Intrinsic quantized anomalous Hall effect in a moiré heterostructure

Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 367; no. 6480; pp. 900 - 903
Main Authors Serlin, M., Tschirhart, C. L., Polshyn, H., Zhang, Y., Zhu, J., Watanabe, K., Taniguchi, T., Balents, L., Young, A. F.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 21.02.2020
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi 2 Te 4 . Science , this issue p. 900 , p. 895 ; see also p. 848 Transport measurements indicate quantized Hall conductance without a magnetic field. The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
AbstractList The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi2Se3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi2Te4.Science, this issue p. 900, p. 895; see also p. 848The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator Bi 2 Se 3 doped with magnetic atoms. The doping, however, introduces inhomogeneity, reducing the temperature at which the effect occurs. Two groups have now observed quantum anomalous Hall effect in intrinsically magnetic materials (see the Perspective by Wakefield and Checkelsky). Serlin et al. did so in twisted bilayer graphene aligned to hexagonal boron nitride, where the effect enabled the switching of magnetization with tiny currents. In a complementary work, Deng et al. observed quantum anomalous Hall effect in the antiferromagnetic layered topological insulator MnBi 2 Te 4 . Science , this issue p. 900 , p. 895 ; see also p. 848 Transport measurements indicate quantized Hall conductance without a magnetic field. The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number C = 1. In contrast to magnetically doped systems, the measured transport energy gap is larger than the Curie temperature for magnetic ordering, and quantization to within 0.1% of the von Klitzing constant persists to temperatures of several kelvin at zero magnetic field. Electrical currents as small as 1 nanoampere controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
Author Zhu, J.
Serlin, M.
Balents, L.
Tschirhart, C. L.
Polshyn, H.
Young, A. F.
Watanabe, K.
Taniguchi, T.
Zhang, Y.
Author_xml – sequence: 1
  givenname: M.
  surname: Serlin
  fullname: Serlin, M.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 2
  givenname: C. L.
  orcidid: 0000-0002-8906-3950
  surname: Tschirhart
  fullname: Tschirhart, C. L.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 3
  givenname: H.
  orcidid: 0000-0001-8223-8896
  surname: Polshyn
  fullname: Polshyn, H.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 4
  givenname: Y.
  orcidid: 0000-0003-0369-0230
  surname: Zhang
  fullname: Zhang, Y.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 5
  givenname: J.
  surname: Zhu
  fullname: Zhu, J.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 6
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 7
  givenname: T.
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
– sequence: 8
  givenname: L.
  orcidid: 0000-0002-2377-2711
  surname: Balents
  fullname: Balents, L.
  organization: Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
– sequence: 9
  givenname: A. F.
  orcidid: 0000-0001-5954-8028
  surname: Young
  fullname: Young, A. F.
  organization: Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31857492$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1600874$$D View this record in Osti.gov
BookMark eNp1kTtPwzAUhS0EgvKY2VAEC0uoH7ETjwjxqFSJpbvlOtfCKLHBdgb4R_wO_hiuWhYkJg_3O9f3nHOM9n3wgNA5wTeEUDFPxoE3cKP1B-eM7aEZwZLXkmK2j2YYM1F3uOVH6DilV4zLTLJDdMRIx9tG0hm6X_gcnU_OVO-T9tl9Ql9pH0Y9hClVT3oYKrAWTK6cr3Q1Bhe_v6oXyBBDynEyeYpwig6sHhKc7d4TtHq4X9091cvnx8Xd7bI2jNNca8mg68VaMIPbptECWymtJLbpBRFk3VtmhAbAFBpDG7zuuOgNWAY9bw1nJ-hyu7b87FTxnsG8mOB9OU8RgXHXNgW63kJvMbxPkLIaXTIwDNpDsaQoo7KlHWO4oFd_0NcwRV8cbKhOFkRuqIsdNa1H6NVbdKOOH-o3xALwLWBKJCmCVeUynV0o0Wo3KILVpiy1K0vtyiq6-R_d7-r_FD-z8Zov
CitedBy_id crossref_primary_10_1103_PhysRevLett_127_056802
crossref_primary_10_1007_s10409_023_23176_x
crossref_primary_10_1038_s41563_024_02088_4
crossref_primary_10_1002_adma_202200117
crossref_primary_10_1103_PhysRevB_109_195105
crossref_primary_10_1038_s41586_021_03541_z
crossref_primary_10_1103_PhysRevB_110_085148
crossref_primary_10_1063_5_0199803
crossref_primary_10_1103_PhysRevB_109_195106
crossref_primary_10_1038_s41567_022_01557_4
crossref_primary_10_1063_5_0159598
crossref_primary_10_1088_1361_648X_acecf1
crossref_primary_10_1103_PhysRevLett_129_117602
crossref_primary_10_1038_s41578_024_00671_4
crossref_primary_10_21468_SciPostPhys_14_3_040
crossref_primary_10_1103_PhysRevB_107_085138
crossref_primary_10_1038_s41586_021_03685_y
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_3390_magnetism3030019
crossref_primary_10_1103_PhysRevLett_126_137601
crossref_primary_10_1103_PhysRevResearch_5_023029
crossref_primary_10_1103_PhysRevB_110_245135
crossref_primary_10_7498_aps_71_20220347
crossref_primary_10_1088_1361_648X_acdbf8
crossref_primary_10_1038_s41598_021_87056_7
crossref_primary_10_1103_PhysRevB_108_085428
crossref_primary_10_1016_j_cocom_2024_e00963
crossref_primary_10_7498_aps_70_20210476
crossref_primary_10_1038_s41567_021_01418_6
crossref_primary_10_3390_nano11081998
crossref_primary_10_1103_PhysRevB_107_085127
crossref_primary_10_1021_acs_nanolett_1c03699
crossref_primary_10_1021_acs_nanolett_3c01332
crossref_primary_10_1103_PhysRevB_110_085160
crossref_primary_10_1088_2053_1583_ad690f
crossref_primary_10_1038_s41467_022_31105_w
crossref_primary_10_1002_adma_202303014
crossref_primary_10_1103_PhysRevB_107_075108
crossref_primary_10_1038_s41598_024_51721_4
crossref_primary_10_1088_1674_4926_44_1_011002
crossref_primary_10_1103_PhysRevB_106_045417
crossref_primary_10_1063_5_0009462
crossref_primary_10_1016_j_jmst_2021_06_066
crossref_primary_10_1038_s41586_023_06536_0
crossref_primary_10_1103_PhysRevB_101_174419
crossref_primary_10_1103_PhysRevB_107_165114
crossref_primary_10_1103_PhysRevB_109_115417
crossref_primary_10_1103_PhysRevResearch_4_013164
crossref_primary_10_3390_sym16111524
crossref_primary_10_1038_s41586_021_04121_x
crossref_primary_10_1103_PhysRevB_106_125417
crossref_primary_10_1103_PhysRevB_102_235146
crossref_primary_10_1103_PhysRevLett_128_106401
crossref_primary_10_1016_j_physb_2023_414748
crossref_primary_10_1103_PhysRevResearch_2_033458
crossref_primary_10_1126_sciadv_adq9285
crossref_primary_10_1073_pnas_2410993121
crossref_primary_10_1103_PhysRevLett_128_026403
crossref_primary_10_1103_PhysRevLett_128_026402
crossref_primary_10_1021_acs_nanolett_4c05378
crossref_primary_10_1103_PhysRevB_110_245115
crossref_primary_10_1088_2053_1583_abd006
crossref_primary_10_1038_s41565_021_00849_9
crossref_primary_10_1088_1361_648X_ada479
crossref_primary_10_1103_PhysRevB_108_035140
crossref_primary_10_1103_PhysRevB_111_115136
crossref_primary_10_1088_1361_648X_ad3096
crossref_primary_10_1103_PhysRevB_107_165122
crossref_primary_10_1007_s11433_024_2564_8
crossref_primary_10_1063_5_0206667
crossref_primary_10_1103_PhysRevB_110_075109
crossref_primary_10_1103_PhysRevB_105_104423
crossref_primary_10_1103_PhysRevB_110_144444
crossref_primary_10_1088_1674_1056_abc7b6
crossref_primary_10_1103_PhysRevB_102_201107
crossref_primary_10_1103_PhysRevB_107_075123
crossref_primary_10_1103_PhysRevB_101_205426
crossref_primary_10_1360_SSPMA_2023_0068
crossref_primary_10_1002_adma_202417682
crossref_primary_10_1109_ACCESS_2023_3285604
crossref_primary_10_1039_D4TC03058C
crossref_primary_10_1021_acs_nanolett_3c00275
crossref_primary_10_1103_PhysRevB_102_235123
crossref_primary_10_1103_PhysRevB_105_035119
crossref_primary_10_1038_s41565_020_00783_2
crossref_primary_10_1021_acs_nanolett_2c01710
crossref_primary_10_1088_2053_1583_ac9b70
crossref_primary_10_1103_PhysRevB_107_235127
crossref_primary_10_1103_PhysRevB_102_235126
crossref_primary_10_1088_2053_1583_acbdaa
crossref_primary_10_1103_PhysRevB_111_045164
crossref_primary_10_1103_PhysRevB_107_214419
crossref_primary_10_1103_PhysRevB_111_075434
crossref_primary_10_1103_PhysRevB_106_L220410
crossref_primary_10_1038_s41467_021_22711_1
crossref_primary_10_1103_PhysRevB_108_035121
crossref_primary_10_1038_s41567_020_1030_6
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1103_PhysRevB_108_L241406
crossref_primary_10_1021_acs_nanolett_4c00948
crossref_primary_10_1103_PhysRevB_102_184504
crossref_primary_10_1103_PhysRevB_108_L241405
crossref_primary_10_1126_science_abn8585
crossref_primary_10_1103_PhysRevB_107_235137
crossref_primary_10_1360_nso_20220033
crossref_primary_10_1063_10_0019422
crossref_primary_10_1103_PhysRevB_108_045138
crossref_primary_10_1038_s41586_024_07244_z
crossref_primary_10_1038_s41699_023_00432_x
crossref_primary_10_1103_PhysRevB_103_075423
crossref_primary_10_1016_j_nuclphysb_2021_115565
crossref_primary_10_1103_PhysRevB_111_075202
crossref_primary_10_1103_PhysRevLett_133_196501
crossref_primary_10_1103_PhysRevB_105_035130
crossref_primary_10_1063_10_0019420
crossref_primary_10_1063_10_0019421
crossref_primary_10_1088_1361_6633_ad67ed
crossref_primary_10_1103_PhysRevB_103_245424
crossref_primary_10_1088_1367_2630_ada797
crossref_primary_10_1103_PhysRevB_111_035110
crossref_primary_10_1103_PhysRevB_102_235101
crossref_primary_10_1103_PhysRevB_111_035113
crossref_primary_10_3390_nano11092433
crossref_primary_10_1038_s41467_021_25044_1
crossref_primary_10_3390_nano12213727
crossref_primary_10_1063_5_0164953
crossref_primary_10_1088_1361_648X_acb984
crossref_primary_10_1103_PhysRevB_108_235418
crossref_primary_10_1557_mrs_2020_125
crossref_primary_10_1038_s41467_021_21792_2
crossref_primary_10_1103_PhysRevB_107_075156
crossref_primary_10_1103_PhysRevLett_133_026801
crossref_primary_10_1038_s42254_023_00575_2
crossref_primary_10_1103_PhysRevB_111_064315
crossref_primary_10_1088_1367_2630_ac688c
crossref_primary_10_1038_s41565_022_01165_6
crossref_primary_10_1038_s41567_023_02114_3
crossref_primary_10_1093_nsr_nwae334
crossref_primary_10_1038_s41578_024_00682_1
crossref_primary_10_1007_s11433_024_2520_9
crossref_primary_10_1021_acs_nanolett_3c02489
crossref_primary_10_1103_PhysRevB_105_L081405
crossref_primary_10_21468_SciPostPhysCore_3_2_015
crossref_primary_10_1038_s41598_020_72000_y
crossref_primary_10_1088_1674_1056_accdc8
crossref_primary_10_1103_PhysRevResearch_4_L012013
crossref_primary_10_1002_ppsc_202300125
crossref_primary_10_1103_PhysRevB_102_245122
crossref_primary_10_1007_s12274_024_6984_8
crossref_primary_10_1038_s41535_022_00504_z
crossref_primary_10_1088_1674_1056_ad9ffa
crossref_primary_10_1088_1361_648X_ac2117
crossref_primary_10_1038_s41567_022_01515_0
crossref_primary_10_1063_5_0092169
crossref_primary_10_1103_PhysRevB_108_115302
crossref_primary_10_7498_aps_69_20200506
crossref_primary_10_1002_adfm_202206923
crossref_primary_10_1021_acs_inorgchem_1c00811
crossref_primary_10_1073_pnas_2314083121
crossref_primary_10_1021_acs_nanolett_4c03574
crossref_primary_10_1088_1674_1056_acb2c1
crossref_primary_10_1088_1674_1056_acb2c3
crossref_primary_10_1103_PhysRevLett_131_176701
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1103_PhysRevB_110_L161402
crossref_primary_10_1126_sciadv_adi6063
crossref_primary_10_1103_PhysRevB_103_125406
crossref_primary_10_1103_PhysRevB_108_125106
crossref_primary_10_1038_s41567_022_01700_1
crossref_primary_10_1039_D4NR02933J
crossref_primary_10_1103_PhysRevLett_129_176402
crossref_primary_10_1063_5_0070163
crossref_primary_10_1103_PhysRevB_110_L161406
crossref_primary_10_1021_acs_nanolett_0c05117
crossref_primary_10_1103_PhysRevB_104_115404
crossref_primary_10_1103_PhysRevResearch_4_L012032
crossref_primary_10_1039_D4NR02824D
crossref_primary_10_1103_PhysRevB_109_045419
crossref_primary_10_1038_s41567_022_01635_7
crossref_primary_10_1103_PhysRevLett_133_066601
crossref_primary_10_1039_D1TC01513C
crossref_primary_10_1002_adfm_202202584
crossref_primary_10_1038_s41563_022_01428_6
crossref_primary_10_1016_j_elspec_2025_147524
crossref_primary_10_1103_PhysRevB_106_195123
crossref_primary_10_1103_PhysRevX_10_021005
crossref_primary_10_1021_acsnano_3c08344
crossref_primary_10_1103_PhysRevB_106_195120
crossref_primary_10_1021_acs_nanolett_2c04369
crossref_primary_10_1038_s41467_022_31604_w
crossref_primary_10_1038_s41467_023_38734_9
crossref_primary_10_1103_PhysRevLett_125_257602
crossref_primary_10_1007_s40843_022_2422_3
crossref_primary_10_1103_PhysRevB_105_155135
crossref_primary_10_1021_acsnano_3c00609
crossref_primary_10_1021_acs_chemrev_3c00618
crossref_primary_10_1002_advs_202103460
crossref_primary_10_1038_s41467_022_33561_w
crossref_primary_10_1016_j_physleta_2025_130231
crossref_primary_10_1021_acs_nanolett_1c04363
crossref_primary_10_1088_1674_1056_abcfa3
crossref_primary_10_1103_PhysRevB_102_125120
crossref_primary_10_1103_PhysRevB_103_115110
crossref_primary_10_1038_s41467_020_19043_x
crossref_primary_10_1088_1367_2630_acbed2
crossref_primary_10_1038_s41586_020_2339_0
crossref_primary_10_1088_2053_1583_ad9d59
crossref_primary_10_1088_1361_648X_ad5e2b
crossref_primary_10_1103_PhysRevB_102_081404
crossref_primary_10_1103_PhysRevB_104_075126
crossref_primary_10_1038_s41586_020_3028_8
crossref_primary_10_1103_PhysRevB_105_235121
crossref_primary_10_1016_j_supcon_2023_100073
crossref_primary_10_1103_PhysRevB_102_081403
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1103_PhysRevLett_132_266602
crossref_primary_10_1038_s41467_022_34192_x
crossref_primary_10_1088_1674_1056_ace3a8
crossref_primary_10_1016_j_physleta_2025_130405
crossref_primary_10_1039_D4TC02809K
crossref_primary_10_1021_acs_nanolett_4c05310
crossref_primary_10_1103_PhysRevB_108_125141
crossref_primary_10_1021_jacs_0c07051
crossref_primary_10_1063_5_0084996
crossref_primary_10_1038_s41586_020_2868_6
crossref_primary_10_1103_PhysRevB_103_024506
crossref_primary_10_1126_sciadv_adk1874
crossref_primary_10_1103_PhysRevB_104_125427
crossref_primary_10_1103_PhysRevResearch_4_033168
crossref_primary_10_1038_s41567_020_01154_3
crossref_primary_10_1002_advs_202301326
crossref_primary_10_1103_PhysRevB_105_235139
crossref_primary_10_1103_PhysRevB_104_125421
crossref_primary_10_1103_PhysRevB_103_L241110
crossref_primary_10_1039_D3CP04739C
crossref_primary_10_1103_PhysRevLett_133_056601
crossref_primary_10_1103_PhysRevB_111_L081111
crossref_primary_10_1007_s11433_021_1862_3
crossref_primary_10_1038_s41567_021_01186_3
crossref_primary_10_1103_PhysRevB_102_115127
crossref_primary_10_1021_acs_nanolett_1c03066
crossref_primary_10_1038_s41586_024_08153_x
crossref_primary_10_1021_acsnano_3c09476
crossref_primary_10_1103_PhysRevLett_127_217001
crossref_primary_10_1103_PhysRevB_106_L121111
crossref_primary_10_1134_S1063776121060030
crossref_primary_10_1360_SSPMA_2022_0048
crossref_primary_10_1038_s41563_020_0708_6
crossref_primary_10_1038_s41928_023_00930_2
crossref_primary_10_1038_s41467_024_48511_x
crossref_primary_10_1021_acs_nanolett_4c04242
crossref_primary_10_1126_sciadv_adk1415
crossref_primary_10_1103_PhysRevLett_131_026601
crossref_primary_10_1103_PhysRevLett_127_116601
crossref_primary_10_1103_PhysRevB_104_L201408
crossref_primary_10_1063_5_0039979
crossref_primary_10_1063_5_0089194
crossref_primary_10_1103_PhysRevB_107_125112
crossref_primary_10_1103_PhysRevLett_133_226903
crossref_primary_10_1103_PhysRevB_106_245402
crossref_primary_10_1103_PhysRevLett_130_196201
crossref_primary_10_1103_PhysRevResearch_4_L032024
crossref_primary_10_1103_PhysRevB_108_075168
crossref_primary_10_1038_s41467_025_56919_2
crossref_primary_10_1103_PhysRevB_110_205130
crossref_primary_10_1103_PhysRevResearch_7_013109
crossref_primary_10_1038_s42005_023_01502_8
crossref_primary_10_1063_5_0110875
crossref_primary_10_1103_PhysRevB_108_235166
crossref_primary_10_1103_PhysRevLett_129_056804
crossref_primary_10_1103_PhysRevB_109_L041106
crossref_primary_10_1103_PhysRevB_103_115419
crossref_primary_10_1103_PhysRevB_107_094512
crossref_primary_10_1103_PhysRevResearch_4_043151
crossref_primary_10_1088_2515_7639_ac6c4a
crossref_primary_10_1103_PhysRevLett_126_076801
crossref_primary_10_1103_PhysRevB_102_035136
crossref_primary_10_1039_D4MH00165F
crossref_primary_10_1103_PhysRevX_13_031037
crossref_primary_10_1038_s41524_023_01025_4
crossref_primary_10_1103_PhysRevB_111_045403
crossref_primary_10_1103_PhysRevResearch_5_043214
crossref_primary_10_1021_acsnano_4c01794
crossref_primary_10_1088_1674_1056_adb411
crossref_primary_10_1016_j_cap_2024_08_011
crossref_primary_10_1126_science_abf9396
crossref_primary_10_1103_PhysRevB_103_035427
crossref_primary_10_1103_PhysRevB_107_014501
crossref_primary_10_1002_adma_202105879
crossref_primary_10_1088_1674_1056_ac6866
crossref_primary_10_1103_PhysRevLett_132_056601
crossref_primary_10_1103_PhysRevB_107_L081101
crossref_primary_10_1088_1361_6528_ad1d14
crossref_primary_10_1088_2053_1583_ac5b16
crossref_primary_10_1103_PhysRevB_104_075144
crossref_primary_10_35848_1347_4065_ac934a
crossref_primary_10_1088_1361_648X_acd294
crossref_primary_10_1103_PhysRevB_104_075143
crossref_primary_10_1103_PhysRevB_107_174506
crossref_primary_10_1103_PhysRevB_103_125138
crossref_primary_10_1103_PhysRevResearch_3_013242
crossref_primary_10_1038_s41586_024_08227_w
crossref_primary_10_1088_1674_1056_ac9de4
crossref_primary_10_1103_PhysRevB_110_205115
crossref_primary_10_1103_PhysRevB_110_L041108
crossref_primary_10_21468_SciPostPhys_12_4_124
crossref_primary_10_21468_SciPostPhys_15_4_148
crossref_primary_10_1103_PhysRevB_101_245154
crossref_primary_10_1103_PhysRevB_107_125142
crossref_primary_10_1038_s41567_022_01606_y
crossref_primary_10_1103_PhysRevB_110_024401
crossref_primary_10_1103_PhysRevX_13_031015
crossref_primary_10_2139_ssrn_4061553
crossref_primary_10_1021_acs_nanolett_4c00008
crossref_primary_10_1002_smll_202409979
crossref_primary_10_1038_s42005_024_01641_6
crossref_primary_10_1103_PhysRevB_109_075424
crossref_primary_10_1103_PhysRevB_110_035122
crossref_primary_10_1016_j_matt_2022_11_002
crossref_primary_10_1038_s41524_022_00763_1
crossref_primary_10_1103_PhysRevB_107_195434
crossref_primary_10_1038_s41586_022_05262_3
crossref_primary_10_1126_science_aba5313
crossref_primary_10_1021_acs_nanolett_1c00601
crossref_primary_10_1002_lpor_202401368
crossref_primary_10_1038_s41467_024_46717_7
crossref_primary_10_1038_s41467_024_49531_3
crossref_primary_10_7498_aps_70_20202132
crossref_primary_10_1021_acsnano_4c11141
crossref_primary_10_1038_s41567_022_01702_z
crossref_primary_10_1088_1402_4896_ad5423
crossref_primary_10_1103_PhysRevB_108_075126
crossref_primary_10_1038_s41586_020_2458_7
crossref_primary_10_1038_s41567_021_01424_8
crossref_primary_10_1038_s41567_021_01172_9
crossref_primary_10_1103_PhysRevResearch_3_033276
crossref_primary_10_1103_PhysRevLett_131_066301
crossref_primary_10_1007_s11467_023_1302_6
crossref_primary_10_1103_PhysRevB_107_195423
crossref_primary_10_1038_s41586_025_08725_5
crossref_primary_10_1126_sciadv_abd3655
crossref_primary_10_1038_s41586_023_06452_3
crossref_primary_10_1038_s41467_023_36488_y
crossref_primary_10_1063_5_0223777
crossref_primary_10_1103_PhysRevApplied_18_054012
crossref_primary_10_1103_PhysRevB_107_045426
crossref_primary_10_1103_PhysRevLett_128_217704
crossref_primary_10_1021_acs_nanolett_2c01390
crossref_primary_10_1103_PhysRevB_109_155114
crossref_primary_10_1007_s00023_024_01478_3
crossref_primary_10_1063_5_0133795
crossref_primary_10_1103_PhysRevB_107_024509
crossref_primary_10_1021_acsnano_0c04631
crossref_primary_10_1002_smll_202411833
crossref_primary_10_1063_5_0211557
crossref_primary_10_1103_PhysRevResearch_3_033260
crossref_primary_10_1021_acs_nanolett_2c04651
crossref_primary_10_1039_D2NR05185K
crossref_primary_10_1007_s11433_022_1993_7
crossref_primary_10_1038_s41467_024_46913_5
crossref_primary_10_1038_s41524_022_00789_5
crossref_primary_10_1038_s41586_022_04937_1
crossref_primary_10_1088_1367_2630_ac706d
crossref_primary_10_1007_s12274_023_5972_8
crossref_primary_10_1103_PhysRevB_107_045414
crossref_primary_10_1103_PhysRevB_110_115427
crossref_primary_10_1126_science_adj3742
crossref_primary_10_1103_PhysRevB_102_035161
crossref_primary_10_26599_NR_2025_94907123
crossref_primary_10_1103_PhysRevLett_127_196401
crossref_primary_10_1103_PhysRevLett_132_236601
crossref_primary_10_1088_1674_1056_ad4a3a
crossref_primary_10_1039_D2NR04800K
crossref_primary_10_1103_PhysRevLett_130_066001
crossref_primary_10_1103_PhysRevB_106_L041111
crossref_primary_10_1016_j_apsusc_2022_152520
crossref_primary_10_1103_PhysRevB_109_L121406
crossref_primary_10_1021_acsnano_3c09993
crossref_primary_10_1063_5_0245526
crossref_primary_10_1103_PhysRevLett_125_236102
crossref_primary_10_1021_acs_chemrev_3c00132
crossref_primary_10_1126_science_abd3190
crossref_primary_10_1038_s42254_021_00293_7
crossref_primary_10_1103_PhysRevLett_134_116605
crossref_primary_10_1103_PhysRevB_110_115434
crossref_primary_10_1103_PhysRevLett_132_246401
crossref_primary_10_1103_PhysRevLett_134_116603
crossref_primary_10_1103_PhysRevB_102_035158
crossref_primary_10_1038_s41563_024_01985_y
crossref_primary_10_1103_PhysRevB_106_245412
crossref_primary_10_1007_s11467_021_1146_x
crossref_primary_10_1016_j_physe_2022_115602
crossref_primary_10_1021_acs_nanolett_2c02010
crossref_primary_10_1021_acs_nanolett_1c01972
crossref_primary_10_1038_s41565_022_01248_4
crossref_primary_10_1039_D0CS01146K
crossref_primary_10_1063_5_0174081
crossref_primary_10_1038_s41563_021_00960_1
crossref_primary_10_1088_1361_648X_ac825f
crossref_primary_10_1088_2053_1583_ac69bb
crossref_primary_10_1021_acs_nanolett_2c03347
crossref_primary_10_1038_s41467_023_42275_6
crossref_primary_10_1103_PhysRevLett_131_070801
crossref_primary_10_1103_PhysRevLett_126_056801
crossref_primary_10_1103_PhysRevLett_126_056803
crossref_primary_10_1103_PhysRevLett_128_216801
crossref_primary_10_1038_s41467_022_30998_x
crossref_primary_10_1002_smll_202303295
crossref_primary_10_1073_pnas_2218997120
crossref_primary_10_1103_PhysRevLett_134_046501
crossref_primary_10_1103_PhysRevX_11_011014
crossref_primary_10_1103_PhysRevB_109_035159
crossref_primary_10_1021_acs_nanolett_1c00696
crossref_primary_10_1021_acs_nanolett_4c00619
crossref_primary_10_1103_PhysRevB_109_085412
crossref_primary_10_1103_PhysRevB_111_014514
crossref_primary_10_1103_PhysRevLett_131_016003
crossref_primary_10_1103_PhysRevB_103_165417
crossref_primary_10_7498_aps_71_20220064
crossref_primary_10_1073_pnas_2410714121
crossref_primary_10_1002_smll_202302192
crossref_primary_10_1038_s41567_022_01589_w
crossref_primary_10_1088_1361_648X_accd39
crossref_primary_10_1103_PhysRevLett_129_036801
crossref_primary_10_1103_PhysRevResearch_6_023293
crossref_primary_10_1039_D2MH00906D
crossref_primary_10_1103_PhysRevB_111_125140
crossref_primary_10_1103_PhysRevB_111_125143
crossref_primary_10_1088_2053_1583_ad3b11
crossref_primary_10_1088_1674_1056_abb65d
crossref_primary_10_1038_s41586_021_03409_2
crossref_primary_10_1002_adma_202105266
crossref_primary_10_1016_j_xinn_2021_100085
crossref_primary_10_1103_PhysRevResearch_2_013370
crossref_primary_10_1021_acs_nanolett_3c00417
crossref_primary_10_1103_PhysRevResearch_2_033181
crossref_primary_10_1016_j_newton_2024_100007
crossref_primary_10_1088_2053_1583_ad9dfd
crossref_primary_10_1103_PhysRevB_103_235146
crossref_primary_10_1103_PhysRevB_111_125154
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1103_PhysRevB_107_L201119
crossref_primary_10_1088_1361_6463_ad5f98
crossref_primary_10_1063_5_0171849
crossref_primary_10_1038_s41567_020_01062_6
crossref_primary_10_1103_PhysRevB_102_165118
crossref_primary_10_1038_s41586_022_05077_2
crossref_primary_10_1103_PhysRevB_109_035168
crossref_primary_10_1088_1361_648X_abf0c2
crossref_primary_10_1038_s41467_024_48725_z
crossref_primary_10_1103_PhysRevB_108_245136
crossref_primary_10_1038_s41586_021_03366_w
crossref_primary_10_1021_acs_nanolett_3c01756
crossref_primary_10_1038_s41467_021_24276_5
crossref_primary_10_1063_5_0022948
crossref_primary_10_1103_PhysRevLett_134_026904
crossref_primary_10_1063_5_0207235
crossref_primary_10_1103_PhysRevLett_124_046403
crossref_primary_10_1103_PhysRevB_107_125308
crossref_primary_10_1021_acs_nanolett_2c00432
crossref_primary_10_1063_5_0054116
crossref_primary_10_7498_aps_71_20220054
crossref_primary_10_1103_PhysRevB_108_214427
crossref_primary_10_1103_PhysRevB_108_235128
crossref_primary_10_1088_2053_1583_ad27e8
crossref_primary_10_1103_PhysRevB_107_075408
crossref_primary_10_1103_PhysRevB_107_L201101
crossref_primary_10_1016_j_matt_2021_08_020
crossref_primary_10_1088_1674_1056_abb221
crossref_primary_10_1103_PhysRevB_102_100408
crossref_primary_10_1016_j_pmatsci_2020_100761
crossref_primary_10_1103_PhysRevB_107_075401
crossref_primary_10_1103_PhysRevB_111_024511
crossref_primary_10_1038_s41567_022_01574_3
crossref_primary_10_1103_PhysRevMaterials_6_L041001
crossref_primary_10_1038_s41586_020_2970_9
crossref_primary_10_1103_PhysRevResearch_2_033150
crossref_primary_10_1002_qute_202400444
crossref_primary_10_1038_s41563_023_01713_y
crossref_primary_10_3390_molecules28073015
crossref_primary_10_1103_PhysRevB_109_035115
crossref_primary_10_1103_PhysRevB_104_035119
crossref_primary_10_1088_2752_5724_acbd64
crossref_primary_10_1103_PhysRevB_108_235120
crossref_primary_10_1103_PhysRevLett_127_026401
crossref_primary_10_1088_1674_1056_ac67cb
crossref_primary_10_1134_S1063776122100065
crossref_primary_10_1103_PhysRevB_107_155114
crossref_primary_10_7498_aps_72_20230120
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1103_PhysRevB_102_155136
crossref_primary_10_1021_acs_nanolett_4c02841
crossref_primary_10_1038_s42005_023_01165_5
crossref_primary_10_1103_PhysRevB_104_L241404
crossref_primary_10_1103_PhysRevMaterials_8_044407
crossref_primary_10_1016_j_mtphys_2020_100238
crossref_primary_10_1016_j_pquantelec_2024_100498
crossref_primary_10_1038_s41524_020_0299_4
crossref_primary_10_1103_PhysRevB_108_245159
crossref_primary_10_1080_23746149_2024_2371972
crossref_primary_10_1088_2053_1583_accbd0
crossref_primary_10_1103_PhysRevB_106_104506
crossref_primary_10_1016_j_apsusc_2022_154796
crossref_primary_10_1088_1674_4926_44_1_010301
crossref_primary_10_1103_PhysRevB_110_235410
crossref_primary_10_1038_s41586_021_03849_w
crossref_primary_10_1016_j_jallcom_2024_175254
crossref_primary_10_1021_acs_nanolett_5c00201
crossref_primary_10_1103_PhysRevX_11_021042
crossref_primary_10_1103_PhysRevB_107_075424
crossref_primary_10_1021_acs_nanolett_4c02853
crossref_primary_10_1039_D3CP01010D
crossref_primary_10_1103_PhysRevB_105_115126
crossref_primary_10_1021_acs_nanolett_4c00436
crossref_primary_10_1038_s41467_024_48166_8
crossref_primary_10_1103_PhysRevB_106_075142
crossref_primary_10_1103_PhysRevB_107_165158
crossref_primary_10_1103_PhysRevMaterials_6_024003
crossref_primary_10_1088_1674_1056_ad2bf1
crossref_primary_10_1103_PhysRevB_101_125411
crossref_primary_10_1103_PhysRevB_110_045115
crossref_primary_10_1103_PhysRevB_110_045114
crossref_primary_10_1103_PhysRevResearch_4_L032006
crossref_primary_10_1103_PhysRevLett_129_186801
crossref_primary_10_1038_s42254_021_00297_3
crossref_primary_10_1103_PhysRevResearch_2_043190
crossref_primary_10_1103_PhysRevResearch_2_022010
crossref_primary_10_1016_j_mtelec_2023_100070
crossref_primary_10_1088_0256_307X_39_7_077301
crossref_primary_10_1038_s41467_021_24561_3
crossref_primary_10_1103_PhysRevB_104_045146
crossref_primary_10_1103_PhysRevB_106_115418
crossref_primary_10_1103_PhysRevB_106_075136
crossref_primary_10_1038_s41567_020_01129_4
crossref_primary_10_1039_D4MH00620H
crossref_primary_10_1038_s41467_023_37239_9
crossref_primary_10_1103_PhysRevB_104_195134
crossref_primary_10_1103_PhysRevX_13_041007
crossref_primary_10_1103_PhysRevLett_130_076204
crossref_primary_10_1021_acs_nanolett_3c01313
crossref_primary_10_1080_23746149_2024_2325611
crossref_primary_10_1038_s41467_021_25438_1
crossref_primary_10_1103_PhysRevB_111_125125
crossref_primary_10_1038_s41586_020_3020_3
crossref_primary_10_1038_s41699_021_00221_4
crossref_primary_10_1103_PhysRevLett_126_056401
crossref_primary_10_1103_PhysRevMaterials_4_121202
crossref_primary_10_1017_S1431927622006882
crossref_primary_10_1007_s11433_024_2410_9
crossref_primary_10_1021_acs_nanolett_4c04137
crossref_primary_10_1063_5_0231749
crossref_primary_10_1038_s41567_024_02731_6
crossref_primary_10_1103_PhysRevResearch_6_L022025
crossref_primary_10_1103_PhysRevLett_132_106602
crossref_primary_10_1002_pssb_202200344
crossref_primary_10_1103_PhysRevResearch_2_033357
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1038_s44306_024_00052_1
crossref_primary_10_1093_nsr_nwad313
crossref_primary_10_1103_PhysRevLett_129_140502
crossref_primary_10_1103_PhysRevB_107_155436
crossref_primary_10_1021_acsanm_4c02980
crossref_primary_10_1038_s41535_021_00410_w
crossref_primary_10_1103_PhysRevResearch_3_L032070
crossref_primary_10_7498_aps_71_20220225
crossref_primary_10_1103_PhysRevB_101_205116
crossref_primary_10_1038_s41467_025_56113_4
crossref_primary_10_1038_s41586_022_05446_x
crossref_primary_10_1103_PhysRevB_103_165112
crossref_primary_10_1103_PhysRevX_11_041063
crossref_primary_10_1103_PhysRevResearch_6_023203
crossref_primary_10_1103_PhysRevB_109_205102
crossref_primary_10_1016_j_scib_2024_06_009
crossref_primary_10_1021_acsanm_0c03230
crossref_primary_10_7498_aps_70_20210110
crossref_primary_10_1007_s11433_022_2056_1
crossref_primary_10_1103_PhysRevLett_133_206502
crossref_primary_10_1103_PhysRevLett_133_206504
crossref_primary_10_1021_acs_nanolett_3c00121
crossref_primary_10_1103_PhysRevB_106_235157
crossref_primary_10_1134_S0965542524701872
crossref_primary_10_1002_adma_202005698
crossref_primary_10_1016_j_apmt_2024_102101
crossref_primary_10_1088_1367_2630_ad3000
crossref_primary_10_1103_PhysRevLett_128_176404
crossref_primary_10_1088_2053_1583_ac044f
crossref_primary_10_1088_1674_1056_acc8c3
crossref_primary_10_1126_sciadv_aba8834
crossref_primary_10_1063_5_0022557
crossref_primary_10_1002_adfm_202411472
crossref_primary_10_1103_PhysRevB_104_035136
crossref_primary_10_1103_PhysRevB_104_035139
crossref_primary_10_1103_PhysRevB_107_235427
crossref_primary_10_1103_PhysRevB_107_235425
crossref_primary_10_1073_pnas_2401644121
crossref_primary_10_1103_PhysRevB_103_235302
crossref_primary_10_1126_science_adg0014
crossref_primary_10_1007_JHEP05_2021_123
crossref_primary_10_1103_PhysRevB_106_155159
crossref_primary_10_1021_acsnano_0c10435
crossref_primary_10_3390_nano13192655
crossref_primary_10_1103_PhysRevResearch_5_023120
crossref_primary_10_1016_j_mtphys_2022_100692
crossref_primary_10_1103_PhysRevB_103_224436
crossref_primary_10_1039_D3NR04864K
crossref_primary_10_1038_s41563_021_00959_8
crossref_primary_10_1038_s41586_021_04002_3
crossref_primary_10_1103_PhysRevLett_128_156801
crossref_primary_10_1039_D3TC04120D
crossref_primary_10_1103_PhysRevB_110_214517
crossref_primary_10_1038_s41567_021_01419_5
crossref_primary_10_1038_s41586_020_2963_8
crossref_primary_10_1021_acs_nanolett_1c04400
crossref_primary_10_1088_2053_1583_ac8b93
crossref_primary_10_1103_PhysRevB_102_125403
crossref_primary_10_1038_s41467_024_49321_x
crossref_primary_10_1038_s41586_023_06633_0
crossref_primary_10_1103_PhysRevB_104_075406
crossref_primary_10_1016_j_rinp_2022_105780
crossref_primary_10_1038_s41467_024_52784_7
crossref_primary_10_1103_PhysRevB_109_115111
crossref_primary_10_1088_1674_1056_ad0147
crossref_primary_10_1103_PhysRevLett_130_066701
crossref_primary_10_1038_s41586_020_2473_8
crossref_primary_10_1038_s41524_020_00419_y
crossref_primary_10_1038_s41565_023_01320_7
crossref_primary_10_1103_PhysRevB_110_155423
crossref_primary_10_1002_advs_202103170
crossref_primary_10_1038_s41467_022_35421_z
crossref_primary_10_1103_PhysRevB_110_155419
crossref_primary_10_1103_PhysRevLett_126_066401
crossref_primary_10_1103_PhysRevLett_133_196401
crossref_primary_10_1103_PhysRevLett_131_096401
crossref_primary_10_1126_science_adk9749
crossref_primary_10_1016_j_apsusc_2023_157718
crossref_primary_10_1016_j_aop_2022_168763
crossref_primary_10_1038_s41565_022_01314_x
crossref_primary_10_1103_PhysRevB_109_045301
crossref_primary_10_1021_acsnano_4c08302
crossref_primary_10_1038_s41586_021_03938_w
crossref_primary_10_1103_PhysRevLett_127_187001
crossref_primary_10_1103_PhysRevB_104_L201113
crossref_primary_10_1088_2053_1583_ac4af8
crossref_primary_10_1016_j_aop_2020_168193
crossref_primary_10_1103_PhysRevLett_132_046003
crossref_primary_10_1016_j_carbon_2023_01_052
crossref_primary_10_1103_PhysRevMaterials_5_084008
crossref_primary_10_1016_j_diamond_2024_111853
crossref_primary_10_1038_s41598_024_56380_z
crossref_primary_10_1103_PhysRevB_103_155142
crossref_primary_10_1103_PhysRevB_103_224404
crossref_primary_10_1088_2053_1583_ac97f2
crossref_primary_10_1126_science_abg3036
crossref_primary_10_1103_PhysRevLett_125_096403
crossref_primary_10_1103_PhysRevLett_125_266404
crossref_primary_10_1103_PhysRevB_108_085117
crossref_primary_10_1038_s44310_024_00043_4
crossref_primary_10_1038_s41467_023_38005_7
crossref_primary_10_1103_PhysRevB_111_085137
crossref_primary_10_1103_PhysRevLett_125_186803
crossref_primary_10_1016_j_matt_2020_03_010
crossref_primary_10_1016_j_physb_2023_414826
crossref_primary_10_1021_acs_nanolett_3c01262
crossref_primary_10_1103_PhysRevResearch_5_013125
crossref_primary_10_1016_j_cossms_2021_100952
crossref_primary_10_1103_PhysRevX_11_031017
crossref_primary_10_1103_PhysRevB_109_125141
crossref_primary_10_1103_PhysRevLett_124_187601
crossref_primary_10_1103_PhysRevResearch_3_L032012
crossref_primary_10_1103_PhysRevLett_128_065901
crossref_primary_10_1021_acs_nanolett_3c04304
crossref_primary_10_1039_D4TC04243C
crossref_primary_10_1038_s41563_025_02180_3
crossref_primary_10_1103_PhysRevB_109_L081406
crossref_primary_10_1103_PhysRevB_106_L041406
crossref_primary_10_1016_j_nantod_2023_101829
crossref_primary_10_1103_PhysRevB_106_245129
crossref_primary_10_1103_PhysRevB_106_L041402
crossref_primary_10_1038_s41586_023_06572_w
crossref_primary_10_1038_s41563_025_02173_2
crossref_primary_10_1038_s41586_024_08381_1
crossref_primary_10_1103_PhysRevB_107_115142
crossref_primary_10_1103_PhysRevB_107_115140
crossref_primary_10_1002_adma_202008586
crossref_primary_10_1103_PhysRevB_107_165417
crossref_primary_10_1002_adfm_202416508
crossref_primary_10_1063_5_0142406
crossref_primary_10_1038_s41467_023_41296_5
crossref_primary_10_1038_s41563_023_01751_6
crossref_primary_10_1038_s41467_021_23031_0
crossref_primary_10_1038_s41467_024_48260_x
crossref_primary_10_1038_s41563_020_00888_y
crossref_primary_10_1103_PhysRevB_103_155157
crossref_primary_10_1103_PhysRevB_102_035411
crossref_primary_10_1038_s41467_024_54200_6
crossref_primary_10_1088_1674_1056_acf9e4
crossref_primary_10_1103_PhysRevLett_131_026501
crossref_primary_10_1021_acs_nanolett_2c03126
crossref_primary_10_1103_PhysRevB_109_075166
crossref_primary_10_1103_PhysRevMaterials_9_L021002
crossref_primary_10_1103_PhysRevB_104_064306
crossref_primary_10_1103_PhysRevX_14_031013
crossref_primary_10_1103_PhysRevMaterials_6_044202
crossref_primary_10_7498_aps_71_20220872
crossref_primary_10_1103_PhysRevB_105_L100503
crossref_primary_10_1103_PhysRevLett_132_056204
crossref_primary_10_1039_D2NR02476D
crossref_primary_10_1103_PhysRevB_109_L201402
crossref_primary_10_1103_PhysRevB_109_195406
crossref_primary_10_1103_PhysRevB_109_L201403
crossref_primary_10_1093_mam_ozae044_733
crossref_primary_10_1103_PhysRevLett_127_266801
crossref_primary_10_3390_app10144690
crossref_primary_10_1002_adma_202205996
crossref_primary_10_1103_PhysRevLett_127_167001
crossref_primary_10_1038_s42005_024_01729_z
crossref_primary_10_1103_PhysRevResearch_4_013209
crossref_primary_10_1038_s41563_020_00840_0
crossref_primary_10_1038_s41586_023_06289_w
crossref_primary_10_1103_PhysRevX_14_031045
crossref_primary_10_1016_j_commatsci_2020_110262
crossref_primary_10_1063_5_0077901
crossref_primary_10_1021_acsami_4c03639
crossref_primary_10_1038_s41567_023_01982_z
crossref_primary_10_1103_PhysRevLett_128_156401
crossref_primary_10_1038_s41567_022_01758_x
crossref_primary_10_1016_j_physrep_2020_12_007
crossref_primary_10_1103_PhysRevB_109_155139
crossref_primary_10_1038_s41565_021_00955_8
crossref_primary_10_1038_s41586_024_07589_5
crossref_primary_10_1021_acs_nanolett_4c03238
crossref_primary_10_1038_s41467_023_39110_3
crossref_primary_10_1002_adma_202102427
crossref_primary_10_1103_PhysRevLett_127_197701
crossref_primary_10_1103_PhysRevB_106_035107
crossref_primary_10_1103_PhysRevLett_134_126601
crossref_primary_10_1038_s41565_020_0733_2
crossref_primary_10_1103_PhysRevB_107_035126
crossref_primary_10_1103_PhysRevB_109_184502
crossref_primary_10_1016_j_aop_2021_168646
crossref_primary_10_1038_s41586_021_03192_0
crossref_primary_10_1103_RevModPhys_95_011002
crossref_primary_10_1038_s41467_023_39893_5
crossref_primary_10_1021_acs_nanolett_4c05666
crossref_primary_10_1002_apxr_202300048
crossref_primary_10_1103_PhysRevB_103_075122
crossref_primary_10_1063_5_0196220
crossref_primary_10_1103_PhysRevB_106_035115
crossref_primary_10_1103_PhysRevLett_133_066302
crossref_primary_10_1038_s42254_020_0209_1
crossref_primary_10_1088_1674_1056_acddcf
crossref_primary_10_1103_PhysRevB_107_035112
crossref_primary_10_1103_PhysRevB_106_035114
crossref_primary_10_1103_PhysRevB_107_L020404
crossref_primary_10_1038_s41567_020_0928_3
crossref_primary_10_1038_s41467_020_19284_w
crossref_primary_10_1002_adma_202305175
crossref_primary_10_1016_j_jallcom_2025_179103
crossref_primary_10_1103_PhysRevB_106_235112
crossref_primary_10_1103_PhysRevB_103_L161405
crossref_primary_10_1063_5_0215875
crossref_primary_10_1088_1674_1056_ada885
crossref_primary_10_1002_adma_202210909
crossref_primary_10_1093_nsr_nwad189
crossref_primary_10_1103_PhysRevB_103_195411
crossref_primary_10_1103_PhysRevLett_129_187001
crossref_primary_10_1002_aelm_202300638
crossref_primary_10_1021_acs_jpcc_4c05339
crossref_primary_10_1103_PhysRevB_110_L140201
crossref_primary_10_1103_PhysRevB_107_035109
crossref_primary_10_1038_s41586_020_2373_y
crossref_primary_10_1103_PhysRevX_14_021046
crossref_primary_10_1103_PhysRevX_14_021042
crossref_primary_10_1103_PhysRevB_102_201405
crossref_primary_10_1021_acsnano_1c09249
crossref_primary_10_1088_2516_1075_abd957
crossref_primary_10_1063_pt_jvsd_yhyd
crossref_primary_10_1103_PhysRevB_102_035441
crossref_primary_10_1103_PhysRevB_103_115201
crossref_primary_10_1103_PhysRevB_104_L161113
crossref_primary_10_1126_science_adq2329
crossref_primary_10_1038_s41567_020_0906_9
crossref_primary_10_1038_s41586_024_08470_1
crossref_primary_10_1103_PhysRevB_109_125302
crossref_primary_10_1126_science_abg0399
crossref_primary_10_1038_s42254_022_00466_y
crossref_primary_10_1103_PhysRevB_103_115431
crossref_primary_10_1016_j_mser_2021_100621
crossref_primary_10_1103_PhysRevB_103_115436
crossref_primary_10_1103_PhysRevB_105_085301
crossref_primary_10_1103_PhysRevB_106_035149
crossref_primary_10_1103_PhysRevLett_127_147203
crossref_primary_10_1103_PhysRevX_14_011004
crossref_primary_10_1016_j_physleta_2021_127670
crossref_primary_10_1103_PhysRevB_108_L241107
crossref_primary_10_1103_PhysRevB_109_075109
crossref_primary_10_1002_advs_202300574
crossref_primary_10_1103_PhysRevB_109_085143
crossref_primary_10_7498_aps_72_20222080
crossref_primary_10_1103_PhysRevX_12_021065
crossref_primary_10_1038_s41563_024_01993_y
crossref_primary_10_1103_PhysRevResearch_3_023155
crossref_primary_10_1016_j_mtquan_2024_100015
crossref_primary_10_1088_2053_1583_ad4166
crossref_primary_10_1103_PhysRevB_107_045117
crossref_primary_10_1016_j_mtquan_2024_100012
crossref_primary_10_1038_s41467_023_37710_7
crossref_primary_10_1103_PhysRevResearch_4_043045
crossref_primary_10_1103_PhysRevX_12_021067
crossref_primary_10_1038_s41567_021_01347_4
crossref_primary_10_1103_PhysRevB_106_115149
crossref_primary_10_1016_j_scib_2021_04_015
crossref_primary_10_1063_5_0237852
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_1103_PhysRevB_109_L121107
crossref_primary_10_1103_PhysRevLett_126_167701
crossref_primary_10_1088_2053_1583_abddcb
crossref_primary_10_1103_PhysRevB_111_125410
crossref_primary_10_1088_1361_648X_ac99ca
crossref_primary_10_1103_PhysRevLett_133_246401
crossref_primary_10_1126_science_aay5533
crossref_primary_10_1103_PhysRevResearch_4_043034
crossref_primary_10_1103_PhysRevB_104_045403
crossref_primary_10_21468_SciPostPhys_13_3_052
crossref_primary_10_1007_s44214_024_00063_3
crossref_primary_10_1021_acs_nanolett_0c02131
crossref_primary_10_1063_5_0170810
crossref_primary_10_1038_s41567_021_01171_w
crossref_primary_10_1063_5_0139179
crossref_primary_10_1088_2515_7639_abf1ab
crossref_primary_10_1103_PhysRevB_109_245131
crossref_primary_10_1103_PhysRevB_109_155430
crossref_primary_10_1038_s41586_024_08239_6
crossref_primary_10_1088_1674_1056_abbbea
crossref_primary_10_1088_1367_2630_ad9b48
crossref_primary_10_1021_acsnano_4c12770
crossref_primary_10_1103_PhysRevB_109_235105
crossref_primary_10_1103_PhysRevLett_127_266402
crossref_primary_10_1088_0256_307X_38_4_047301
crossref_primary_10_1038_s41563_024_01809_z
crossref_primary_10_1103_PhysRevLett_128_157201
crossref_primary_10_1038_s41586_021_03319_3
crossref_primary_10_1021_acsanm_3c02788
crossref_primary_10_1103_PhysRevB_109_155427
crossref_primary_10_1021_acs_nanolett_2c03676
crossref_primary_10_1103_PhysRevLett_126_016404
crossref_primary_10_1088_1361_6528_acef2c
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1103_PhysRevB_109_085118
crossref_primary_10_1103_PhysRevLett_127_096802
crossref_primary_10_1103_PhysRevMaterials_5_L051001
crossref_primary_10_1038_s41467_022_33673_3
crossref_primary_10_1103_PhysRevX_12_021031
crossref_primary_10_1016_j_matdes_2021_110235
crossref_primary_10_1021_acsnano_4c13870
crossref_primary_10_1063_5_0222102
crossref_primary_10_1063_5_0100989
crossref_primary_10_1103_PhysRevB_109_155412
crossref_primary_10_1103_PhysRevLett_125_227702
crossref_primary_10_1088_1674_1056_abbbe2
crossref_primary_10_1080_14686996_2022_2062576
crossref_primary_10_1038_s41467_021_24480_3
crossref_primary_10_1103_PhysRevLett_131_046402
crossref_primary_10_1103_PhysRevB_105_064423
crossref_primary_10_1038_s41699_023_00408_x
crossref_primary_10_1088_1674_1056_aceee5
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1103_PhysRevB_103_L041103
crossref_primary_10_1126_science_adi4728
crossref_primary_10_7498_aps_74_20241031
crossref_primary_10_1002_pssb_202400561
crossref_primary_10_1088_1367_2630_ad8fc6
crossref_primary_10_1103_PhysRevB_105_054420
crossref_primary_10_1038_s41586_020_2085_3
crossref_primary_10_1103_PhysRevLett_125_226401
crossref_primary_10_1103_PhysRevB_103_195146
crossref_primary_10_1103_PhysRevLett_132_236502
crossref_primary_10_1103_PhysRevLett_125_066801
crossref_primary_10_3762_bjnano_14_3
crossref_primary_10_1038_s41567_022_01616_w
crossref_primary_10_1039_D4NR00194J
crossref_primary_10_1088_1674_4926_44_1_011901
crossref_primary_10_1103_PhysRevB_106_125141
crossref_primary_10_1038_s41586_023_06791_1
crossref_primary_10_1002_qute_202100096
crossref_primary_10_1038_s41467_020_15473_9
crossref_primary_10_1038_s41563_025_02131_y
crossref_primary_10_1039_D3CC01311A
crossref_primary_10_1038_s41467_025_56141_0
crossref_primary_10_1038_s41467_021_27514_y
crossref_primary_10_1038_s41563_024_02003_x
crossref_primary_10_1002_lpor_202000596
crossref_primary_10_1103_PhysRevB_105_L201405
crossref_primary_10_1038_s41699_023_00396_y
crossref_primary_10_1038_s41524_025_01545_1
crossref_primary_10_1002_advs_202406924
crossref_primary_10_1038_s41567_021_01327_8
crossref_primary_10_1088_2053_1583_ac3a98
crossref_primary_10_1103_PhysRevB_106_075423
crossref_primary_10_1103_PhysRevResearch_2_023051
crossref_primary_10_1038_s41535_021_00360_3
crossref_primary_10_1103_PhysRevB_105_054206
crossref_primary_10_1103_PhysRevB_101_165141
crossref_primary_10_1016_j_cplett_2023_140366
crossref_primary_10_1038_s41586_020_2459_6
crossref_primary_10_1103_PhysRevLett_131_266501
crossref_primary_10_1039_D1MA00263E
crossref_primary_10_1002_aelm_202400697
crossref_primary_10_1103_PhysRevB_104_174505
crossref_primary_10_1103_PhysRevB_103_195127
crossref_primary_10_1088_2515_7639_abb74e
crossref_primary_10_26599_NR_2025_94907247
crossref_primary_10_1021_acs_nanolett_3c04098
crossref_primary_10_1088_2053_1583_acc671
crossref_primary_10_1038_s41699_024_00449_w
crossref_primary_10_1103_PhysRevB_104_235130
crossref_primary_10_1038_s41567_023_02284_0
crossref_primary_10_1103_PhysRevLett_128_227601
crossref_primary_10_1007_s11664_022_09941_9
crossref_primary_10_1103_PhysRevLett_130_126001
crossref_primary_10_1088_1361_648X_ac6eac
crossref_primary_10_1038_s41578_021_00304_0
crossref_primary_10_1039_D3TC02222F
crossref_primary_10_1038_s41586_020_2568_2
crossref_primary_10_1038_s41563_022_01361_8
crossref_primary_10_1103_PhysRevB_102_121406
crossref_primary_10_1088_1361_6633_ac2356
crossref_primary_10_1002_adma_202402503
crossref_primary_10_1063_5_0075999
crossref_primary_10_1103_PhysRevB_105_245408
crossref_primary_10_1103_PhysRevLett_127_247703
crossref_primary_10_1088_2399_1984_acf0a9
crossref_primary_10_1016_j_apsusc_2022_154014
crossref_primary_10_1063_5_0191362
crossref_primary_10_1073_pnas_2307151120
crossref_primary_10_1103_PhysRevLett_127_247701
crossref_primary_10_1038_s41535_024_00716_5
crossref_primary_10_1103_PhysRevResearch_3_L032003
crossref_primary_10_1126_science_abh2889
crossref_primary_10_1103_PhysRevX_12_031020
crossref_primary_10_1103_PhysRevB_110_045410
crossref_primary_10_1126_sciadv_abn1401
crossref_primary_10_1038_s41567_022_01697_7
crossref_primary_10_1103_PhysRevB_108_235202
crossref_primary_10_1103_PhysRevResearch_3_043173
crossref_primary_10_1103_PhysRevB_111_075111
crossref_primary_10_1088_1674_1056_acbd2c
crossref_primary_10_1039_D4CP03325F
crossref_primary_10_1007_s11433_020_1690_4
crossref_primary_10_1088_1674_1056_abb305
crossref_primary_10_1007_s42864_022_00140_x
crossref_primary_10_1038_s41467_024_53440_w
crossref_primary_10_1103_PhysRevB_108_165122
crossref_primary_10_1088_1674_1056_ada7d9
crossref_primary_10_1103_PhysRevResearch_2_033087
crossref_primary_10_1103_PhysRevB_104_035202
crossref_primary_10_1039_D2NR03283J
crossref_primary_10_1007_s12274_023_5716_9
crossref_primary_10_1103_PhysRevB_108_235432
crossref_primary_10_1103_PhysRevB_108_155106
crossref_primary_10_1103_PhysRevB_110_165406
crossref_primary_10_1002_adma_202406290
crossref_primary_10_1103_PhysRevB_111_045113
crossref_primary_10_1103_PhysRevLett_128_247402
crossref_primary_10_1007_s11467_021_1143_0
crossref_primary_10_1038_s41586_020_2255_3
crossref_primary_10_1038_s41467_024_54886_8
crossref_primary_10_1038_s41567_020_0825_9
crossref_primary_10_1103_PhysRevB_103_205411
crossref_primary_10_1103_PhysRevB_103_205412
crossref_primary_10_1103_PhysRevB_103_205413
crossref_primary_10_1088_1674_1056_ad7c2a
crossref_primary_10_1103_PhysRevB_103_205414
crossref_primary_10_1103_PhysRevB_103_205415
crossref_primary_10_1103_PhysRevB_103_205416
crossref_primary_10_1103_PhysRevB_104_214403
crossref_primary_10_21468_SciPostPhysLectNotes_67
crossref_primary_10_1038_s41535_022_00520_z
crossref_primary_10_1039_D4MH01087F
crossref_primary_10_1103_PhysRevB_111_115416
crossref_primary_10_1103_PhysRevB_107_235155
crossref_primary_10_1103_PhysRevX_15_011052
crossref_primary_10_1002_adma_202200625
crossref_primary_10_1038_s41598_024_68044_z
crossref_primary_10_1103_PhysRevLett_127_246403
crossref_primary_10_1021_acs_jpclett_1c03384
crossref_primary_10_1103_PhysRevB_111_115410
crossref_primary_10_1088_1361_648X_abd526
crossref_primary_10_1103_PhysRevB_102_205111
crossref_primary_10_1007_s12648_024_03169_5
crossref_primary_10_1002_adma_202312125
crossref_primary_10_1103_PhysRevB_103_205403
crossref_primary_10_1038_s42005_022_01034_7
crossref_primary_10_1103_PhysRevB_108_155111
crossref_primary_10_1002_adma_202300391
crossref_primary_10_1103_PhysRevLett_125_086401
crossref_primary_10_1103_PhysRevB_107_125423
crossref_primary_10_1103_PhysRevB_110_165401
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1103_PhysRevB_109_155408
crossref_primary_10_1103_PhysRevLett_127_027601
crossref_primary_10_1126_science_abm0091
crossref_primary_10_1103_PhysRevB_102_241403
crossref_primary_10_1103_PhysRevLett_131_136502
crossref_primary_10_1021_acs_jpclett_4c03542
crossref_primary_10_1103_PhysRevB_107_L081403
crossref_primary_10_1103_PhysRevB_110_115125
crossref_primary_10_1103_PhysRevResearch_2_023237
crossref_primary_10_1103_PhysRevResearch_2_023238
crossref_primary_10_1002_adma_202313004
crossref_primary_10_1103_PhysRevB_110_024109
crossref_primary_10_1103_PhysRevLett_126_146402
crossref_primary_10_1038_s41467_022_35316_z
crossref_primary_10_1038_s41565_024_01698_y
crossref_primary_10_1038_s41563_020_0733_5
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1103_PhysRevLett_127_037402
crossref_primary_10_1038_s41563_020_00911_2
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1038_s41467_023_43796_w
crossref_primary_10_1103_PhysRevB_106_184517
crossref_primary_10_1103_PhysRevB_110_035418
crossref_primary_10_1007_s12274_022_5025_8
crossref_primary_10_1038_s41567_023_02327_6
crossref_primary_10_1103_PhysRevResearch_5_L012005
crossref_primary_10_1038_s41586_021_03979_1
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_1007_s12274_024_6936_3
crossref_primary_10_1088_1674_1056_ad9e96
crossref_primary_10_1038_s41586_020_03159_7
crossref_primary_10_1021_acs_nanolett_2c01421
crossref_primary_10_1038_s41467_021_27042_9
crossref_primary_10_1103_PhysRevLett_124_126402
crossref_primary_10_1038_s41567_024_02444_w
crossref_primary_10_1038_s41586_021_04173_z
crossref_primary_10_1038_s41567_023_02060_0
crossref_primary_10_1021_acs_nanolett_3c01651
crossref_primary_10_1038_s41586_021_03252_5
crossref_primary_10_1103_PhysRevB_102_085103
crossref_primary_10_1126_sciadv_adu6686
crossref_primary_10_7498_aps_72_20231324
crossref_primary_10_1038_s41467_024_55432_2
crossref_primary_10_1103_PhysRevB_110_035427
crossref_primary_10_1103_PhysRevLett_133_186301
crossref_primary_10_7498_aps_72_20230497
crossref_primary_10_1038_s41586_023_07010_7
crossref_primary_10_1063_5_0218675
crossref_primary_10_1021_acs_nanolett_4c01880
crossref_primary_10_1038_s42005_024_01722_6
crossref_primary_10_1002_adfm_202419321
crossref_primary_10_1103_PhysRevB_104_115167
crossref_primary_10_1103_PhysRevB_110_L121117
crossref_primary_10_1103_PhysRevB_110_115147
crossref_primary_10_1038_s41567_022_01584_1
crossref_primary_10_1039_D4TC04282D
crossref_primary_10_1126_science_adf2040
crossref_primary_10_1016_j_carbon_2025_120131
crossref_primary_10_1038_s41565_023_01520_1
crossref_primary_10_1016_j_cpc_2022_108632
crossref_primary_10_1038_s41567_023_01979_8
crossref_primary_10_1038_s41586_021_03702_0
crossref_primary_10_1021_acs_nanolett_1c01207
crossref_primary_10_1073_pnas_2118482119
crossref_primary_10_1103_PhysRevB_109_L041403
crossref_primary_10_7498_aps_70_20210929
crossref_primary_10_1038_s41586_022_04520_8
crossref_primary_10_1103_PhysRevB_108_094115
crossref_primary_10_1038_s41586_023_06226_x
crossref_primary_10_1126_science_abd3230
crossref_primary_10_1063_1_5145172
crossref_primary_10_1103_PhysRevB_110_L121123
crossref_primary_10_1021_acs_nanolett_4c01411
crossref_primary_10_1038_s41467_022_32493_9
crossref_primary_10_1103_PhysRevB_110_115154
crossref_primary_10_21468_SciPostPhys_13_2_033
crossref_primary_10_1038_s43246_024_00615_z
crossref_primary_10_1021_acs_nanolett_1c00360
crossref_primary_10_1021_acs_nanolett_2c04957
crossref_primary_10_1103_PhysRevLett_128_036402
crossref_primary_10_1103_PhysRevB_102_041301
crossref_primary_10_1038_s41467_020_20802_z
crossref_primary_10_1038_s41586_021_04171_1
crossref_primary_10_1021_acs_nanolett_3c01672
crossref_primary_10_1364_OPTICA_498089
crossref_primary_10_1126_science_adg4268
crossref_primary_10_1103_PhysRevB_108_L201120
crossref_primary_10_1038_s41467_023_39855_x
crossref_primary_10_1088_2053_1583_ac3259
Cites_doi 10.1126/sciadv.1500740
10.1103/PhysRevLett.124.166601
10.1126/science.1244358
10.1126/science.1195709
10.1103/PhysRevLett.61.2015
10.1103/PhysRevResearch.1.033126
10.1103/PhysRevLett.110.216601
10.1038/ncomms9474
10.1126/science.1237240
10.1038/nmat3130
10.1063/1.4921093
10.1038/s41567-019-0596-3
10.1021/acs.nanolett.5b05263
10.1073/pnas.1810003115
10.1126/science.1234414
10.1103/PhysRevB.82.121407
10.1103/PhysRevLett.113.137201
10.1063/1.4935075
10.1126/science.aav1910
10.1126/science.1187485
10.1073/pnas.1424322112
10.1103/PhysRev.108.1394
10.1126/science.aaw3780
10.1038/nmat4204
10.1103/PhysRevLett.111.136801
10.1038/nature26154
10.1126/science.aan5991
10.1073/pnas.1108174108
10.1038/s41586-020-2255-3
10.1063/1.5009718
10.1063/1.338202
10.1038/nmat3973
10.1126/sciadv.1600167
10.1126/science.aan8458
10.1103/PhysRevB.99.075127
10.1038/s41586-019-1695-0
10.1073/pnas.1424760112
10.1038/s41467-019-10553-x
10.1038/s41586-020-2049-7
10.1126/science.aay5533
10.1038/nature23893
10.1038/s41567-018-0387-2
10.1038/nature26160
10.1038/nphys3053
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.aay5533
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 903
ExternalDocumentID 1600874
31857492
10_1126_science_aay5533
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
63O
6XO
ABPTK
ABQIS
AEXZC
AFUVZ
AGCDD
ANJGP
B-7
OTOTI
PK8
PQEST
UMP
XFK
ZA5
ID FETCH-LOGICAL-c352t-a93e8d6b63c0744a60f99f91f4d6161bdf3c6aee02e4c240b856dcef3ed57c53
ISSN 0036-8075
1095-9203
IngestDate Fri May 19 01:13:16 EDT 2023
Thu Jul 10 18:21:57 EDT 2025
Fri Jul 25 10:42:29 EDT 2025
Wed Feb 19 02:30:21 EST 2025
Tue Jul 01 01:51:36 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6480
Language English
License Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-a93e8d6b63c0744a60f99f91f4d6161bdf3c6aee02e4c240b856dcef3ed57c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
FG02-08ER46524
USDOE
ORCID 0000-0002-8906-3950
0000-0001-8223-8896
0000-0003-0369-0230
0000-0003-3701-8119
0000-0002-2377-2711
0000-0001-5954-8028
0000000159548028
0000000289063950
0000000182238896
0000000303690230
0000000223772711
0000000337018119
PMID 31857492
PQID 2328930390
PQPubID 1256
PageCount 4
ParticipantIDs osti_scitechconnect_1600874
proquest_miscellaneous_2329728330
proquest_journals_2328930390
pubmed_primary_31857492
crossref_citationtrail_10_1126_science_aay5533
crossref_primary_10_1126_science_aay5533
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-21
PublicationDateYYYYMMDD 2020-02-21
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
32079757 - Science. 2020 Feb 21;367(6480):848-849
References_xml – ident: e_1_3_3_13_2
  doi: 10.1126/sciadv.1500740
– ident: e_1_3_3_19_2
  doi: 10.1103/PhysRevLett.124.166601
– ident: e_1_3_3_41_2
  doi: 10.1126/science.1244358
– ident: e_1_3_3_35_2
  doi: 10.1126/science.1195709
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevLett.61.2015
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevResearch.1.033126
– ident: e_1_3_3_45_2
  doi: 10.1103/PhysRevLett.110.216601
– ident: e_1_3_3_8_2
  doi: 10.1038/ncomms9474
– ident: e_1_3_3_34_2
  doi: 10.1126/science.1237240
– ident: e_1_3_3_48_2
  doi: 10.1038/nmat3130
– ident: e_1_3_3_15_2
  doi: 10.1063/1.4921093
– ident: e_1_3_3_46_2
  doi: 10.1038/s41567-019-0596-3
– ident: e_1_3_3_39_2
  doi: 10.1021/acs.nanolett.5b05263
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1810003115
– ident: e_1_3_3_5_2
  doi: 10.1126/science.1234414
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevB.82.121407
– ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevLett.113.137201
– ident: e_1_3_3_7_2
  doi: 10.1063/1.4935075
– ident: e_1_3_3_26_2
  doi: 10.1126/science.aav1910
– ident: e_1_3_3_12_2
  doi: 10.1126/science.1187485
– ident: e_1_3_3_14_2
  doi: 10.1073/pnas.1424322112
– ident: e_1_3_3_47_2
  doi: 10.1103/PhysRev.108.1394
– ident: e_1_3_3_28_2
  doi: 10.1126/science.aaw3780
– ident: e_1_3_3_6_2
  doi: 10.1038/nmat4204
– ident: e_1_3_3_10_2
  doi: 10.1103/PhysRevLett.111.136801
– ident: e_1_3_3_24_2
  doi: 10.1038/nature26154
– ident: e_1_3_3_16_2
  doi: 10.1126/science.aan5991
– ident: e_1_3_3_33_2
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1108174108
– ident: e_1_3_3_43_2
  doi: 10.1038/s41586-020-2255-3
– ident: e_1_3_3_3_2
  doi: 10.1063/1.5009718
– ident: e_1_3_3_42_2
  doi: 10.1063/1.338202
– ident: e_1_3_3_37_2
  doi: 10.1038/nmat3973
– ident: e_1_3_3_31_2
  doi: 10.1126/sciadv.1600167
– ident: e_1_3_3_44_2
  doi: 10.1126/science.aan8458
– ident: e_1_3_3_18_2
  doi: 10.1103/PhysRevB.99.075127
– ident: e_1_3_3_27_2
  doi: 10.1038/s41586-019-1695-0
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.1424760112
– ident: e_1_3_3_36_2
  doi: 10.1038/s41467-019-10553-x
– ident: e_1_3_3_29_2
  doi: 10.1038/s41586-020-2049-7
– ident: e_1_3_3_38_2
  doi: 10.1126/science.aay5533
– ident: e_1_3_3_40_2
  doi: 10.1038/nature23893
– ident: e_1_3_3_23_2
  doi: 10.1038/s41567-018-0387-2
– ident: e_1_3_3_32_2
– ident: e_1_3_3_25_2
  doi: 10.1038/nature26160
– ident: e_1_3_3_11_2
  doi: 10.1038/nphys3053
– reference: 32079757 - Science. 2020 Feb 21;367(6480):848-849
SSID ssj0009593
Score 2.7313063
Snippet Quantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in thin films of the topological insulator...
The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the...
Quantum anomalous Hall goes intrinsicQuantum anomalous Hall effect—the appearance of quantized Hall conductance at zero magnetic field—has been observed in...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 900
SubjectTerms Boron
Conductance
Electromagnetism
Graphene
Hall effect
Heterostructures
Magnetic fields
Magnetism
Thin films
Topology
Title Intrinsic quantized anomalous Hall effect in a moiré heterostructure
URI https://www.ncbi.nlm.nih.gov/pubmed/31857492
https://www.proquest.com/docview/2328930390
https://www.proquest.com/docview/2329728330
https://www.osti.gov/biblio/1600874
Volume 367
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdKJyReEBv_ug1kJB6GpkRp7LjNYzY2FQQIaUUaT5HjOFqkLpnW8NB9Gl75HPtiu4sdEwZFjJeocpzWvd_Fvjuff0fI63EuI1g2c4_JgnsczDdvypnwmBCxzDDXRmG84-MnMfvC359Gp4PB917W0rcm89XVH8-V_A-q0Aa44inZOyDrvhQa4DPgC1dAGK7_hPG7qrksK5Azno2smvJKI_FqfS4XmNg6w11nk6-BUQ25f16XdmMc7EOQZ23IYy2nSGeidm87mJ5uO6cHostLTEz2QJdMYB_rRRZOWiatNuLquwABONPl5Zk0B4UO_f0P7tbnerE8W7X9Z67RxbO_-v34BDijeN67l-tx95G2fzBJTroR26nbMiebhcvM1gEWmgwD1p_OmSnvYfVWcFMo6veVolfbUvtSrqLIMHLcot8eC2Tt4_fIRgiOCMykG8nB24PjtcTOlj6qdzCr-_JfLJ8hQFyu92pa62b-iDy0bglNjI5tkoGutsh9U6h0tUU2rcyWdM_ylL95TI6c-lGnftSpH0X1o0b9aFlRSVH9rn_QW6r3hMyPj-aHM89W5fAUGOuNJ2Omp7nIBFNgfnIpgiKOi3hc8FyA-5DlBVNCah2EmiuwF7NpJHKlC6bzaKIi9pQMq7rSzwmd5jGy2bE8DOBhNpaRDrFAnYaFJ9QqGBG_E1iqLGM9Fk5ZpK3nGorUSji1Eh6RPffAhSFrWd91BxHAZiRLVphVpprUoj0iux0wqX3flyn4HmDcByyGgb1yt2E2xi02WWkQLfaJJ2CxM-jzzADqRoI8BRMeh9t__ekd8uDnW7RLhoCGfgF2b5O9tKp3A3gesH0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+quantized+anomalous+Hall+effect+in+a+moir%C3%A9+heterostructure&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Serlin%2C+M.&rft.au=Tschirhart%2C+C.+L.&rft.au=Polshyn%2C+H.&rft.au=Zhang%2C+Y.&rft.date=2020-02-21&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=367&rft.issue=6480&rft_id=info:doi/10.1126%2Fscience.aay5533&rft.externalDocID=1600874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon