 78 year: 2020 end-page: 89 ident: b15 article-title: Bidirectional spatial–temporal network for traffic prediction with multisource data publication-title: Transp. Res. Rec. – reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, in: Conference on ICLR 2017, 2017. – volume: 6 start-page: 31820 year: 2018 end-page: 31827 ident: b86 article-title: Improved deep hybrid networks for urban traffic flow prediction using trajectory data publication-title: IEEE Access – reference: Y. Li, R. Yu, C. Shahabi, Y. Liu, Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting, in: International Conference on Learning Representations, 2018. – year: 2019 ident: b13 article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 2251 year: 2017 end-page: 2258 ident: b25 article-title: Scalable deep traffic flow neural networks for urban traffic congestion prediction publication-title: 2017 International Joint Conference on Neural Networks – year: 2020 ident: b75 article-title: BayesIan spatio-temporal graph convolutional network for traffic forecasting – start-page: 171 year: 2020 end-page: 180 ident: b50 article-title: Deep bidirectional and unidirectional LSTM neural networks in traffic flow forecasting from environmental factors publication-title: Conference on Sustainable Urban Mobility – volume: 102 year: 2020 ident: b14 article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors publication-title: Simul. Model. Pract. Theory – reference: Q. Zhang, J. Chang, G. Meng, S. Xiang, C. Pan, Spatio-temporal graph structure learning for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1177–1185. – reference: C. Song, Y. Lin, S. Guo, H. Wan, Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 01, 2020, pp. 914–921. – year: 2020 ident: b68 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – reference: C. Zheng, X. Fan, C. Wang, J. Qi, Gman: A graph multi-attention network for traffic prediction, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, 2020, pp. 1234–1241. – volume: 19 start-page: 2229 year: 2019 ident: b62 article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks publication-title: Sensors – volume: 398 start-page: 477 year: 2020 end-page: 484 ident: b20 article-title: A novel learning method for multi-intersections aware traffic flow forecasting publication-title: Neurocomputing – year: 2018 ident: b7 article-title: Transporte Y Desarrollo En América Latina – year: 2019 ident: b44 article-title: Graph wavenet for deep spatial-temporal graph modeling – year: 2016 ident: b41 article-title: Wavenet: A generative model for raw audio – volume: 9 start-page: 5504 year: 2019 ident: b40 article-title: TrafficWave: Generative deep learning architecture for vehicular traffic flow prediction publication-title: Appl. Sci. – volume: 19 start-page: 2946 year: 2019 ident: b57 article-title: An autoencoder and LSTM-based traffic flow prediction method publication-title: Sensors – volume: 13 start-page: 364 year: 2021 ident: b97 article-title: Mobility behaviour in view of the impact of the COVID-19 pandemic—public transport users in gdansk case study publication-title: Sustainability – volume: 108 start-page: 12 year: 2019 end-page: 28 ident: b35 article-title: An effective spatial-temporal attention based neural network for traffic flow prediction publication-title: Transp. Res. C – year: 2020 ident: b2 article-title: A hybrid machine learning model for demand prediction of edge-computing based bike sharing system using internet of things publication-title: IEEE Internet Things J. – volume: 527 year: 2019 ident: b17 article-title: An adaptive hybrid model for short-term urban traffic flow prediction publication-title: Physica A – year: 2019 ident: b67 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1134 year: 2018 end-page: 1139 ident: b49 article-title: Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture trafficnet publication-title: 2018 13th IEEE Conference on Industrial Electronics and Applications – year: 2020 ident: b69 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Trans. Intell. Transp. Syst. – reference: J. Zhang, Y. Zheng, D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017. – volume: 62 start-page: 21 year: 2016 end-page: 34 ident: b81 article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting publication-title: Transp. Res. C – year: 2021 ident: b95 article-title: Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting publication-title: J. Saf. Res. – volume: 124 year: 2021 ident: b78 article-title: Urban flow prediction with spatial–temporal neural ODEs publication-title: Transp. Res. C – year: 2020 ident: b5 article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm publication-title: Comput. J. – reference: W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, X. Feng, Multi-range attentive bicomponent graph convolutional network for traffic forecasting, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 04, 2020, pp. 3529–3536. – volume: 135 year: 2021 ident: b100 article-title: Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index publication-title: Data Knowl. Eng. – volume: 171 start-page: 264 year: 2020 end-page: 278 ident: b51 article-title: An interpretable model for short term traffic flow prediction publication-title: Math. Comput. Simulation – start-page: 1 year: 2021 end-page: 19 ident: b99 article-title: A methodology using classification for traffic prediction: Featuring the impact of COVID-19 publication-title: Integr. Comput.-Aided Eng. – volume: 24 start-page: 339 year: 2020 end-page: 370 ident: b19 article-title: Crosstown traffic-supervised prediction of impact of planned special events on urban traffic publication-title: GeoInformatica – volume: 2017 year: 2017 ident: 10.1016/j.suscom.2022.100739_b18 article-title: Traffic flow prediction with rainfall impact using a deep learning method publication-title: J. Adv. Transp. doi: 10.1155/2017/6575947 – volume: 13 start-page: 208 issue: 2 year: 2021 ident: 10.1016/j.suscom.2022.100739_b93 article-title: Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images publication-title: Remote Sens. doi: 10.3390/rs13020208 – volume: 181 year: 2020 ident: 10.1016/j.suscom.2022.100739_b9 article-title: Machine learning-based traffic prediction models for intelligent transportation systems publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107530 – volume: 17 start-page: 6111 issue: 18 year: 2017 ident: 10.1016/j.suscom.2022.100739_b83 article-title: Learning transportation modes from smartphone sensors based on deep neural network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2737825 – volume: 90 start-page: 166 year: 2018 ident: 10.1016/j.suscom.2022.100739_b34 article-title: A hybrid deep learning based traffic flow prediction method and its understanding publication-title: Transp. Res. C doi: 10.1016/j.trc.2018.03.001 – ident: 10.1016/j.suscom.2022.100739_b66 doi: 10.1145/3394486.3403118 – start-page: 1 year: 2019 ident: 10.1016/j.suscom.2022.100739_b24 article-title: A novel travel-delay aware short-term vehicular traffic flow prediction scheme for vanet – ident: 10.1016/j.suscom.2022.100739_b74 doi: 10.1609/aaai.v34i04.5758 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b75 – year: 2019 ident: 10.1016/j.suscom.2022.100739_b8 – volume: 19 start-page: 2946 issue: 13 year: 2019 ident: 10.1016/j.suscom.2022.100739_b57 article-title: An autoencoder and LSTM-based traffic flow prediction method publication-title: Sensors doi: 10.3390/s19132946 – start-page: 1 year: 2018 ident: 10.1016/j.suscom.2022.100739_b63 article-title: Deepstcl: A deep spatio-temporal convlstm for travel demand prediction – year: 2020 ident: 10.1016/j.suscom.2022.100739_b53 article-title: An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city publication-title: Int. J. Commun. Syst. – volume: 135 year: 2021 ident: 10.1016/j.suscom.2022.100739_b100 article-title: Deep learning in the COVID-19 epidemic: A deep model for urban traffic revitalization index publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2021.101912 – volume: 100 start-page: 372 year: 2019 ident: 10.1016/j.suscom.2022.100739_b47 article-title: Traffic speed prediction for urban transportation network: A path based deep learning approach publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.02.002 – ident: 10.1016/j.suscom.2022.100739_b54 doi: 10.1609/aaai.v33i01.33013656 – ident: 10.1016/j.suscom.2022.100739_b88 doi: 10.1609/aaai.v33i01.3301922 – start-page: 1 year: 2017 ident: 10.1016/j.suscom.2022.100739_b52 article-title: Traffic flow forecasting based on hybrid deep learning framework – year: 2016 ident: 10.1016/j.suscom.2022.100739_b3 article-title: IoT based smart traffic density alarming indicator publication-title: IJACSA Int. J. Adv. Comput. Sci. Appl. – year: 2020 ident: 10.1016/j.suscom.2022.100739_b77 article-title: Variational graph neural networks for road traffic prediction in intelligent transportation systems publication-title: IEEE Trans. Ind. Inf. – volume: 13 start-page: 118 issue: 1 year: 2021 ident: 10.1016/j.suscom.2022.100739_b96 article-title: The impact of the COVID-19 emergency on local vehicular traffic and its consequences for the environment: The case of the city of reggio emilia (Italy) publication-title: Sustainability doi: 10.3390/su13010118 – ident: 10.1016/j.suscom.2022.100739_b80 doi: 10.24963/ijcai.2018/505 – ident: 10.1016/j.suscom.2022.100739_b85 – start-page: 1134 year: 2018 ident: 10.1016/j.suscom.2022.100739_b49 article-title: Detection of unwanted traffic congestion based on existing surveillance system using in freeway via a CNN-architecture trafficnet – ident: 10.1016/j.suscom.2022.100739_b87 doi: 10.1609/aaai.v33i01.3301485 – start-page: 329 year: 2018 ident: 10.1016/j.suscom.2022.100739_b45 article-title: A deep prediction architecture for traffic flow with precipitation information – year: 2021 ident: 10.1016/j.suscom.2022.100739_b95 article-title: Identifying the impact of the COVID-19 pandemic on driving behavior using naturalistic driving data and time series forecasting publication-title: J. Saf. Res. doi: 10.1016/j.jsr.2021.04.007 – volume: 13 start-page: 364 issue: 1 year: 2021 ident: 10.1016/j.suscom.2022.100739_b97 article-title: Mobility behaviour in view of the impact of the COVID-19 pandemic—public transport users in gdansk case study publication-title: Sustainability doi: 10.3390/su13010364 – start-page: 2251 year: 2017 ident: 10.1016/j.suscom.2022.100739_b25 article-title: Scalable deep traffic flow neural networks for urban traffic congestion prediction – year: 2014 ident: 10.1016/j.suscom.2022.100739_b48 – year: 2019 ident: 10.1016/j.suscom.2022.100739_b44 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b76 article-title: Reinforced spatio-temporal attentive graph neural networks for traffic forecasting publication-title: IEEE Internet Things J. – year: 2016 ident: 10.1016/j.suscom.2022.100739_b59 – volume: 534 year: 2019 ident: 10.1016/j.suscom.2022.100739_b29 article-title: Traffic flow prediction based on combination of support vector machine and data denoising schemes publication-title: Physica A doi: 10.1016/j.physa.2019.03.007 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b69 article-title: Deep learning architecture for short-term passenger flow forecasting in urban rail transit publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0873 – start-page: 2588 year: 2018 ident: 10.1016/j.suscom.2022.100739_b38 article-title: Deep multi-view spatial-temporal network for taxi demand prediction – volume: 34 start-page: 257 issue: 3 year: 2020 ident: 10.1016/j.suscom.2022.100739_b21 article-title: Traffic flow prediction using SPGAPSO-CKRVM model publication-title: Rev. D’Intell. Artif. – ident: 10.1016/j.suscom.2022.100739_b71 doi: 10.1145/3340531.3411873 – volume: 1 start-page: 211 issue: Jun year: 2001 ident: 10.1016/j.suscom.2022.100739_b32 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J. Mach. Learn. Res. – volume: 108 start-page: 12 year: 2019 ident: 10.1016/j.suscom.2022.100739_b35 article-title: An effective spatial-temporal attention based neural network for traffic flow prediction publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.09.008 – volume: 11 start-page: 94 issue: 4 year: 2019 ident: 10.1016/j.suscom.2022.100739_b11 article-title: A review of machine learning and IoT in smart transportation publication-title: Future Internet doi: 10.3390/fi11040094 – volume: 9 start-page: 1474 issue: 9 year: 2020 ident: 10.1016/j.suscom.2022.100739_b42 article-title: St-trafficnet: A spatial-temporal deep learning network for traffic forecasting publication-title: Electronics doi: 10.3390/electronics9091474 – year: 2019 ident: 10.1016/j.suscom.2022.100739_b67 article-title: T-gcn: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 398 start-page: 477 year: 2020 ident: 10.1016/j.suscom.2022.100739_b20 article-title: A novel learning method for multi-intersections aware traffic flow forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.094 – start-page: 1 year: 2016 ident: 10.1016/j.suscom.2022.100739_b4 article-title: Development of IoT device for traffic management system – volume: 8 start-page: 69461 year: 2020 ident: 10.1016/j.suscom.2022.100739_b90 article-title: Short-term road speed forecasting based on hybrid RBF neural network with the aid of fuzzy system-based techniques in urban traffic flow publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2986278 – volume: 512 start-page: 537 year: 2018 ident: 10.1016/j.suscom.2022.100739_b30 article-title: Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach publication-title: Physica A doi: 10.1016/j.physa.2018.08.034 – ident: 10.1016/j.suscom.2022.100739_b73 – start-page: 802 year: 2018 ident: 10.1016/j.suscom.2022.100739_b10 article-title: IoT hybrid computing model for intelligent transportation system (ITS) – ident: 10.1016/j.suscom.2022.100739_b55 doi: 10.1609/aaai.v33i01.33015668 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b68 article-title: Temporal multi-graph convolutional network for traffic flow prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 102 year: 2020 ident: 10.1016/j.suscom.2022.100739_b14 article-title: Short-term traffic flow prediction based on faded memory Kalman filter fusing data from connected vehicles and bluetooth sensors publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.102025 – volume: 12 start-page: 142 issue: 1 year: 2020 ident: 10.1016/j.suscom.2022.100739_b22 article-title: A comparison of machine learning methods for the prediction of traffic speed in urban places publication-title: Sustainability doi: 10.3390/su12010142 – volume: 171 start-page: 264 year: 2020 ident: 10.1016/j.suscom.2022.100739_b51 article-title: An interpretable model for short term traffic flow prediction publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2019.12.013 – year: 2019 ident: 10.1016/j.suscom.2022.100739_b1 – volume: 62 start-page: 21 year: 2016 ident: 10.1016/j.suscom.2022.100739_b81 article-title: A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting publication-title: Transp. Res. C doi: 10.1016/j.trc.2015.11.002 – ident: 10.1016/j.suscom.2022.100739_b79 doi: 10.1609/aaai.v34i01.5470 – volume: 2674 start-page: 78 issue: 8 year: 2020 ident: 10.1016/j.suscom.2022.100739_b15 article-title: Bidirectional spatial–temporal network for traffic prediction with multisource data publication-title: Transp. Res. Rec. doi: 10.1177/0361198120927393 – ident: 10.1016/j.suscom.2022.100739_b39 doi: 10.1145/3394486.3403122 – ident: 10.1016/j.suscom.2022.100739_b46 – volume: 53 start-page: 16 year: 2012 ident: 10.1016/j.suscom.2022.100739_b60 article-title: A novel architecture of parking management for smart cities publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.09.856 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b61 article-title: Smart occupancy detection for road traffic parking using deep extreme learning machine publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 103 start-page: 60 year: 2021 ident: 10.1016/j.suscom.2022.100739_b98 article-title: Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground publication-title: Transp. Policy doi: 10.1016/j.tranpol.2021.01.012 – volume: 17 start-page: 818 issue: 4 year: 2017 ident: 10.1016/j.suscom.2022.100739_b84 article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction publication-title: Sensors doi: 10.3390/s17040818 – volume: 527 year: 2019 ident: 10.1016/j.suscom.2022.100739_b17 article-title: An adaptive hybrid model for short-term urban traffic flow prediction publication-title: Physica A doi: 10.1016/j.physa.2019.121065 – volume: 24 start-page: 339 issue: 2 year: 2020 ident: 10.1016/j.suscom.2022.100739_b19 article-title: Crosstown traffic-supervised prediction of impact of planned special events on urban traffic publication-title: GeoInformatica doi: 10.1007/s10707-019-00366-x – ident: 10.1016/j.suscom.2022.100739_b58 doi: 10.1609/aaai.v30i1.10011 – start-page: 171 year: 2020 ident: 10.1016/j.suscom.2022.100739_b50 article-title: Deep bidirectional and unidirectional LSTM neural networks in traffic flow forecasting from environmental factors – ident: 10.1016/j.suscom.2022.100739_b91 doi: 10.1609/aaai.v34i01.5438 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b5 article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm publication-title: Comput. J. – volume: 71 start-page: 186 year: 2018 ident: 10.1016/j.suscom.2022.100739_b26 article-title: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.05.009 – volume: 2021 year: 2021 ident: 10.1016/j.suscom.2022.100739_b94 article-title: The impact of the covid-19 movement restrictions on the road traffic in the czech Republic during the state of emergency publication-title: J. Adv. Transp. doi: 10.1155/2021/6622028 – volume: 108 start-page: 130 year: 2019 ident: 10.1016/j.suscom.2022.100739_b33 article-title: A tailored machine learning approach for urban transport network flow estimation publication-title: Transp. Res. C doi: 10.1016/j.trc.2019.09.006 – volume: 43 start-page: 3 year: 2014 ident: 10.1016/j.suscom.2022.100739_b92 article-title: Short-term traffic forecasting: Where we are and where we’re going publication-title: Transp. Res. C doi: 10.1016/j.trc.2014.01.005 – ident: 10.1016/j.suscom.2022.100739_b65 doi: 10.1609/aaai.v34i01.5477 – ident: 10.1016/j.suscom.2022.100739_b43 – volume: 6 start-page: 31820 year: 2018 ident: 10.1016/j.suscom.2022.100739_b86 article-title: Improved deep hybrid networks for urban traffic flow prediction using trajectory data publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2845863 – volume: 9 start-page: 35973 year: 2021 ident: 10.1016/j.suscom.2022.100739_b70 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062114 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b23 – volume: 59 start-page: 1 year: 2020 ident: 10.1016/j.suscom.2022.100739_b16 article-title: Urban flow prediction from spatiotemporal data using machine learning: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.002 – volume: 6 start-page: 321 issue: 11 year: 2017 ident: 10.1016/j.suscom.2022.100739_b28 article-title: Road2vec: Measuring traffic interactions in urban road system from massive travel routes publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi6110321 – volume: 9 start-page: 5504 issue: 24 year: 2019 ident: 10.1016/j.suscom.2022.100739_b40 article-title: TrafficWave: Generative deep learning architecture for vehicular traffic flow prediction publication-title: Appl. Sci. doi: 10.3390/app9245504 – volume: 17 start-page: 1501 issue: 7 year: 2017 ident: 10.1016/j.suscom.2022.100739_b64 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors doi: 10.3390/s17071501 – year: 2016 ident: 10.1016/j.suscom.2022.100739_b41 – volume: 8 start-page: 145552 year: 2020 ident: 10.1016/j.suscom.2022.100739_b89 article-title: Transportation mode detection by embedded sensors based on ensemble learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014901 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b2 article-title: A hybrid machine learning model for demand prediction of edge-computing based bike sharing system using internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2983089 – start-page: 324 year: 2016 ident: 10.1016/j.suscom.2022.100739_b82 article-title: Using LSTM and GRU neural network methods for traffic flow prediction – year: 2018 ident: 10.1016/j.suscom.2022.100739_b7 – ident: 10.1016/j.suscom.2022.100739_b36 doi: 10.1609/aaai.v33i01.33011020 – year: 2017 ident: 10.1016/j.suscom.2022.100739_b27 – volume: 124 year: 2021 ident: 10.1016/j.suscom.2022.100739_b78 article-title: Urban flow prediction with spatial–temporal neural ODEs publication-title: Transp. Res. C doi: 10.1016/j.trc.2020.102912 – volume: 19 start-page: 2229 issue: 10 year: 2019 ident: 10.1016/j.suscom.2022.100739_b62 article-title: Deep autoencoder neural networks for short-term traffic congestion prediction of transportation networks publication-title: Sensors doi: 10.3390/s19102229 – year: 2020 ident: 10.1016/j.suscom.2022.100739_b72 article-title: How to build a graph-based deep learning architecture in traffic domain: A survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 12 start-page: 578 issue: 7 year: 2018 ident: 10.1016/j.suscom.2022.100739_b6 article-title: Combining weather condition data to predict traffic flow: a GRU-based deep learning approach publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2017.0313 – year: 2013 ident: 10.1016/j.suscom.2022.100739_b56 – volume: 64 year: 2020 ident: 10.1016/j.suscom.2022.100739_b12 article-title: Congestion prediction for smart sustainable cities using IoT and machine learning approaches publication-title: Sustainable Cities Soc. – year: 2019 ident: 10.1016/j.suscom.2022.100739_b13 article-title: Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 2020 year: 2020 ident: 10.1016/j.suscom.2022.100739_b31 article-title: Urban traffic flow prediction model with CPSO/SSVM algorithm under the edge computing framework publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2020/8871998 – start-page: 1 issue: Preprint year: 2021 ident: 10.1016/j.suscom.2022.100739_b99 article-title: A methodology using classification for traffic prediction: Featuring the impact of COVID-19 publication-title: Integr. Comput.-Aided Eng. – ident: 10.1016/j.suscom.2022.100739_b37 doi: 10.1609/aaai.v31i1.10735 |
SSID | ssj0000561934 |
Score | 2.599559 |
Snippet | In recent decades, the development of transport infrastructure has had a great development, although traffic problems continue to spread due to increase due to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100739 |
SubjectTerms | Deep learning Forecasting Machine learning Review Urban traffic flow |
Title | Urban traffic flow prediction techniques: A review |
URI | https://dx.doi.org/10.1016/j.suscom.2022.100739 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fp8lB6-xu3lsNt5KsVTFXrTQ25LZTaBStmW7xZu_3WQfRUEUPG7IwOab7Mxk880MQjcmTDPGuSWR1JTwiGkCQWiJcboPmKUSqnZvz5NoPOWPMzHroGGbC-NplY3tr216Za2bkX6DZn81n_dfqDutCCYV9dkmkvpEc1-9zu3p249w-5_FR8iqulz284kXaDPoKprXerP2tBHqfFnFGPBdw3_yUF-8zugA7TXhIh7Ub3SIOiY_QvttKwbcfJnHiE4L0DkuC-1LQmC7WL7jVeEvYTzweFupdX2HB7hOVzlB09H963BMmnYIJHVRUkmABSYDJWJgIQXNLNNWGGFlGmZuncBEmJo4UrGU1blJgLUKmDUBVUEGgp2ibr7MzRnCTgVaQKDDWDJuuIo18BAEFZkSnKZwjlgLQZI2tcJ9y4pF0pLC3pIauMQDl9TAnSOylVrVtTL-mC9bdJNvOk-cOf9V8uLfkpdo1z_VLLEr1C2Ljbl2YUUJvWrf9NDO4OFpPPkEZdzLCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-9-B1abKPbOKtFEtqHxdb6C3sJrtQKWlJW_z7ZvMoCqLgNclA8k0yM5v9Zj6AJ-3GCWXMYE9IgplHJVaOa7DOfe9QQ4Qq5N7GEy-csdc5nzegV_fCWFplFfvLmF5E6-pIp0Kzs14sOm8kX61wKgJiu00E4QfQstOpWBNa3cEwnOx_tdgiOSj2l60JtjZ1E13B9NrsNpY5QvJ0VpAGrHD4T0nqS-Lpn8JxVTGibnlTZ9DQ6Tmc1GoMqPo4L4DMMiVTtM2knQqBzHL1gdaZ3Yex2KP9sNbNM-qismPlEmb9l2kvxJUiAo7zQmmLFXV0ogLuK-oSJamh0nDNjYjdJH9ORbkba98LfCGKpRNXxgSKGu2QwEkUp1fQTFepvgaUe0Fy5UjXF5RpFvhSMVdxwpOAMxKrNtAagiiuxoVb1YplVPPC3qMSuMgCF5XAtQHvrdbluIw_rhc1utE3t0d5RP_V8ubflo9wGE7Ho2g0mAxv4cieKUljd9DcZjt9n1cZW_VQvUWfcMzNuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urban+traffic+flow+prediction+techniques%3A+A+review&rft.jtitle=Sustainable+computing+informatics+and+systems&rft.au=Medina-Salgado%2C+Boris&rft.au=S%C3%A1nchez-DelaCruz%2C+Eddy&rft.au=Pozos-Parra%2C+Pilar&rft.au=Sierra%2C+Javier+E.&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=2210-5379&rft.volume=35&rft_id=info:doi/10.1016%2Fj.suscom.2022.100739&rft.externalDocID=S2210537922000725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-5379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-5379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-5379&client=summon |