Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers
Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 489; pp. 599 - 612 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and pre-trained classifiers can be applied to sEMG data to reduce the measurement time. However, little knowledge is available regarding the combination of transfer learning methods and classifiers in sEMG data applications. Thus, we investigated the classification accuracy of data- and parameter-space-based transfer learning with shallow or deep classifiers in cross-subject sEMG classification. The dataset contains eight classes of forearm motions recorded from 25 volunteer participants. We used a support vector machine (SVM) as a shallow classifier as well as a deep neural network architecture, referred to as an artificial neural network (ANN), as a deep classifier. In addition, we used style transfer mapping (STM) as a data-space-based transfer learning method and fine-tuning (FT) as a parameter-space-based transfer learning method. Consequently, the classification accuracy of the ANN was higher than that of the SVM, regardless of the combinational use of transfer learning. STM and FT significantly improved the classification accuracy compared with non-transfer cases regardless of the classifier (note that FT can only be used with the ANN). In particular, the combined use of FT and the ANN yielded the best accuracy. These findings suggest that parameter-space-based transfer learning and deep classifiers are suitable for cross-subject sEMG classification. The combined use of parameter-space-based transfer learning and deep classifiers can effectively reduce the data measurement time of sEMG-based HCI applications. |
---|---|
AbstractList | Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition usually requires prolonged data measurements from the user (target), transfer learning reusing pre-measured (source) data from other users and pre-trained classifiers can be applied to sEMG data to reduce the measurement time. However, little knowledge is available regarding the combination of transfer learning methods and classifiers in sEMG data applications. Thus, we investigated the classification accuracy of data- and parameter-space-based transfer learning with shallow or deep classifiers in cross-subject sEMG classification. The dataset contains eight classes of forearm motions recorded from 25 volunteer participants. We used a support vector machine (SVM) as a shallow classifier as well as a deep neural network architecture, referred to as an artificial neural network (ANN), as a deep classifier. In addition, we used style transfer mapping (STM) as a data-space-based transfer learning method and fine-tuning (FT) as a parameter-space-based transfer learning method. Consequently, the classification accuracy of the ANN was higher than that of the SVM, regardless of the combinational use of transfer learning. STM and FT significantly improved the classification accuracy compared with non-transfer cases regardless of the classifier (note that FT can only be used with the ANN). In particular, the combined use of FT and the ANN yielded the best accuracy. These findings suggest that parameter-space-based transfer learning and deep classifiers are suitable for cross-subject sEMG classification. The combined use of parameter-space-based transfer learning and deep classifiers can effectively reduce the data measurement time of sEMG-based HCI applications. |
Author | Hoshino, Takayuki Tsubaki, Masashi Aoyama, Atsushi Kanoga, Suguru |
Author_xml | – sequence: 1 givenname: Takayuki surname: Hoshino fullname: Hoshino, Takayuki email: starfy@keio.jp organization: Graduate School of Media and Governance, Shonan Fujisawa Campus (SFC), Keio University, Kanagawa 252-0882, Japan – sequence: 2 givenname: Suguru surname: Kanoga fullname: Kanoga, Suguru organization: National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan – sequence: 3 givenname: Masashi surname: Tsubaki fullname: Tsubaki, Masashi organization: National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan – sequence: 4 givenname: Atsushi surname: Aoyama fullname: Aoyama, Atsushi organization: Faculty of Environment and Information Studies, Shonan Fujisawa Campus (SFC), Keio University, Kanagawa 252-0882, Japan |
BookMark | eNqFkMtqGzEUhkVxoM7lDbLQC8xUF89FXRSCadOCIZt2LY6lI1tmRjKSHONnyEtnXHvVRbM6Z_F_P_zfLZmFGJCQR85qznj7ZVcHPJg41oIJXnNRs55_InPed6LqRd_OyJwp0VRCcvGZ3Oa8Y4x3XKg5eVvGcQ_Jhw3Nh_UOTalKrK4vLQlCdpjogJDCOTRi2UabqQ9TPjkwSHGYoimOp7hJMFZryGjpGIuPgSY0cRP83__oy5bmLQxDPFIIllrEPTUD5Oydx5TvyY2DIePD9d6RPz--_17-rFYvz7-WT6vKyEaUCnoAbls0thdKdbJl1nag7MI5kNwpxRVvbCcXtnFr1UgLUjTN2rXONQsrpLwji0uvSTHnhE7vkx8hnTRn-ixU7_RFqD4L1VzoSeiEff0HM77AedqkyQ8fwd8uME7DXqe1OhuPwaD1k6OibfT_L3gHAU-bjA |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106261 crossref_primary_10_1016_j_engappai_2024_108952 crossref_primary_10_1109_TIM_2022_3220286 crossref_primary_10_1016_j_bspc_2024_106828 crossref_primary_10_1088_1741_2552_ad1786 crossref_primary_10_1016_j_bspc_2022_104424 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_1016_j_engappai_2023_107251 crossref_primary_10_1016_j_bspc_2024_106803 crossref_primary_10_3389_fnins_2022_977328 crossref_primary_10_1016_j_ymssp_2024_111644 crossref_primary_10_1109_TNSRE_2023_3295453 crossref_primary_10_1109_TNSRE_2024_3486444 crossref_primary_10_1109_ACCESS_2024_3508799 crossref_primary_10_1088_1741_2552_acb7a0 crossref_primary_10_1109_JBHI_2024_3354909 crossref_primary_10_1016_j_eswa_2023_121055 crossref_primary_10_14326_abe_13_363 |
Cites_doi | 10.3390/s19122811 10.1007/s00521-019-04553-7 10.1016/j.neunet.2009.06.003 10.1016/0013-4694(52)90008-4 10.1016/j.physleta.2008.10.049 10.1109/TNSRE.2015.2492619 10.1109/ICARCV.2018.8581206 10.3389/fneur.2020.00145 10.1109/TKDE.2009.191 10.1186/1475-925X-9-41 10.1002/int.1068 10.1109/TPAMI.2012.239 10.1109/10.740879 10.1109/TNN.2010.2091281 10.1109/TBME.2013.2250502 10.1016/j.bspc.2007.07.009 10.1371/journal.pone.0186132 10.1109/TBME.2003.813539 10.1109/RBME.2010.2085429 10.1016/j.neuroimage.2018.03.032 10.1109/TNSRE.2011.2178039 10.1109/JBHI.2013.2249590 10.1016/j.bspc.2021.102817 10.1109/TBME.2005.856295 10.1152/jn.00222.2005 10.1016/j.bspc.2007.09.002 10.1016/j.sna.2020.112046 10.1109/JBHI.2013.2284476 10.1016/j.jelekin.2006.08.006 10.1109/JAS.2021.1003865 10.1117/12.2076119 10.3390/robotics2040187 10.7717/peerj-cs.218 10.1609/aaai.v30i1.10306 10.1016/j.eswa.2011.06.043 10.3390/s19143170 10.3390/app9204402 10.3389/fnbot.2016.00009 10.1007/s12555-019-0802-1 10.1109/EMBC44109.2020.9175755 10.3390/s19163548 10.1109/TMECH.2007.897262 10.3390/s20143994 10.1109/TNSRE.2014.2304470 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.neucom.2021.12.081 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 612 |
ExternalDocumentID | 10_1016_j_neucom_2021_12_081 S0925231221019378 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c352t-a8aa1d6ecd82997360dd7a9d4ffa31f991915d734d5fb953da3255bf6ff54d233 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:53:22 EDT 2025 Tue Jul 01 04:24:46 EDT 2025 Fri Feb 23 02:39:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface electromyogram Style transfer mapping Transfer learning Motion recognition Fine tuning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a8aa1d6ecd82997360dd7a9d4ffa31f991915d734d5fb953da3255bf6ff54d233 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0925231221019378 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2021_12_081 crossref_citationtrail_10_1016_j_neucom_2021_12_081 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_12_081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-07 |
PublicationDateYYYYMMDD | 2022-06-07 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Tech. rep., Stanford (2006). Lee, Grosse, Ranganath, Ng (b0170) 2009 I. Sosin, D. Kudenko, A. Shpilman, Continuous gesture recognition from semg sensor data with recurrent neural networks and adversarial domain adaptation, in: 2018 15Th international conference on control, automation, robotics and vision (ICARCV), IEEE, 2018, pp. 1436–1441. Yasen, Jusoh (b0130) 2019; 5 Xu, Zhang, Luo, Chen (b0020) 2013; 2 Pizzolato, Tagliapietra, Cognolato, Reggiani, Müller, Atzori (b0265) 2017; 12 Chu, Moon, Lee, Kim, Mun (b0045) 2007; 12 U. Côté-Allard, G. Gagnon-Turcotte, F. Laviolette, B. Gosselin, A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition, Sensors 19(12). Qi, Wu, Chen, Liu, Zhang, Wang (b0120) 2020 Zhang, Liu (b0090) 2012; 35 Matsubara, Morimoto (b0220) 2013; 60 T. Hoshino, S. Kanoga, M. Tsubaki, A. Aoyama, Analysis and usage: Subject-to-subject linear domain adaptation in sEMG classification, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 674–677. Xiong, Zhang, Zhao, Zhao (b0055) 2021; 8 Han, Jo (b0230) 2013; 18 Pan, Tsang, Kwok, Yang (b0070) 2010; 22 Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network, Sensors 19(14). Al-Timemy, Bugmann, Escudero, Outram (b0040) 2013; 17 Z.O. Khokhar, Z.G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton, Biomed. Eng. Online 9 (1). Duan, Liu, Yu, Li, Yeh (b0235) 2019; 15 M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Front. Neurorobot. 10. Huang, Englehart, Hudgins, Chan (b0155) 2005; 52 Vidovic, Hwang, Amsüss, Hahne, Farina, Müller (b0105) 2015; 24 V.T. Inman, H.J. Ralston, J.B. d. C.M. Saunders, M.B.B. Feinstein, E.W. Wright Jr, Relation of human electromyogram to muscular tension, Electroencephalogr. Clin. Neurophysiol. 4 (2) (1952) 187–194. Lucas, Gaufriau, Pascual, Doncarli, Farina (b0195) 2008; 3 Amatanon, Chanhang, Naiyanetr, Thongpang (b0205) 2014 Englehart, Hudgins (b0150) 2003; 50 Toledo-Pérez, Rodríguez-Reséndiz, Gómez-Loenzo, Jauregui-Correa (b0125) 2019; 9 Seber, Lee (b0185) 2012; Vol. 329 Oskoei, Hu (b0010) 2007; 2 Pan, Yang (b0190) 2009; 22 J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical chinese character recognition, in: Document Recognition and Retrieval XXII, vol. 9402, International Society for Optics and Photonics, 2015, p. 94020D. Parker, Englehart, Hudgins (b0005) 2006; 16 Li, Qiu, Shen, Liu, He (b0095) 2019; 50 Xie, He, Liu (b0140) 2008; 372 J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Adv. Neural Inf. Process. Syst., 2014, pp. 3320–3328. Kanoga, Hoshino, Asoh (b0135) 2021; 68 Zhang, He, Yang (b0260) 2020; 20 P. Kaczmarek, T. Mańkowski, J. Tomczyński, putEMG–a surface electromyography hand gesture recognition dataset, Sensors 19 (16). Tresch, Cheung, d’Avella (b0250) 2006; 95 De Cooman, Vandecasteele, Varon, Hunyadi, Cleeren, Van Paesschen, Van Huffel (b0285) 2020; 11 Kanoga, Hoshino, Asoh (b0100) 2020 Wei, Lin, Wang, Lin, Jung (b0180) 2018; 174 Khushaba (b0215) 2014; 22 B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016. Demir, Bajaj, Ince, Taran, Şengür (b0115) 2019; 31 Christodoulou, Pattichis (b0030) 1999; 46 Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (b0175) 2009; 22 Phinyomark, Chujit, Phukpattaranont, Limsakul, Hu (b0275) 2012 Bezdek, Kuncheva (b0165) 2001; 16 Chattopadhyay, Krishnan, Panchanathan (b0075) 2011 Allard, Nougarou, Fall, Giguère, Gosselin, Laviolette, Gosselin (b0255) 2016 Oh, Jo (b0240) 2021; 19 Micera, Carpaneto, Raspopovic (b0025) 2010; 3 X. Jiang, B. Bardizbanian, C. Dai, W. Chen, E.A. Clancy, Data management for transfer learning approaches to elbow emg-torque modeling, IEEE Transactions on Biomedical Engineering. Muceli, Farina (b0270) 2011; 20 Kanoga, Kanemura (b0145) 2018 Alkan, Günay (b0200) 2012; 39 Huang (10.1016/j.neucom.2021.12.081_b0155) 2005; 52 Lucas (10.1016/j.neucom.2021.12.081_b0195) 2008; 3 Micera (10.1016/j.neucom.2021.12.081_b0025) 2010; 3 Xie (10.1016/j.neucom.2021.12.081_b0140) 2008; 372 Toledo-Pérez (10.1016/j.neucom.2021.12.081_b0125) 2019; 9 Duan (10.1016/j.neucom.2021.12.081_b0235) 2019; 15 Qi (10.1016/j.neucom.2021.12.081_b0120) 2020 Kanoga (10.1016/j.neucom.2021.12.081_b0135) 2021; 68 Pan (10.1016/j.neucom.2021.12.081_b0070) 2010; 22 10.1016/j.neucom.2021.12.081_b0225 Chattopadhyay (10.1016/j.neucom.2021.12.081_b0075) 2011 Tresch (10.1016/j.neucom.2021.12.081_b0250) 2006; 95 10.1016/j.neucom.2021.12.081_b0065 Kanoga (10.1016/j.neucom.2021.12.081_b0145) 2018 Parker (10.1016/j.neucom.2021.12.081_b0005) 2006; 16 Alkan (10.1016/j.neucom.2021.12.081_b0200) 2012; 39 10.1016/j.neucom.2021.12.081_b0060 Englehart (10.1016/j.neucom.2021.12.081_b0150) 2003; 50 Chu (10.1016/j.neucom.2021.12.081_b0045) 2007; 12 Phinyomark (10.1016/j.neucom.2021.12.081_b0275) 2012 Seber (10.1016/j.neucom.2021.12.081_b0185) 2012; Vol. 329 Lee (10.1016/j.neucom.2021.12.081_b0170) 2009 Zhang (10.1016/j.neucom.2021.12.081_b0260) 2020; 20 Kanoga (10.1016/j.neucom.2021.12.081_b0100) 2020 Demir (10.1016/j.neucom.2021.12.081_b0115) 2019; 31 Christodoulou (10.1016/j.neucom.2021.12.081_b0030) 1999; 46 Zhang (10.1016/j.neucom.2021.12.081_b0090) 2012; 35 10.1016/j.neucom.2021.12.081_b0015 10.1016/j.neucom.2021.12.081_b0210 Amatanon (10.1016/j.neucom.2021.12.081_b0205) 2014 Pan (10.1016/j.neucom.2021.12.081_b0190) 2009; 22 10.1016/j.neucom.2021.12.081_b0050 Fazli (10.1016/j.neucom.2021.12.081_b0175) 2009; 22 Bezdek (10.1016/j.neucom.2021.12.081_b0165) 2001; 16 Yasen (10.1016/j.neucom.2021.12.081_b0130) 2019; 5 Xu (10.1016/j.neucom.2021.12.081_b0020) 2013; 2 Li (10.1016/j.neucom.2021.12.081_b0095) 2019; 50 Pizzolato (10.1016/j.neucom.2021.12.081_b0265) 2017; 12 De Cooman (10.1016/j.neucom.2021.12.081_b0285) 2020; 11 Oskoei (10.1016/j.neucom.2021.12.081_b0010) 2007; 2 Muceli (10.1016/j.neucom.2021.12.081_b0270) 2011; 20 10.1016/j.neucom.2021.12.081_b0245 Al-Timemy (10.1016/j.neucom.2021.12.081_b0040) 2013; 17 Xiong (10.1016/j.neucom.2021.12.081_b0055) 2021; 8 10.1016/j.neucom.2021.12.081_b0085 10.1016/j.neucom.2021.12.081_b0160 Khushaba (10.1016/j.neucom.2021.12.081_b0215) 2014; 22 10.1016/j.neucom.2021.12.081_b0280 10.1016/j.neucom.2021.12.081_b0080 Oh (10.1016/j.neucom.2021.12.081_b0240) 2021; 19 Han (10.1016/j.neucom.2021.12.081_b0230) 2013; 18 Vidovic (10.1016/j.neucom.2021.12.081_b0105) 2015; 24 Allard (10.1016/j.neucom.2021.12.081_b0255) 2016 Matsubara (10.1016/j.neucom.2021.12.081_b0220) 2013; 60 Wei (10.1016/j.neucom.2021.12.081_b0180) 2018; 174 10.1016/j.neucom.2021.12.081_b0035 10.1016/j.neucom.2021.12.081_b0110 |
References_xml | – volume: 35 start-page: 1773 year: 2012 end-page: 1787 ident: b0090 article-title: Writer adaptation with style transfer mapping publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: V.T. Inman, H.J. Ralston, J.B. d. C.M. Saunders, M.B.B. Feinstein, E.W. Wright Jr, Relation of human electromyogram to muscular tension, Electroencephalogr. Clin. Neurophysiol. 4 (2) (1952) 187–194. – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: b0095 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 60 start-page: 2205 year: 2013 end-page: 2213 ident: b0220 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 4402 year: 2019 ident: b0125 article-title: Support vector machine-based emg signal classification techniques: A review publication-title: Appl. Sci. – volume: 15 start-page: 201 year: 2019 end-page: 206 ident: b0235 article-title: Classification of multichannel surface-electromyography signals based on convolutional neural networks, Journal of Industrial Information publication-title: Integration – volume: 12 start-page: 282 year: 2007 end-page: 290 ident: b0045 article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control publication-title: IEEE ASME Trans. Mechatron. – reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Adv. Neural Inf. Process. Syst., 2014, pp. 3320–3328. – volume: 5 year: 2019 ident: b0130 article-title: A systematic review on hand gesture recognition techniques, challenges and applications publication-title: PeerJ Comput. Sci. – start-page: 1 year: 2012 end-page: 4 ident: b0275 article-title: A preliminary study assessing time-domain emg features of classifying exercises in preventing falls in the elderly publication-title: 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b0070 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks – volume: 3 start-page: 169 year: 2008 end-page: 174 ident: b0195 article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization publication-title: Biomed. Signal Process. Control – volume: Vol. 329 year: 2012 ident: b0185 publication-title: Linear regression analysis – volume: 24 start-page: 961 year: 2015 end-page: 970 ident: b0105 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 174 start-page: 407 year: 2018 end-page: 419 ident: b0180 article-title: A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection publication-title: NeuroImage – volume: 3 start-page: 48 year: 2010 end-page: 68 ident: b0025 article-title: Control of hand prostheses using peripheral information publication-title: IEEE Rev. Biomed. Eng. – volume: 50 start-page: 848 year: 2003 end-page: 854 ident: b0150 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. – reference: T. Hoshino, S. Kanoga, M. Tsubaki, A. Aoyama, Analysis and usage: Subject-to-subject linear domain adaptation in sEMG classification, in: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 674–677. – volume: 31 start-page: 8455 year: 2019 end-page: 8462 ident: b0115 article-title: Surface EMG signals and deep transfer learning-based physical action classification publication-title: Neural Comput. Appl. – year: 2020 ident: b0120 article-title: sEMG-based recognition of composite motion with convolutional neural network publication-title: Sens. Actuators A – reference: I. Sosin, D. Kudenko, A. Shpilman, Continuous gesture recognition from semg sensor data with recurrent neural networks and adversarial domain adaptation, in: 2018 15Th international conference on control, automation, robotics and vision (ICARCV), IEEE, 2018, pp. 1436–1441. – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: b0010 article-title: Myoelectric control systems–a survey publication-title: Biomed. Signal Process. Control – reference: P. Kaczmarek, T. Mańkowski, J. Tomczyński, putEMG–a surface electromyography hand gesture recognition dataset, Sensors 19 (16). – volume: 22 start-page: 745 year: 2014 end-page: 755 ident: b0215 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – reference: Z. Zhang, K. Yang, J. Qian, L. Zhang, Real-time surface EMG pattern recognition for hand gestures based on an artificial neural network, Sensors 19(14). – volume: 20 start-page: 371 year: 2011 end-page: 378 ident: b0270 article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 372 start-page: 7140 year: 2008 end-page: 7146 ident: b0140 article-title: Measuring time series regularity using nonlinear similarity-based sample entropy publication-title: Phys. Lett. A – volume: 22 start-page: 1305 year: 2009 end-page: 1312 ident: b0175 article-title: Subject-independent mental state classification in single trials publication-title: Neural Networks – reference: U. Côté-Allard, G. Gagnon-Turcotte, F. Laviolette, B. Gosselin, A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition, Sensors 19(12). – reference: M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Front. Neurorobot. 10. – volume: 52 start-page: 1801 year: 2005 end-page: 1811 ident: b0155 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 1443 year: 2021 end-page: 1450 ident: b0240 article-title: Classification of hand gestures based on multi-channel emg by scale average wavelet transform and convolutional neural network publication-title: Int. J. Control Autom. Syst. – volume: 12 year: 2017 ident: b0265 article-title: Comparison of six electromyography acquisition setups on hand movement classification tasks publication-title: PloS One – volume: 39 start-page: 44 year: 2012 end-page: 47 ident: b0200 article-title: Identification of EMG signals using discriminant analysis and SVM classifier publication-title: Expert Syst. Appl. – year: 2011 ident: b0075 article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal publication-title: in: 2011 AAAI Spring symposium series – volume: 46 start-page: 169 year: 1999 end-page: 178 ident: b0030 article-title: Unsupervised pattern recognition for the classification of EMG signals publication-title: IEEE Trans. Biomed. Eng. – volume: 20 start-page: 3994 year: 2020 ident: b0260 article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network publication-title: Sensors – volume: 17 start-page: 608 year: 2013 end-page: 618 ident: b0040 article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography publication-title: IEEE J. Biomed. Health Inform. – volume: 8 start-page: 512 year: 2021 end-page: 533 ident: b0055 article-title: Deep learning for EMG-based human–machine interaction: A review publication-title: IEEE/CAA J. Autom. Sin. – reference: Z.O. Khokhar, Z.G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton, Biomed. Eng. Online 9 (1). – volume: 18 start-page: 1214 year: 2013 end-page: 1224 ident: b0230 article-title: Supervised hierarchical Bayesian model-based electomyographic control and analysis publication-title: IEEE J. Biomed. Health. Inf. – volume: 22 start-page: 1345 year: 2009 end-page: 1359 ident: b0190 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – reference: J. Feng, L. Peng, F. Lebourgeois, Gaussian process style transfer mapping for historical chinese character recognition, in: Document Recognition and Retrieval XXII, vol. 9402, International Society for Optics and Photonics, 2015, p. 94020D. – reference: B. Sun, J. Feng, K. Saenko, Return of frustratingly easy domain adaptation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, 2016. – start-page: 609 year: 2009 end-page: 616 ident: b0170 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations publication-title: Proceedings of the 26th annual international conference on machine learning (ICML) – volume: 16 start-page: 541 year: 2006 end-page: 548 ident: b0005 article-title: Myoelectric signal processing for control of powered limb prostheses publication-title: J. Electromyogr. Kinesiol. – volume: 95 start-page: 2199 year: 2006 end-page: 2212 ident: b0250 article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets publication-title: J. Neurophysiol. – start-page: 1478 year: 2018 end-page: 1483 ident: b0145 article-title: Assessing the effect of transfer learning on myoelectric control systems with three electrode positions publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT), IEEE – reference: X. Jiang, B. Bardizbanian, C. Dai, W. Chen, E.A. Clancy, Data management for transfer learning approaches to elbow emg-torque modeling, IEEE Transactions on Biomedical Engineering. – reference: D. Arthur, S. Vassilvitskii, k-means++: The advantages of careful seeding, Tech. rep., Stanford (2006). – volume: 68 year: 2021 ident: b0135 article-title: Semi-supervised style transfer mapping-based framework for semg-based pattern recognition with 1-or 2-dof forearm motions publication-title: Biomed. Signal Process. Control – start-page: 1 year: 2014 end-page: 4 ident: b0205 article-title: Sign language-Thai alphabet conversion based on electromyogram (EMG) publication-title: The 7th 2014 Biomedical Engineering International Conference, IEEE – start-page: 1349 year: 2020 end-page: 1353 ident: b0100 article-title: Subject transfer framework based on source selection and semi-supervised style transfer mapping for sEMG pattern recognition publication-title: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) IEEE – volume: 2 start-page: 187 year: 2013 end-page: 197 ident: b0020 article-title: Robust bio-signal based control of an intelligent wheelchair publication-title: Robotics – volume: 16 start-page: 1445 year: 2001 end-page: 1473 ident: b0165 article-title: Nearest prototype classifier designs: An experimental study publication-title: Int. J. Intell. Syst. – start-page: 2464 year: 2016 end-page: 2470 ident: b0255 article-title: A convolutional neural network for robotic arm guidance using sEMG based frequency-features publication-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE – volume: 11 start-page: 145 year: 2020 ident: b0285 article-title: Personalizing heart rate-based seizure detection using supervised svm transfer learning publication-title: Front. Neurol. – start-page: 1478 year: 2018 ident: 10.1016/j.neucom.2021.12.081_b0145 article-title: Assessing the effect of transfer learning on myoelectric control systems with three electrode positions – ident: 10.1016/j.neucom.2021.12.081_b0015 doi: 10.3390/s19122811 – start-page: 2464 year: 2016 ident: 10.1016/j.neucom.2021.12.081_b0255 article-title: A convolutional neural network for robotic arm guidance using sEMG based frequency-features – volume: 31 start-page: 8455 issue: 12 year: 2019 ident: 10.1016/j.neucom.2021.12.081_b0115 article-title: Surface EMG signals and deep transfer learning-based physical action classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04553-7 – start-page: 609 year: 2009 ident: 10.1016/j.neucom.2021.12.081_b0170 article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations – volume: 22 start-page: 1305 issue: 9 year: 2009 ident: 10.1016/j.neucom.2021.12.081_b0175 article-title: Subject-independent mental state classification in single trials publication-title: Neural Networks doi: 10.1016/j.neunet.2009.06.003 – volume: Vol. 329 year: 2012 ident: 10.1016/j.neucom.2021.12.081_b0185 – ident: 10.1016/j.neucom.2021.12.081_b0060 doi: 10.1016/0013-4694(52)90008-4 – volume: 372 start-page: 7140 issue: 48 year: 2008 ident: 10.1016/j.neucom.2021.12.081_b0140 article-title: Measuring time series regularity using nonlinear similarity-based sample entropy publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.10.049 – volume: 24 start-page: 961 issue: 9 year: 2015 ident: 10.1016/j.neucom.2021.12.081_b0105 article-title: Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2492619 – ident: 10.1016/j.neucom.2021.12.081_b0280 doi: 10.1109/ICARCV.2018.8581206 – volume: 11 start-page: 145 year: 2020 ident: 10.1016/j.neucom.2021.12.081_b0285 article-title: Personalizing heart rate-based seizure detection using supervised svm transfer learning publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00145 – ident: 10.1016/j.neucom.2021.12.081_b0160 – volume: 22 start-page: 1345 issue: 10 year: 2009 ident: 10.1016/j.neucom.2021.12.081_b0190 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: 10.1016/j.neucom.2021.12.081_b0035 doi: 10.1186/1475-925X-9-41 – volume: 16 start-page: 1445 issue: 12 year: 2001 ident: 10.1016/j.neucom.2021.12.081_b0165 article-title: Nearest prototype classifier designs: An experimental study publication-title: Int. J. Intell. Syst. doi: 10.1002/int.1068 – volume: 35 start-page: 1773 issue: 7 year: 2012 ident: 10.1016/j.neucom.2021.12.081_b0090 article-title: Writer adaptation with style transfer mapping publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.239 – start-page: 1 year: 2012 ident: 10.1016/j.neucom.2021.12.081_b0275 article-title: A preliminary study assessing time-domain emg features of classifying exercises in preventing falls in the elderly – volume: 46 start-page: 169 issue: 2 year: 1999 ident: 10.1016/j.neucom.2021.12.081_b0030 article-title: Unsupervised pattern recognition for the classification of EMG signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.740879 – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.neucom.2021.12.081_b0070 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2091281 – volume: 60 start-page: 2205 issue: 8 year: 2013 ident: 10.1016/j.neucom.2021.12.081_b0220 article-title: Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2250502 – volume: 2 start-page: 275 issue: 4 year: 2007 ident: 10.1016/j.neucom.2021.12.081_b0010 article-title: Myoelectric control systems–a survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.009 – volume: 12 issue: 10 year: 2017 ident: 10.1016/j.neucom.2021.12.081_b0265 article-title: Comparison of six electromyography acquisition setups on hand movement classification tasks publication-title: PloS One doi: 10.1371/journal.pone.0186132 – volume: 15 start-page: 201 year: 2019 ident: 10.1016/j.neucom.2021.12.081_b0235 article-title: Classification of multichannel surface-electromyography signals based on convolutional neural networks, Journal of Industrial Information publication-title: Integration – volume: 50 start-page: 848 issue: 7 year: 2003 ident: 10.1016/j.neucom.2021.12.081_b0150 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.813539 – volume: 3 start-page: 48 year: 2010 ident: 10.1016/j.neucom.2021.12.081_b0025 article-title: Control of hand prostheses using peripheral information publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2085429 – ident: 10.1016/j.neucom.2021.12.081_b0085 – volume: 174 start-page: 407 year: 2018 ident: 10.1016/j.neucom.2021.12.081_b0180 article-title: A subject-transfer framework for obviating inter-and intra-subject variability in EEG-based drowsiness detection publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.03.032 – start-page: 1349 year: 2020 ident: 10.1016/j.neucom.2021.12.081_b0100 article-title: Subject transfer framework based on source selection and semi-supervised style transfer mapping for sEMG pattern recognition – volume: 20 start-page: 371 issue: 3 year: 2011 ident: 10.1016/j.neucom.2021.12.081_b0270 article-title: Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2178039 – volume: 17 start-page: 608 issue: 3 year: 2013 ident: 10.1016/j.neucom.2021.12.081_b0040 article-title: Classification of finger movements for the dexterous hand prosthesis control with surface electromyography publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2013.2249590 – volume: 68 year: 2021 ident: 10.1016/j.neucom.2021.12.081_b0135 article-title: Semi-supervised style transfer mapping-based framework for semg-based pattern recognition with 1-or 2-dof forearm motions publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102817 – volume: 52 start-page: 1801 issue: 11 year: 2005 ident: 10.1016/j.neucom.2021.12.081_b0155 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856295 – ident: 10.1016/j.neucom.2021.12.081_b0110 – volume: 95 start-page: 2199 issue: 4 year: 2006 ident: 10.1016/j.neucom.2021.12.081_b0250 article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets publication-title: J. Neurophysiol. doi: 10.1152/jn.00222.2005 – volume: 3 start-page: 169 issue: 2 year: 2008 ident: 10.1016/j.neucom.2021.12.081_b0195 article-title: Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.09.002 – year: 2020 ident: 10.1016/j.neucom.2021.12.081_b0120 article-title: sEMG-based recognition of composite motion with convolutional neural network publication-title: Sens. Actuators A doi: 10.1016/j.sna.2020.112046 – volume: 18 start-page: 1214 issue: 4 year: 2013 ident: 10.1016/j.neucom.2021.12.081_b0230 article-title: Supervised hierarchical Bayesian model-based electomyographic control and analysis publication-title: IEEE J. Biomed. Health. Inf. doi: 10.1109/JBHI.2013.2284476 – year: 2011 ident: 10.1016/j.neucom.2021.12.081_b0075 article-title: Topology preserving domain adaptation for addressing subject based variability in semg signal – volume: 16 start-page: 541 issue: 6 year: 2006 ident: 10.1016/j.neucom.2021.12.081_b0005 article-title: Myoelectric signal processing for control of powered limb prostheses publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2006.08.006 – volume: 8 start-page: 512 issue: 3 year: 2021 ident: 10.1016/j.neucom.2021.12.081_b0055 article-title: Deep learning for EMG-based human–machine interaction: A review publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1003865 – volume: 50 start-page: 3281 issue: 7 year: 2019 ident: 10.1016/j.neucom.2021.12.081_b0095 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – ident: 10.1016/j.neucom.2021.12.081_b0245 doi: 10.1117/12.2076119 – volume: 2 start-page: 187 issue: 4 year: 2013 ident: 10.1016/j.neucom.2021.12.081_b0020 article-title: Robust bio-signal based control of an intelligent wheelchair publication-title: Robotics doi: 10.3390/robotics2040187 – volume: 5 year: 2019 ident: 10.1016/j.neucom.2021.12.081_b0130 article-title: A systematic review on hand gesture recognition techniques, challenges and applications publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.218 – ident: 10.1016/j.neucom.2021.12.081_b0080 doi: 10.1609/aaai.v30i1.10306 – volume: 39 start-page: 44 issue: 1 year: 2012 ident: 10.1016/j.neucom.2021.12.081_b0200 article-title: Identification of EMG signals using discriminant analysis and SVM classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.043 – ident: 10.1016/j.neucom.2021.12.081_b0210 doi: 10.3390/s19143170 – volume: 9 start-page: 4402 issue: 20 year: 2019 ident: 10.1016/j.neucom.2021.12.081_b0125 article-title: Support vector machine-based emg signal classification techniques: A review publication-title: Appl. Sci. doi: 10.3390/app9204402 – ident: 10.1016/j.neucom.2021.12.081_b0050 doi: 10.3389/fnbot.2016.00009 – start-page: 1 year: 2014 ident: 10.1016/j.neucom.2021.12.081_b0205 article-title: Sign language-Thai alphabet conversion based on electromyogram (EMG) – volume: 19 start-page: 1443 issue: 3 year: 2021 ident: 10.1016/j.neucom.2021.12.081_b0240 article-title: Classification of hand gestures based on multi-channel emg by scale average wavelet transform and convolutional neural network publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0802-1 – ident: 10.1016/j.neucom.2021.12.081_b0225 doi: 10.1109/EMBC44109.2020.9175755 – ident: 10.1016/j.neucom.2021.12.081_b0065 doi: 10.3390/s19163548 – volume: 12 start-page: 282 issue: 3 year: 2007 ident: 10.1016/j.neucom.2021.12.081_b0045 article-title: A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control publication-title: IEEE ASME Trans. Mechatron. doi: 10.1109/TMECH.2007.897262 – volume: 20 start-page: 3994 issue: 14 year: 2020 ident: 10.1016/j.neucom.2021.12.081_b0260 article-title: A novel surface electromyographic signal-based hand gesture prediction using a recurrent neural network publication-title: Sensors doi: 10.3390/s20143994 – volume: 22 start-page: 745 issue: 4 year: 2014 ident: 10.1016/j.neucom.2021.12.081_b0215 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2304470 |
SSID | ssj0017129 |
Score | 2.492875 |
Snippet | Surface electromyogram (sEMG)-based human-computer interface (HCI) is an effective tool for detecting human movements. Because sEMG-based motion recognition... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 599 |
SubjectTerms | Fine tuning Motion recognition Style transfer mapping Surface electromyogram Transfer learning |
Title | Comparing subject-to-subject transfer learning methods in surface electromyogram-based motion recognition with shallow and deep classifiers |
URI | https://dx.doi.org/10.1016/j.neucom.2021.12.081 |
Volume | 489 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4FtcXOXiN2zzatMdlcVkV9qKCt5LmISvaXXa7iBf_gH_aSZsuCqLgLZRJKZlp5svwTT6EzlnCdMqV13fhnIhUMJJF3JDICREXSkOarQmy42R0L64f4oc1NGh7YTytMuz9zZ5e79bhSS-sZm82mfRuo4zBKYoyOLQACpG-4VcI6aP84n1F86CSsua-PRYTb922z9Ucr9IuPWeEQaKri4Ip_Tk9fUk5w220GbAi7jefs4PWbLmLtlodBhx-yz30MWjEBMtHvFgWvrBCqikJQ1zV0BTsg0DEI25Uoxd4UoL93CltcVDDeXmr2VrE5zaDG4UfvOIYwdiXbfHCC7BMX7EqDTbWzrD2EHzivKr2ProfXt4NRiSILBAN2KsiKlWKmsRqk0JmkjyJjJEqM8I5xakD-JjR2EguTOyKLOZGcTiFFC5xLhYGHHyAOuW0tIcIUw1wQsbKaauFsADehIY3JS4quE5S1UW8XdtchxvIvRDGc95SzZ7yxiO590hOWQ4e6SKymjVrbuD4w162bsu_RVIOSeLXmUf_nnmMNphvi_DVGXmCOtV8aU8BrFTFWR2NZ2i9f3UzGn8CM3rttg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwGA0uB724i7s5eI3TLN2OMijjelHBW0izyIh2hpkO4sU_4J_2S5sOCqLgrZQvpeRL8l4-XvIQOmIJ0xlX3t-FcyIywUgecUMiJ0RcKA0wWwtkb5Levbh4iB9mULc9C-NllWHtb9b0erUObzqhNzvDfr9zG-UMdlGUwaYFWEiazaJ5AdPX2xgcv091HjSlrLlwj8XEh7fn52qRV2knXjTCAOnqqmBGf8anL5hztoKWAlnEJ83_rKIZW66h5daIAYd5uY4-uo2bYPmIx5PCV1ZINSDhEVc1N4X44BDxiBvb6DHulxA_ckpbHOxwXt5quRbx4GZwY_GDpyIjePZ1Wzz2DiyDV6xKg421Q6w9B-87b6u9ge7PTu-6PRJcFogG8lURlSlFTWK1yQCaUp5ExqQqN8I5xakD_pjT2KRcmNgVecyN4rANKVziXCwMZHgTzZWD0m4hTDXwiTRWTlsthAX2JjR8KXFRwXWSqW3E276VOlxB7p0wnmWrNXuSTUakz4ikTEJGthGZtho2V3D8EZ-2aZPfhpIElPi15c6_Wx6ihd7d9ZW8Or-53EWLzJ-R8KWadA_NVaOJ3QfmUhUH9cj8BKY170Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+subject-to-subject+transfer+learning+methods+in+surface+electromyogram-based+motion+recognition+with+shallow+and+deep+classifiers&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hoshino%2C+Takayuki&rft.au=Kanoga%2C+Suguru&rft.au=Tsubaki%2C+Masashi&rft.au=Aoyama%2C+Atsushi&rft.date=2022-06-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=489&rft.spage=599&rft.epage=612&rft_id=info:doi/10.1016%2Fj.neucom.2021.12.081&rft.externalDocID=S0925231221019378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |