Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers

Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 489; pp. 599 - 612
Main Authors Hoshino, Takayuki, Kanoga, Suguru, Tsubaki, Masashi, Aoyama, Atsushi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and pre-trained classifiers can be applied to sEMG data to reduce the measurement time. However, little knowledge is available regarding the combination of transfer learning methods and classifiers in sEMG data applications. Thus, we investigated the classification accuracy of data- and parameter-space-based transfer learning with shallow or deep classifiers in cross-subject sEMG classification. The dataset contains eight classes of forearm motions recorded from 25 volunteer participants. We used a support vector machine (SVM) as a shallow classifier as well as a deep neural network architecture, referred to as an artificial neural network (ANN), as a deep classifier. In addition, we used style transfer mapping (STM) as a data-space-based transfer learning method and fine-tuning (FT) as a parameter-space-based transfer learning method. Consequently, the classification accuracy of the ANN was higher than that of the SVM, regardless of the combinational use of transfer learning. STM and FT significantly improved the classification accuracy compared with non-transfer cases regardless of the classifier (note that FT can only be used with the ANN). In particular, the combined use of FT and the ANN yielded the best accuracy. These findings suggest that parameter-space-based transfer learning and deep classifiers are suitable for cross-subject sEMG classification. The combined use of parameter-space-based transfer learning and deep classifiers can effectively reduce the data measurement time of sEMG-based HCI applications.
AbstractList Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and pre-trained classifiers can be applied to sEMG data to reduce the measurement time. However, little knowledge is available regarding the combination of transfer learning methods and classifiers in sEMG data applications. Thus, we investigated the classification accuracy of data- and parameter-space-based transfer learning with shallow or deep classifiers in cross-subject sEMG classification. The dataset contains eight classes of forearm motions recorded from 25 volunteer participants. We used a support vector machine (SVM) as a shallow classifier as well as a deep neural network architecture, referred to as an artificial neural network (ANN), as a deep classifier. In addition, we used style transfer mapping (STM) as a data-space-based transfer learning method and fine-tuning (FT) as a parameter-space-based transfer learning method. Consequently, the classification accuracy of the ANN was higher than that of the SVM, regardless of the combinational use of transfer learning. STM and FT significantly improved the classification accuracy compared with non-transfer cases regardless of the classifier (note that FT can only be used with the ANN). In particular, the combined use of FT and the ANN yielded the best accuracy. These findings suggest that parameter-space-based transfer learning and deep classifiers are suitable for cross-subject sEMG classification. The combined use of parameter-space-based transfer learning and deep classifiers can effectively reduce the data measurement time of sEMG-based HCI applications.
Author Hoshino, Takayuki
Tsubaki, Masashi
Aoyama, Atsushi
Kanoga, Suguru
Author_xml – sequence: 1
  givenname: Takayuki
  surname: Hoshino
  fullname: Hoshino, Takayuki
  email: starfy@keio.jp
  organization: Graduate School of Media and Governance, Shonan Fujisawa Campus (SFC), Keio University, Kanagawa 252-0882, Japan
– sequence: 2
  givenname: Suguru
  surname: Kanoga
  fullname: Kanoga, Suguru
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
– sequence: 3
  givenname: Masashi
  surname: Tsubaki
  fullname: Tsubaki, Masashi
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
– sequence: 4
  givenname: Atsushi
  surname: Aoyama
  fullname: Aoyama, Atsushi
  organization: Faculty of Environment and Information Studies, Shonan Fujisawa Campus (SFC), Keio University, Kanagawa 252-0882, Japan
BookMark eNqFkMtqGzEUhkVxoM7lDbLQC8xUF89FXRSCadOCIZt2LY6lI1tmRjKSHONnyEtnXHvVRbM6Z_F_P_zfLZmFGJCQR85qznj7ZVcHPJg41oIJXnNRs55_InPed6LqRd_OyJwp0VRCcvGZ3Oa8Y4x3XKg5eVvGcQ_Jhw3Nh_UOTalKrK4vLQlCdpjogJDCOTRi2UabqQ9TPjkwSHGYoimOp7hJMFZryGjpGIuPgSY0cRP83__oy5bmLQxDPFIIllrEPTUD5Oydx5TvyY2DIePD9d6RPz--_17-rFYvz7-WT6vKyEaUCnoAbls0thdKdbJl1nag7MI5kNwpxRVvbCcXtnFr1UgLUjTN2rXONQsrpLwji0uvSTHnhE7vkx8hnTRn-ixU7_RFqD4L1VzoSeiEff0HM77AedqkyQ8fwd8uME7DXqe1OhuPwaD1k6OibfT_L3gHAU-bjA
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106261
crossref_primary_10_1016_j_engappai_2024_108952
crossref_primary_10_1109_TIM_2022_3220286
crossref_primary_10_1016_j_bspc_2024_106828
crossref_primary_10_1088_1741_2552_ad1786
crossref_primary_10_1016_j_bspc_2022_104424
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1016_j_engappai_2023_107251
crossref_primary_10_1016_j_bspc_2024_106803
crossref_primary_10_3389_fnins_2022_977328
crossref_primary_10_1016_j_ymssp_2024_111644
crossref_primary_10_1109_TNSRE_2023_3295453
crossref_primary_10_1109_TNSRE_2024_3486444
crossref_primary_10_1109_ACCESS_2024_3508799
crossref_primary_10_1088_1741_2552_acb7a0
crossref_primary_10_1109_JBHI_2024_3354909
crossref_primary_10_1016_j_eswa_2023_121055
crossref_primary_10_14326_abe_13_363
Cites_doi 10.3390/s19122811
10.1007/s00521-019-04553-7
10.1016/j.neunet.2009.06.003
10.1016/0013-4694(52)90008-4
10.1016/j.physleta.2008.10.049
10.1109/TNSRE.2015.2492619
10.1109/ICARCV.2018.8581206
10.3389/fneur.2020.00145
10.1109/TKDE.2009.191
10.1186/1475-925X-9-41
10.1002/int.1068
10.1109/TPAMI.2012.239
10.1109/10.740879
10.1109/TNN.2010.2091281
10.1109/TBME.2013.2250502
10.1016/j.bspc.2007.07.009
10.1371/journal.pone.0186132
10.1109/TBME.2003.813539
10.1109/RBME.2010.2085429
10.1016/j.neuroimage.2018.03.032
10.1109/TNSRE.2011.2178039
10.1109/JBHI.2013.2249590
10.1016/j.bspc.2021.102817
10.1109/TBME.2005.856295
10.1152/jn.00222.2005
10.1016/j.bspc.2007.09.002
10.1016/j.sna.2020.112046
10.1109/JBHI.2013.2284476
10.1016/j.jelekin.2006.08.006
10.1109/JAS.2021.1003865
10.1117/12.2076119
10.3390/robotics2040187
10.7717/peerj-cs.218
10.1609/aaai.v30i1.10306
10.1016/j.eswa.2011.06.043
10.3390/s19143170
10.3390/app9204402
10.3389/fnbot.2016.00009
10.1007/s12555-019-0802-1
10.1109/EMBC44109.2020.9175755
10.3390/s19163548
10.1109/TMECH.2007.897262
10.3390/s20143994
10.1109/TNSRE.2014.2304470
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.neucom.2021.12.081
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 612
ExternalDocumentID 10_1016_j_neucom_2021_12_081
S0925231221019378
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c352t-a8aa1d6ecd82997360dd7a9d4ffa31f991915d734d5fb953da3255bf6ff54d233
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:53:22 EDT 2025
Tue Jul 01 04:24:46 EDT 2025
Fri Feb 23 02:39:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Surface electromyogram
Style transfer mapping
Transfer learning
Motion recognition
Fine tuning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a8aa1d6ecd82997360dd7a9d4ffa31f991915d734d5fb953da3255bf6ff54d233
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925231221019378
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_neucom_2021_12_081
crossref_citationtrail_10_1016_j_neucom_2021_12_081
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_12_081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-07
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Tech. rep., Stanford (2006).
Lee, Grosse, Ranganath, Ng (b0170) 2009
I. Sosin, D. Kudenko, A. Shpilman, Continuous gesture recognition from semg sensor data with recurrent neural networks and adversarial domain adaptation, in: 2018 15Th international conference on control, automation, robotics and vision (ICARCV), IEEE, 2018, pp. 1436–1441.
Yasen, Jusoh (b0130) 2019; 5
Xu, Zhang, Luo, Chen (b0020) 2013; 2
Pizzolato, Tagliapietra, Cognolato, Reggiani, Müller, Atzori (b0265) 2017; 12
Chu, Moon, Lee, Kim, Mun (b0045) 2007; 12
U. Côté-Allard, G. Gagnon-Turcotte, F. Laviolette, B. Gosselin, A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition, Sensors 19(12).
Qi, Wu, Chen, Liu, Zhang, Wang (b0120) 2020
Zhang, Liu (b0090) 2012; 35
Matsubara, Morimoto (b0220) 2013; 60
T. Hoshino, S. Kanoga, M. Tsubaki, A. Aoyama, Analysis and usage: Subject-to-subject linear domain adaptation in sEMG classification, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 674–677.
Xiong, Zhang, Zhao, Zhao (b0055) 2021; 8
Han, Jo (b0230) 2013; 18
Pan, Tsang, Kwok, Yang (b0070) 2010; 22
Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network, Sensors 19(14).
Al-Timemy, Bugmann, Escudero, Outram (b0040) 2013; 17
Z.O. Khokhar, Z.G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton, Biomed. Eng. Online 9 (1).
Duan, Liu, Yu, Li, Yeh (b0235) 2019; 15
M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Front. Neurorobot. 10.
Huang, Englehart, Hudgins, Chan (b0155) 2005; 52
Vidovic, Hwang, Amsüss, Hahne, Farina, Müller (b0105) 2015; 24
V.T. Inman, H.J. Ralston, J.B. d. C.M. Saunders, M.B.B. Feinstein, E.W. Wright Jr, Relation of human electromyogram to muscular tension, Electroencephalogr. Clin. Neurophysiol. 4 (2) (1952) 187–194.
Lucas, Gaufriau, Pascual, Doncarli, Farina (b0195) 2008; 3
Amatanon, Chanhang, Naiyanetr, Thongpang (b0205) 2014
Englehart, Hudgins (b0150) 2003; 50
Toledo-Pérez, Rodríguez-Reséndiz, Gómez-Loenzo, Jauregui-Correa (b0125) 2019; 9
Seber, Lee (b0185) 2012; Vol. 329
Oskoei, Hu (b0010) 2007; 2
Pan, Yang (b0190) 2009; 22
J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical chinese character recognition, in: Document Recognition and Retrieval XXII, vol. 9402, International Society for Optics and Photonics, 2015, p. 94020D.
Parker, Englehart, Hudgins (b0005) 2006; 16
Li, Qiu, Shen, Liu, He (b0095) 2019; 50
Xie, He, Liu (b0140) 2008; 372
J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Adv. Neural Inf. Process. Syst., 2014, pp. 3320–3328.
Kanoga, Hoshino, Asoh (b0135) 2021; 68
Zhang, He, Yang (b0260) 2020; 20
P. Kaczmarek, T. Mańkowski, J. Tomczyński, putEMG–a surface electromyography hand gesture recognition dataset, Sensors 19 (16).
Tresch, Cheung, d’Avella (b0250) 2006; 95
De Cooman, Vandecasteele, Varon, Hunyadi, Cleeren, Van Paesschen, Van Huffel (b0285) 2020; 11
Kanoga, Hoshino, Asoh (b0100) 2020
Wei, Lin, Wang, Lin, Jung (b0180) 2018; 174
Khushaba (b0215) 2014; 22
B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.
Demir, Bajaj, Ince, Taran, Şengür (b0115) 2019; 31
Christodoulou, Pattichis (b0030) 1999; 46
Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (b0175) 2009; 22
Phinyomark, Chujit, Phukpattaranont, Limsakul, Hu (b0275) 2012
Bezdek, Kuncheva (b0165) 2001; 16
Chattopadhyay, Krishnan, Panchanathan (b0075) 2011
Allard, Nougarou, Fall, Giguère, Gosselin, Laviolette, Gosselin (b0255) 2016
Oh, Jo (b0240) 2021; 19
Micera, Carpaneto, Raspopovic (b0025) 2010; 3
X. Jiang, B. Bardizbanian, C. Dai, W. Chen, E.A. Clancy, Data management for transfer learning approaches to elbow emg-torque modeling, IEEE Transactions on Biomedical Engineering.
Muceli, Farina (b0270) 2011; 20
Kanoga, Kanemura (b0145) 2018
Alkan, Günay (b0200) 2012; 39
Huang (10.1016/j.neucom.2021.12.081_b0155) 2005; 52
Lucas (10.1016/j.neucom.2021.12.081_b0195) 2008; 3
Micera (10.1016/j.neucom.2021.12.081_b0025) 2010; 3
Xie (10.1016/j.neucom.2021.12.081_b0140) 2008; 372
Toledo-Pérez (10.1016/j.neucom.2021.12.081_b0125) 2019; 9
Duan (10.1016/j.neucom.2021.12.081_b0235) 2019; 15
Qi (10.1016/j.neucom.2021.12.081_b0120) 2020
Kanoga (10.1016/j.neucom.2021.12.081_b0135) 2021; 68
Pan (10.1016/j.neucom.2021.12.081_b0070) 2010; 22
10.1016/j.neucom.2021.12.081_b0225
Chattopadhyay (10.1016/j.neucom.2021.12.081_b0075) 2011
Tresch (10.1016/j.neucom.2021.12.081_b0250) 2006; 95
10.1016/j.neucom.2021.12.081_b0065
Kanoga (10.1016/j.neucom.2021.12.081_b0145) 2018
Parker (10.1016/j.neucom.2021.12.081_b0005) 2006; 16
Alkan (10.1016/j.neucom.2021.12.081_b0200) 2012; 39
10.1016/j.neucom.2021.12.081_b0060
Englehart (10.1016/j.neucom.2021.12.081_b0150) 2003; 50
Chu (10.1016/j.neucom.2021.12.081_b0045) 2007; 12
Phinyomark (10.1016/j.neucom.2021.12.081_b0275) 2012
Seber (10.1016/j.neucom.2021.12.081_b0185) 2012; Vol. 329
Lee (10.1016/j.neucom.2021.12.081_b0170) 2009
Zhang (10.1016/j.neucom.2021.12.081_b0260) 2020; 20
Kanoga (10.1016/j.neucom.2021.12.081_b0100) 2020
Demir (10.1016/j.neucom.2021.12.081_b0115) 2019; 31
Christodoulou (10.1016/j.neucom.2021.12.081_b0030) 1999; 46
Zhang (10.1016/j.neucom.2021.12.081_b0090) 2012; 35
10.1016/j.neucom.2021.12.081_b0015
10.1016/j.neucom.2021.12.081_b0210
Amatanon (10.1016/j.neucom.2021.12.081_b0205) 2014
Pan (10.1016/j.neucom.2021.12.081_b0190) 2009; 22
10.1016/j.neucom.2021.12.081_b0050
Fazli (10.1016/j.neucom.2021.12.081_b0175) 2009; 22
Bezdek (10.1016/j.neucom.2021.12.081_b0165) 2001; 16
Yasen (10.1016/j.neucom.2021.12.081_b0130) 2019; 5
Xu (10.1016/j.neucom.2021.12.081_b0020) 2013; 2
Li (10.1016/j.neucom.2021.12.081_b0095) 2019; 50
Pizzolato (10.1016/j.neucom.2021.12.081_b0265) 2017; 12
De Cooman (10.1016/j.neucom.2021.12.081_b0285) 2020; 11
Oskoei (10.1016/j.neucom.2021.12.081_b0010) 2007; 2
Muceli (10.1016/j.neucom.2021.12.081_b0270) 2011; 20
10.1016/j.neucom.2021.12.081_b0245
Al-Timemy (10.1016/j.neucom.2021.12.081_b0040) 2013; 17
Xiong (10.1016/j.neucom.2021.12.081_b0055) 2021; 8
10.1016/j.neucom.2021.12.081_b0085
10.1016/j.neucom.2021.12.081_b0160
Khushaba (10.1016/j.neucom.2021.12.081_b0215) 2014; 22
10.1016/j.neucom.2021.12.081_b0280
10.1016/j.neucom.2021.12.081_b0080
Oh (10.1016/j.neucom.2021.12.081_b0240) 2021; 19
Han (10.1016/j.neucom.2021.12.081_b0230) 2013; 18
Vidovic (10.1016/j.neucom.2021.12.081_b0105) 2015; 24
Allard (10.1016/j.neucom.2021.12.081_b0255) 2016
Matsubara (10.1016/j.neucom.2021.12.081_b0220) 2013; 60
Wei (10.1016/j.neucom.2021.12.081_b0180) 2018; 174
10.1016/j.neucom.2021.12.081_b0035
10.1016/j.neucom.2021.12.081_b0110
References_xml – volume: 35
  start-page: 1773
  year: 2012
  end-page: 1787
  ident: b0090
  article-title: Writer adaptation with style transfer mapping
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: V.T. Inman, H.J. Ralston, J.B. d. C.M. Saunders, M.B.B. Feinstein, E.W. Wright Jr, Relation of human electromyogram to muscular tension, Electroencephalogr. Clin. Neurophysiol. 4 (2) (1952) 187–194.
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: b0095
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 60
  start-page: 2205
  year: 2013
  end-page: 2213
  ident: b0220
  article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 4402
  year: 2019
  ident: b0125
  article-title: Support vector machine-based emg signal classification techniques: A review
  publication-title: Appl. Sci.
– volume: 15
  start-page: 201
  year: 2019
  end-page: 206
  ident: b0235
  article-title: Classification of multichannel surface-electromyography signals based on convolutional neural networks, Journal of Industrial Information
  publication-title: Integration
– volume: 12
  start-page: 282
  year: 2007
  end-page: 290
  ident: b0045
  article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control
  publication-title: IEEE ASME Trans. Mechatron.
– reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Adv. Neural Inf. Process. Syst., 2014, pp. 3320–3328.
– volume: 5
  year: 2019
  ident: b0130
  article-title: A systematic review on hand gesture recognition techniques, challenges and applications
  publication-title: PeerJ Comput. Sci.
– start-page: 1
  year: 2012
  end-page: 4
  ident: b0275
  article-title: A preliminary study assessing time-domain emg features of classifying exercises in preventing falls in the elderly
  publication-title: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: b0070
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
– volume: 3
  start-page: 169
  year: 2008
  end-page: 174
  ident: b0195
  article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization
  publication-title: Biomed. Signal Process. Control
– volume: Vol. 329
  year: 2012
  ident: b0185
  publication-title: Linear regression analysis
– volume: 24
  start-page: 961
  year: 2015
  end-page: 970
  ident: b0105
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 174
  start-page: 407
  year: 2018
  end-page: 419
  ident: b0180
  article-title: A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection
  publication-title: NeuroImage
– volume: 3
  start-page: 48
  year: 2010
  end-page: 68
  ident: b0025
  article-title: Control of hand prostheses using peripheral information
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 50
  start-page: 848
  year: 2003
  end-page: 854
  ident: b0150
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
– reference: T. Hoshino, S. Kanoga, M. Tsubaki, A. Aoyama, Analysis and usage: Subject-to-subject linear domain adaptation in sEMG classification, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 674–677.
– volume: 31
  start-page: 8455
  year: 2019
  end-page: 8462
  ident: b0115
  article-title: Surface EMG signals and deep transfer learning-based physical action classification
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b0120
  article-title: sEMG-based recognition of composite motion with convolutional neural network
  publication-title: Sens. Actuators A
– reference: I. Sosin, D. Kudenko, A. Shpilman, Continuous gesture recognition from semg sensor data with recurrent neural networks and adversarial domain adaptation, in: 2018 15Th international conference on control, automation, robotics and vision (ICARCV), IEEE, 2018, pp. 1436–1441.
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: b0010
  article-title: Myoelectric control systems–a survey
  publication-title: Biomed. Signal Process. Control
– reference: P. Kaczmarek, T. Mańkowski, J. Tomczyński, putEMG–a surface electromyography hand gesture recognition dataset, Sensors 19 (16).
– volume: 22
  start-page: 745
  year: 2014
  end-page: 755
  ident: b0215
  article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– reference: Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network, Sensors 19(14).
– volume: 20
  start-page: 371
  year: 2011
  end-page: 378
  ident: b0270
  article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 372
  start-page: 7140
  year: 2008
  end-page: 7146
  ident: b0140
  article-title: Measuring time series regularity using nonlinear similarity-based sample entropy
  publication-title: Phys. Lett. A
– volume: 22
  start-page: 1305
  year: 2009
  end-page: 1312
  ident: b0175
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Networks
– reference: U. Côté-Allard, G. Gagnon-Turcotte, F. Laviolette, B. Gosselin, A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition, Sensors 19(12).
– reference: M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Front. Neurorobot. 10.
– volume: 52
  start-page: 1801
  year: 2005
  end-page: 1811
  ident: b0155
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 1443
  year: 2021
  end-page: 1450
  ident: b0240
  article-title: Classification of hand gestures based on multi-channel emg by scale average wavelet transform and convolutional neural network
  publication-title: Int. J. Control Autom. Syst.
– volume: 12
  year: 2017
  ident: b0265
  article-title: Comparison of six electromyography acquisition setups on hand movement classification tasks
  publication-title: PloS One
– volume: 39
  start-page: 44
  year: 2012
  end-page: 47
  ident: b0200
  article-title: Identification of EMG signals using discriminant analysis and SVM classifier
  publication-title: Expert Syst. Appl.
– year: 2011
  ident: b0075
  article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal
  publication-title: in: 2011 AAAI Spring symposium series
– volume: 46
  start-page: 169
  year: 1999
  end-page: 178
  ident: b0030
  article-title: Unsupervised pattern recognition for the classification of EMG signals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 20
  start-page: 3994
  year: 2020
  ident: b0260
  article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network
  publication-title: Sensors
– volume: 17
  start-page: 608
  year: 2013
  end-page: 618
  ident: b0040
  article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 8
  start-page: 512
  year: 2021
  end-page: 533
  ident: b0055
  article-title: Deep learning for EMG-based human–machine interaction: A review
  publication-title: IEEE/CAA J. Autom. Sin.
– reference: Z.O. Khokhar, Z.G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton, Biomed. Eng. Online 9 (1).
– volume: 18
  start-page: 1214
  year: 2013
  end-page: 1224
  ident: b0230
  article-title: Supervised hierarchical Bayesian model-based electomyographic control and analysis
  publication-title: IEEE J. Biomed. Health. Inf.
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b0190
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical chinese character recognition, in: Document Recognition and Retrieval XXII, vol. 9402, International Society for Optics and Photonics, 2015, p. 94020D.
– reference: B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016.
– start-page: 609
  year: 2009
  end-page: 616
  ident: b0170
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
  publication-title: Proceedings of the 26th annual international conference on machine learning (ICML)
– volume: 16
  start-page: 541
  year: 2006
  end-page: 548
  ident: b0005
  article-title: Myoelectric signal processing for control of powered limb prostheses
  publication-title: J. Electromyogr. Kinesiol.
– volume: 95
  start-page: 2199
  year: 2006
  end-page: 2212
  ident: b0250
  article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets
  publication-title: J. Neurophysiol.
– start-page: 1478
  year: 2018
  end-page: 1483
  ident: b0145
  article-title: Assessing the effect of transfer learning on myoelectric control systems with three electrode positions
  publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT), IEEE
– reference: X. Jiang, B. Bardizbanian, C. Dai, W. Chen, E.A. Clancy, Data management for transfer learning approaches to elbow emg-torque modeling, IEEE Transactions on Biomedical Engineering.
– reference: D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Tech. rep., Stanford (2006).
– volume: 68
  year: 2021
  ident: b0135
  article-title: Semi-supervised style transfer mapping-based framework for semg-based pattern recognition with 1-or 2-dof forearm motions
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: 2014
  end-page: 4
  ident: b0205
  article-title: Sign language-Thai alphabet conversion based on electromyogram (EMG)
  publication-title: The 7th 2014 Biomedical Engineering International Conference, IEEE
– start-page: 1349
  year: 2020
  end-page: 1353
  ident: b0100
  article-title: Subject transfer framework based on source selection and semi-supervised style transfer mapping for sEMG pattern recognition
  publication-title: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE
– volume: 2
  start-page: 187
  year: 2013
  end-page: 197
  ident: b0020
  article-title: Robust bio-signal based control of an intelligent wheelchair
  publication-title: Robotics
– volume: 16
  start-page: 1445
  year: 2001
  end-page: 1473
  ident: b0165
  article-title: Nearest prototype classifier designs: An experimental study
  publication-title: Int. J. Intell. Syst.
– start-page: 2464
  year: 2016
  end-page: 2470
  ident: b0255
  article-title: A convolutional neural network for robotic arm guidance using sEMG based frequency-features
  publication-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE
– volume: 11
  start-page: 145
  year: 2020
  ident: b0285
  article-title: Personalizing heart rate-based seizure detection using supervised svm transfer learning
  publication-title: Front. Neurol.
– start-page: 1478
  year: 2018
  ident: 10.1016/j.neucom.2021.12.081_b0145
  article-title: Assessing the effect of transfer learning on myoelectric control systems with three electrode positions
– ident: 10.1016/j.neucom.2021.12.081_b0015
  doi: 10.3390/s19122811
– start-page: 2464
  year: 2016
  ident: 10.1016/j.neucom.2021.12.081_b0255
  article-title: A convolutional neural network for robotic arm guidance using sEMG based frequency-features
– volume: 31
  start-page: 8455
  issue: 12
  year: 2019
  ident: 10.1016/j.neucom.2021.12.081_b0115
  article-title: Surface EMG signals and deep transfer learning-based physical action classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04553-7
– start-page: 609
  year: 2009
  ident: 10.1016/j.neucom.2021.12.081_b0170
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
– volume: 22
  start-page: 1305
  issue: 9
  year: 2009
  ident: 10.1016/j.neucom.2021.12.081_b0175
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.06.003
– volume: Vol. 329
  year: 2012
  ident: 10.1016/j.neucom.2021.12.081_b0185
– ident: 10.1016/j.neucom.2021.12.081_b0060
  doi: 10.1016/0013-4694(52)90008-4
– volume: 372
  start-page: 7140
  issue: 48
  year: 2008
  ident: 10.1016/j.neucom.2021.12.081_b0140
  article-title: Measuring time series regularity using nonlinear similarity-based sample entropy
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.10.049
– volume: 24
  start-page: 961
  issue: 9
  year: 2015
  ident: 10.1016/j.neucom.2021.12.081_b0105
  article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2492619
– ident: 10.1016/j.neucom.2021.12.081_b0280
  doi: 10.1109/ICARCV.2018.8581206
– volume: 11
  start-page: 145
  year: 2020
  ident: 10.1016/j.neucom.2021.12.081_b0285
  article-title: Personalizing heart rate-based seizure detection using supervised svm transfer learning
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2020.00145
– ident: 10.1016/j.neucom.2021.12.081_b0160
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2021.12.081_b0190
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: 10.1016/j.neucom.2021.12.081_b0035
  doi: 10.1186/1475-925X-9-41
– volume: 16
  start-page: 1445
  issue: 12
  year: 2001
  ident: 10.1016/j.neucom.2021.12.081_b0165
  article-title: Nearest prototype classifier designs: An experimental study
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.1068
– volume: 35
  start-page: 1773
  issue: 7
  year: 2012
  ident: 10.1016/j.neucom.2021.12.081_b0090
  article-title: Writer adaptation with style transfer mapping
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.239
– start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2021.12.081_b0275
  article-title: A preliminary study assessing time-domain emg features of classifying exercises in preventing falls in the elderly
– volume: 46
  start-page: 169
  issue: 2
  year: 1999
  ident: 10.1016/j.neucom.2021.12.081_b0030
  article-title: Unsupervised pattern recognition for the classification of EMG signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.740879
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2021.12.081_b0070
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2091281
– volume: 60
  start-page: 2205
  issue: 8
  year: 2013
  ident: 10.1016/j.neucom.2021.12.081_b0220
  article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2250502
– volume: 2
  start-page: 275
  issue: 4
  year: 2007
  ident: 10.1016/j.neucom.2021.12.081_b0010
  article-title: Myoelectric control systems–a survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.07.009
– volume: 12
  issue: 10
  year: 2017
  ident: 10.1016/j.neucom.2021.12.081_b0265
  article-title: Comparison of six electromyography acquisition setups on hand movement classification tasks
  publication-title: PloS One
  doi: 10.1371/journal.pone.0186132
– volume: 15
  start-page: 201
  year: 2019
  ident: 10.1016/j.neucom.2021.12.081_b0235
  article-title: Classification of multichannel surface-electromyography signals based on convolutional neural networks, Journal of Industrial Information
  publication-title: Integration
– volume: 50
  start-page: 848
  issue: 7
  year: 2003
  ident: 10.1016/j.neucom.2021.12.081_b0150
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– volume: 3
  start-page: 48
  year: 2010
  ident: 10.1016/j.neucom.2021.12.081_b0025
  article-title: Control of hand prostheses using peripheral information
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2085429
– ident: 10.1016/j.neucom.2021.12.081_b0085
– volume: 174
  start-page: 407
  year: 2018
  ident: 10.1016/j.neucom.2021.12.081_b0180
  article-title: A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.032
– start-page: 1349
  year: 2020
  ident: 10.1016/j.neucom.2021.12.081_b0100
  article-title: Subject transfer framework based on source selection and semi-supervised style transfer mapping for sEMG pattern recognition
– volume: 20
  start-page: 371
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2021.12.081_b0270
  article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2178039
– volume: 17
  start-page: 608
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2021.12.081_b0040
  article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2013.2249590
– volume: 68
  year: 2021
  ident: 10.1016/j.neucom.2021.12.081_b0135
  article-title: Semi-supervised style transfer mapping-based framework for semg-based pattern recognition with 1-or 2-dof forearm motions
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102817
– volume: 52
  start-page: 1801
  issue: 11
  year: 2005
  ident: 10.1016/j.neucom.2021.12.081_b0155
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856295
– ident: 10.1016/j.neucom.2021.12.081_b0110
– volume: 95
  start-page: 2199
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2021.12.081_b0250
  article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00222.2005
– volume: 3
  start-page: 169
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2021.12.081_b0195
  article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.09.002
– year: 2020
  ident: 10.1016/j.neucom.2021.12.081_b0120
  article-title: sEMG-based recognition of composite motion with convolutional neural network
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2020.112046
– volume: 18
  start-page: 1214
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2021.12.081_b0230
  article-title: Supervised hierarchical Bayesian model-based electomyographic control and analysis
  publication-title: IEEE J. Biomed. Health. Inf.
  doi: 10.1109/JBHI.2013.2284476
– year: 2011
  ident: 10.1016/j.neucom.2021.12.081_b0075
  article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal
– volume: 16
  start-page: 541
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2021.12.081_b0005
  article-title: Myoelectric signal processing for control of powered limb prostheses
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2006.08.006
– volume: 8
  start-page: 512
  issue: 3
  year: 2021
  ident: 10.1016/j.neucom.2021.12.081_b0055
  article-title: Deep learning for EMG-based human–machine interaction: A review
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1003865
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: 10.1016/j.neucom.2021.12.081_b0095
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.neucom.2021.12.081_b0245
  doi: 10.1117/12.2076119
– volume: 2
  start-page: 187
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2021.12.081_b0020
  article-title: Robust bio-signal based control of an intelligent wheelchair
  publication-title: Robotics
  doi: 10.3390/robotics2040187
– volume: 5
  year: 2019
  ident: 10.1016/j.neucom.2021.12.081_b0130
  article-title: A systematic review on hand gesture recognition techniques, challenges and applications
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.218
– ident: 10.1016/j.neucom.2021.12.081_b0080
  doi: 10.1609/aaai.v30i1.10306
– volume: 39
  start-page: 44
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2021.12.081_b0200
  article-title: Identification of EMG signals using discriminant analysis and SVM classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.043
– ident: 10.1016/j.neucom.2021.12.081_b0210
  doi: 10.3390/s19143170
– volume: 9
  start-page: 4402
  issue: 20
  year: 2019
  ident: 10.1016/j.neucom.2021.12.081_b0125
  article-title: Support vector machine-based emg signal classification techniques: A review
  publication-title: Appl. Sci.
  doi: 10.3390/app9204402
– ident: 10.1016/j.neucom.2021.12.081_b0050
  doi: 10.3389/fnbot.2016.00009
– start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2021.12.081_b0205
  article-title: Sign language-Thai alphabet conversion based on electromyogram (EMG)
– volume: 19
  start-page: 1443
  issue: 3
  year: 2021
  ident: 10.1016/j.neucom.2021.12.081_b0240
  article-title: Classification of hand gestures based on multi-channel emg by scale average wavelet transform and convolutional neural network
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0802-1
– ident: 10.1016/j.neucom.2021.12.081_b0225
  doi: 10.1109/EMBC44109.2020.9175755
– ident: 10.1016/j.neucom.2021.12.081_b0065
  doi: 10.3390/s19163548
– volume: 12
  start-page: 282
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2021.12.081_b0045
  article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control
  publication-title: IEEE ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2007.897262
– volume: 20
  start-page: 3994
  issue: 14
  year: 2020
  ident: 10.1016/j.neucom.2021.12.081_b0260
  article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network
  publication-title: Sensors
  doi: 10.3390/s20143994
– volume: 22
  start-page: 745
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2021.12.081_b0215
  article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2304470
SSID ssj0017129
Score 2.492875
Snippet Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 599
SubjectTerms Fine tuning
Motion recognition
Style transfer mapping
Surface electromyogram
Transfer learning
Title Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers
URI https://dx.doi.org/10.1016/j.neucom.2021.12.081
Volume 489
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4FtcXOXiN2zzatMdlcVkV9qKCt5LmISvaXXa7iBf_gH_aSZsuCqLgLZRJKZlp5svwTT6EzlnCdMqV13fhnIhUMJJF3JDICREXSkOarQmy42R0L64f4oc1NGh7YTytMuz9zZ5e79bhSS-sZm82mfRuo4zBKYoyOLQACpG-4VcI6aP84n1F86CSsua-PRYTb922z9Ucr9IuPWeEQaKri4Ip_Tk9fUk5w220GbAi7jefs4PWbLmLtlodBhx-yz30MWjEBMtHvFgWvrBCqikJQ1zV0BTsg0DEI25Uoxd4UoL93CltcVDDeXmr2VrE5zaDG4UfvOIYwdiXbfHCC7BMX7EqDTbWzrD2EHzivKr2ProfXt4NRiSILBAN2KsiKlWKmsRqk0JmkjyJjJEqM8I5xakD-JjR2EguTOyKLOZGcTiFFC5xLhYGHHyAOuW0tIcIUw1wQsbKaauFsADehIY3JS4quE5S1UW8XdtchxvIvRDGc95SzZ7yxiO590hOWQ4e6SKymjVrbuD4w162bsu_RVIOSeLXmUf_nnmMNphvi_DVGXmCOtV8aU8BrFTFWR2NZ2i9f3UzGn8CM3rttg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwGA0uB724i7s5eI3TLN2OMijjelHBW0izyIh2hpkO4sU_4J_2S5sOCqLgrZQvpeRL8l4-XvIQOmIJ0xlX3t-FcyIywUgecUMiJ0RcKA0wWwtkb5Levbh4iB9mULc9C-NllWHtb9b0erUObzqhNzvDfr9zG-UMdlGUwaYFWEiazaJ5AdPX2xgcv091HjSlrLlwj8XEh7fn52qRV2knXjTCAOnqqmBGf8anL5hztoKWAlnEJ83_rKIZW66h5daIAYd5uY4-uo2bYPmIx5PCV1ZINSDhEVc1N4X44BDxiBvb6DHulxA_ckpbHOxwXt5quRbx4GZwY_GDpyIjePZ1Wzz2DiyDV6xKg421Q6w9B-87b6u9ge7PTu-6PRJcFogG8lURlSlFTWK1yQCaUp5ExqQqN8I5xakD_pjT2KRcmNgVecyN4rANKVziXCwMZHgTzZWD0m4hTDXwiTRWTlsthAX2JjR8KXFRwXWSqW3E276VOlxB7p0wnmWrNXuSTUakz4ikTEJGthGZtho2V3D8EZ-2aZPfhpIElPi15c6_Wx6ihd7d9ZW8Or-53EWLzJ-R8KWadA_NVaOJ3QfmUhUH9cj8BKY170Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+subject-to-subject+transfer+learning+methods+in+surface+electromyogram-based+motion+recognition+with+shallow+and+deep+classifiers&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hoshino%2C+Takayuki&rft.au=Kanoga%2C+Suguru&rft.au=Tsubaki%2C+Masashi&rft.au=Aoyama%2C+Atsushi&rft.date=2022-06-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=489&rft.spage=599&rft.epage=612&rft_id=info:doi/10.1016%2Fj.neucom.2021.12.081&rft.externalDocID=S0925231221019378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon