Recent Advances in the Theory and Application of Nanofiltration: a Review

Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. Howeve...

Full description

Saved in:
Bibliographic Details
Published inCurrent pollution reports Vol. 8; no. 1; pp. 51 - 80
Main Authors DU, Yuchen, Pramanik, Biplob Kumar, Zhang, Yang, Dumée, Ludovic, Jegatheesan, Veeriah
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2198-6592
2198-6592
DOI10.1007/s40726-021-00208-1

Cover

Loading…
Abstract Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti 3 C 2 T X , graphene oxide, SiO 2 , and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward.
AbstractList Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti₃C₂TX, graphene oxide, SiO₂, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward.
Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti3C2TX, graphene oxide, SiO2, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward.
Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti 3 C 2 T X , graphene oxide, SiO 2 , and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward.
Author Zhang, Yang
DU, Yuchen
Dumée, Ludovic
Jegatheesan, Veeriah
Pramanik, Biplob Kumar
Author_xml – sequence: 1
  givenname: Yuchen
  surname: DU
  fullname: DU, Yuchen
  organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University
– sequence: 2
  givenname: Biplob Kumar
  surname: Pramanik
  fullname: Pramanik, Biplob Kumar
  organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University
– sequence: 3
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
  organization: School of Environmental and Safety Engineering, Qingdao University of Science and Technology
– sequence: 4
  givenname: Ludovic
  surname: Dumée
  fullname: Dumée, Ludovic
  organization: Department of Chemical Engineering, Khalifa University
– sequence: 5
  givenname: Veeriah
  orcidid: 0000-0002-8038-4854
  surname: Jegatheesan
  fullname: Jegatheesan, Veeriah
  email: jega.jegatheesan@rmit.edu.au
  organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University
BookMark eNp9kE1PAjEQhhuDiYj8AU9NvHhZ7dd2izdC_CAhmhA8N6U7KyVLi-2C4d-7gInGA6fpNM8zmXkvUccHDwhdU3JHCSnukyAFkxlhNCOEEZXRM9RldKAymQ9Y58_7AvVTWpI9Jdq-6KLxFCz4Bg_LrfEWEnYeNwvAswWEuMPGl3i4XtfOmsYFj0OFX40PlaubePh5wAZPYevg6wqdV6ZO0P-pPfT-9DgbvWSTt-fxaDjJLM9Zk5kCjOW24IQAyIpViklZyTKv5oxZIYlUpTCQC6GMoWUuuZCMkjmUuWGEKN5Dt8e56xg-N5AavXLJQl0bD2GTNJNcKjEQSrbozT90GTbRt9tpNuBMcZqL_UB1pGwMKUWotHXN4bj2RldrSvQ-Zn2MWbcx60PMmrYq-6euo1uZuDst8aOUWth_QPzd6oT1DUGaj3k
CitedBy_id crossref_primary_10_3390_coatings12121823
crossref_primary_10_1016_j_carbon_2022_08_021
crossref_primary_10_1002_wer_11126
crossref_primary_10_1016_j_jwpe_2023_104152
crossref_primary_10_1016_j_colsurfa_2022_129712
crossref_primary_10_3390_membranes12121263
crossref_primary_10_1016_j_jcis_2024_02_077
crossref_primary_10_1016_j_jwpe_2024_105565
crossref_primary_10_1016_j_memsci_2024_123578
crossref_primary_10_1016_j_dwt_2024_100042
crossref_primary_10_1016_j_desal_2024_117928
crossref_primary_10_1016_j_seppur_2024_129754
crossref_primary_10_1016_j_desal_2024_117649
crossref_primary_10_1016_j_desal_2024_117607
crossref_primary_10_1016_j_desal_2022_116198
crossref_primary_10_1039_D2NA00472K
crossref_primary_10_1016_j_cej_2023_146111
crossref_primary_10_3390_polym16020285
crossref_primary_10_3390_membranes12040403
crossref_primary_10_1016_j_jece_2023_111696
crossref_primary_10_2139_ssrn_4093809
crossref_primary_10_3389_fmicb_2024_1485624
crossref_primary_10_1016_j_seppur_2025_131874
crossref_primary_10_3390_membranes14120248
crossref_primary_10_1016_j_memsci_2024_123687
crossref_primary_10_1515_ntrev_2022_0484
crossref_primary_10_3390_dairy5040061
crossref_primary_10_1016_j_ces_2023_118882
crossref_primary_10_1016_j_desal_2024_117778
crossref_primary_10_1016_j_desal_2024_117653
crossref_primary_10_1016_j_desal_2022_116205
crossref_primary_10_1016_j_desal_2024_118226
crossref_primary_10_1016_j_chemosphere_2023_138070
crossref_primary_10_1039_D4RA00359D
crossref_primary_10_1016_j_memsci_2024_122501
crossref_primary_10_3389_fsufs_2025_1571317
crossref_primary_10_1021_acs_est_5c00277
crossref_primary_10_1016_j_desal_2024_117822
crossref_primary_10_1016_j_scitotenv_2023_166751
crossref_primary_10_1016_j_desal_2024_117821
crossref_primary_10_1016_j_seppur_2022_121579
crossref_primary_10_1016_j_jwpe_2024_105793
crossref_primary_10_1016_j_desal_2024_117441
crossref_primary_10_1016_j_jwpe_2023_104281
crossref_primary_10_1007_s10311_023_01695_y
crossref_primary_10_1016_j_eti_2022_102719
crossref_primary_10_1016_j_coche_2024_101083
crossref_primary_10_1360_SSPMA_2023_0373
crossref_primary_10_1016_j_psep_2022_05_021
crossref_primary_10_1007_s41207_023_00422_x
crossref_primary_10_1016_j_cej_2024_158315
crossref_primary_10_1016_j_memsci_2024_123235
crossref_primary_10_1016_j_polymer_2023_126393
crossref_primary_10_1016_j_jwpe_2024_104858
crossref_primary_10_1016_j_cej_2024_153944
crossref_primary_10_1016_j_desal_2023_117013
crossref_primary_10_1016_j_chemosphere_2022_137114
crossref_primary_10_1016_j_desal_2023_116489
Cites_doi 10.1016/j.ces.2020.115998
10.1111/trf.16014
10.1016/j.cherd.2019.06.004
10.1002/app.49351
10.1016/j.jviromet.2019.113755
10.1016/j.seppur.2018.12.046
10.1016/j.desal.2017.11.022
10.1016/j.memsci.2020.118325
10.1016/j.watres.2020.115894
10.1021/acs.iecr.9b06877
10.3390/polym11081252
10.1016/j.memsci.2018.12.026
10.1201/9781351213158
10.1002/app.48205
10.1002/app.48001
10.1021/acsami.0c13339
10.1016/j.memsci.2020.118274
10.1021/acs.est.0c04593
10.1016/j.seppur.2020.117821
10.1016/j.memsci.2018.12.070
10.1002/app.48523
10.1016/j.chemosphere.2019.125282
10.1016/j.seppur.2020.117255
10.1016/j.chemosphere.2020.126713
10.1016/j.apsusc.2017.02.204
10.1016/j.cej.2018.10.087
10.1016/j.seppur.2020.116550
10.1007/s11814-019-0357-0
10.1016/j.memsci.2019.117746
10.1016/S0376-7388(98)00079-9
10.1016/j.memsci.2020.118454
10.1016/j.seppur.2018.07.026
10.1016/j.seppur.2018.08.066
10.1126/science.aau5321
10.1007/978-3-319-76882-3
10.1016/j.cherd.2019.02.028
10.1016/j.seppur.2019.05.100
10.1002/jctb.6093
10.1016/j.reactfunctpolym.2018.12.016
10.1016/j.seppur.2019.04.048
10.2166/wst.2020.073
10.1016/j.memsci.2019.02.022
10.1016/j.memsci.2018.12.051
10.1016/j.seppur.2019.01.070
10.1016/j.cej.2019.122786
10.1016/j.memsci.2020.118139
10.3390/membranes11010019
10.1016/j.watres.2018.10.096
10.1016/j.cherd.2020.02.019
10.1021/acsami.0c03075
10.1002/app.49549
10.1002/pi.6061
10.3390/membranes8030037
10.1016/j.seppur.2020.117242
10.1016/j.jeurceramsoc.2019.09.023
10.1016/j.desal.2020.114761
10.1016/j.memsci.2019.117615
10.1016/j.seppur.2019.05.016
10.1016/j.memsci.2020.118006
10.1016/j.seppur.2018.09.034
10.1016/j.seppur.2018.11.054
10.1016/j.memsci.2019.117590
10.1007/s11356-020-11613-2
10.1016/j.memsci.2019.117304
10.1016/j.desal.2020.114867
10.1016/j.seppur.2018.12.006
10.1016/j.ces.2019.04.022
10.1002/mame.201800551
10.1016/j.reactfunctpolym.2018.11.010
10.1016/j.seppur.2019.116373
10.1002/cssc.201902341
10.1016/j.seppur.2021.118811
10.1016/j.scitotenv.2020.137474
10.1016/j.desal.2020.114357
10.3390/membranes9050061
10.1039/C8EW00847G
10.1016/j.matpr.2020.05.387
10.1021/acs.est.8b04268
10.1088/1748-9326/ab4035
10.1016/j.seppur.2019.116033
10.1016/j.jwpe.2019.101007
10.1016/j.jenvman.2020.111005
10.1016/j.memsci.2019.03.077
10.1016/j.seppur.2019.116265
10.1088/1361-6528/ab8085
10.1016/j.jclepro.2018.12.297
10.1016/j.fbp.2021.01.006
10.1111/trf.16022
10.1016/j.memsci.2020.117817
10.1016/j.cej.2020.126722
10.1016/j.polymertesting.2020.106775
10.1016/j.seppur.2019.05.011
10.1016/j.jhazmat.2018.08.004
10.1016/j.memsci.2020.118401
10.1016/j.memsci.2020.118172
10.1016/j.memsci.2019.117598
10.1007/s11356-019-06715-5
10.1021/acs.iecr.9b02292
10.1016/j.memsci.2019.117175
10.1016/j.memsci.2011.04.031
10.1016/j.chemosphere.2020.129056
10.1016/j.memsci.2020.118809
10.1016/j.memsci.2020.118631
10.1016/j.watres.2019.01.014
10.1016/j.memsci.2021.119101
10.1038/s41598-019-52369-1
10.1016/j.ecolind.2020.106213
10.1016/j.memsci.2018.10.034
10.1021/acs.iecr.9b05169
10.1016/j.ultsonch.2019.104891
10.1016/j.desal.2017.07.020
10.1002/app.48129
10.1007/978-94-009-1766-8
10.1007/s10717-020-00248-x
10.1016/j.micromeso.2020.110289
10.1016/j.seppur.2020.116979
10.1016/j.biombioe.2020.105527
10.1016/j.eurpolymj.2020.109544
10.1016/j.seppur.2020.117280
10.1016/j.chemosphere.2020.128088
10.1016/j.memsci.2020.118294
10.1016/j.memsci.2018.07.003
10.1016/j.memsci.2018.11.048
10.1016/j.scitotenv.2020.139780
10.1016/j.desal.2013.04.030
10.1016/j.seppur.2020.116995
10.1021/acs.est.7b06400
10.1016/j.cherd.2019.05.025
10.1016/j.seppur.2019.05.018
10.1016/j.seppur.2019.05.025
10.3390/membranes8030078
10.1016/j.seppur.2019.115675
10.1016/j.desal.2020.114352
10.1016/j.jenvman.2019.110001
10.1016/j.jclepro.2020.123349
10.1016/j.jcis.2019.10.078
10.1002/pat.4986
10.1016/j.jenvman.2020.111299
10.1021/acsami.0c16569
10.1016/j.memsci.2020.118205
10.1021/acsami.9b09037
10.1021/acs.nanolett.0c00344
10.1016/j.memsci.2020.118901
10.1002/pat.4473
10.1016/j.jclepro.2020.123965
10.1016/j.seppur.2018.11.018
10.1016/j.carbon.2019.03.090
10.1016/j.memsci.2019.117565
10.1016/j.compchemeng.2019.05.018
10.1007/s11696-021-01694-9
10.1021/acs.langmuir.8b00960
10.1016/j.memsci.2019.117683
10.1021/acs.est.9b03171
10.1016/j.seppur.2019.116186
10.1016/j.seppur.2019.116461
10.1016/j.memsci.2020.118532
10.1016/j.jenvman.2018.07.067
10.1016/j.jiec.2019.09.002
10.1016/j.seppur.2018.09.067
10.1016/j.memsci.2019.117501
10.1016/j.seppur.2020.118231
10.1016/j.seppur.2019.04.020
10.1007/978-3-642-36199-9_160-1
10.1016/j.memsci.2019.117749
10.1016/j.memsci.2018.11.036
10.1016/j.desal.2020.114658
10.1016/j.memsci.2020.117921
10.1016/j.jclepro.2020.120359
10.1016/j.memsci.2020.118665
10.1016/j.seppur.2018.08.037
10.1016/j.memsci.2019.117714
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
DBID AAYXX
CITATION
8FE
8FH
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7S9
L.6
DOI 10.1007/s40726-021-00208-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
Environmental Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-6592
EndPage 80
ExternalDocumentID 10_1007_s40726_021_00208_1
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATCPS
AUKKA
AVXWI
AXYYD
BBNVY
BENPR
BGNMA
BHPHI
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HCIFZ
HG6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7P
NPVJJ
NQJWS
NU0
O9J
PATMY
PT4
PYCSY
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7Y
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FH
ABRTQ
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
ID FETCH-LOGICAL-c352t-a7eac3c7300ee6f2f8266f6d5fb22c46068d4ae5448aa1d56346210bed5a20083
IEDL.DBID BENPR
ISSN 2198-6592
IngestDate Thu Jul 10 18:53:51 EDT 2025
Sat Aug 23 14:45:40 EDT 2025
Tue Jul 01 02:44:58 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 21 02:47:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rejection
Nanofiltration
Nanomaterials
Fouling
Exclusion theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a7eac3c7300ee6f2f8266f6d5fb22c46068d4ae5448aa1d56346210bed5a20083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8038-4854
PQID 2932831548
PQPubID 2044259
PageCount 30
ParticipantIDs proquest_miscellaneous_2636849486
proquest_journals_2932831548
crossref_citationtrail_10_1007_s40726_021_00208_1
crossref_primary_10_1007_s40726_021_00208_1
springer_journals_10_1007_s40726_021_00208_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Current pollution reports
PublicationTitleAbbrev Curr Pollution Rep
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References CompletoCGeraldesVSemiãoVMateusMRodriguesMComparison between microfluidic tangential flow nanofiltration and centrifugal nanofiltration for the concentration of small-volume samplesJ Membr Sci201957827351:CAS:528:DC%2BC1MXjt1Wlt7o%3D
Shi M, Yan W, Dong C, Liu L, Xie S, Gao C. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J Membr Sci. 2020;595:117565.
Schmidt CM, Sprunk M, Löffler R, Hinrichs J. Relating nanofiltration membrane morphology to observed rejection of saccharides. Sep Purif Technol. 2020;239:116550.
ÁrkiPHeckerCTomandlGJosephYStreaming potential properties of ceramic nanofiltration membranes – importance of surface charge on the ion rejectionSep Purif Technol2019212660669
RoyYLienhardJHA framework to analyze sulfate versus chloride selectivity in nanofiltrationEnviron Sci Water Res Technol2019535855981:CAS:528:DC%2BC1MXhsVSjtrs%3D
Nguyen ThiHYNguyenBTDKimJFSustainable fabrication of organic solvent nanofiltration membranesMembranes202011119
ChaudhurySWormserEHarariYEdriENirOTuning the ion-selectivity of thin-film composite nanofiltration membranes by molecular layer deposition of aluconeACS Appl Mater Interfaces2020124753356533641:CAS:528:DC%2BB3cXitlaisL7L
AbadikhahHKalaliENBehzadiSKhanSAXuXShabestariMEAgathopoulosSHigh flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltrationChem Eng Sci2019204991091:CAS:528:DC%2BC1MXnvFyhtb4%3D
Malhotra M, Pal M, Pal P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng. 2020;33:101007.
López J, Reig M, Vecino X, Gibert O, Cortina JL. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Sci Total Environ. 2020;738:139780.
SantibáñezLCórdovaAAstudillo-CastroCIllanesAEffect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysisSep Purif Technol2019222342351
NamYTKimSJKangKMJungW-BKimDWJungH-TEnhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supportsCarbon20191483703771:CAS:528:DC%2BC1MXntFKmt70%3D
FoureauxAFSReisEOLebronYMoreiraVSantosLVAmaralMSLangeLCRejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosisSep Purif Technol20192121711791:CAS:528:DC%2BC1cXit1SnsrrF
Arola K, Mänttäri M, Kallioinen M. Two-stage nanofiltration for purification of membrane bioreactor treated municipal wastewater – minimization of concentrate volume and simultaneous recovery of phosphorus. Sep Purif Technol. 2021;256:117255.
Mall NK, Herman JD. Water shortage risks from perennial crop expansion in California's Central Valley. Environ Res Lett. 2019;14(10):104014.
LakhotiaSRMukhopadhyayMKumariPIron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatmentSep Purif Technol2019211981071:CAS:528:DC%2BC1cXhvVWhurnK
Ali MEA, Kotp YH, Bosela R, Samy A, Awad S, Du JR. Enhancing the performance of TFC nanofiltration membranes by adding organic acids in polysulfone support layer. Polym Test. 2020;91:106775.
Yun T, Kwak S-Y. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. J Environ Manag. 2020;260:110001.
Aburabie JH, Puspasari T, Peinemann K-V. Alginate-based membranes: paving the way for green organic solvent nanofiltration. J Membr Sci. 2020;596:117615.
Mehrjo F, Pourkhabbaz A, Shahbazi A. PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye heavy metal and salts from wastewater. Chemosphere. 2021;263:128088.
KamcevJFreemanBDKobayashiSMüllenKNanofiltration membranesEncyclopedia of polymeric nanomaterials2014BerlinSpringer, Berlin Heidelberg1910.1007/978-3-642-36199-9_160-1
Van Goethem C, Magboo MM, Mertens M, Thijs M, Koeckelberghs G, Vankelecom IFJ. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J Membr Sci. 2020;611:118274.
Park MJ, Wang C, Seo DH, Gonzales RR, Matsuyama H, Shon HK. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Membr Sci. 2021;620:118901.
Alhumaidi MS, Arshad F, Aubry C, Ravaux F, McElhinney J, Hasan A, Zou L. Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology. 2020;31(27):275602.
Egea-CorbachoAGutiérrez RuizSQuiroga AlonsoJMRemoval of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plantJ Clean Prod20192145145231:CAS:528:DC%2BC1MXotVCrtw%3D%3D
AngMBMYTrillesCADe GuzmanMRPereiraJMAquinoRRHuangS-HHuC-CLeeK-RLaiJ-YImproved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticlesSep Purif Technol20192241131201:CAS:528:DC%2BC1MXpsVWqur4%3D
Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci. 2021;624:119101.
ReisBGAraújoALBVieiraCCAmaralMCSFerrazHCAssessing potential of nanofiltration for sulfuric acid plant effluent reclamation: operational and economic aspectsSep Purif Technol20192223693801:CAS:528:DC%2BC1MXnvFyrsrc%3D
Ortiz-AlboPIbañezRUrtiagaAOrtizIPhenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potentialSep Purif Technol20192107467531:CAS:528:DC%2BC1cXhs1Klu7fO
KarimnezhadHNavarchianAHTavakoli GheinaniTZinadiniSIncorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling propertyReact Funct Polym201913577931:CAS:528:DC%2BC1MXlsFWk
Manorma, Ferreira I, Alves P, Gil MH, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol. 2021;260:118231.
Thomson BM, Tandukar S, Shahi A, Lee CO, Howe KJ. Mineral recovery enhanced desalination (MRED) process: an innovative technology for desalinating hard brackish water. Desalination. 2020;496:114761.
WangHJungJTKimJFKimSDrioliELeeYMA novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)J Membr Sci20195744454
LowZ-XJiJBlumenstockDChewY-MWolversonDMattiaDFouling resistant 2D boron nitride nanosheet – PES nanofiltration membranesJ Membr Sci20185639499561:CAS:528:DC%2BC1cXht1yrs7rI
Asadi TashvighAChungT-SRobust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltrationJ Membr Sci20195725805871:CAS:528:DC%2BC1cXitlyltbrI
Sada Y, Yoshioka T, Nakagawa K, Shintani T, Iesako R, Kamio E, Matsuyama H. Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membr Sci. 2019;591:117304.
CooperJYeYRazmjouAChenVHigh-value organic acid recovery from first-generation bioethanol dunder using nanofiltrationInd Eng Chem Res2020592611940119521:CAS:528:DC%2BB3cXhtVylu73O
VatanpourVEsmaeiliMSafarpourMGhadimiAAdabiJSynergistic effect of carboxylated-MWCNTs on the performance of acrylic acid UV-grafted polyamide nanofiltration membranesReact Funct Polym201913474841:CAS:528:DC%2BC1cXit12lsLbL
Otero-Fernández A, Díaz P, Otero JA, Ibáñez R, Maroto-Valiente A, Palacio L, Prádanos P, Carmona FJ, Hernández A. Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. Eur Polym J. 2020;126:109544.
GiagnorioMRicceriFTiraferriADesalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recoveryWater Res20191531341431:CAS:528:DC%2BC1MXitF2lsbc%3D
BagheripourEMoghadassiARParvizianFHosseiniSMVan der BruggenBTailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layerChem Eng Res Des20191444184281:CAS:528:DC%2BC1MXktFeiu7Y%3D
Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer. Sep Purif Technol. 2021;270:118811.
Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion. J Membr Sci. 2020;603:117921.
Van GoethemCMertensMVankelecomIFJCrosslinked PVDF membranes for aqueous and extreme pH nanofiltrationJ Membr Sci2019572489495
HoffmanJRPhillipWADual-functional nanofiltration membranes exhibit multifaceted ion rejection and antifouling performanceACS Appl Mater Interfaces2020121719944199541:CAS:528:DC%2BB3cXmsFKksrg%3D
Motta Cabrera S, Winnubst L, Richter H, Voigt I, Nijmeijer A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep Purif Technol. 2021;256:117821.
Emonds S, Roth H, Wessling M. Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci. 2020;612:118325.
GiagnorioMRicceriFTagliabueMZaninettaLTiraferriAHybrid forward osmosis– nanofiltration for wastewater reuse: system designMembranes (Basel)201995611:CAS:528:DC%2BC1MXht1Cit73L
Casanova S, Liu T-Y, Chew Y-MJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Membr Sci. 2020;597:117749.
QinHGuoWHuangXGaoPXiaoHPreparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatmentJ
J Kamcev (208_CR8) 2014
208_CR83
208_CR82
L Santibáñez (208_CR152) 2019; 222
208_CR148
208_CR147
R Yang (208_CR175) 2018
H Li (208_CR98) 2017; 407
RR Nair (208_CR110) 2018; 8
NJ Roth (208_CR166) 2020; 60
R Nidhi Maalige (208_CR70) 2019; 358
AM Kapsch (208_CR164) 2020; 60
208_CR154
208_CR157
208_CR156
208_CR87
208_CR151
208_CR86
208_CR85
MBMY Ang (208_CR61) 2019; 224
208_CR92
208_CR90
A Schäfer (208_CR101) 2004
208_CR139
208_CR138
H Mahdavi (208_CR41) 2020; 69
SR Lakhotia (208_CR67) 2019; 211
N Misdan (208_CR84) 2019; 148
J López (208_CR143) 2019; 226
O Agboola (208_CR39) 2021; 43
S Poolachira (208_CR68) 2020; 27
J Aburabie (208_CR17) 2019; 304
M-J Tang (208_CR94) 2020; 20
208_CR144
208_CR13
208_CR12
208_CR99
208_CR145
208_CR10
MA Ashraf (208_CR64) 2020; 137
208_CR142
208_CR141
YM Averina (208_CR71) 2020; 77
208_CR125
208_CR128
208_CR127
FM Gunawan (208_CR25) 2019; 30
GM Urper-Bayram (208_CR95) 2019; 136
Y Roy (208_CR163) 2019; 5
H Zhang (208_CR80) 2019; 53
208_CR29
208_CR26
208_CR133
208_CR22
Y Zhao (208_CR28) 2018; 431
SM Hosseini (208_CR47) 2019; 147
H Abadikhah (208_CR54) 2019; 204
F Parvizian (208_CR89) 2020; 156
208_CR20
P Ortiz-Albo (208_CR118) 2019; 210
208_CR131
208_CR130
MBMY Ang (208_CR33) 2019; 210
208_CR115
208_CR114
Y-L Ji (208_CR36) 2019; 211
A Egea-Corbacho (208_CR159) 2019; 214
N Mohamad (208_CR170) 2019; 94
C Completo (208_CR153) 2019; 578
H Wang (208_CR15) 2019; 574
P Árki (208_CR96) 2019; 212
D Guo (208_CR19) 2020; 560
DT Yonge (208_CR91) 2018; 8
V Pathak (208_CR3) 2020; 137
208_CR38
JA Bush (208_CR171) 2019; 570
208_CR121
208_CR124
M Dipaola (208_CR31) 2019
208_CR123
208_CR32
OT Mahlangu (208_CR102) 2020; 31
Y Zhang (208_CR93) 2020; 81
NF Ghazali (208_CR113) 2021; 126
208_CR4
208_CR107
208_CR7
NE Pica (208_CR134) 2019; 53
208_CR109
208_CR9
208_CR103
Y Zhao (208_CR46) 2021; 55
208_CR105
O Jung (208_CR104) 2019; 9
Z-X Low (208_CR50) 2018; 563
M Giagnorio (208_CR136) 2019; 9
JR Hoffman (208_CR30) 2020; 12
J Cooper (208_CR122) 2020; 59
208_CR49
208_CR48
H Karimnezhad (208_CR126) 2019; 135
J Chau (208_CR77) 2019; 58
208_CR45
208_CR44
VS Kumar (208_CR119) 2013; 322
208_CR43
J Su (208_CR111) 2011; 376
208_CR40
YT Nam (208_CR59) 2019; 148
V Polisetti (208_CR35) 2020; 137
Y Yang (208_CR81) 2019; 364
V Vatanpour (208_CR78) 2019; 134
H Qin (208_CR76) 2020; 40
M Mulder (208_CR5) 1996
Z Yang (208_CR11) 2019; 11
S Chaudhury (208_CR97) 2020; 12
A Asadi Tashvigh (208_CR37) 2019; 572
JB Morales-Cuevas (208_CR34) 2019; 136
RM Rajendran (208_CR112) 2021; 28
AFS Foureaux (208_CR160) 2019; 212
HY Nguyen Thi (208_CR14) 2020; 11
RM DuChanois (208_CR21) 2019; 581
208_CR58
208_CR100
208_CR55
208_CR1
M Amirilargani (208_CR73) 2020; 13
208_CR53
208_CR52
208_CR51
PHH Duong (208_CR24) 2019; 35
R Epsztein (208_CR108) 2018; 52
BG Reis (208_CR146) 2019; 222
208_CR60
RM Rajendran (208_CR129) 2021; 75
DK Mahalingam (208_CR56) 2019; 58
TTV Tran (208_CR150) 2019; 575
Z Qiu (208_CR16) 2018; 360
P Pal (208_CR135) 2019; 127
208_CR169
A Werner (208_CR140) 2019; 224
JMM Peeters (208_CR116) 1998; 145
S Bajpai (208_CR117) 2019; 36
Y Roy (208_CR120) 2017; 420
M Giagnorio (208_CR137) 2019; 153
A Gil (208_CR2) 2019
T Tavangar (208_CR149) 2019; 216
LW Jye (208_CR6) 2017
MB Cristóvão (208_CR161) 2019; 224
208_CR66
S Beisl (208_CR69) 2019; 149
D Lin (208_CR106) 2019; 224
208_CR65
208_CR173
208_CR172
208_CR63
208_CR62
208_CR174
KM Cho (208_CR57) 2019; 11
208_CR72
SI Bouhadjar (208_CR132) 2019; 231
MH Abdellah (208_CR155) 2019; 573
C Van Goethem (208_CR42) 2019; 572
N Kyriakou (208_CR23) 2020; 12
A Giacobbo (208_CR158) 2020; 81
SK Das (208_CR27) 2019; 213
E Bagheripour (208_CR88) 2019; 144
T Turken (208_CR18) 2019; 136
208_CR79
208_CR165
208_CR168
208_CR167
208_CR162
208_CR75
208_CR74
References_xml – reference: Vendrell-Puigmitja L, Abril M, Proia L, Espinosa Angona C, Ricart M, Oatley-Radcliffe DL, Williams PM, Zanain M, Llenas L. Assessing the effects of metal mining effluents on freshwater ecosystems using biofilm as an ecological indicator: comparison between nanofiltration and nanofiltration with electrocoagulation treatment technologies. Ecol Indic. 2020;113:106213.
– reference: Nguyen ThiHYNguyenBTDKimJFSustainable fabrication of organic solvent nanofiltration membranesMembranes202011119
– reference: ZhangHQuanXFanXYiGChenSYuHChenYImproving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge densityEnviron Sci Technol20195328688771:CAS:528:DC%2BC1cXisVylsb3P
– reference: Otero-Fernández A, Díaz P, Otero JA, Ibáñez R, Maroto-Valiente A, Palacio L, Prádanos P, Carmona FJ, Hernández A. Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. Eur Polym J. 2020;126:109544.
– reference: EpszteinRShaulskyEDizgeNWarsingerDMElimelechMRole of ionic charge density in Donnan exclusion of monovalent anions by nanofiltrationEnviron Sci Technol2018527410841161:CAS:528:DC%2BC1cXjvFGlsbo%3D
– reference: ChauJSinghDSirkarKK110th anniversary: liquid separation membranes based on nanowire substrates for organic solvent nanofiltration and membrane distillationInd Eng Chem Res2019583114350143561:CAS:528:DC%2BC1MXhsVSjtr%2FJ
– reference: Jeong K, Yoon N, Park S, Son M, Lee J, Park J, Cho KH. Optimization of a nanofiltration and membrane capacitive deionization (NF-MCDI) hybrid system: experimental and modeling studies. Desalination. 2020;493:114658.
– reference: QinHGuoWHuangXGaoPXiaoHPreparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatmentJ Eur Ceram Soc20204011451541:CAS:528:DC%2BC1MXhvVSrurfP
– reference: KyriakouNMerletRBWillottJDNijmeijerAWinnubstLPizzoccaro-ZilamyM-ANew method toward a robust covalently attached cross-linked nanofiltration membraneACS Appl Mater Interfaces2020124247948479561:CAS:528:DC%2BB3cXhvFaqs7bN
– reference: Morales-CuevasJBPérez-SicairosSLinSWSalazar-GastélumMIEvaluation of a modified spray-applied interfacial polymerization method for preparation of nanofiltration membranesJ Appl Polym Sci20191364248129
– reference: Tham HM, Chung T-S. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Membr Sci. 2020;610:118294.
– reference: WernerARiegerAHelbigKBrixBZocherJHasenederRRepkeJ-UNanofiltration for the recovery of indium and germanium from bioleaching solutionsSep Purif Technol20192245435521:CAS:528:DC%2BC1MXhtVajsr7F
– reference: Hou C, Wen Y, Liu X, Dong M. Impacts of regional water shortage information disclosure on public acceptance of recycled water—evidences from China’s urban residents. J Clean Prod. 2021;278:123965.
– reference: WangHJungJTKimJFKimSDrioliELeeYMA novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)J Membr Sci20195744454
– reference: KamcevJFreemanBDKobayashiSMüllenKNanofiltration membranesEncyclopedia of polymeric nanomaterials2014BerlinSpringer, Berlin Heidelberg1910.1007/978-3-642-36199-9_160-1
– reference: Wang S, Li L, Yu S, Dong B, Gao N, Wang X. A review of advances in EDCs and PhACs removal by nanofiltration: mechanisms, impact factors and the influence of organic matter. Chem Eng J. 2021;406:126722.
– reference: GiagnorioMRicceriFTiraferriADesalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recoveryWater Res20191531341431:CAS:528:DC%2BC1MXitF2lsbc%3D
– reference: Malakian A, Husson SM. Understanding the roles of patterning and foulant chemistry on nanofiltration threshold flux. J Membr Sci. 2020;597:117746.
– reference: Urper-BayramGMSayinliBSengur-TasdemirRTurkenTPekgencEGunesOAtes-GenceliETarabaraVVKoyuncuINanocomposite hollow fiber nanofiltration membranes: fabrication, characterization, and pilot-scale evaluation for surface water treatmentJ Appl Polym Sci20191364548205
– reference: NamYTKimSJKangKMJungW-BKimDWJungH-TEnhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supportsCarbon20191483703771:CAS:528:DC%2BC1MXntFKmt70%3D
– reference: AburabieJEmwasAHPeinemannKVSilane-crosslinked asymmetric polythiosemicarbazide membranes for organic solvent nanofiltrationMacromol Mater Eng201930411800551
– reference: Ideno S, Takahashi K, Yusa K, Sakai K. Quantitative PCR evaluation of parvovirus B19 removal via nanofiltration. J Virol Methods. 2020;275:113755.
– reference: YangYYangXLiangLGaoYChengHLiXZouMMaRYuanQDuanXLarge-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltrationScience20193646445105710621:CAS:528:DC%2BC1MXhtFOit7%2FJ
– reference: DuongPHHDaumannKHongP-YUlbrichtMNunesSPInterfacial polymerization of zwitterionic building blocks for high-flux nanofiltration membranesLangmuir2019355128412931:CAS:528:DC%2BC1cXht1yjsLrO
– reference: Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang SCE, Li J, Matsuyama H. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. J Membr Sci. 2020;595:117598.
– reference: Meschke K, Hansen N, Hofmann R, Haseneder R, Repke J-U. Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes. Sep Purif Technol. 2020;235:116186.
– reference: Thomson BM, Tandukar S, Shahi A, Lee CO, Howe KJ. Mineral recovery enhanced desalination (MRED) process: an innovative technology for desalinating hard brackish water. Desalination. 2020;496:114761.
– reference: Asadi TashvighAChungT-SRobust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltrationJ Membr Sci20195725805871:CAS:528:DC%2BC1cXitlyltbrI
– reference: Kramer FC, Shang R, Rietveld LC, Heijman SJG. Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Sep Purif Technol. 2019;227:115675.
– reference: Ortiz-AlboPIbañezRUrtiagaAOrtizIPhenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potentialSep Purif Technol20192107467531:CAS:528:DC%2BC1cXhs1Klu7fO
– reference: Anisah S, Kanezashi M, Nagasawa H, Tsuru T. Al2O3 nanofiltration membranes fabricated from nanofiber sols: preparation, characterization, and performance. J Membr Sci. 2020;611:118401.
– reference: Ten Kate, AJB, Schutyser, MAI, Kuzmanovic, B, Westerink, JB, Manuhutu F, Bargeman G. Thermodynamic perspective on negative retention effects in nanofiltration of concentrated sodium chloride solutions. Sep Purif Technol. 2020;250:117242.
– reference: YangZZhouYFengZRuiXZhangTZhangZA review on reverse osmosis and nanofiltration membranes for water purificationPolymers201911812521:CAS:528:DC%2BC1MXhsFyrs7vL
– reference: GunawanFMMangindaanDKhoiruddinKWentenIGNanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewaterPolym Adv Technol20193023603671:CAS:528:DC%2BC1cXhvVOqsrrF
– reference: ChaudhurySWormserEHarariYEdriENirOTuning the ion-selectivity of thin-film composite nanofiltration membranes by molecular layer deposition of aluconeACS Appl Mater Interfaces2020124753356533641:CAS:528:DC%2BB3cXitlaisL7L
– reference: CompletoCGeraldesVSemiãoVMateusMRodriguesMComparison between microfluidic tangential flow nanofiltration and centrifugal nanofiltration for the concentration of small-volume samplesJ Membr Sci201957827351:CAS:528:DC%2BC1MXjt1Wlt7o%3D
– reference: Emonds S, Roth H, Wessling M. Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci. 2020;612:118325.
– reference: JiY-LAngMBMYHuangS-HLuJ-YTsaiS-JDe GuzmanMRTsaiH-AHuC-CLeeK-RLaiJ-YPerformance evaluation of nanofiltration polyamide membranes based from 3,3′-diaminobenzidineSep Purif Technol20192111701781:CAS:528:DC%2BC1cXhvVChu7zL
– reference: ParvizianFAnsariFBandehaliSOleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranesChem Eng Res Des20201564334411:CAS:528:DC%2BB3cXjvFWiurk%3D
– reference: Nativ P, Fridman-Bishop N, Nir O, Lahav O. Dia-nanofiltration-electrodialysis hybrid process for selective removal of monovalent ions from Mg2+ rich brines. Desalination. 2020;481:114357.
– reference: MahdaviHMazinaniNHeidariAAPoly(vinylidene fluoride) (PVDF)/PVDF-g-polyvinylpyrrolidone (PVP)/TiO2 mixed matrix nanofiltration membranes: preparation and characterizationPolym Int20206912118711951:CAS:528:DC%2BB3cXhsVWru7jE
– reference: Bahamonde Soria R, Zhu J, Gonza I, Van der Bruggen B, Luis P. Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes. Sep Purif Technol. 2020;251:117280.
– reference: Park MJ, Wang C, Seo DH, Gonzales RR, Matsuyama H, Shon HK. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Membr Sci. 2021;620:118901.
– reference: Kim JH, Choi Y, Kang J, Choi E, Choi SE, Kwon O, Kim DW. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating. J Membr Sci. 2020;612:118454.
– reference: YongeDTBiscardiPGDuranceauSJModeling ionic strength effects on hollow-fiber nanofiltration membrane mass transferMembranes20188337
– reference: AbdellahMHLiuLScholesCAFreemanBDKentishSEOrganic solvent nanofiltration of binary vegetable oil/terpene mixtures: experiments and modellingJ Membr Sci20195736947031:CAS:528:DC%2BC1cXis1WhsbbP
– reference: AbadikhahHKalaliENBehzadiSKhanSAXuXShabestariMEAgathopoulosSHigh flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltrationChem Eng Sci2019204991091:CAS:528:DC%2BC1MXnvFyhtb4%3D
– reference: AverinaYMKurbatovAYSakharovDASubchevaENDevelopment of nanofiltration ceramic membrane production technologyGlass Ceram2020773–4981021:CAS:528:DC%2BB3cXhsVGjtL3L
– reference: RajendranRMGargSBajpaiSEconomic feasibility of arsenic removal using nanofiltration membrane: a mini reviewChem Pap202175443144441:CAS:528:DC%2BB3MXhtFantL%2FL
– reference: Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Membr Sci. 2020;607:118139.
– reference: DipaolaMWodajoFM3D printing in orthopaedic surgery2019St LouisElsevier
– reference: Ang MBMY, Tang C-L, De Guzman MR, Maganto HLC, Caparanga AR, Huang S-H, Tsai H-A, Hu C-C, Lee K-R, Lai J-Y. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment. Desalination. 2020;481:114352.
– reference: Priyadarshini A, Tay SW, Ng S, Hong L. Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. J Membr Sci. 2020;599:117714.
– reference: Taheri E, Hadi S, Amin MM, Ebrahimi A, Fatehizadeh A, Aminabhavi TM. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: transport modeling and pore radius estimation. J Environ Manag. 2020;271:111005.
– reference: BeislSMonteiroSSantosRFigueiredoASSánchez-LoredoMGLemosMALemosFMinhalmaMde PinhoMNSynthesis and bactericide activity of nanofiltration composite membranes – cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolitesWater Res20191492252311:CAS:528:DC%2BC1cXit1WhsLzK
– reference: FoureauxAFSReisEOLebronYMoreiraVSantosLVAmaralMSLangeLCRejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosisSep Purif Technol20192121711791:CAS:528:DC%2BC1cXit1SnsrrF
– reference: Shi M, Yan W, Dong C, Liu L, Xie S, Gao C. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J Membr Sci. 2020;595:117565.
– reference: AshrafMAWangJWuBCuiPXuBLiXEnhancement in Li+/Mg2+ separation from salt lake brine with PDA–PEI composite nanofiltration membraneJ Appl Polym Sci202013747495491:CAS:528:DC%2BB3cXhtlajsbzI
– reference: TavangarTJalaliKAlaei ShahmirzadiMAKarimiMToward real textile wastewater treatment: membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – nanofiltration processSep Purif Technol20192161151251:CAS:528:DC%2BC1MXis1GlsL8%3D
– reference: BouhadjarSIKoppHBritschPDeowanSAHoinkisJBundschuhJSolar powered nanofiltration for drinking water production from fluoride-containing groundwater – a pilot study towards developing a sustainable and low-cost treatment plantJ Environ Manag2019231126312691:CAS:528:DC%2BC1cXitlWntLvP
– reference: Manorma, Ferreira I, Alves P, Gil MH, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol. 2021;260:118231.
– reference: Almijbilee MMA, Wu X, Zhou A, Zheng X, Cao X, Li W. Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Sep Purif Technol. 2020;234116033.
– reference: Yun T, Kwak S-Y. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. J Environ Manag. 2020;260:110001.
– reference: BajpaiSRajendranRMHoodaSModeling the performance of HPA membrane for sulfate ion removal from ternary ion systemKorean J Chem Eng20193610164816561:CAS:528:DC%2BC1MXhvFSns7fL
– reference: VatanpourVEsmaeiliMSafarpourMGhadimiAAdabiJSynergistic effect of carboxylated-MWCNTs on the performance of acrylic acid UV-grafted polyamide nanofiltration membranesReact Funct Polym201913474841:CAS:528:DC%2BC1cXit12lsLbL
– reference: Mahalingam DK, Falca G, Upadhya L, Abou-Hamad E, Batra N, Wang S, Musteata V, da Costa PM, Nunes SP. Spray-coated graphene oxide hollow fibers for nanofiltration. J Membr Sci. 2020;606:118006.
– reference: QiuZJiXHeCFabrication of a loose nanofiltration candidate from polyacrylonitrile/graphene oxide hybrid membrane via thermally induced phase separationJ Hazard Mater20183601221311:CAS:528:DC%2BC1cXhsVOmsbfO
– reference: ÁrkiPHeckerCTomandlGJosephYStreaming potential properties of ceramic nanofiltration membranes – importance of surface charge on the ion rejectionSep Purif Technol2019212660669
– reference: CooperJYeYRazmjouAChenVHigh-value organic acid recovery from first-generation bioethanol dunder using nanofiltrationInd Eng Chem Res2020592611940119521:CAS:528:DC%2BB3cXhtVylu73O
– reference: Esteves T, Mota AT, Barbeitos C, Andrade K, Afonso CAM, Ferreira FC. A study on lupin beans process wastewater nanofiltration treatment and lupanine recovery. J Clean Prod. 2020;277:123349.
– reference: MahlanguOTMambaBBVerliefdeARDEffect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranesPolym Adv Technol20203111258826001:CAS:528:DC%2BB3cXht1Cqu7%2FK
– reference: Elshof MG, de Vos WM, de Grooth J, Benes NE. On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes. J Membr Sci. 2020;615:118532.
– reference: NairRRProtasovaEStrandSBilstadTImplementation of Spiegler– Kedem and steric hindrance pore models for analyzing nanofiltration membrane performance for smart water productionMembranes20188378
– reference: LiHShiWDuQZhouRZhangHQinXImproved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGOAppl Surf Sci20174072602751:CAS:528:DC%2BC2sXjslWqu7o%3D
– reference: Xu R, Zhou M, Wang H, Wang X, Wen X. Influences of temperature on the retention of PPCPs by nanofiltration membranes: experiments and modeling assessment. J Membr Sci. 2020;599:117817.
– reference: Schmidt CM, Sprunk M, Löffler R, Hinrichs J. Relating nanofiltration membrane morphology to observed rejection of saccharides. Sep Purif Technol. 2020;239:116550.
– reference: GilAGaleanoLAVicenteMÃApplications of advanced oxidation processes (AOPs) in drinking water treatment20191ChamSpringer International Publishing
– reference: Gönder ZB, Balcıoğlu G, Vergili I, Kaya Y. An integrated electrocoagulation–nanofiltration process for carwash wastewater reuse. Chemosphere. 2020;253:126713.
– reference: Park S, Jeong YD, Lee JH, Kim J, Jeong K, Cho KH. 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. J Membr Sci. 2021;620:118665.
– reference: Van GoethemCMertensMVankelecomIFJCrosslinked PVDF membranes for aqueous and extreme pH nanofiltrationJ Membr Sci2019572489495
– reference: Egea-CorbachoAGutiérrez RuizSQuiroga AlonsoJMRemoval of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plantJ Clean Prod20192145145231:CAS:528:DC%2BC1MXotVCrtw%3D%3D
– reference: Peydayesh M, Mohammadi T, Nikouzad SK. A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci. 2020;611:118205.
– reference: LópezJReigMGibertOCortinaJLIncreasing sustainability on the metallurgical industry by integration of membrane nanofiltration processes: acid recoverySep Purif Technol2019226267277
– reference: SantibáñezLCórdovaAAstudillo-CastroCIllanesAEffect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysisSep Purif Technol2019222342351
– reference: PalPSardarMPalMChakraborttySNayakJModelling forward osmosis-nanofiltration integrated process for treatment and recirculation of leather industry wastewaterComput Chem Eng2019127991101:CAS:528:DC%2BC1MXhtVSmsbjI
– reference: SuJChungT-SSublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processesJ Membr Sci201137612142241:CAS:528:DC%2BC3MXmvFSqtrg%3D
– reference: Mall NK, Herman JD. Water shortage risks from perennial crop expansion in California's Central Valley. Environ Res Lett. 2019;14(10):104014.
– reference: Van Goethem C, Magboo MM, Mertens M, Thijs M, Koeckelberghs G, Vankelecom IFJ. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J Membr Sci. 2020;611:118274.
– reference: AmirilarganiMYokotaGNVermeijGHMerletRBDelenGMandemakerLDBWeckhuysenBMWinnubstLNijmeijerAde SmetLCPMSudhölterEJRMelamine-based microporous organic framework thin films on an alumina membrane for high-flux organic solvent nanofiltrationChemsuschem20201311361401:CAS:528:DC%2BC1MXhvF2rsbjK
– reference: AngMBMYTrillesCADe GuzmanMRPereiraJMAquinoRRHuangS-HHuC-CLeeK-RLaiJ-YImproved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticlesSep Purif Technol20192241131201:CAS:528:DC%2BC1MXpsVWqur4%3D
– reference: López J, Reig M, Vecino X, Gibert O, Cortina JL. Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment. Chem Eng J. 2020;382:122786.
– reference: DasSKManchandaPPeinemannK-VSolvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membraneSep Purif Technol20192133483581:CAS:528:DC%2BC1MXnsFaj
– reference: Kramer FC, Shang R, Rietveld LC, Heijman SJG. Fouling control in ceramic nanofiltration membranes during municipal sewage treatment. Sep Purif Technol. 2020;237:116373.
– reference: Li Y, Qi B, Wan Y. Separation of monosaccharides from pretreatment inhibitors by nanofiltration in lignocellulosic hydrolysate: fouling mitigation by activated carbon adsorption. Biomass Bioenergy. 2020;136:105527.
– reference: Echaide-Górriz C, Zapata JA, Etxeberría-Benavides M, Téllez C, Coronas J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep Purif Technol. 2020;236:116265.
– reference: ReisBGAraújoALBVieiraCCAmaralMCSFerrazHCAssessing potential of nanofiltration for sulfuric acid plant effluent reclamation: operational and economic aspectsSep Purif Technol20192223693801:CAS:528:DC%2BC1MXnvFyrsrc%3D
– reference: Motta Cabrera S, Winnubst L, Richter H, Voigt I, Nijmeijer A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep Purif Technol. 2021;256:117821.
– reference: Ağtaş M, Yılmaz Ö, Dilaver M, Alp K, Koyuncu İ. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J Clean Prod. 2020;256:120359.
– reference: ZhangYWangLSunWHuYTangHMembrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive reviewJ Ind Eng Chem2020817231:CAS:528:DC%2BC1MXhsl2gt7nK
– reference: HoffmanJRPhillipWADual-functional nanofiltration membranes exhibit multifaceted ion rejection and antifouling performanceACS Appl Mater Interfaces2020121719944199541:CAS:528:DC%2BB3cXmsFKksrg%3D
– reference: ChoKMLeeH-JNamYTKimY-JKimCKangKMRuiz TorresCAKimDWJungH-TUltrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbonsACS Appl Mater Interfaces2019113027004270101:CAS:528:DC%2BC1MXhtlWjtLrI
– reference: LowZ-XJiJBlumenstockDChewY-MWolversonDMattiaDFouling resistant 2D boron nitride nanosheet – PES nanofiltration membranesJ Membr Sci20185639499561:CAS:528:DC%2BC1cXht1yrs7rI
– reference: Davood Abadi Farahani MH, Chung T-S. A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Sep Purif Technol. 2019;209:182–92.
– reference: Park SH, Kim JH, Moon SJ, Jung JT, Wang HH, Ali A, Quist-Jensen CA, Macedonio F, Drioli E, Lee YM. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J Membr Sci. 2020;598:117683.
– reference: JungOSaraviaFWagnerMHeißlerSHornHQuantifying concentration polarization - Raman microspectroscopy for in-situ measurement in a flat sheet cross-flow nanofiltration membrane unitSci Rep20199115885
– reference: Ali MEA, Kotp YH, Bosela R, Samy A, Awad S, Du JR. Enhancing the performance of TFC nanofiltration membranes by adding organic acids in polysulfone support layer. Polym Test. 2020;91:106775.
– reference: GiacobboASoaresEVBernardesAMRosaMJde PinhoMNAtenolol removal by nanofiltration: a case-specific mass transfer correlationWater Sci Technol20208122102161:CAS:528:DC%2BB3cXhvFOku73F
– reference: Kamari S, Shahbazi A. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere (Oxford). 2020;243:125282.
– reference: Agarwal P, Hefner RE, Ge S, Tomlinson I, Rao Y, Dikic T. Nanofiltration membranes from crosslinked Troger's base polymers of intrinsic microporosity (PIMs). J Membr Sci. 2020;595:117501.
– reference: GiagnorioMRicceriFTagliabueMZaninettaLTiraferriAHybrid forward osmosis– nanofiltration for wastewater reuse: system designMembranes (Basel)201995611:CAS:528:DC%2BC1MXht1Cit73L
– reference: PathakVAmbroseRPKStarch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortageJ Appl Polym Sci202013714485231:CAS:528:DC%2BC1MXhvVKku7%2FM
– reference: TurkenTSengur-TasdemirRSayinliBUrper-BayramGMAtes-GenceliETarabaraVVKoyuncuIReinforced thin-film composite nanofiltration membranes: fabrication, characterization, and performance testingJ Appl Polym Sci20191363948001
– reference: Wang R, Lin S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J Membr Sci. 2021;620:118809.
– reference: Izadmehr N, Mansourpanah Y, Ulbricht M, Rahimpour A, Omidkhah MR. TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification performance and antifouling properties. J Environ Manag. 2020;276:111299.
– reference: RajendranRMGargSBajpaiSModelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale studyEnviron Sci Pollut Res Int2021281113886138991:CAS:528:DC%2BB3MXhtVertLjE
– reference: PolisettiVRayPThin film composite nanofiltration membranes with polystyrene sodium sulfonate–polypiperazinetrimesamide semi-interpenetrating polymer network active layerJ Appl Polym Sci202013744493511:CAS:528:DC%2BB3cXnsFSgtL8%3D
– reference: KapschAMFarcetMRWieserAAhmadMQMiyabayashiTBaylisSABlümelJKreilTRAntibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulinTransfusion20206011250025071:CAS:528:DC%2BB3cXis1erurfK
– reference: AngMBMYPereiraJMTrillesCAAquinoRRHuangS-HLeeK-RLaiJ-YPerformance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheresSep Purif Technol20192105215291:CAS:528:DC%2BC1cXhs1eisrzM
– reference: Muhammad Akhyar F. Nanofiltration. IntechOpen; 2018.
– reference: Boussouga Y-A, Frey H, Schäfer AI. Removal of arsenic(V) by nanofiltration: impact of water salinity, pH and organic matter. J Membr Sci. 2021;618:118631.
– reference: Fujioka T, Ngo MTT, Makabe R, Ueyama T, Takeuchi H, Nga TTV, Bui X-T, Tanaka H. Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment. Chemosphere. 2021;265:129056.
– reference: MisdanNRamleeNHairomNHHIkhsanSNWYusofNLauWJIsmailAFNordinNAHMCuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membraneChem Eng Res Des20191482272391:CAS:528:DC%2BC1MXhtFyis7zO
– reference: Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer. Sep Purif Technol. 2021;270:118811.
– reference: ZhaoYZhangZDaiLZhangSPreparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)2 groupDesalination201843156651:CAS:528:DC%2BC2sXhvVSmtr%2FP
– reference: Mehrjo F, Pourkhabbaz A, Shahbazi A. PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye heavy metal and salts from wastewater. Chemosphere. 2021;263:128088.
– reference: MohamadNReigMVecinoXYongKCortinaJLPotential of nanofiltration and reverse osmosis processes for the recovery of high-concentrated furfural streamsJ Chem Technol Biotechnol2019949289929071:CAS:528:DC%2BC1MXht1Kktr7O
– reference: Abdullah N, Yusof N, Ismail AF, Lau WJ. Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination. 2021;500:114867.
– reference: Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol. 2020;247:116995.
– reference: Ormanci-Acar T, Tas CE, Keskin B, Ozbulut EBS, Turken T, Imer D, Tufekci N, Menceloglu YZ, Unal S, Koyuncu I. Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer. J Membr Sci. 2020;608:118172.
– reference: Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion. J Membr Sci. 2020;603:117921.
– reference: López J, Reig M, Vecino X, Gibert O, Cortina JL. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Sci Total Environ. 2020;738:139780.
– reference: Aburabie JH, Puspasari T, Peinemann K-V. Alginate-based membranes: paving the way for green organic solvent nanofiltration. J Membr Sci. 2020;596:117615.
– reference: RothNJDichtelmüllerHOFabbrizziFFlechsigEGrönerAGustafsonMJorqueraJIKreilTRMisztelaDMorettiEMoscardiniMPoelslerGMoreJRobertsPWieserAGajardoRNanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 yearsʼ experience of the plasma protein manufacturersTransfusion20206011266126741:CAS:528:DC%2BB3cXis1erurbM
– reference: BushJAVannesteJCathTYComparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated waterJ Membr Sci2019570258269
– reference: HosseiniSMAfshariMFazlaliARKoudzari FarahaniSBandehaliSVan der BruggenBBagheripourEMixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristicsChem Eng Res Des20191473903981:CAS:528:DC%2BC1MXhtVeisr3P
– reference: LakhotiaSRMukhopadhyayMKumariPIron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatmentSep Purif Technol2019211981071:CAS:528:DC%2BC1cXhvVWhurnK
– reference: Sada Y, Yoshioka T, Nakagawa K, Shintani T, Iesako R, Kamio E, Matsuyama H. Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membr Sci. 2019;591:117304.
– reference: DuChanoisRMEpszteinRTrivediJAElimelechMControlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactionsJ Membr Sci20195814134201:CAS:528:DC%2BC1MXmslajsrk%3D
– reference: Anisah S, Kanezashi M, Nagasawa H. Tsuru T. Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures. Sep Purif Technol. 2019;212:1001–12.
– reference: Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci. 2021;624:119101.
– reference: Alhumaidi MS, Arshad F, Aubry C, Ravaux F, McElhinney J, Hasan A, Zou L. Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology. 2020;31(27):275602.
– reference: CristóvãoMBTorrejaisJJanssensRLuisPVan der BruggenBDubeyKKMandalMKBronzeMRCrespoJGPereiraVJTreatment of anticancer drugs in hospital and wastewater effluents using nanofiltrationSep Purif Technol2019224273280
– reference: AgboolaOFayomiOSISadikuRPopoolaPAlabaPAAdegbolaATPolymers blends for the improvement of nanofiltration membranes in wastewater treatment: a short reviewMater Today Proc202143336533681:CAS:528:DC%2BB3cXit1WntbvM
– reference: Thombre NV, Gadhekar AP, Patwardhan AV, Gogate PR. Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrason Sonochem. 2020;62:104891.
– reference: SchäferAAndritsosNKarabelasAJHoekEMVSchneiderRNyströmMFouling in nanofiltration2004EdinburghElsevier
– reference: Caltran I, Rietveld LC, Shorney-Darby HL, Heijman SGJ. Separating NOM from salts in ion exchange brine with ceramic nanofiltration. Water Res. 2020;179:115894.
– reference: Figoli A, Fuoco I, Apollaro C, Chabane M, Mancuso R, Gabriele B, Rosa RD, Vespasiano G, Barca D, Criscuoli A. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep Purif Technol. 2020;238:116461.
– reference: Cuhorka J, Wallace E, Mikulášek P. Removal of micropollutants from water by commercially available nanofiltration membranes. Sci Total Environ. 2020;720:137474.
– reference: LinDTangXXingJZhaoJLiangHLiGApplication of peroxymonosulfate-based advanced oxidation process as a novel pretreatment for nanofiltration: comparison with conventional coagulationSep Purif Technol20192242552641:CAS:528:DC%2BC1MXpsVaktb0%3D
– reference: MulderMBasic principles of membrane technology19962DordrechtSpringer, Netherlands
– reference: TranTTVKumarSRLueSJSeparation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interactionJ Membr Sci201957538491:CAS:528:DC%2BC1MXnslelsA%3D%3D
– reference: GuoDXiaoYLiTZhouQShenLLiRXuYLinHFabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assemblyJ Colloid Interface Sci20205602732831:CAS:528:DC%2BC1MXitVelurnM
– reference: KumarVSHariharanKSMayyaKSHanSVolume averaged reduced order Donnan steric pore model for nanofiltration membranesDesalination201332221281:CAS:528:DC%2BC3sXhtVaitL7F
– reference: PeetersJMMBoomJPMulderMHVStrathmannHRetention measurements of nanofiltration membranes with electrolyte solutionsJ Membr Sci199814521992091:CAS:528:DyaK1cXjsFOgs70%3D
– reference: Arola K, Mänttäri M, Kallioinen M. Two-stage nanofiltration for purification of membrane bioreactor treated municipal wastewater – minimization of concentrate volume and simultaneous recovery of phosphorus. Sep Purif Technol. 2021;256:117255.
– reference: YangRAnalytical methods for polymer characterization20181MiltonTaylor & Francis Group
– reference: Hoang MT, Pham TD, Verheyen D, Nguyen MK, Pham TT, Zhu J, Van der Bruggen B. Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II). Chem Eng Sci. 2020;228:115998.
– reference: KarimnezhadHNavarchianAHTavakoli GheinaniTZinadiniSIncorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling propertyReact Funct Polym201913577931:CAS:528:DC%2BC1MXlsFWk
– reference: Malhotra M, Pal M, Pal P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng. 2020;33:101007.
– reference: GhazaliNFRazakNDARecovery of saccharides from lignocellulosic hydrolysates using nanofiltration membranes: a reviewFood Bioprod Process20211262152331:CAS:528:DC%2BB3MXivVWhsLs%3D
– reference: Álvarez-Quintana S, Carmona FJ, Palacio L, Hernández A, Prádanos P. Water viscosity in confined nanoporous media and flow through nanofiltration membranes. Microporous Mesoporous Mater. 2020;303:110289.
– reference: Konca K, Çulfaz-Emecen PZ. Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide. J Membr Sci. 2019;587:117175.
– reference: Nidhi MaaligeRAruchamyKMahtoASharmaVDeepikaDMondalDNatarajSKLow operating pressure nanofiltration membrane with functionalized natural nanoclay as antifouling and flux promoting agentChem Eng J20193588218301:CAS:528:DC%2BC1cXhvFajsrvK
– reference: JyeLWIsmailAFNanofiltration membranes: synthesis, characterization, and applications2017Boca RatonCRC Press Taylor & Francis Group
– reference: Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht MCM. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol. 2020;247:116979.
– reference: ZhaoYTongTWangXLinSReidEMChenYDifferentiating solutes with precise nanofiltration for next generation environmental separations: a reviewEnviron Sci Technol2021553135913761:CAS:528:DC%2BB3MXpvF2iug%3D%3D
– reference: PoolachiraSVelmuruganSExfoliated hydrotalcite–modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutionsEnviron Sci Pollut Res Int2020272429725297361:CAS:528:DC%2BC1MXitF2qtrvP
– reference: BagheripourEMoghadassiARParvizianFHosseiniSMVan der BruggenBTailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layerChem Eng Res Des20191444184281:CAS:528:DC%2BC1MXktFeiu7Y%3D
– reference: Casanova S, Liu T-Y, Chew Y-MJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Membr Sci. 2020;597:117749.
– reference: TangM-JLiuM-LWangD-AShaoD-DWangH-JCuiZCaoX-LSunS-PPrecisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol–water condensationNano Lett2020204271727231:CAS:528:DC%2BB3cXlsFahtbk%3D
– reference: MahalingamDKWangSNunesSPStable graphene oxide cross-linked membranes for organic solvent nanofiltrationInd Eng Chem Res2019585123106231131:CAS:528:DC%2BC1MXitVOht7rN
– reference: PicaNEFunkhouserJYinYZhangZCeresDMTongTBlotevogelJElectrochemical oxidation of hexafluoropropylene oxide dimer acid (GenX): mechanistic insights and efficient treatment train with nanofiltrationEnviron Sci Technol2019532112602126091:CAS:528:DC%2BC1MXhvFCjtbrN
– reference: RoyYWarsingerDMLienhardJHEffect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigrationDesalination20174202412571:CAS:528:DC%2BC2sXht12hu7%2FO
– reference: RoyYLienhardJHA framework to analyze sulfate versus chloride selectivity in nanofiltrationEnviron Sci Water Res Technol2019535855981:CAS:528:DC%2BC1MXhsVSjtrs%3D
– reference: Shin MG, Kwon SJ, Park H, Park Y-I, Lee J-H. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Membr Sci. 2020;595:117590.
– ident: 208_CR86
  doi: 10.1016/j.ces.2020.115998
– volume: 60
  start-page: 2500
  issue: 11
  year: 2020
  ident: 208_CR164
  publication-title: Transfusion
  doi: 10.1111/trf.16014
– volume: 148
  start-page: 227
  year: 2019
  ident: 208_CR84
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.06.004
– volume: 137
  start-page: 49351
  issue: 44
  year: 2020
  ident: 208_CR35
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.49351
– ident: 208_CR165
  doi: 10.1016/j.jviromet.2019.113755
– volume: 213
  start-page: 348
  year: 2019
  ident: 208_CR27
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.12.046
– volume: 431
  start-page: 56
  year: 2018
  ident: 208_CR28
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.11.022
– ident: 208_CR90
  doi: 10.1016/j.memsci.2020.118325
– ident: 208_CR123
  doi: 10.1016/j.watres.2020.115894
– volume: 59
  start-page: 11940
  issue: 26
  year: 2020
  ident: 208_CR122
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b06877
– volume: 11
  start-page: 1252
  issue: 8
  year: 2019
  ident: 208_CR11
  publication-title: Polymers
  doi: 10.3390/polym11081252
– volume: 573
  start-page: 694
  year: 2019
  ident: 208_CR155
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.12.026
– volume-title: Analytical methods for polymer characterization
  year: 2018
  ident: 208_CR175
  doi: 10.1201/9781351213158
– volume: 136
  start-page: 48205
  issue: 45
  year: 2019
  ident: 208_CR95
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.48205
– volume: 136
  start-page: 48001
  issue: 39
  year: 2019
  ident: 208_CR18
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.48001
– volume: 12
  start-page: 47948
  issue: 42
  year: 2020
  ident: 208_CR23
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c13339
– ident: 208_CR43
  doi: 10.1016/j.memsci.2020.118274
– volume: 55
  start-page: 1359
  issue: 3
  year: 2021
  ident: 208_CR46
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c04593
– ident: 208_CR147
  doi: 10.1016/j.seppur.2020.117821
– volume: 575
  start-page: 38
  year: 2019
  ident: 208_CR150
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.12.070
– volume: 137
  start-page: 48523
  issue: 14
  year: 2020
  ident: 208_CR3
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.48523
– ident: 208_CR66
  doi: 10.1016/j.chemosphere.2019.125282
– ident: 208_CR168
  doi: 10.1016/j.seppur.2020.117255
– ident: 208_CR138
  doi: 10.1016/j.chemosphere.2020.126713
– volume: 407
  start-page: 260
  year: 2017
  ident: 208_CR98
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.02.204
– volume: 358
  start-page: 821
  year: 2019
  ident: 208_CR70
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.10.087
– ident: 208_CR154
  doi: 10.1016/j.seppur.2020.116550
– volume: 36
  start-page: 1648
  issue: 10
  year: 2019
  ident: 208_CR117
  publication-title: Korean J Chem Eng
  doi: 10.1007/s11814-019-0357-0
– ident: 208_CR62
  doi: 10.1016/j.memsci.2019.117746
– volume: 145
  start-page: 199
  issue: 2
  year: 1998
  ident: 208_CR116
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(98)00079-9
– ident: 208_CR55
  doi: 10.1016/j.memsci.2020.118454
– ident: 208_CR38
  doi: 10.1016/j.seppur.2018.07.026
– volume: 210
  start-page: 746
  year: 2019
  ident: 208_CR118
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.08.066
– volume: 364
  start-page: 1057
  issue: 6445
  year: 2019
  ident: 208_CR81
  publication-title: Science
  doi: 10.1126/science.aau5321
– volume-title: Applications of advanced oxidation processes (AOPs) in drinking water treatment
  year: 2019
  ident: 208_CR2
  doi: 10.1007/978-3-319-76882-3
– volume: 144
  start-page: 418
  year: 2019
  ident: 208_CR88
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.02.028
– volume: 226
  start-page: 267
  year: 2019
  ident: 208_CR143
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.100
– volume: 94
  start-page: 2899
  issue: 9
  year: 2019
  ident: 208_CR170
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.6093
– volume: 135
  start-page: 77
  year: 2019
  ident: 208_CR126
  publication-title: React Funct Polym
  doi: 10.1016/j.reactfunctpolym.2018.12.016
– volume: 222
  start-page: 369
  year: 2019
  ident: 208_CR146
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.04.048
– volume: 81
  start-page: 210
  issue: 2
  year: 2020
  ident: 208_CR158
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2020.073
– volume: 578
  start-page: 27
  year: 2019
  ident: 208_CR153
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2019.02.022
– volume: 574
  start-page: 44
  year: 2019
  ident: 208_CR15
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.12.051
– volume: 216
  start-page: 115
  year: 2019
  ident: 208_CR149
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.01.070
– volume-title: Nanofiltration membranes: synthesis, characterization, and applications
  year: 2017
  ident: 208_CR6
– ident: 208_CR145
  doi: 10.1016/j.cej.2019.122786
– ident: 208_CR13
  doi: 10.1016/j.memsci.2020.118139
– volume: 11
  start-page: 19
  issue: 1
  year: 2020
  ident: 208_CR14
  publication-title: Membranes
  doi: 10.3390/membranes11010019
– volume: 149
  start-page: 225
  year: 2019
  ident: 208_CR69
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.10.096
– volume: 156
  start-page: 433
  year: 2020
  ident: 208_CR89
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2020.02.019
– volume: 12
  start-page: 19944
  issue: 17
  year: 2020
  ident: 208_CR30
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03075
– volume: 137
  start-page: 49549
  issue: 47
  year: 2020
  ident: 208_CR64
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.49549
– volume: 69
  start-page: 1187
  issue: 12
  year: 2020
  ident: 208_CR41
  publication-title: Polym Int
  doi: 10.1002/pi.6061
– volume-title: 3D printing in orthopaedic surgery
  year: 2019
  ident: 208_CR31
– volume: 8
  start-page: 37
  issue: 3
  year: 2018
  ident: 208_CR91
  publication-title: Membranes
  doi: 10.3390/membranes8030037
– ident: 208_CR174
  doi: 10.1016/j.seppur.2020.117242
– volume: 40
  start-page: 145
  issue: 1
  year: 2020
  ident: 208_CR76
  publication-title: J Eur Ceram Soc
  doi: 10.1016/j.jeurceramsoc.2019.09.023
– ident: 208_CR169
  doi: 10.1016/j.desal.2020.114761
– ident: 208_CR44
  doi: 10.1016/j.memsci.2019.117615
– volume: 224
  start-page: 273
  year: 2019
  ident: 208_CR161
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.016
– ident: 208_CR58
  doi: 10.1016/j.memsci.2020.118006
– volume: 211
  start-page: 98
  year: 2019
  ident: 208_CR67
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.09.034
– volume: 212
  start-page: 660
  year: 2019
  ident: 208_CR96
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.11.054
– ident: 208_CR7
  doi: 10.1016/j.memsci.2019.117590
– volume: 28
  start-page: 13886
  issue: 11
  year: 2021
  ident: 208_CR112
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-020-11613-2
– ident: 208_CR75
  doi: 10.1016/j.memsci.2019.117304
– ident: 208_CR10
  doi: 10.1016/j.desal.2020.114867
– ident: 208_CR74
  doi: 10.1016/j.seppur.2018.12.006
– volume: 204
  start-page: 99
  year: 2019
  ident: 208_CR54
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2019.04.022
– volume: 304
  start-page: 1800551
  issue: 1
  year: 2019
  ident: 208_CR17
  publication-title: Macromol Mater Eng
  doi: 10.1002/mame.201800551
– volume: 134
  start-page: 74
  year: 2019
  ident: 208_CR78
  publication-title: React Funct Polym
  doi: 10.1016/j.reactfunctpolym.2018.11.010
– ident: 208_CR103
  doi: 10.1016/j.seppur.2019.116373
– volume: 13
  start-page: 136
  issue: 1
  year: 2020
  ident: 208_CR73
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201902341
– ident: 208_CR99
  doi: 10.1016/j.seppur.2021.118811
– ident: 208_CR156
  doi: 10.1016/j.scitotenv.2020.137474
– ident: 208_CR173
  doi: 10.1016/j.desal.2020.114357
– volume: 9
  start-page: 61
  issue: 5
  year: 2019
  ident: 208_CR136
  publication-title: Membranes (Basel)
  doi: 10.3390/membranes9050061
– volume: 5
  start-page: 585
  issue: 3
  year: 2019
  ident: 208_CR163
  publication-title: Environ Sci Water Res Technol
  doi: 10.1039/C8EW00847G
– ident: 208_CR100
– volume: 43
  start-page: 3365
  year: 2021
  ident: 208_CR39
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.05.387
– volume: 53
  start-page: 868
  issue: 2
  year: 2019
  ident: 208_CR80
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b04268
– ident: 208_CR4
  doi: 10.1088/1748-9326/ab4035
– ident: 208_CR124
  doi: 10.1016/j.seppur.2019.116033
– ident: 208_CR128
  doi: 10.1016/j.jwpe.2019.101007
– volume-title: Fouling in nanofiltration
  year: 2004
  ident: 208_CR101
– ident: 208_CR157
  doi: 10.1016/j.jenvman.2020.111005
– volume: 581
  start-page: 413
  year: 2019
  ident: 208_CR21
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2019.03.077
– ident: 208_CR48
  doi: 10.1016/j.seppur.2019.116265
– ident: 208_CR60
  doi: 10.1088/1361-6528/ab8085
– volume: 214
  start-page: 514
  year: 2019
  ident: 208_CR159
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.12.297
– volume: 126
  start-page: 215
  year: 2021
  ident: 208_CR113
  publication-title: Food Bioprod Process
  doi: 10.1016/j.fbp.2021.01.006
– volume: 60
  start-page: 2661
  issue: 11
  year: 2020
  ident: 208_CR166
  publication-title: Transfusion
  doi: 10.1111/trf.16022
– ident: 208_CR162
  doi: 10.1016/j.memsci.2020.117817
– ident: 208_CR109
  doi: 10.1016/j.cej.2020.126722
– ident: 208_CR114
  doi: 10.1016/j.polymertesting.2020.106775
– volume: 224
  start-page: 255
  year: 2019
  ident: 208_CR106
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.011
– volume: 360
  start-page: 122
  year: 2018
  ident: 208_CR16
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2018.08.004
– ident: 208_CR72
  doi: 10.1016/j.memsci.2020.118401
– ident: 208_CR26
  doi: 10.1016/j.memsci.2020.118172
– ident: 208_CR53
  doi: 10.1016/j.memsci.2019.117598
– volume: 27
  start-page: 29725
  issue: 24
  year: 2020
  ident: 208_CR68
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-019-06715-5
– volume: 58
  start-page: 14350
  issue: 31
  year: 2019
  ident: 208_CR77
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b02292
– ident: 208_CR12
  doi: 10.1016/j.memsci.2019.117175
– volume: 376
  start-page: 214
  issue: 1
  year: 2011
  ident: 208_CR111
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2011.04.031
– ident: 208_CR133
  doi: 10.1016/j.chemosphere.2020.129056
– ident: 208_CR121
  doi: 10.1016/j.memsci.2020.118809
– ident: 208_CR130
  doi: 10.1016/j.memsci.2020.118631
– volume: 153
  start-page: 134
  year: 2019
  ident: 208_CR137
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.01.014
– ident: 208_CR49
  doi: 10.1016/j.memsci.2021.119101
– volume: 9
  start-page: 15885
  issue: 1
  year: 2019
  ident: 208_CR104
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52369-1
– ident: 208_CR139
  doi: 10.1016/j.ecolind.2020.106213
– volume: 570
  start-page: 258
  year: 2019
  ident: 208_CR171
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.10.034
– volume: 58
  start-page: 23106
  issue: 51
  year: 2019
  ident: 208_CR56
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.9b05169
– ident: 208_CR107
  doi: 10.1016/j.ultsonch.2019.104891
– volume: 420
  start-page: 241
  year: 2017
  ident: 208_CR120
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.07.020
– volume: 136
  start-page: 48129
  issue: 42
  year: 2019
  ident: 208_CR34
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.48129
– volume-title: Basic principles of membrane technology
  year: 1996
  ident: 208_CR5
  doi: 10.1007/978-94-009-1766-8
– volume: 77
  start-page: 98
  issue: 3–4
  year: 2020
  ident: 208_CR71
  publication-title: Glass Ceram
  doi: 10.1007/s10717-020-00248-x
– ident: 208_CR127
  doi: 10.1016/j.micromeso.2020.110289
– ident: 208_CR83
  doi: 10.1016/j.seppur.2020.116979
– ident: 208_CR105
  doi: 10.1016/j.biombioe.2020.105527
– ident: 208_CR125
  doi: 10.1016/j.eurpolymj.2020.109544
– ident: 208_CR65
  doi: 10.1016/j.seppur.2020.117280
– ident: 208_CR87
  doi: 10.1016/j.chemosphere.2020.128088
– ident: 208_CR45
  doi: 10.1016/j.memsci.2020.118294
– volume: 563
  start-page: 949
  year: 2018
  ident: 208_CR50
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.07.003
– volume: 572
  start-page: 580
  year: 2019
  ident: 208_CR37
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.11.048
– ident: 208_CR142
  doi: 10.1016/j.scitotenv.2020.139780
– volume: 322
  start-page: 21
  year: 2013
  ident: 208_CR119
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.04.030
– ident: 208_CR52
  doi: 10.1016/j.seppur.2020.116995
– volume: 52
  start-page: 4108
  issue: 7
  year: 2018
  ident: 208_CR108
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b06400
– volume: 147
  start-page: 390
  year: 2019
  ident: 208_CR47
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.05.025
– volume: 224
  start-page: 113
  year: 2019
  ident: 208_CR61
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.018
– volume: 224
  start-page: 543
  year: 2019
  ident: 208_CR140
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.05.025
– volume: 8
  start-page: 78
  issue: 3
  year: 2018
  ident: 208_CR110
  publication-title: Membranes
  doi: 10.3390/membranes8030078
– ident: 208_CR167
  doi: 10.1016/j.seppur.2019.115675
– ident: 208_CR40
  doi: 10.1016/j.desal.2020.114352
– ident: 208_CR144
  doi: 10.1016/j.jenvman.2019.110001
– ident: 208_CR148
  doi: 10.1016/j.jclepro.2020.123349
– volume: 560
  start-page: 273
  year: 2020
  ident: 208_CR19
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2019.10.078
– volume: 31
  start-page: 2588
  issue: 11
  year: 2020
  ident: 208_CR102
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.4986
– ident: 208_CR85
  doi: 10.1016/j.jenvman.2020.111299
– volume: 12
  start-page: 53356
  issue: 47
  year: 2020
  ident: 208_CR97
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c16569
– ident: 208_CR9
  doi: 10.1016/j.memsci.2020.118205
– volume: 11
  start-page: 27004
  issue: 30
  year: 2019
  ident: 208_CR57
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b09037
– volume: 20
  start-page: 2717
  issue: 4
  year: 2020
  ident: 208_CR94
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c00344
– ident: 208_CR82
  doi: 10.1016/j.memsci.2020.118901
– volume: 30
  start-page: 360
  issue: 2
  year: 2019
  ident: 208_CR25
  publication-title: Polym Adv Technol
  doi: 10.1002/pat.4473
– ident: 208_CR1
  doi: 10.1016/j.jclepro.2020.123965
– volume: 212
  start-page: 171
  year: 2019
  ident: 208_CR160
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.11.018
– volume: 148
  start-page: 370
  year: 2019
  ident: 208_CR59
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.090
– ident: 208_CR29
  doi: 10.1016/j.memsci.2019.117565
– volume: 127
  start-page: 99
  year: 2019
  ident: 208_CR135
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2019.05.018
– volume: 75
  start-page: 4431
  year: 2021
  ident: 208_CR129
  publication-title: Chem Pap
  doi: 10.1007/s11696-021-01694-9
– volume: 35
  start-page: 1284
  issue: 5
  year: 2019
  ident: 208_CR24
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00960
– ident: 208_CR92
  doi: 10.1016/j.memsci.2019.117683
– volume: 53
  start-page: 12602
  issue: 21
  year: 2019
  ident: 208_CR134
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b03171
– ident: 208_CR141
  doi: 10.1016/j.seppur.2019.116186
– ident: 208_CR131
  doi: 10.1016/j.seppur.2019.116461
– ident: 208_CR22
  doi: 10.1016/j.memsci.2020.118532
– volume: 231
  start-page: 1263
  year: 2019
  ident: 208_CR132
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2018.07.067
– volume: 81
  start-page: 7
  year: 2020
  ident: 208_CR93
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2019.09.002
– volume: 211
  start-page: 170
  year: 2019
  ident: 208_CR36
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.09.067
– ident: 208_CR20
  doi: 10.1016/j.memsci.2019.117501
– ident: 208_CR79
  doi: 10.1016/j.seppur.2020.118231
– volume: 222
  start-page: 342
  year: 2019
  ident: 208_CR152
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.04.020
– start-page: 1
  volume-title: Encyclopedia of polymeric nanomaterials
  year: 2014
  ident: 208_CR8
  doi: 10.1007/978-3-642-36199-9_160-1
– ident: 208_CR51
  doi: 10.1016/j.memsci.2019.117749
– volume: 572
  start-page: 489
  year: 2019
  ident: 208_CR42
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.11.036
– ident: 208_CR172
  doi: 10.1016/j.desal.2020.114658
– ident: 208_CR115
  doi: 10.1016/j.memsci.2020.117921
– ident: 208_CR151
  doi: 10.1016/j.jclepro.2020.120359
– ident: 208_CR32
  doi: 10.1016/j.memsci.2020.118665
– volume: 210
  start-page: 521
  year: 2019
  ident: 208_CR33
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2018.08.037
– ident: 208_CR63
  doi: 10.1016/j.memsci.2019.117714
SSID ssj0002046597
Score 2.4554777
SecondaryResourceType review_article
Snippet Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 51
SubjectTerms Acids
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Boron
Boron nitride
Cellulose acetate
Contact angle
Dopamine
Drinking water
Earth and Environmental Science
Energy consumption
Environment
Environmental Law/Policy/Ecojustice
films (materials)
Fouling
Freshwater resources
Graphene
graphene oxide
Groundwater
High temperature
Industrial Pollution Prevention
Iron oxides
Long-term effects
Medical wastes
Membrane processes
Membrane separation
Membranes
Metal-organic frameworks
Monitoring/Environmental Analysis
Nanocomposites
Nanofiltration
Nanotechnology
Pharmaceutical industry wastes
Pollutants
Pollution
Polyethylene glycol
Polymerization
Polymers
purification methods
Section Editors
Silicon dioxide
Solvents
Steric hindrance
Surface water
Sustainable development
Textile industry wastewaters
textile mill effluents
Thin films
Topical Collection on Water Pollution
Waste Water Technology
wastewater
Wastewater treatment
Water Management
Water Pollution (G Toor and L Nghiem
Water Pollution Control
Water purification
Water treatment
Title Recent Advances in the Theory and Application of Nanofiltration: a Review
URI https://link.springer.com/article/10.1007/s40726-021-00208-1
https://www.proquest.com/docview/2932831548
https://www.proquest.com/docview/2636849486
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EH8ROrc0TwTYtr2qadL7LJxhQcIg72VtKkAUG66bb_37s2a1Vwz00buKR3v_v6HcCVNN3I4x3jKm06FLrx3JQr4dKg7YBMHI-oG_l5LEaT4GkaTm3AbWHLKtc6sVDUeqYoRn6LZgktIQHs-_mnS1OjKLtqR2hsQxNVcIzOV7M_GL-8VlEWju4fQmbbLVP0zBEjGNXdohdNAypd77dFqmHmn8xoYXCG-7BnkSLrlUd7AFtZfgi7P_gDj-ARQR8aDdYrE_kL9p4zBHSsbLhnMtesVyeo2cwwVKY0o9ty5d4xycrkwDFMhoO3h5FrZyO4CiHT0pURakxfEdt8lgnDDboJwggdmpRzFaBbEutAZiF6X1J6OhR-INC7SzMdSip58E-gkc_y7BSYDnjHVyLuhh0dCJOmGiFLVxsvjiKNJs4Bby2fRFnicJpf8ZFUlMeFTBOUaVLINPEcuK7emZe0GRtXt9ZiT-wvtEjqA3fgsnqMl58yGjLPZitcI3wRE8GNcOBmfVz1J_7f8Wzzjueww6nNoag1a0Fj-bXKLhB8LNM2NHvDfn_ctjftG6qR1W8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60HtSD-MT1GUFPutjN7mZbQaS-aNUWkRZ6W7ObBATZqq2If8rf6Mw-WhXsrefNJjCZZL7JzHwDsC9NNXB42dixMmV6unHsiMfCpkbbHpk4HlA1crMl6h3vput3p-CrqIWhtMriTkwvatWL6Y38GM0SWkIC2GcvrzZ1jaLoatFCI1OLW_35gS5b_7Rxift7wPn1VfuibuddBewYwcbAlgHeNW5MPO1aC8MNAmxhhPJNxHnsIaCvKE9qH_0WKR3lC9cT6BdFWvmSkgVcnHcaZjwXXZkSzJxfte4fhq86HN1NhOh5dU5ao0cMZJTni147NcS0nd8WcARr_0RiUwN3vQgLOTJltUyVlmBKJ8sw_4OvcAUaCDLRSLFaljjQZ08JQwDJsgJ_JhPFaqOAOOsZhpc39QTPuXlPmGRZMGIVOhOR2hqUkl6i14Epj5fdWFSqfll5wkSRQohUVcapBIFCk2qBU8gnjHOicuqX8RwOKZZTmYYo0zCVaehYcDj85yWj6Rg7eqsQe5gf2X44UjAL9oaf8bBRBEUmuveOY4QrKkSoIyw4KrZrNMX_K26MX3EXZuvt5l1412jdbsIcpxKLNM9tC0qDt3e9jcBnEO3k2sbgcdIK_g2QXBB5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Theory+and+Application+of+Nanofiltration%3A+a+Review&rft.jtitle=Current+pollution+reports&rft.au=DU%2C+Yuchen&rft.au=Pramanik%2C+Biplob+Kumar&rft.au=Zhang%2C+Yang&rft.au=Dum%C3%A9e%2C+Ludovic&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-6592&rft.volume=8&rft.issue=1&rft.spage=51&rft.epage=80&rft_id=info:doi/10.1007%2Fs40726-021-00208-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon