Intrinsic quantized anomalous Hall effect in a moiré heterostructure
Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 367; no. 6480; pp. 900 - 903 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
21.02.2020
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi
2
Se
3
doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin
et al.
did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng
et al.
observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi
2
Te
4
.
Science
, this issue p.
900
, p.
895
; see also p.
848
Transport measurements indicate quantized Hall conductance without a magnetic field.
The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number
C
= 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. |
---|---|
AbstractList | The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number
C
= 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi 2 Te 4 . Science , this issue p. 900 , p. 895 ; see also p. 848 Transport measurements indicate quantized Hall conductance without a magnetic field. The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory. |
Author | Zhu, J. Serlin, M. Balents, L. Tschirhart, C. L. Polshyn, H. Young, A. F. Watanabe, K. Taniguchi, T. Zhang, Y. |
Author_xml | – sequence: 1 givenname: M. surname: Serlin fullname: Serlin, M. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 2 givenname: C. L. orcidid: 0000-0002-8906-3950 surname: Tschirhart fullname: Tschirhart, C. L. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 3 givenname: H. orcidid: 0000-0001-8223-8896 surname: Polshyn fullname: Polshyn, H. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 4 givenname: Y. orcidid: 0000-0003-0369-0230 surname: Zhang fullname: Zhang, Y. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 5 givenname: J. surname: Zhu fullname: Zhu, J. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 6 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 7 givenname: T. surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan – sequence: 8 givenname: L. orcidid: 0000-0002-2377-2711 surname: Balents fullname: Balents, L. organization: Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA – sequence: 9 givenname: A. F. orcidid: 0000-0001-5954-8028 surname: Young fullname: Young, A. F. organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31857492$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1600874$$D View this record in Osti.gov |
BookMark | eNp1kTtPwzAUhS0EgvKY2VAEC0uoH7ETjwjxqFSJpbvlOtfCKLHBdgb4R_wO_hiuWhYkJg_3O9f3nHOM9n3wgNA5wTeEUDFPxoE3cKP1B-eM7aEZwZLXkmK2j2YYM1F3uOVH6DilV4zLTLJDdMRIx9tG0hm6X_gcnU_OVO-T9tl9Ql9pH0Y9hClVT3oYKrAWTK6cr3Q1Bhe_v6oXyBBDynEyeYpwig6sHhKc7d4TtHq4X9091cvnx8Xd7bI2jNNca8mg68VaMIPbptECWymtJLbpBRFk3VtmhAbAFBpDG7zuuOgNWAY9bw1nJ-hyu7b87FTxnsG8mOB9OU8RgXHXNgW63kJvMbxPkLIaXTIwDNpDsaQoo7KlHWO4oFd_0NcwRV8cbKhOFkRuqIsdNa1H6NVbdKOOH-o3xALwLWBKJCmCVeUynV0o0Wo3KILVpiy1K0vtyiq6-R_d7-r_FD-z8Zov |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_127_056802 crossref_primary_10_1007_s10409_023_23176_x crossref_primary_10_1038_s41563_024_02088_4 crossref_primary_10_1002_adma_202200117 crossref_primary_10_1103_PhysRevB_109_195105 crossref_primary_10_1038_s41586_021_03541_z crossref_primary_10_1103_PhysRevB_110_085148 crossref_primary_10_1063_5_0199803 crossref_primary_10_1103_PhysRevB_109_195106 crossref_primary_10_1038_s41567_022_01557_4 crossref_primary_10_1063_5_0159598 crossref_primary_10_1088_1361_648X_acecf1 crossref_primary_10_1103_PhysRevLett_129_117602 crossref_primary_10_1038_s41578_024_00671_4 crossref_primary_10_21468_SciPostPhys_14_3_040 crossref_primary_10_1103_PhysRevB_107_085138 crossref_primary_10_1038_s41586_021_03685_y crossref_primary_10_1016_j_physleta_2023_129048 crossref_primary_10_3390_magnetism3030019 crossref_primary_10_1103_PhysRevLett_126_137601 crossref_primary_10_1103_PhysRevResearch_5_023029 crossref_primary_10_1103_PhysRevB_110_245135 crossref_primary_10_7498_aps_71_20220347 crossref_primary_10_1088_1361_648X_acdbf8 crossref_primary_10_1038_s41598_021_87056_7 crossref_primary_10_1103_PhysRevB_108_085428 crossref_primary_10_1016_j_cocom_2024_e00963 crossref_primary_10_7498_aps_70_20210476 crossref_primary_10_1038_s41567_021_01418_6 crossref_primary_10_3390_nano11081998 crossref_primary_10_1103_PhysRevB_107_085127 crossref_primary_10_1021_acs_nanolett_1c03699 crossref_primary_10_1021_acs_nanolett_3c01332 crossref_primary_10_1103_PhysRevB_110_085160 crossref_primary_10_1088_2053_1583_ad690f crossref_primary_10_1038_s41467_022_31105_w crossref_primary_10_1002_adma_202303014 crossref_primary_10_1103_PhysRevB_107_075108 crossref_primary_10_1038_s41598_024_51721_4 crossref_primary_10_1088_1674_4926_44_1_011002 crossref_primary_10_1103_PhysRevB_106_045417 crossref_primary_10_1063_5_0009462 crossref_primary_10_1016_j_jmst_2021_06_066 crossref_primary_10_1038_s41586_023_06536_0 crossref_primary_10_1103_PhysRevB_101_174419 crossref_primary_10_1103_PhysRevB_107_165114 crossref_primary_10_1103_PhysRevB_109_115417 crossref_primary_10_1103_PhysRevResearch_4_013164 crossref_primary_10_3390_sym16111524 crossref_primary_10_1038_s41586_021_04121_x crossref_primary_10_1103_PhysRevB_106_125417 crossref_primary_10_1103_PhysRevB_102_235146 crossref_primary_10_1103_PhysRevLett_128_106401 crossref_primary_10_1016_j_physb_2023_414748 crossref_primary_10_1103_PhysRevResearch_2_033458 crossref_primary_10_1126_sciadv_adq9285 crossref_primary_10_1073_pnas_2410993121 crossref_primary_10_1103_PhysRevLett_128_026403 crossref_primary_10_1103_PhysRevLett_128_026402 crossref_primary_10_1021_acs_nanolett_4c05378 crossref_primary_10_1103_PhysRevB_110_245115 crossref_primary_10_1088_2053_1583_abd006 crossref_primary_10_1038_s41565_021_00849_9 crossref_primary_10_1088_1361_648X_ada479 crossref_primary_10_1103_PhysRevB_108_035140 crossref_primary_10_1103_PhysRevB_111_115136 crossref_primary_10_1088_1361_648X_ad3096 crossref_primary_10_1103_PhysRevB_107_165122 crossref_primary_10_1007_s11433_024_2564_8 crossref_primary_10_1063_5_0206667 crossref_primary_10_1103_PhysRevB_110_075109 crossref_primary_10_1103_PhysRevB_105_104423 crossref_primary_10_1103_PhysRevB_110_144444 crossref_primary_10_1088_1674_1056_abc7b6 crossref_primary_10_1103_PhysRevB_102_201107 crossref_primary_10_1103_PhysRevB_107_075123 crossref_primary_10_1103_PhysRevB_101_205426 crossref_primary_10_1360_SSPMA_2023_0068 crossref_primary_10_1002_adma_202417682 crossref_primary_10_1109_ACCESS_2023_3285604 crossref_primary_10_1039_D4TC03058C crossref_primary_10_1021_acs_nanolett_3c00275 crossref_primary_10_1103_PhysRevB_102_235123 crossref_primary_10_1103_PhysRevB_105_035119 crossref_primary_10_1038_s41565_020_00783_2 crossref_primary_10_1021_acs_nanolett_2c01710 crossref_primary_10_1088_2053_1583_ac9b70 crossref_primary_10_1103_PhysRevB_107_235127 crossref_primary_10_1103_PhysRevB_102_235126 crossref_primary_10_1088_2053_1583_acbdaa crossref_primary_10_1103_PhysRevB_111_045164 crossref_primary_10_1103_PhysRevB_107_214419 crossref_primary_10_1103_PhysRevB_111_075434 crossref_primary_10_1103_PhysRevB_106_L220410 crossref_primary_10_1038_s41467_021_22711_1 crossref_primary_10_1103_PhysRevB_108_035121 crossref_primary_10_1038_s41567_020_1030_6 crossref_primary_10_1103_PhysRevB_108_035129 crossref_primary_10_1103_PhysRevB_108_L241406 crossref_primary_10_1021_acs_nanolett_4c00948 crossref_primary_10_1103_PhysRevB_102_184504 crossref_primary_10_1103_PhysRevB_108_L241405 crossref_primary_10_1126_science_abn8585 crossref_primary_10_1103_PhysRevB_107_235137 crossref_primary_10_1360_nso_20220033 crossref_primary_10_1063_10_0019422 crossref_primary_10_1103_PhysRevB_108_045138 crossref_primary_10_1038_s41586_024_07244_z crossref_primary_10_1038_s41699_023_00432_x crossref_primary_10_1103_PhysRevB_103_075423 crossref_primary_10_1016_j_nuclphysb_2021_115565 crossref_primary_10_1103_PhysRevB_111_075202 crossref_primary_10_1103_PhysRevLett_133_196501 crossref_primary_10_1103_PhysRevB_105_035130 crossref_primary_10_1063_10_0019420 crossref_primary_10_1063_10_0019421 crossref_primary_10_1088_1361_6633_ad67ed crossref_primary_10_1103_PhysRevB_103_245424 crossref_primary_10_1088_1367_2630_ada797 crossref_primary_10_1103_PhysRevB_111_035110 crossref_primary_10_1103_PhysRevB_102_235101 crossref_primary_10_1103_PhysRevB_111_035113 crossref_primary_10_3390_nano11092433 crossref_primary_10_1038_s41467_021_25044_1 crossref_primary_10_3390_nano12213727 crossref_primary_10_1063_5_0164953 crossref_primary_10_1088_1361_648X_acb984 crossref_primary_10_1103_PhysRevB_108_235418 crossref_primary_10_1557_mrs_2020_125 crossref_primary_10_1038_s41467_021_21792_2 crossref_primary_10_1103_PhysRevB_107_075156 crossref_primary_10_1103_PhysRevLett_133_026801 crossref_primary_10_1038_s42254_023_00575_2 crossref_primary_10_1103_PhysRevB_111_064315 crossref_primary_10_1088_1367_2630_ac688c crossref_primary_10_1038_s41565_022_01165_6 crossref_primary_10_1038_s41567_023_02114_3 crossref_primary_10_1093_nsr_nwae334 crossref_primary_10_1038_s41578_024_00682_1 crossref_primary_10_1007_s11433_024_2520_9 crossref_primary_10_1021_acs_nanolett_3c02489 crossref_primary_10_1103_PhysRevB_105_L081405 crossref_primary_10_21468_SciPostPhysCore_3_2_015 crossref_primary_10_1038_s41598_020_72000_y crossref_primary_10_1088_1674_1056_accdc8 crossref_primary_10_1103_PhysRevResearch_4_L012013 crossref_primary_10_1002_ppsc_202300125 crossref_primary_10_1103_PhysRevB_102_245122 crossref_primary_10_1007_s12274_024_6984_8 crossref_primary_10_1038_s41535_022_00504_z crossref_primary_10_1088_1674_1056_ad9ffa crossref_primary_10_1088_1361_648X_ac2117 crossref_primary_10_1038_s41567_022_01515_0 crossref_primary_10_1063_5_0092169 crossref_primary_10_1103_PhysRevB_108_115302 crossref_primary_10_7498_aps_69_20200506 crossref_primary_10_1002_adfm_202206923 crossref_primary_10_1021_acs_inorgchem_1c00811 crossref_primary_10_1073_pnas_2314083121 crossref_primary_10_1021_acs_nanolett_4c03574 crossref_primary_10_1088_1674_1056_acb2c1 crossref_primary_10_1088_1674_1056_acb2c3 crossref_primary_10_1103_PhysRevLett_131_176701 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1103_PhysRevB_110_L161402 crossref_primary_10_1126_sciadv_adi6063 crossref_primary_10_1103_PhysRevB_103_125406 crossref_primary_10_1103_PhysRevB_108_125106 crossref_primary_10_1038_s41567_022_01700_1 crossref_primary_10_1039_D4NR02933J crossref_primary_10_1103_PhysRevLett_129_176402 crossref_primary_10_1063_5_0070163 crossref_primary_10_1103_PhysRevB_110_L161406 crossref_primary_10_1021_acs_nanolett_0c05117 crossref_primary_10_1103_PhysRevB_104_115404 crossref_primary_10_1103_PhysRevResearch_4_L012032 crossref_primary_10_1039_D4NR02824D crossref_primary_10_1103_PhysRevB_109_045419 crossref_primary_10_1038_s41567_022_01635_7 crossref_primary_10_1103_PhysRevLett_133_066601 crossref_primary_10_1039_D1TC01513C crossref_primary_10_1002_adfm_202202584 crossref_primary_10_1038_s41563_022_01428_6 crossref_primary_10_1016_j_elspec_2025_147524 crossref_primary_10_1103_PhysRevB_106_195123 crossref_primary_10_1103_PhysRevX_10_021005 crossref_primary_10_1021_acsnano_3c08344 crossref_primary_10_1103_PhysRevB_106_195120 crossref_primary_10_1021_acs_nanolett_2c04369 crossref_primary_10_1038_s41467_022_31604_w crossref_primary_10_1038_s41467_023_38734_9 crossref_primary_10_1103_PhysRevLett_125_257602 crossref_primary_10_1007_s40843_022_2422_3 crossref_primary_10_1103_PhysRevB_105_155135 crossref_primary_10_1021_acsnano_3c00609 crossref_primary_10_1021_acs_chemrev_3c00618 crossref_primary_10_1002_advs_202103460 crossref_primary_10_1038_s41467_022_33561_w crossref_primary_10_1016_j_physleta_2025_130231 crossref_primary_10_1021_acs_nanolett_1c04363 crossref_primary_10_1088_1674_1056_abcfa3 crossref_primary_10_1103_PhysRevB_102_125120 crossref_primary_10_1103_PhysRevB_103_115110 crossref_primary_10_1038_s41467_020_19043_x crossref_primary_10_1088_1367_2630_acbed2 crossref_primary_10_1038_s41586_020_2339_0 crossref_primary_10_1088_2053_1583_ad9d59 crossref_primary_10_1088_1361_648X_ad5e2b crossref_primary_10_1103_PhysRevB_102_081404 crossref_primary_10_1103_PhysRevB_104_075126 crossref_primary_10_1038_s41586_020_3028_8 crossref_primary_10_1103_PhysRevB_105_235121 crossref_primary_10_1016_j_supcon_2023_100073 crossref_primary_10_1103_PhysRevB_102_081403 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1103_PhysRevLett_132_266602 crossref_primary_10_1038_s41467_022_34192_x crossref_primary_10_1088_1674_1056_ace3a8 crossref_primary_10_1016_j_physleta_2025_130405 crossref_primary_10_1039_D4TC02809K crossref_primary_10_1021_acs_nanolett_4c05310 crossref_primary_10_1103_PhysRevB_108_125141 crossref_primary_10_1021_jacs_0c07051 crossref_primary_10_1063_5_0084996 crossref_primary_10_1038_s41586_020_2868_6 crossref_primary_10_1103_PhysRevB_103_024506 crossref_primary_10_1126_sciadv_adk1874 crossref_primary_10_1103_PhysRevB_104_125427 crossref_primary_10_1103_PhysRevResearch_4_033168 crossref_primary_10_1038_s41567_020_01154_3 crossref_primary_10_1002_advs_202301326 crossref_primary_10_1103_PhysRevB_105_235139 crossref_primary_10_1103_PhysRevB_104_125421 crossref_primary_10_1103_PhysRevB_103_L241110 crossref_primary_10_1039_D3CP04739C crossref_primary_10_1103_PhysRevLett_133_056601 crossref_primary_10_1103_PhysRevB_111_L081111 crossref_primary_10_1007_s11433_021_1862_3 crossref_primary_10_1038_s41567_021_01186_3 crossref_primary_10_1103_PhysRevB_102_115127 crossref_primary_10_1021_acs_nanolett_1c03066 crossref_primary_10_1038_s41586_024_08153_x crossref_primary_10_1021_acsnano_3c09476 crossref_primary_10_1103_PhysRevLett_127_217001 crossref_primary_10_1103_PhysRevB_106_L121111 crossref_primary_10_1134_S1063776121060030 crossref_primary_10_1360_SSPMA_2022_0048 crossref_primary_10_1038_s41563_020_0708_6 crossref_primary_10_1038_s41928_023_00930_2 crossref_primary_10_1038_s41467_024_48511_x crossref_primary_10_1021_acs_nanolett_4c04242 crossref_primary_10_1126_sciadv_adk1415 crossref_primary_10_1103_PhysRevLett_131_026601 crossref_primary_10_1103_PhysRevLett_127_116601 crossref_primary_10_1103_PhysRevB_104_L201408 crossref_primary_10_1063_5_0039979 crossref_primary_10_1063_5_0089194 crossref_primary_10_1103_PhysRevB_107_125112 crossref_primary_10_1103_PhysRevLett_133_226903 crossref_primary_10_1103_PhysRevB_106_245402 crossref_primary_10_1103_PhysRevLett_130_196201 crossref_primary_10_1103_PhysRevResearch_4_L032024 crossref_primary_10_1103_PhysRevB_108_075168 crossref_primary_10_1038_s41467_025_56919_2 crossref_primary_10_1103_PhysRevB_110_205130 crossref_primary_10_1103_PhysRevResearch_7_013109 crossref_primary_10_1038_s42005_023_01502_8 crossref_primary_10_1063_5_0110875 crossref_primary_10_1103_PhysRevB_108_235166 crossref_primary_10_1103_PhysRevLett_129_056804 crossref_primary_10_1103_PhysRevB_109_L041106 crossref_primary_10_1103_PhysRevB_103_115419 crossref_primary_10_1103_PhysRevB_107_094512 crossref_primary_10_1103_PhysRevResearch_4_043151 crossref_primary_10_1088_2515_7639_ac6c4a crossref_primary_10_1103_PhysRevLett_126_076801 crossref_primary_10_1103_PhysRevB_102_035136 crossref_primary_10_1039_D4MH00165F crossref_primary_10_1103_PhysRevX_13_031037 crossref_primary_10_1038_s41524_023_01025_4 crossref_primary_10_1103_PhysRevB_111_045403 crossref_primary_10_1103_PhysRevResearch_5_043214 crossref_primary_10_1021_acsnano_4c01794 crossref_primary_10_1088_1674_1056_adb411 crossref_primary_10_1016_j_cap_2024_08_011 crossref_primary_10_1126_science_abf9396 crossref_primary_10_1103_PhysRevB_103_035427 crossref_primary_10_1103_PhysRevB_107_014501 crossref_primary_10_1002_adma_202105879 crossref_primary_10_1088_1674_1056_ac6866 crossref_primary_10_1103_PhysRevLett_132_056601 crossref_primary_10_1103_PhysRevB_107_L081101 crossref_primary_10_1088_1361_6528_ad1d14 crossref_primary_10_1088_2053_1583_ac5b16 crossref_primary_10_1103_PhysRevB_104_075144 crossref_primary_10_35848_1347_4065_ac934a crossref_primary_10_1088_1361_648X_acd294 crossref_primary_10_1103_PhysRevB_104_075143 crossref_primary_10_1103_PhysRevB_107_174506 crossref_primary_10_1103_PhysRevB_103_125138 crossref_primary_10_1103_PhysRevResearch_3_013242 crossref_primary_10_1038_s41586_024_08227_w crossref_primary_10_1088_1674_1056_ac9de4 crossref_primary_10_1103_PhysRevB_110_205115 crossref_primary_10_1103_PhysRevB_110_L041108 crossref_primary_10_21468_SciPostPhys_12_4_124 crossref_primary_10_21468_SciPostPhys_15_4_148 crossref_primary_10_1103_PhysRevB_101_245154 crossref_primary_10_1103_PhysRevB_107_125142 crossref_primary_10_1038_s41567_022_01606_y crossref_primary_10_1103_PhysRevB_110_024401 crossref_primary_10_1103_PhysRevX_13_031015 crossref_primary_10_2139_ssrn_4061553 crossref_primary_10_1021_acs_nanolett_4c00008 crossref_primary_10_1002_smll_202409979 crossref_primary_10_1038_s42005_024_01641_6 crossref_primary_10_1103_PhysRevB_109_075424 crossref_primary_10_1103_PhysRevB_110_035122 crossref_primary_10_1016_j_matt_2022_11_002 crossref_primary_10_1038_s41524_022_00763_1 crossref_primary_10_1103_PhysRevB_107_195434 crossref_primary_10_1038_s41586_022_05262_3 crossref_primary_10_1126_science_aba5313 crossref_primary_10_1021_acs_nanolett_1c00601 crossref_primary_10_1002_lpor_202401368 crossref_primary_10_1038_s41467_024_46717_7 crossref_primary_10_1038_s41467_024_49531_3 crossref_primary_10_7498_aps_70_20202132 crossref_primary_10_1021_acsnano_4c11141 crossref_primary_10_1038_s41567_022_01702_z crossref_primary_10_1088_1402_4896_ad5423 crossref_primary_10_1103_PhysRevB_108_075126 crossref_primary_10_1038_s41586_020_2458_7 crossref_primary_10_1038_s41567_021_01424_8 crossref_primary_10_1038_s41567_021_01172_9 crossref_primary_10_1103_PhysRevResearch_3_033276 crossref_primary_10_1103_PhysRevLett_131_066301 crossref_primary_10_1007_s11467_023_1302_6 crossref_primary_10_1103_PhysRevB_107_195423 crossref_primary_10_1038_s41586_025_08725_5 crossref_primary_10_1126_sciadv_abd3655 crossref_primary_10_1038_s41586_023_06452_3 crossref_primary_10_1038_s41467_023_36488_y crossref_primary_10_1063_5_0223777 crossref_primary_10_1103_PhysRevApplied_18_054012 crossref_primary_10_1103_PhysRevB_107_045426 crossref_primary_10_1103_PhysRevLett_128_217704 crossref_primary_10_1021_acs_nanolett_2c01390 crossref_primary_10_1103_PhysRevB_109_155114 crossref_primary_10_1007_s00023_024_01478_3 crossref_primary_10_1063_5_0133795 crossref_primary_10_1103_PhysRevB_107_024509 crossref_primary_10_1021_acsnano_0c04631 crossref_primary_10_1002_smll_202411833 crossref_primary_10_1063_5_0211557 crossref_primary_10_1103_PhysRevResearch_3_033260 crossref_primary_10_1021_acs_nanolett_2c04651 crossref_primary_10_1039_D2NR05185K crossref_primary_10_1007_s11433_022_1993_7 crossref_primary_10_1038_s41467_024_46913_5 crossref_primary_10_1038_s41524_022_00789_5 crossref_primary_10_1038_s41586_022_04937_1 crossref_primary_10_1088_1367_2630_ac706d crossref_primary_10_1007_s12274_023_5972_8 crossref_primary_10_1103_PhysRevB_107_045414 crossref_primary_10_1103_PhysRevB_110_115427 crossref_primary_10_1126_science_adj3742 crossref_primary_10_1103_PhysRevB_102_035161 crossref_primary_10_26599_NR_2025_94907123 crossref_primary_10_1103_PhysRevLett_127_196401 crossref_primary_10_1103_PhysRevLett_132_236601 crossref_primary_10_1088_1674_1056_ad4a3a crossref_primary_10_1039_D2NR04800K crossref_primary_10_1103_PhysRevLett_130_066001 crossref_primary_10_1103_PhysRevB_106_L041111 crossref_primary_10_1016_j_apsusc_2022_152520 crossref_primary_10_1103_PhysRevB_109_L121406 crossref_primary_10_1021_acsnano_3c09993 crossref_primary_10_1063_5_0245526 crossref_primary_10_1103_PhysRevLett_125_236102 crossref_primary_10_1021_acs_chemrev_3c00132 crossref_primary_10_1126_science_abd3190 crossref_primary_10_1038_s42254_021_00293_7 crossref_primary_10_1103_PhysRevLett_134_116605 crossref_primary_10_1103_PhysRevB_110_115434 crossref_primary_10_1103_PhysRevLett_132_246401 crossref_primary_10_1103_PhysRevLett_134_116603 crossref_primary_10_1103_PhysRevB_102_035158 crossref_primary_10_1038_s41563_024_01985_y crossref_primary_10_1103_PhysRevB_106_245412 crossref_primary_10_1007_s11467_021_1146_x crossref_primary_10_1016_j_physe_2022_115602 crossref_primary_10_1021_acs_nanolett_2c02010 crossref_primary_10_1021_acs_nanolett_1c01972 crossref_primary_10_1038_s41565_022_01248_4 crossref_primary_10_1039_D0CS01146K crossref_primary_10_1063_5_0174081 crossref_primary_10_1038_s41563_021_00960_1 crossref_primary_10_1088_1361_648X_ac825f crossref_primary_10_1088_2053_1583_ac69bb crossref_primary_10_1021_acs_nanolett_2c03347 crossref_primary_10_1038_s41467_023_42275_6 crossref_primary_10_1103_PhysRevLett_131_070801 crossref_primary_10_1103_PhysRevLett_126_056801 crossref_primary_10_1103_PhysRevLett_126_056803 crossref_primary_10_1103_PhysRevLett_128_216801 crossref_primary_10_1038_s41467_022_30998_x crossref_primary_10_1002_smll_202303295 crossref_primary_10_1073_pnas_2218997120 crossref_primary_10_1103_PhysRevLett_134_046501 crossref_primary_10_1103_PhysRevX_11_011014 crossref_primary_10_1103_PhysRevB_109_035159 crossref_primary_10_1021_acs_nanolett_1c00696 crossref_primary_10_1021_acs_nanolett_4c00619 crossref_primary_10_1103_PhysRevB_109_085412 crossref_primary_10_1103_PhysRevB_111_014514 crossref_primary_10_1103_PhysRevLett_131_016003 crossref_primary_10_1103_PhysRevB_103_165417 crossref_primary_10_7498_aps_71_20220064 crossref_primary_10_1073_pnas_2410714121 crossref_primary_10_1002_smll_202302192 crossref_primary_10_1038_s41567_022_01589_w crossref_primary_10_1088_1361_648X_accd39 crossref_primary_10_1103_PhysRevLett_129_036801 crossref_primary_10_1103_PhysRevResearch_6_023293 crossref_primary_10_1039_D2MH00906D crossref_primary_10_1103_PhysRevB_111_125140 crossref_primary_10_1103_PhysRevB_111_125143 crossref_primary_10_1088_2053_1583_ad3b11 crossref_primary_10_1088_1674_1056_abb65d crossref_primary_10_1038_s41586_021_03409_2 crossref_primary_10_1002_adma_202105266 crossref_primary_10_1016_j_xinn_2021_100085 crossref_primary_10_1103_PhysRevResearch_2_013370 crossref_primary_10_1021_acs_nanolett_3c00417 crossref_primary_10_1103_PhysRevResearch_2_033181 crossref_primary_10_1016_j_newton_2024_100007 crossref_primary_10_1088_2053_1583_ad9dfd crossref_primary_10_1103_PhysRevB_103_235146 crossref_primary_10_1103_PhysRevB_111_125154 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1103_PhysRevB_107_L201119 crossref_primary_10_1088_1361_6463_ad5f98 crossref_primary_10_1063_5_0171849 crossref_primary_10_1038_s41567_020_01062_6 crossref_primary_10_1103_PhysRevB_102_165118 crossref_primary_10_1038_s41586_022_05077_2 crossref_primary_10_1103_PhysRevB_109_035168 crossref_primary_10_1088_1361_648X_abf0c2 crossref_primary_10_1038_s41467_024_48725_z crossref_primary_10_1103_PhysRevB_108_245136 crossref_primary_10_1038_s41586_021_03366_w crossref_primary_10_1021_acs_nanolett_3c01756 crossref_primary_10_1038_s41467_021_24276_5 crossref_primary_10_1063_5_0022948 crossref_primary_10_1103_PhysRevLett_134_026904 crossref_primary_10_1063_5_0207235 crossref_primary_10_1103_PhysRevLett_124_046403 crossref_primary_10_1103_PhysRevB_107_125308 crossref_primary_10_1021_acs_nanolett_2c00432 crossref_primary_10_1063_5_0054116 crossref_primary_10_7498_aps_71_20220054 crossref_primary_10_1103_PhysRevB_108_214427 crossref_primary_10_1103_PhysRevB_108_235128 crossref_primary_10_1088_2053_1583_ad27e8 crossref_primary_10_1103_PhysRevB_107_075408 crossref_primary_10_1103_PhysRevB_107_L201101 crossref_primary_10_1016_j_matt_2021_08_020 crossref_primary_10_1088_1674_1056_abb221 crossref_primary_10_1103_PhysRevB_102_100408 crossref_primary_10_1016_j_pmatsci_2020_100761 crossref_primary_10_1103_PhysRevB_107_075401 crossref_primary_10_1103_PhysRevB_111_024511 crossref_primary_10_1038_s41567_022_01574_3 crossref_primary_10_1103_PhysRevMaterials_6_L041001 crossref_primary_10_1038_s41586_020_2970_9 crossref_primary_10_1103_PhysRevResearch_2_033150 crossref_primary_10_1002_qute_202400444 crossref_primary_10_1038_s41563_023_01713_y crossref_primary_10_3390_molecules28073015 crossref_primary_10_1103_PhysRevB_109_035115 crossref_primary_10_1103_PhysRevB_104_035119 crossref_primary_10_1088_2752_5724_acbd64 crossref_primary_10_1103_PhysRevB_108_235120 crossref_primary_10_1103_PhysRevLett_127_026401 crossref_primary_10_1088_1674_1056_ac67cb crossref_primary_10_1134_S1063776122100065 crossref_primary_10_1103_PhysRevB_107_155114 crossref_primary_10_7498_aps_72_20230120 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1103_PhysRevB_102_155136 crossref_primary_10_1021_acs_nanolett_4c02841 crossref_primary_10_1038_s42005_023_01165_5 crossref_primary_10_1103_PhysRevB_104_L241404 crossref_primary_10_1103_PhysRevMaterials_8_044407 crossref_primary_10_1016_j_mtphys_2020_100238 crossref_primary_10_1016_j_pquantelec_2024_100498 crossref_primary_10_1038_s41524_020_0299_4 crossref_primary_10_1103_PhysRevB_108_245159 crossref_primary_10_1080_23746149_2024_2371972 crossref_primary_10_1088_2053_1583_accbd0 crossref_primary_10_1103_PhysRevB_106_104506 crossref_primary_10_1016_j_apsusc_2022_154796 crossref_primary_10_1088_1674_4926_44_1_010301 crossref_primary_10_1103_PhysRevB_110_235410 crossref_primary_10_1038_s41586_021_03849_w crossref_primary_10_1016_j_jallcom_2024_175254 crossref_primary_10_1021_acs_nanolett_5c00201 crossref_primary_10_1103_PhysRevX_11_021042 crossref_primary_10_1103_PhysRevB_107_075424 crossref_primary_10_1021_acs_nanolett_4c02853 crossref_primary_10_1039_D3CP01010D crossref_primary_10_1103_PhysRevB_105_115126 crossref_primary_10_1021_acs_nanolett_4c00436 crossref_primary_10_1038_s41467_024_48166_8 crossref_primary_10_1103_PhysRevB_106_075142 crossref_primary_10_1103_PhysRevB_107_165158 crossref_primary_10_1103_PhysRevMaterials_6_024003 crossref_primary_10_1088_1674_1056_ad2bf1 crossref_primary_10_1103_PhysRevB_101_125411 crossref_primary_10_1103_PhysRevB_110_045115 crossref_primary_10_1103_PhysRevB_110_045114 crossref_primary_10_1103_PhysRevResearch_4_L032006 crossref_primary_10_1103_PhysRevLett_129_186801 crossref_primary_10_1038_s42254_021_00297_3 crossref_primary_10_1103_PhysRevResearch_2_043190 crossref_primary_10_1103_PhysRevResearch_2_022010 crossref_primary_10_1016_j_mtelec_2023_100070 crossref_primary_10_1088_0256_307X_39_7_077301 crossref_primary_10_1038_s41467_021_24561_3 crossref_primary_10_1103_PhysRevB_104_045146 crossref_primary_10_1103_PhysRevB_106_115418 crossref_primary_10_1103_PhysRevB_106_075136 crossref_primary_10_1038_s41567_020_01129_4 crossref_primary_10_1039_D4MH00620H crossref_primary_10_1038_s41467_023_37239_9 crossref_primary_10_1103_PhysRevB_104_195134 crossref_primary_10_1103_PhysRevX_13_041007 crossref_primary_10_1103_PhysRevLett_130_076204 crossref_primary_10_1021_acs_nanolett_3c01313 crossref_primary_10_1080_23746149_2024_2325611 crossref_primary_10_1038_s41467_021_25438_1 crossref_primary_10_1103_PhysRevB_111_125125 crossref_primary_10_1038_s41586_020_3020_3 crossref_primary_10_1038_s41699_021_00221_4 crossref_primary_10_1103_PhysRevLett_126_056401 crossref_primary_10_1103_PhysRevMaterials_4_121202 crossref_primary_10_1017_S1431927622006882 crossref_primary_10_1007_s11433_024_2410_9 crossref_primary_10_1021_acs_nanolett_4c04137 crossref_primary_10_1063_5_0231749 crossref_primary_10_1038_s41567_024_02731_6 crossref_primary_10_1103_PhysRevResearch_6_L022025 crossref_primary_10_1103_PhysRevLett_132_106602 crossref_primary_10_1002_pssb_202200344 crossref_primary_10_1103_PhysRevResearch_2_033357 crossref_primary_10_1039_D3CP04656G crossref_primary_10_1038_s44306_024_00052_1 crossref_primary_10_1093_nsr_nwad313 crossref_primary_10_1103_PhysRevLett_129_140502 crossref_primary_10_1103_PhysRevB_107_155436 crossref_primary_10_1021_acsanm_4c02980 crossref_primary_10_1038_s41535_021_00410_w crossref_primary_10_1103_PhysRevResearch_3_L032070 crossref_primary_10_7498_aps_71_20220225 crossref_primary_10_1103_PhysRevB_101_205116 crossref_primary_10_1038_s41467_025_56113_4 crossref_primary_10_1038_s41586_022_05446_x crossref_primary_10_1103_PhysRevB_103_165112 crossref_primary_10_1103_PhysRevX_11_041063 crossref_primary_10_1103_PhysRevResearch_6_023203 crossref_primary_10_1103_PhysRevB_109_205102 crossref_primary_10_1016_j_scib_2024_06_009 crossref_primary_10_1021_acsanm_0c03230 crossref_primary_10_7498_aps_70_20210110 crossref_primary_10_1007_s11433_022_2056_1 crossref_primary_10_1103_PhysRevLett_133_206502 crossref_primary_10_1103_PhysRevLett_133_206504 crossref_primary_10_1021_acs_nanolett_3c00121 crossref_primary_10_1103_PhysRevB_106_235157 crossref_primary_10_1134_S0965542524701872 crossref_primary_10_1002_adma_202005698 crossref_primary_10_1016_j_apmt_2024_102101 crossref_primary_10_1088_1367_2630_ad3000 crossref_primary_10_1103_PhysRevLett_128_176404 crossref_primary_10_1088_2053_1583_ac044f crossref_primary_10_1088_1674_1056_acc8c3 crossref_primary_10_1126_sciadv_aba8834 crossref_primary_10_1063_5_0022557 crossref_primary_10_1002_adfm_202411472 crossref_primary_10_1103_PhysRevB_104_035136 crossref_primary_10_1103_PhysRevB_104_035139 crossref_primary_10_1103_PhysRevB_107_235427 crossref_primary_10_1103_PhysRevB_107_235425 crossref_primary_10_1073_pnas_2401644121 crossref_primary_10_1103_PhysRevB_103_235302 crossref_primary_10_1126_science_adg0014 crossref_primary_10_1007_JHEP05_2021_123 crossref_primary_10_1103_PhysRevB_106_155159 crossref_primary_10_1021_acsnano_0c10435 crossref_primary_10_3390_nano13192655 crossref_primary_10_1103_PhysRevResearch_5_023120 crossref_primary_10_1016_j_mtphys_2022_100692 crossref_primary_10_1103_PhysRevB_103_224436 crossref_primary_10_1039_D3NR04864K crossref_primary_10_1038_s41563_021_00959_8 crossref_primary_10_1038_s41586_021_04002_3 crossref_primary_10_1103_PhysRevLett_128_156801 crossref_primary_10_1039_D3TC04120D crossref_primary_10_1103_PhysRevB_110_214517 crossref_primary_10_1038_s41567_021_01419_5 crossref_primary_10_1038_s41586_020_2963_8 crossref_primary_10_1021_acs_nanolett_1c04400 crossref_primary_10_1088_2053_1583_ac8b93 crossref_primary_10_1103_PhysRevB_102_125403 crossref_primary_10_1038_s41467_024_49321_x crossref_primary_10_1038_s41586_023_06633_0 crossref_primary_10_1103_PhysRevB_104_075406 crossref_primary_10_1016_j_rinp_2022_105780 crossref_primary_10_1038_s41467_024_52784_7 crossref_primary_10_1103_PhysRevB_109_115111 crossref_primary_10_1088_1674_1056_ad0147 crossref_primary_10_1103_PhysRevLett_130_066701 crossref_primary_10_1038_s41586_020_2473_8 crossref_primary_10_1038_s41524_020_00419_y crossref_primary_10_1038_s41565_023_01320_7 crossref_primary_10_1103_PhysRevB_110_155423 crossref_primary_10_1002_advs_202103170 crossref_primary_10_1038_s41467_022_35421_z crossref_primary_10_1103_PhysRevB_110_155419 crossref_primary_10_1103_PhysRevLett_126_066401 crossref_primary_10_1103_PhysRevLett_133_196401 crossref_primary_10_1103_PhysRevLett_131_096401 crossref_primary_10_1126_science_adk9749 crossref_primary_10_1016_j_apsusc_2023_157718 crossref_primary_10_1016_j_aop_2022_168763 crossref_primary_10_1038_s41565_022_01314_x crossref_primary_10_1103_PhysRevB_109_045301 crossref_primary_10_1021_acsnano_4c08302 crossref_primary_10_1038_s41586_021_03938_w crossref_primary_10_1103_PhysRevLett_127_187001 crossref_primary_10_1103_PhysRevB_104_L201113 crossref_primary_10_1088_2053_1583_ac4af8 crossref_primary_10_1016_j_aop_2020_168193 crossref_primary_10_1103_PhysRevLett_132_046003 crossref_primary_10_1016_j_carbon_2023_01_052 crossref_primary_10_1103_PhysRevMaterials_5_084008 crossref_primary_10_1016_j_diamond_2024_111853 crossref_primary_10_1038_s41598_024_56380_z crossref_primary_10_1103_PhysRevB_103_155142 crossref_primary_10_1103_PhysRevB_103_224404 crossref_primary_10_1088_2053_1583_ac97f2 crossref_primary_10_1126_science_abg3036 crossref_primary_10_1103_PhysRevLett_125_096403 crossref_primary_10_1103_PhysRevLett_125_266404 crossref_primary_10_1103_PhysRevB_108_085117 crossref_primary_10_1038_s44310_024_00043_4 crossref_primary_10_1038_s41467_023_38005_7 crossref_primary_10_1103_PhysRevB_111_085137 crossref_primary_10_1103_PhysRevLett_125_186803 crossref_primary_10_1016_j_matt_2020_03_010 crossref_primary_10_1016_j_physb_2023_414826 crossref_primary_10_1021_acs_nanolett_3c01262 crossref_primary_10_1103_PhysRevResearch_5_013125 crossref_primary_10_1016_j_cossms_2021_100952 crossref_primary_10_1103_PhysRevX_11_031017 crossref_primary_10_1103_PhysRevB_109_125141 crossref_primary_10_1103_PhysRevLett_124_187601 crossref_primary_10_1103_PhysRevResearch_3_L032012 crossref_primary_10_1103_PhysRevLett_128_065901 crossref_primary_10_1021_acs_nanolett_3c04304 crossref_primary_10_1039_D4TC04243C crossref_primary_10_1038_s41563_025_02180_3 crossref_primary_10_1103_PhysRevB_109_L081406 crossref_primary_10_1103_PhysRevB_106_L041406 crossref_primary_10_1016_j_nantod_2023_101829 crossref_primary_10_1103_PhysRevB_106_245129 crossref_primary_10_1103_PhysRevB_106_L041402 crossref_primary_10_1038_s41586_023_06572_w crossref_primary_10_1038_s41563_025_02173_2 crossref_primary_10_1038_s41586_024_08381_1 crossref_primary_10_1103_PhysRevB_107_115142 crossref_primary_10_1103_PhysRevB_107_115140 crossref_primary_10_1002_adma_202008586 crossref_primary_10_1103_PhysRevB_107_165417 crossref_primary_10_1002_adfm_202416508 crossref_primary_10_1063_5_0142406 crossref_primary_10_1038_s41467_023_41296_5 crossref_primary_10_1038_s41563_023_01751_6 crossref_primary_10_1038_s41467_021_23031_0 crossref_primary_10_1038_s41467_024_48260_x crossref_primary_10_1038_s41563_020_00888_y crossref_primary_10_1103_PhysRevB_103_155157 crossref_primary_10_1103_PhysRevB_102_035411 crossref_primary_10_1038_s41467_024_54200_6 crossref_primary_10_1088_1674_1056_acf9e4 crossref_primary_10_1103_PhysRevLett_131_026501 crossref_primary_10_1021_acs_nanolett_2c03126 crossref_primary_10_1103_PhysRevB_109_075166 crossref_primary_10_1103_PhysRevMaterials_9_L021002 crossref_primary_10_1103_PhysRevB_104_064306 crossref_primary_10_1103_PhysRevX_14_031013 crossref_primary_10_1103_PhysRevMaterials_6_044202 crossref_primary_10_7498_aps_71_20220872 crossref_primary_10_1103_PhysRevB_105_L100503 crossref_primary_10_1103_PhysRevLett_132_056204 crossref_primary_10_1039_D2NR02476D crossref_primary_10_1103_PhysRevB_109_L201402 crossref_primary_10_1103_PhysRevB_109_195406 crossref_primary_10_1103_PhysRevB_109_L201403 crossref_primary_10_1093_mam_ozae044_733 crossref_primary_10_1103_PhysRevLett_127_266801 crossref_primary_10_3390_app10144690 crossref_primary_10_1002_adma_202205996 crossref_primary_10_1103_PhysRevLett_127_167001 crossref_primary_10_1038_s42005_024_01729_z crossref_primary_10_1103_PhysRevResearch_4_013209 crossref_primary_10_1038_s41563_020_00840_0 crossref_primary_10_1038_s41586_023_06289_w crossref_primary_10_1103_PhysRevX_14_031045 crossref_primary_10_1016_j_commatsci_2020_110262 crossref_primary_10_1063_5_0077901 crossref_primary_10_1021_acsami_4c03639 crossref_primary_10_1038_s41567_023_01982_z crossref_primary_10_1103_PhysRevLett_128_156401 crossref_primary_10_1038_s41567_022_01758_x crossref_primary_10_1016_j_physrep_2020_12_007 crossref_primary_10_1103_PhysRevB_109_155139 crossref_primary_10_1038_s41565_021_00955_8 crossref_primary_10_1038_s41586_024_07589_5 crossref_primary_10_1021_acs_nanolett_4c03238 crossref_primary_10_1038_s41467_023_39110_3 crossref_primary_10_1002_adma_202102427 crossref_primary_10_1103_PhysRevLett_127_197701 crossref_primary_10_1103_PhysRevB_106_035107 crossref_primary_10_1103_PhysRevLett_134_126601 crossref_primary_10_1038_s41565_020_0733_2 crossref_primary_10_1103_PhysRevB_107_035126 crossref_primary_10_1103_PhysRevB_109_184502 crossref_primary_10_1016_j_aop_2021_168646 crossref_primary_10_1038_s41586_021_03192_0 crossref_primary_10_1103_RevModPhys_95_011002 crossref_primary_10_1038_s41467_023_39893_5 crossref_primary_10_1021_acs_nanolett_4c05666 crossref_primary_10_1002_apxr_202300048 crossref_primary_10_1103_PhysRevB_103_075122 crossref_primary_10_1063_5_0196220 crossref_primary_10_1103_PhysRevB_106_035115 crossref_primary_10_1103_PhysRevLett_133_066302 crossref_primary_10_1038_s42254_020_0209_1 crossref_primary_10_1088_1674_1056_acddcf crossref_primary_10_1103_PhysRevB_107_035112 crossref_primary_10_1103_PhysRevB_106_035114 crossref_primary_10_1103_PhysRevB_107_L020404 crossref_primary_10_1038_s41567_020_0928_3 crossref_primary_10_1038_s41467_020_19284_w crossref_primary_10_1002_adma_202305175 crossref_primary_10_1016_j_jallcom_2025_179103 crossref_primary_10_1103_PhysRevB_106_235112 crossref_primary_10_1103_PhysRevB_103_L161405 crossref_primary_10_1063_5_0215875 crossref_primary_10_1088_1674_1056_ada885 crossref_primary_10_1002_adma_202210909 crossref_primary_10_1093_nsr_nwad189 crossref_primary_10_1103_PhysRevB_103_195411 crossref_primary_10_1103_PhysRevLett_129_187001 crossref_primary_10_1002_aelm_202300638 crossref_primary_10_1021_acs_jpcc_4c05339 crossref_primary_10_1103_PhysRevB_110_L140201 crossref_primary_10_1103_PhysRevB_107_035109 crossref_primary_10_1038_s41586_020_2373_y crossref_primary_10_1103_PhysRevX_14_021046 crossref_primary_10_1103_PhysRevX_14_021042 crossref_primary_10_1103_PhysRevB_102_201405 crossref_primary_10_1021_acsnano_1c09249 crossref_primary_10_1088_2516_1075_abd957 crossref_primary_10_1063_pt_jvsd_yhyd crossref_primary_10_1103_PhysRevB_102_035441 crossref_primary_10_1103_PhysRevB_103_115201 crossref_primary_10_1103_PhysRevB_104_L161113 crossref_primary_10_1126_science_adq2329 crossref_primary_10_1038_s41567_020_0906_9 crossref_primary_10_1038_s41586_024_08470_1 crossref_primary_10_1103_PhysRevB_109_125302 crossref_primary_10_1126_science_abg0399 crossref_primary_10_1038_s42254_022_00466_y crossref_primary_10_1103_PhysRevB_103_115431 crossref_primary_10_1016_j_mser_2021_100621 crossref_primary_10_1103_PhysRevB_103_115436 crossref_primary_10_1103_PhysRevB_105_085301 crossref_primary_10_1103_PhysRevB_106_035149 crossref_primary_10_1103_PhysRevLett_127_147203 crossref_primary_10_1103_PhysRevX_14_011004 crossref_primary_10_1016_j_physleta_2021_127670 crossref_primary_10_1103_PhysRevB_108_L241107 crossref_primary_10_1103_PhysRevB_109_075109 crossref_primary_10_1002_advs_202300574 crossref_primary_10_1103_PhysRevB_109_085143 crossref_primary_10_7498_aps_72_20222080 crossref_primary_10_1103_PhysRevX_12_021065 crossref_primary_10_1038_s41563_024_01993_y crossref_primary_10_1103_PhysRevResearch_3_023155 crossref_primary_10_1016_j_mtquan_2024_100015 crossref_primary_10_1088_2053_1583_ad4166 crossref_primary_10_1103_PhysRevB_107_045117 crossref_primary_10_1016_j_mtquan_2024_100012 crossref_primary_10_1038_s41467_023_37710_7 crossref_primary_10_1103_PhysRevResearch_4_043045 crossref_primary_10_1103_PhysRevX_12_021067 crossref_primary_10_1038_s41567_021_01347_4 crossref_primary_10_1103_PhysRevB_106_115149 crossref_primary_10_1016_j_scib_2021_04_015 crossref_primary_10_1063_5_0237852 crossref_primary_10_1088_1674_1056_aba605 crossref_primary_10_1103_PhysRevB_109_L121107 crossref_primary_10_1103_PhysRevLett_126_167701 crossref_primary_10_1088_2053_1583_abddcb crossref_primary_10_1103_PhysRevB_111_125410 crossref_primary_10_1088_1361_648X_ac99ca crossref_primary_10_1103_PhysRevLett_133_246401 crossref_primary_10_1126_science_aay5533 crossref_primary_10_1103_PhysRevResearch_4_043034 crossref_primary_10_1103_PhysRevB_104_045403 crossref_primary_10_21468_SciPostPhys_13_3_052 crossref_primary_10_1007_s44214_024_00063_3 crossref_primary_10_1021_acs_nanolett_0c02131 crossref_primary_10_1063_5_0170810 crossref_primary_10_1038_s41567_021_01171_w crossref_primary_10_1063_5_0139179 crossref_primary_10_1088_2515_7639_abf1ab crossref_primary_10_1103_PhysRevB_109_245131 crossref_primary_10_1103_PhysRevB_109_155430 crossref_primary_10_1038_s41586_024_08239_6 crossref_primary_10_1088_1674_1056_abbbea crossref_primary_10_1088_1367_2630_ad9b48 crossref_primary_10_1021_acsnano_4c12770 crossref_primary_10_1103_PhysRevB_109_235105 crossref_primary_10_1103_PhysRevLett_127_266402 crossref_primary_10_1088_0256_307X_38_4_047301 crossref_primary_10_1038_s41563_024_01809_z crossref_primary_10_1103_PhysRevLett_128_157201 crossref_primary_10_1038_s41586_021_03319_3 crossref_primary_10_1021_acsanm_3c02788 crossref_primary_10_1103_PhysRevB_109_155427 crossref_primary_10_1021_acs_nanolett_2c03676 crossref_primary_10_1103_PhysRevLett_126_016404 crossref_primary_10_1088_1361_6528_acef2c crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1103_PhysRevB_109_085118 crossref_primary_10_1103_PhysRevLett_127_096802 crossref_primary_10_1103_PhysRevMaterials_5_L051001 crossref_primary_10_1038_s41467_022_33673_3 crossref_primary_10_1103_PhysRevX_12_021031 crossref_primary_10_1016_j_matdes_2021_110235 crossref_primary_10_1021_acsnano_4c13870 crossref_primary_10_1063_5_0222102 crossref_primary_10_1063_5_0100989 crossref_primary_10_1103_PhysRevB_109_155412 crossref_primary_10_1103_PhysRevLett_125_227702 crossref_primary_10_1088_1674_1056_abbbe2 crossref_primary_10_1080_14686996_2022_2062576 crossref_primary_10_1038_s41467_021_24480_3 crossref_primary_10_1103_PhysRevLett_131_046402 crossref_primary_10_1103_PhysRevB_105_064423 crossref_primary_10_1038_s41699_023_00408_x crossref_primary_10_1088_1674_1056_aceee5 crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1103_PhysRevB_103_L041103 crossref_primary_10_1126_science_adi4728 crossref_primary_10_7498_aps_74_20241031 crossref_primary_10_1002_pssb_202400561 crossref_primary_10_1088_1367_2630_ad8fc6 crossref_primary_10_1103_PhysRevB_105_054420 crossref_primary_10_1038_s41586_020_2085_3 crossref_primary_10_1103_PhysRevLett_125_226401 crossref_primary_10_1103_PhysRevB_103_195146 crossref_primary_10_1103_PhysRevLett_132_236502 crossref_primary_10_1103_PhysRevLett_125_066801 crossref_primary_10_3762_bjnano_14_3 crossref_primary_10_1038_s41567_022_01616_w crossref_primary_10_1039_D4NR00194J crossref_primary_10_1088_1674_4926_44_1_011901 crossref_primary_10_1103_PhysRevB_106_125141 crossref_primary_10_1038_s41586_023_06791_1 crossref_primary_10_1002_qute_202100096 crossref_primary_10_1038_s41467_020_15473_9 crossref_primary_10_1038_s41563_025_02131_y crossref_primary_10_1039_D3CC01311A crossref_primary_10_1038_s41467_025_56141_0 crossref_primary_10_1038_s41467_021_27514_y crossref_primary_10_1038_s41563_024_02003_x crossref_primary_10_1002_lpor_202000596 crossref_primary_10_1103_PhysRevB_105_L201405 crossref_primary_10_1038_s41699_023_00396_y crossref_primary_10_1038_s41524_025_01545_1 crossref_primary_10_1002_advs_202406924 crossref_primary_10_1038_s41567_021_01327_8 crossref_primary_10_1088_2053_1583_ac3a98 crossref_primary_10_1103_PhysRevB_106_075423 crossref_primary_10_1103_PhysRevResearch_2_023051 crossref_primary_10_1038_s41535_021_00360_3 crossref_primary_10_1103_PhysRevB_105_054206 crossref_primary_10_1103_PhysRevB_101_165141 crossref_primary_10_1016_j_cplett_2023_140366 crossref_primary_10_1038_s41586_020_2459_6 crossref_primary_10_1103_PhysRevLett_131_266501 crossref_primary_10_1039_D1MA00263E crossref_primary_10_1002_aelm_202400697 crossref_primary_10_1103_PhysRevB_104_174505 crossref_primary_10_1103_PhysRevB_103_195127 crossref_primary_10_1088_2515_7639_abb74e crossref_primary_10_26599_NR_2025_94907247 crossref_primary_10_1021_acs_nanolett_3c04098 crossref_primary_10_1088_2053_1583_acc671 crossref_primary_10_1038_s41699_024_00449_w crossref_primary_10_1103_PhysRevB_104_235130 crossref_primary_10_1038_s41567_023_02284_0 crossref_primary_10_1103_PhysRevLett_128_227601 crossref_primary_10_1007_s11664_022_09941_9 crossref_primary_10_1103_PhysRevLett_130_126001 crossref_primary_10_1088_1361_648X_ac6eac crossref_primary_10_1038_s41578_021_00304_0 crossref_primary_10_1039_D3TC02222F crossref_primary_10_1038_s41586_020_2568_2 crossref_primary_10_1038_s41563_022_01361_8 crossref_primary_10_1103_PhysRevB_102_121406 crossref_primary_10_1088_1361_6633_ac2356 crossref_primary_10_1002_adma_202402503 crossref_primary_10_1063_5_0075999 crossref_primary_10_1103_PhysRevB_105_245408 crossref_primary_10_1103_PhysRevLett_127_247703 crossref_primary_10_1088_2399_1984_acf0a9 crossref_primary_10_1016_j_apsusc_2022_154014 crossref_primary_10_1063_5_0191362 crossref_primary_10_1073_pnas_2307151120 crossref_primary_10_1103_PhysRevLett_127_247701 crossref_primary_10_1038_s41535_024_00716_5 crossref_primary_10_1103_PhysRevResearch_3_L032003 crossref_primary_10_1126_science_abh2889 crossref_primary_10_1103_PhysRevX_12_031020 crossref_primary_10_1103_PhysRevB_110_045410 crossref_primary_10_1126_sciadv_abn1401 crossref_primary_10_1038_s41567_022_01697_7 crossref_primary_10_1103_PhysRevB_108_235202 crossref_primary_10_1103_PhysRevResearch_3_043173 crossref_primary_10_1103_PhysRevB_111_075111 crossref_primary_10_1088_1674_1056_acbd2c crossref_primary_10_1039_D4CP03325F crossref_primary_10_1007_s11433_020_1690_4 crossref_primary_10_1088_1674_1056_abb305 crossref_primary_10_1007_s42864_022_00140_x crossref_primary_10_1038_s41467_024_53440_w crossref_primary_10_1103_PhysRevB_108_165122 crossref_primary_10_1088_1674_1056_ada7d9 crossref_primary_10_1103_PhysRevResearch_2_033087 crossref_primary_10_1103_PhysRevB_104_035202 crossref_primary_10_1039_D2NR03283J crossref_primary_10_1007_s12274_023_5716_9 crossref_primary_10_1103_PhysRevB_108_235432 crossref_primary_10_1103_PhysRevB_108_155106 crossref_primary_10_1103_PhysRevB_110_165406 crossref_primary_10_1002_adma_202406290 crossref_primary_10_1103_PhysRevB_111_045113 crossref_primary_10_1103_PhysRevLett_128_247402 crossref_primary_10_1007_s11467_021_1143_0 crossref_primary_10_1038_s41586_020_2255_3 crossref_primary_10_1038_s41467_024_54886_8 crossref_primary_10_1038_s41567_020_0825_9 crossref_primary_10_1103_PhysRevB_103_205411 crossref_primary_10_1103_PhysRevB_103_205412 crossref_primary_10_1103_PhysRevB_103_205413 crossref_primary_10_1088_1674_1056_ad7c2a crossref_primary_10_1103_PhysRevB_103_205414 crossref_primary_10_1103_PhysRevB_103_205415 crossref_primary_10_1103_PhysRevB_103_205416 crossref_primary_10_1103_PhysRevB_104_214403 crossref_primary_10_21468_SciPostPhysLectNotes_67 crossref_primary_10_1038_s41535_022_00520_z crossref_primary_10_1039_D4MH01087F crossref_primary_10_1103_PhysRevB_111_115416 crossref_primary_10_1103_PhysRevB_107_235155 crossref_primary_10_1103_PhysRevX_15_011052 crossref_primary_10_1002_adma_202200625 crossref_primary_10_1038_s41598_024_68044_z crossref_primary_10_1103_PhysRevLett_127_246403 crossref_primary_10_1021_acs_jpclett_1c03384 crossref_primary_10_1103_PhysRevB_111_115410 crossref_primary_10_1088_1361_648X_abd526 crossref_primary_10_1103_PhysRevB_102_205111 crossref_primary_10_1007_s12648_024_03169_5 crossref_primary_10_1002_adma_202312125 crossref_primary_10_1103_PhysRevB_103_205403 crossref_primary_10_1038_s42005_022_01034_7 crossref_primary_10_1103_PhysRevB_108_155111 crossref_primary_10_1002_adma_202300391 crossref_primary_10_1103_PhysRevLett_125_086401 crossref_primary_10_1103_PhysRevB_107_125423 crossref_primary_10_1103_PhysRevB_110_165401 crossref_primary_10_1103_PhysRevB_108_L121409 crossref_primary_10_1103_PhysRevB_109_155408 crossref_primary_10_1103_PhysRevLett_127_027601 crossref_primary_10_1126_science_abm0091 crossref_primary_10_1103_PhysRevB_102_241403 crossref_primary_10_1103_PhysRevLett_131_136502 crossref_primary_10_1021_acs_jpclett_4c03542 crossref_primary_10_1103_PhysRevB_107_L081403 crossref_primary_10_1103_PhysRevB_110_115125 crossref_primary_10_1103_PhysRevResearch_2_023237 crossref_primary_10_1103_PhysRevResearch_2_023238 crossref_primary_10_1002_adma_202313004 crossref_primary_10_1103_PhysRevB_110_024109 crossref_primary_10_1103_PhysRevLett_126_146402 crossref_primary_10_1038_s41467_022_35316_z crossref_primary_10_1038_s41565_024_01698_y crossref_primary_10_1038_s41563_020_0733_5 crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1103_PhysRevLett_127_037402 crossref_primary_10_1038_s41563_020_00911_2 crossref_primary_10_1007_s44214_022_00010_0 crossref_primary_10_1038_s41467_023_43796_w crossref_primary_10_1103_PhysRevB_106_184517 crossref_primary_10_1103_PhysRevB_110_035418 crossref_primary_10_1007_s12274_022_5025_8 crossref_primary_10_1038_s41567_023_02327_6 crossref_primary_10_1103_PhysRevResearch_5_L012005 crossref_primary_10_1038_s41586_021_03979_1 crossref_primary_10_1103_PhysRevLett_129_047601 crossref_primary_10_1007_s12274_024_6936_3 crossref_primary_10_1088_1674_1056_ad9e96 crossref_primary_10_1038_s41586_020_03159_7 crossref_primary_10_1021_acs_nanolett_2c01421 crossref_primary_10_1038_s41467_021_27042_9 crossref_primary_10_1103_PhysRevLett_124_126402 crossref_primary_10_1038_s41567_024_02444_w crossref_primary_10_1038_s41586_021_04173_z crossref_primary_10_1038_s41567_023_02060_0 crossref_primary_10_1021_acs_nanolett_3c01651 crossref_primary_10_1038_s41586_021_03252_5 crossref_primary_10_1103_PhysRevB_102_085103 crossref_primary_10_1126_sciadv_adu6686 crossref_primary_10_7498_aps_72_20231324 crossref_primary_10_1038_s41467_024_55432_2 crossref_primary_10_1103_PhysRevB_110_035427 crossref_primary_10_1103_PhysRevLett_133_186301 crossref_primary_10_7498_aps_72_20230497 crossref_primary_10_1038_s41586_023_07010_7 crossref_primary_10_1063_5_0218675 crossref_primary_10_1021_acs_nanolett_4c01880 crossref_primary_10_1038_s42005_024_01722_6 crossref_primary_10_1002_adfm_202419321 crossref_primary_10_1103_PhysRevB_104_115167 crossref_primary_10_1103_PhysRevB_110_L121117 crossref_primary_10_1103_PhysRevB_110_115147 crossref_primary_10_1038_s41567_022_01584_1 crossref_primary_10_1039_D4TC04282D crossref_primary_10_1126_science_adf2040 crossref_primary_10_1016_j_carbon_2025_120131 crossref_primary_10_1038_s41565_023_01520_1 crossref_primary_10_1016_j_cpc_2022_108632 crossref_primary_10_1038_s41567_023_01979_8 crossref_primary_10_1038_s41586_021_03702_0 crossref_primary_10_1021_acs_nanolett_1c01207 crossref_primary_10_1073_pnas_2118482119 crossref_primary_10_1103_PhysRevB_109_L041403 crossref_primary_10_7498_aps_70_20210929 crossref_primary_10_1038_s41586_022_04520_8 crossref_primary_10_1103_PhysRevB_108_094115 crossref_primary_10_1038_s41586_023_06226_x crossref_primary_10_1126_science_abd3230 crossref_primary_10_1063_1_5145172 crossref_primary_10_1103_PhysRevB_110_L121123 crossref_primary_10_1021_acs_nanolett_4c01411 crossref_primary_10_1038_s41467_022_32493_9 crossref_primary_10_1103_PhysRevB_110_115154 crossref_primary_10_21468_SciPostPhys_13_2_033 crossref_primary_10_1038_s43246_024_00615_z crossref_primary_10_1021_acs_nanolett_1c00360 crossref_primary_10_1021_acs_nanolett_2c04957 crossref_primary_10_1103_PhysRevLett_128_036402 crossref_primary_10_1103_PhysRevB_102_041301 crossref_primary_10_1038_s41467_020_20802_z crossref_primary_10_1038_s41586_021_04171_1 crossref_primary_10_1021_acs_nanolett_3c01672 crossref_primary_10_1364_OPTICA_498089 crossref_primary_10_1126_science_adg4268 crossref_primary_10_1103_PhysRevB_108_L201120 crossref_primary_10_1038_s41467_023_39855_x crossref_primary_10_1088_2053_1583_ac3259 |
Cites_doi | 10.1126/sciadv.1500740 10.1103/PhysRevLett.124.166601 10.1126/science.1244358 10.1126/science.1195709 10.1103/PhysRevLett.61.2015 10.1103/PhysRevResearch.1.033126 10.1103/PhysRevLett.110.216601 10.1038/ncomms9474 10.1126/science.1237240 10.1038/nmat3130 10.1063/1.4921093 10.1038/s41567-019-0596-3 10.1021/acs.nanolett.5b05263 10.1073/pnas.1810003115 10.1126/science.1234414 10.1103/PhysRevB.82.121407 10.1103/PhysRevLett.113.137201 10.1063/1.4935075 10.1126/science.aav1910 10.1126/science.1187485 10.1073/pnas.1424322112 10.1103/PhysRev.108.1394 10.1126/science.aaw3780 10.1038/nmat4204 10.1103/PhysRevLett.111.136801 10.1038/nature26154 10.1126/science.aan5991 10.1073/pnas.1108174108 10.1038/s41586-020-2255-3 10.1063/1.5009718 10.1063/1.338202 10.1038/nmat3973 10.1126/sciadv.1600167 10.1126/science.aan8458 10.1103/PhysRevB.99.075127 10.1038/s41586-019-1695-0 10.1073/pnas.1424760112 10.1038/s41467-019-10553-x 10.1038/s41586-020-2049-7 10.1126/science.aay5533 10.1038/nature23893 10.1038/s41567-018-0387-2 10.1038/nature26160 10.1038/nphys3053 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.aay5533 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 903 |
ExternalDocumentID | 1600874 31857492 10_1126_science_aay5533 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 63O 6XO ABPTK ABQIS AEXZC AFUVZ AGCDD ANJGP B-7 OTOTI PK8 PQEST UMP XFK ZA5 |
ID | FETCH-LOGICAL-c352t-a93e8d6b63c0744a60f99f91f4d6161bdf3c6aee02e4c240b856dcef3ed57c53 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri May 19 01:13:16 EDT 2023 Thu Jul 10 18:21:57 EDT 2025 Fri Jul 25 10:42:29 EDT 2025 Wed Feb 19 02:30:21 EST 2025 Tue Jul 01 01:51:36 EDT 2025 Thu Apr 24 22:59:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6480 |
Language | English |
License | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c352t-a93e8d6b63c0744a60f99f91f4d6161bdf3c6aee02e4c240b856dcef3ed57c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 FG02-08ER46524 USDOE |
ORCID | 0000-0002-8906-3950 0000-0001-8223-8896 0000-0003-0369-0230 0000-0003-3701-8119 0000-0002-2377-2711 0000-0001-5954-8028 0000000159548028 0000000289063950 0000000182238896 0000000303690230 0000000223772711 0000000337018119 |
PMID | 31857492 |
PQID | 2328930390 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | osti_scitechconnect_1600874 proquest_miscellaneous_2329728330 proquest_journals_2328930390 pubmed_primary_31857492 crossref_citationtrail_10_1126_science_aay5533 crossref_primary_10_1126_science_aay5533 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-21 |
PublicationDateYYYYMMDD | 2020-02-21 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 32079757 - Science. 2020 Feb 21;367(6480):848-849 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1126/sciadv.1500740 – ident: e_1_3_3_19_2 doi: 10.1103/PhysRevLett.124.166601 – ident: e_1_3_3_41_2 doi: 10.1126/science.1244358 – ident: e_1_3_3_35_2 doi: 10.1126/science.1195709 – ident: e_1_3_3_2_2 doi: 10.1103/PhysRevLett.61.2015 – ident: e_1_3_3_20_2 doi: 10.1103/PhysRevResearch.1.033126 – ident: e_1_3_3_45_2 doi: 10.1103/PhysRevLett.110.216601 – ident: e_1_3_3_8_2 doi: 10.1038/ncomms9474 – ident: e_1_3_3_34_2 doi: 10.1126/science.1237240 – ident: e_1_3_3_48_2 doi: 10.1038/nmat3130 – ident: e_1_3_3_15_2 doi: 10.1063/1.4921093 – ident: e_1_3_3_46_2 doi: 10.1038/s41567-019-0596-3 – ident: e_1_3_3_39_2 doi: 10.1021/acs.nanolett.5b05263 – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1810003115 – ident: e_1_3_3_5_2 doi: 10.1126/science.1234414 – ident: e_1_3_3_22_2 doi: 10.1103/PhysRevB.82.121407 – ident: e_1_3_3_9_2 doi: 10.1103/PhysRevLett.113.137201 – ident: e_1_3_3_7_2 doi: 10.1063/1.4935075 – ident: e_1_3_3_26_2 doi: 10.1126/science.aav1910 – ident: e_1_3_3_12_2 doi: 10.1126/science.1187485 – ident: e_1_3_3_14_2 doi: 10.1073/pnas.1424322112 – ident: e_1_3_3_47_2 doi: 10.1103/PhysRev.108.1394 – ident: e_1_3_3_28_2 doi: 10.1126/science.aaw3780 – ident: e_1_3_3_6_2 doi: 10.1038/nmat4204 – ident: e_1_3_3_10_2 doi: 10.1103/PhysRevLett.111.136801 – ident: e_1_3_3_24_2 doi: 10.1038/nature26154 – ident: e_1_3_3_16_2 doi: 10.1126/science.aan5991 – ident: e_1_3_3_33_2 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1108174108 – ident: e_1_3_3_43_2 doi: 10.1038/s41586-020-2255-3 – ident: e_1_3_3_3_2 doi: 10.1063/1.5009718 – ident: e_1_3_3_42_2 doi: 10.1063/1.338202 – ident: e_1_3_3_37_2 doi: 10.1038/nmat3973 – ident: e_1_3_3_31_2 doi: 10.1126/sciadv.1600167 – ident: e_1_3_3_44_2 doi: 10.1126/science.aan8458 – ident: e_1_3_3_18_2 doi: 10.1103/PhysRevB.99.075127 – ident: e_1_3_3_27_2 doi: 10.1038/s41586-019-1695-0 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.1424760112 – ident: e_1_3_3_36_2 doi: 10.1038/s41467-019-10553-x – ident: e_1_3_3_29_2 doi: 10.1038/s41586-020-2049-7 – ident: e_1_3_3_38_2 doi: 10.1126/science.aay5533 – ident: e_1_3_3_40_2 doi: 10.1038/nature23893 – ident: e_1_3_3_23_2 doi: 10.1038/s41567-018-0387-2 – ident: e_1_3_3_32_2 – ident: e_1_3_3_25_2 doi: 10.1038/nature26160 – ident: e_1_3_3_11_2 doi: 10.1038/nphys3053 – reference: 32079757 - Science. 2020 Feb 21;367(6480):848-849 |
SSID | ssj0009593 |
Score | 2.7313063 |
Snippet | Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator... The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the... Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 900 |
SubjectTerms | Boron Conductance Electromagnetism Graphene Hall effect Heterostructures Magnetic fields Magnetism Thin films Topology |
Title | Intrinsic quantized anomalous Hall effect in a moiré heterostructure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31857492 https://www.proquest.com/docview/2328930390 https://www.proquest.com/docview/2329728330 https://www.osti.gov/biblio/1600874 |
Volume | 367 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJyReEBv_ug1kJB6GpkRp7LjNYzY2FQQIaUUaT5HjOFqkLpnW8NB9Gl75HPtiu4sdEwZFjJeocpzWvd_Fvjuff0fI63EuI1g2c4_JgnsczDdvypnwmBCxzDDXRmG84-MnMfvC359Gp4PB917W0rcm89XVH8-V_A-q0Aa44inZOyDrvhQa4DPgC1dAGK7_hPG7qrksK5Azno2smvJKI_FqfS4XmNg6w11nk6-BUQ25f16XdmMc7EOQZ23IYy2nSGeidm87mJ5uO6cHostLTEz2QJdMYB_rRRZOWiatNuLquwABONPl5Zk0B4UO_f0P7tbnerE8W7X9Z67RxbO_-v34BDijeN67l-tx95G2fzBJTroR26nbMiebhcvM1gEWmgwD1p_OmSnvYfVWcFMo6veVolfbUvtSrqLIMHLcot8eC2Tt4_fIRgiOCMykG8nB24PjtcTOlj6qdzCr-_JfLJ8hQFyu92pa62b-iDy0bglNjI5tkoGutsh9U6h0tUU2rcyWdM_ylL95TI6c-lGnftSpH0X1o0b9aFlRSVH9rn_QW6r3hMyPj-aHM89W5fAUGOuNJ2Omp7nIBFNgfnIpgiKOi3hc8FyA-5DlBVNCah2EmiuwF7NpJHKlC6bzaKIi9pQMq7rSzwmd5jGy2bE8DOBhNpaRDrFAnYaFJ9QqGBG_E1iqLGM9Fk5ZpK3nGorUSji1Eh6RPffAhSFrWd91BxHAZiRLVphVpprUoj0iux0wqX3flyn4HmDcByyGgb1yt2E2xi02WWkQLfaJJ2CxM-jzzADqRoI8BRMeh9t__ekd8uDnW7RLhoCGfgF2b5O9tKp3A3gesH0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+quantized+anomalous+Hall+effect+in+a+moir%C3%A9+heterostructure&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Serlin%2C+M.&rft.au=Tschirhart%2C+C.+L.&rft.au=Polshyn%2C+H.&rft.au=Zhang%2C+Y.&rft.date=2020-02-21&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=367&rft.issue=6480&rft_id=info:doi/10.1126%2Fscience.aay5533&rft.externalDocID=1600874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |