Recent Advances in the Theory and Application of Nanofiltration: a Review
Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. Howeve...
Saved in:
Published in | Current pollution reports Vol. 8; no. 1; pp. 51 - 80 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2198-6592 2198-6592 |
DOI | 10.1007/s40726-021-00208-1 |
Cover
Loading…
Abstract | Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti
3
C
2
T
X
, graphene oxide, SiO
2
, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward. |
---|---|
AbstractList | Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti₃C₂TX, graphene oxide, SiO₂, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward. Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti3C2TX, graphene oxide, SiO2, and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward. Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological environment. As a water purification method, nanofiltration (NF) separation technology has been widely considered by researchers in recent years. However, most of the studies on NF in the literature focus on membrane modification, and there are only a few reviews available. In this paper, the latest research progress of NF is reviewed, and the processes of NF membrane preparation using phase inversion, layer by layer, and interfacial polymerization are described. Polymer materials used for NF membrane preparation are reviewed and the main types of nanofillers to generate thin film nanocomposite membranes, including metal organic frameworks, boron nitride, Ti 3 C 2 T X , graphene oxide, SiO 2 , and iron oxide are discussed. Membrane fouling is inevitable during NF operation and this paper analyzes the mechanisms of fouling and summarizes key pretreatment and cleaning methods required to remediate the long-term effects of cake layer formation. The steric hindrance effect, Donnan effect, and dielectric exclusion are analyzed, and some common characterization methods are summarized. The practical applications of NF are briefly introduced including groundwater, pharmaceutical wastewater, and textile wastewater treatment. Finally, the shortcomings and prospects of the existing research progress are put forward. |
Author | Zhang, Yang DU, Yuchen Dumée, Ludovic Jegatheesan, Veeriah Pramanik, Biplob Kumar |
Author_xml | – sequence: 1 givenname: Yuchen surname: DU fullname: DU, Yuchen organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University – sequence: 2 givenname: Biplob Kumar surname: Pramanik fullname: Pramanik, Biplob Kumar organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University – sequence: 3 givenname: Yang surname: Zhang fullname: Zhang, Yang organization: School of Environmental and Safety Engineering, Qingdao University of Science and Technology – sequence: 4 givenname: Ludovic surname: Dumée fullname: Dumée, Ludovic organization: Department of Chemical Engineering, Khalifa University – sequence: 5 givenname: Veeriah orcidid: 0000-0002-8038-4854 surname: Jegatheesan fullname: Jegatheesan, Veeriah email: jega.jegatheesan@rmit.edu.au organization: School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University |
BookMark | eNp9kE1PAjEQhhuDiYj8AU9NvHhZ7dd2izdC_CAhmhA8N6U7KyVLi-2C4d-7gInGA6fpNM8zmXkvUccHDwhdU3JHCSnukyAFkxlhNCOEEZXRM9RldKAymQ9Y58_7AvVTWpI9Jdq-6KLxFCz4Bg_LrfEWEnYeNwvAswWEuMPGl3i4XtfOmsYFj0OFX40PlaubePh5wAZPYevg6wqdV6ZO0P-pPfT-9DgbvWSTt-fxaDjJLM9Zk5kCjOW24IQAyIpViklZyTKv5oxZIYlUpTCQC6GMoWUuuZCMkjmUuWGEKN5Dt8e56xg-N5AavXLJQl0bD2GTNJNcKjEQSrbozT90GTbRt9tpNuBMcZqL_UB1pGwMKUWotHXN4bj2RldrSvQ-Zn2MWbcx60PMmrYq-6euo1uZuDst8aOUWth_QPzd6oT1DUGaj3k |
CitedBy_id | crossref_primary_10_3390_coatings12121823 crossref_primary_10_1016_j_carbon_2022_08_021 crossref_primary_10_1002_wer_11126 crossref_primary_10_1016_j_jwpe_2023_104152 crossref_primary_10_1016_j_colsurfa_2022_129712 crossref_primary_10_3390_membranes12121263 crossref_primary_10_1016_j_jcis_2024_02_077 crossref_primary_10_1016_j_jwpe_2024_105565 crossref_primary_10_1016_j_memsci_2024_123578 crossref_primary_10_1016_j_dwt_2024_100042 crossref_primary_10_1016_j_desal_2024_117928 crossref_primary_10_1016_j_seppur_2024_129754 crossref_primary_10_1016_j_desal_2024_117649 crossref_primary_10_1016_j_desal_2024_117607 crossref_primary_10_1016_j_desal_2022_116198 crossref_primary_10_1039_D2NA00472K crossref_primary_10_1016_j_cej_2023_146111 crossref_primary_10_3390_polym16020285 crossref_primary_10_3390_membranes12040403 crossref_primary_10_1016_j_jece_2023_111696 crossref_primary_10_2139_ssrn_4093809 crossref_primary_10_3389_fmicb_2024_1485624 crossref_primary_10_1016_j_seppur_2025_131874 crossref_primary_10_3390_membranes14120248 crossref_primary_10_1016_j_memsci_2024_123687 crossref_primary_10_1515_ntrev_2022_0484 crossref_primary_10_3390_dairy5040061 crossref_primary_10_1016_j_ces_2023_118882 crossref_primary_10_1016_j_desal_2024_117778 crossref_primary_10_1016_j_desal_2024_117653 crossref_primary_10_1016_j_desal_2022_116205 crossref_primary_10_1016_j_desal_2024_118226 crossref_primary_10_1016_j_chemosphere_2023_138070 crossref_primary_10_1039_D4RA00359D crossref_primary_10_1016_j_memsci_2024_122501 crossref_primary_10_3389_fsufs_2025_1571317 crossref_primary_10_1021_acs_est_5c00277 crossref_primary_10_1016_j_desal_2024_117822 crossref_primary_10_1016_j_scitotenv_2023_166751 crossref_primary_10_1016_j_desal_2024_117821 crossref_primary_10_1016_j_seppur_2022_121579 crossref_primary_10_1016_j_jwpe_2024_105793 crossref_primary_10_1016_j_desal_2024_117441 crossref_primary_10_1016_j_jwpe_2023_104281 crossref_primary_10_1007_s10311_023_01695_y crossref_primary_10_1016_j_eti_2022_102719 crossref_primary_10_1016_j_coche_2024_101083 crossref_primary_10_1360_SSPMA_2023_0373 crossref_primary_10_1016_j_psep_2022_05_021 crossref_primary_10_1007_s41207_023_00422_x crossref_primary_10_1016_j_cej_2024_158315 crossref_primary_10_1016_j_memsci_2024_123235 crossref_primary_10_1016_j_polymer_2023_126393 crossref_primary_10_1016_j_jwpe_2024_104858 crossref_primary_10_1016_j_cej_2024_153944 crossref_primary_10_1016_j_desal_2023_117013 crossref_primary_10_1016_j_chemosphere_2022_137114 crossref_primary_10_1016_j_desal_2023_116489 |
Cites_doi | 10.1016/j.ces.2020.115998 10.1111/trf.16014 10.1016/j.cherd.2019.06.004 10.1002/app.49351 10.1016/j.jviromet.2019.113755 10.1016/j.seppur.2018.12.046 10.1016/j.desal.2017.11.022 10.1016/j.memsci.2020.118325 10.1016/j.watres.2020.115894 10.1021/acs.iecr.9b06877 10.3390/polym11081252 10.1016/j.memsci.2018.12.026 10.1201/9781351213158 10.1002/app.48205 10.1002/app.48001 10.1021/acsami.0c13339 10.1016/j.memsci.2020.118274 10.1021/acs.est.0c04593 10.1016/j.seppur.2020.117821 10.1016/j.memsci.2018.12.070 10.1002/app.48523 10.1016/j.chemosphere.2019.125282 10.1016/j.seppur.2020.117255 10.1016/j.chemosphere.2020.126713 10.1016/j.apsusc.2017.02.204 10.1016/j.cej.2018.10.087 10.1016/j.seppur.2020.116550 10.1007/s11814-019-0357-0 10.1016/j.memsci.2019.117746 10.1016/S0376-7388(98)00079-9 10.1016/j.memsci.2020.118454 10.1016/j.seppur.2018.07.026 10.1016/j.seppur.2018.08.066 10.1126/science.aau5321 10.1007/978-3-319-76882-3 10.1016/j.cherd.2019.02.028 10.1016/j.seppur.2019.05.100 10.1002/jctb.6093 10.1016/j.reactfunctpolym.2018.12.016 10.1016/j.seppur.2019.04.048 10.2166/wst.2020.073 10.1016/j.memsci.2019.02.022 10.1016/j.memsci.2018.12.051 10.1016/j.seppur.2019.01.070 10.1016/j.cej.2019.122786 10.1016/j.memsci.2020.118139 10.3390/membranes11010019 10.1016/j.watres.2018.10.096 10.1016/j.cherd.2020.02.019 10.1021/acsami.0c03075 10.1002/app.49549 10.1002/pi.6061 10.3390/membranes8030037 10.1016/j.seppur.2020.117242 10.1016/j.jeurceramsoc.2019.09.023 10.1016/j.desal.2020.114761 10.1016/j.memsci.2019.117615 10.1016/j.seppur.2019.05.016 10.1016/j.memsci.2020.118006 10.1016/j.seppur.2018.09.034 10.1016/j.seppur.2018.11.054 10.1016/j.memsci.2019.117590 10.1007/s11356-020-11613-2 10.1016/j.memsci.2019.117304 10.1016/j.desal.2020.114867 10.1016/j.seppur.2018.12.006 10.1016/j.ces.2019.04.022 10.1002/mame.201800551 10.1016/j.reactfunctpolym.2018.11.010 10.1016/j.seppur.2019.116373 10.1002/cssc.201902341 10.1016/j.seppur.2021.118811 10.1016/j.scitotenv.2020.137474 10.1016/j.desal.2020.114357 10.3390/membranes9050061 10.1039/C8EW00847G 10.1016/j.matpr.2020.05.387 10.1021/acs.est.8b04268 10.1088/1748-9326/ab4035 10.1016/j.seppur.2019.116033 10.1016/j.jwpe.2019.101007 10.1016/j.jenvman.2020.111005 10.1016/j.memsci.2019.03.077 10.1016/j.seppur.2019.116265 10.1088/1361-6528/ab8085 10.1016/j.jclepro.2018.12.297 10.1016/j.fbp.2021.01.006 10.1111/trf.16022 10.1016/j.memsci.2020.117817 10.1016/j.cej.2020.126722 10.1016/j.polymertesting.2020.106775 10.1016/j.seppur.2019.05.011 10.1016/j.jhazmat.2018.08.004 10.1016/j.memsci.2020.118401 10.1016/j.memsci.2020.118172 10.1016/j.memsci.2019.117598 10.1007/s11356-019-06715-5 10.1021/acs.iecr.9b02292 10.1016/j.memsci.2019.117175 10.1016/j.memsci.2011.04.031 10.1016/j.chemosphere.2020.129056 10.1016/j.memsci.2020.118809 10.1016/j.memsci.2020.118631 10.1016/j.watres.2019.01.014 10.1016/j.memsci.2021.119101 10.1038/s41598-019-52369-1 10.1016/j.ecolind.2020.106213 10.1016/j.memsci.2018.10.034 10.1021/acs.iecr.9b05169 10.1016/j.ultsonch.2019.104891 10.1016/j.desal.2017.07.020 10.1002/app.48129 10.1007/978-94-009-1766-8 10.1007/s10717-020-00248-x 10.1016/j.micromeso.2020.110289 10.1016/j.seppur.2020.116979 10.1016/j.biombioe.2020.105527 10.1016/j.eurpolymj.2020.109544 10.1016/j.seppur.2020.117280 10.1016/j.chemosphere.2020.128088 10.1016/j.memsci.2020.118294 10.1016/j.memsci.2018.07.003 10.1016/j.memsci.2018.11.048 10.1016/j.scitotenv.2020.139780 10.1016/j.desal.2013.04.030 10.1016/j.seppur.2020.116995 10.1021/acs.est.7b06400 10.1016/j.cherd.2019.05.025 10.1016/j.seppur.2019.05.018 10.1016/j.seppur.2019.05.025 10.3390/membranes8030078 10.1016/j.seppur.2019.115675 10.1016/j.desal.2020.114352 10.1016/j.jenvman.2019.110001 10.1016/j.jclepro.2020.123349 10.1016/j.jcis.2019.10.078 10.1002/pat.4986 10.1016/j.jenvman.2020.111299 10.1021/acsami.0c16569 10.1016/j.memsci.2020.118205 10.1021/acsami.9b09037 10.1021/acs.nanolett.0c00344 10.1016/j.memsci.2020.118901 10.1002/pat.4473 10.1016/j.jclepro.2020.123965 10.1016/j.seppur.2018.11.018 10.1016/j.carbon.2019.03.090 10.1016/j.memsci.2019.117565 10.1016/j.compchemeng.2019.05.018 10.1007/s11696-021-01694-9 10.1021/acs.langmuir.8b00960 10.1016/j.memsci.2019.117683 10.1021/acs.est.9b03171 10.1016/j.seppur.2019.116186 10.1016/j.seppur.2019.116461 10.1016/j.memsci.2020.118532 10.1016/j.jenvman.2018.07.067 10.1016/j.jiec.2019.09.002 10.1016/j.seppur.2018.09.067 10.1016/j.memsci.2019.117501 10.1016/j.seppur.2020.118231 10.1016/j.seppur.2019.04.020 10.1007/978-3-642-36199-9_160-1 10.1016/j.memsci.2019.117749 10.1016/j.memsci.2018.11.036 10.1016/j.desal.2020.114658 10.1016/j.memsci.2020.117921 10.1016/j.jclepro.2020.120359 10.1016/j.memsci.2020.118665 10.1016/j.seppur.2018.08.037 10.1016/j.memsci.2019.117714 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. |
DBID | AAYXX CITATION 8FE 8FH AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7S9 L.6 |
DOI | 10.1007/s40726-021-00208-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central Environmental Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2198-6592 |
EndPage | 80 |
ExternalDocumentID | 10_1007_s40726_021_00208_1 |
GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHBH AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATCPS AUKKA AVXWI AXYYD BBNVY BENPR BGNMA BHPHI CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HCIFZ HG6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7P NPVJJ NQJWS NU0 O9J PATMY PT4 PYCSY RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FH ABRTQ AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI 7S9 L.6 |
ID | FETCH-LOGICAL-c352t-a7eac3c7300ee6f2f8266f6d5fb22c46068d4ae5448aa1d56346210bed5a20083 |
IEDL.DBID | BENPR |
ISSN | 2198-6592 |
IngestDate | Thu Jul 10 18:53:51 EDT 2025 Sat Aug 23 14:45:40 EDT 2025 Tue Jul 01 02:44:58 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Fri Feb 21 02:47:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rejection Nanofiltration Nanomaterials Fouling Exclusion theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a7eac3c7300ee6f2f8266f6d5fb22c46068d4ae5448aa1d56346210bed5a20083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8038-4854 |
PQID | 2932831548 |
PQPubID | 2044259 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2636849486 proquest_journals_2932831548 crossref_citationtrail_10_1007_s40726_021_00208_1 crossref_primary_10_1007_s40726_021_00208_1 springer_journals_10_1007_s40726_021_00208_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Current pollution reports |
PublicationTitleAbbrev | Curr Pollution Rep |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | CompletoCGeraldesVSemiãoVMateusMRodriguesMComparison between microfluidic tangential flow nanofiltration and centrifugal nanofiltration for the concentration of small-volume samplesJ Membr Sci201957827351:CAS:528:DC%2BC1MXjt1Wlt7o%3D Shi M, Yan W, Dong C, Liu L, Xie S, Gao C. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J Membr Sci. 2020;595:117565. Schmidt CM, Sprunk M, Löffler R, Hinrichs J. Relating nanofiltration membrane morphology to observed rejection of saccharides. Sep Purif Technol. 2020;239:116550. ÁrkiPHeckerCTomandlGJosephYStreaming potential properties of ceramic nanofiltration membranes – importance of surface charge on the ion rejectionSep Purif Technol2019212660669 RoyYLienhardJHA framework to analyze sulfate versus chloride selectivity in nanofiltrationEnviron Sci Water Res Technol2019535855981:CAS:528:DC%2BC1MXhsVSjtrs%3D Nguyen ThiHYNguyenBTDKimJFSustainable fabrication of organic solvent nanofiltration membranesMembranes202011119 ChaudhurySWormserEHarariYEdriENirOTuning the ion-selectivity of thin-film composite nanofiltration membranes by molecular layer deposition of aluconeACS Appl Mater Interfaces2020124753356533641:CAS:528:DC%2BB3cXitlaisL7L AbadikhahHKalaliENBehzadiSKhanSAXuXShabestariMEAgathopoulosSHigh flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltrationChem Eng Sci2019204991091:CAS:528:DC%2BC1MXnvFyhtb4%3D Malhotra M, Pal M, Pal P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng. 2020;33:101007. López J, Reig M, Vecino X, Gibert O, Cortina JL. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Sci Total Environ. 2020;738:139780. SantibáñezLCórdovaAAstudillo-CastroCIllanesAEffect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysisSep Purif Technol2019222342351 NamYTKimSJKangKMJungW-BKimDWJungH-TEnhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supportsCarbon20191483703771:CAS:528:DC%2BC1MXntFKmt70%3D FoureauxAFSReisEOLebronYMoreiraVSantosLVAmaralMSLangeLCRejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosisSep Purif Technol20192121711791:CAS:528:DC%2BC1cXit1SnsrrF Arola K, Mänttäri M, Kallioinen M. Two-stage nanofiltration for purification of membrane bioreactor treated municipal wastewater – minimization of concentrate volume and simultaneous recovery of phosphorus. Sep Purif Technol. 2021;256:117255. Mall NK, Herman JD. Water shortage risks from perennial crop expansion in California's Central Valley. Environ Res Lett. 2019;14(10):104014. LakhotiaSRMukhopadhyayMKumariPIron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatmentSep Purif Technol2019211981071:CAS:528:DC%2BC1cXhvVWhurnK Ali MEA, Kotp YH, Bosela R, Samy A, Awad S, Du JR. Enhancing the performance of TFC nanofiltration membranes by adding organic acids in polysulfone support layer. Polym Test. 2020;91:106775. Yun T, Kwak S-Y. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. J Environ Manag. 2020;260:110001. Aburabie JH, Puspasari T, Peinemann K-V. Alginate-based membranes: paving the way for green organic solvent nanofiltration. J Membr Sci. 2020;596:117615. Mehrjo F, Pourkhabbaz A, Shahbazi A. PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye heavy metal and salts from wastewater. Chemosphere. 2021;263:128088. KamcevJFreemanBDKobayashiSMüllenKNanofiltration membranesEncyclopedia of polymeric nanomaterials2014BerlinSpringer, Berlin Heidelberg1910.1007/978-3-642-36199-9_160-1 Van Goethem C, Magboo MM, Mertens M, Thijs M, Koeckelberghs G, Vankelecom IFJ. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J Membr Sci. 2020;611:118274. Park MJ, Wang C, Seo DH, Gonzales RR, Matsuyama H, Shon HK. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Membr Sci. 2021;620:118901. Alhumaidi MS, Arshad F, Aubry C, Ravaux F, McElhinney J, Hasan A, Zou L. Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology. 2020;31(27):275602. Egea-CorbachoAGutiérrez RuizSQuiroga AlonsoJMRemoval of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plantJ Clean Prod20192145145231:CAS:528:DC%2BC1MXotVCrtw%3D%3D AngMBMYTrillesCADe GuzmanMRPereiraJMAquinoRRHuangS-HHuC-CLeeK-RLaiJ-YImproved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticlesSep Purif Technol20192241131201:CAS:528:DC%2BC1MXpsVWqur4%3D Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci. 2021;624:119101. ReisBGAraújoALBVieiraCCAmaralMCSFerrazHCAssessing potential of nanofiltration for sulfuric acid plant effluent reclamation: operational and economic aspectsSep Purif Technol20192223693801:CAS:528:DC%2BC1MXnvFyrsrc%3D Ortiz-AlboPIbañezRUrtiagaAOrtizIPhenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potentialSep Purif Technol20192107467531:CAS:528:DC%2BC1cXhs1Klu7fO KarimnezhadHNavarchianAHTavakoli GheinaniTZinadiniSIncorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling propertyReact Funct Polym201913577931:CAS:528:DC%2BC1MXlsFWk Manorma, Ferreira I, Alves P, Gil MH, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol. 2021;260:118231. Thomson BM, Tandukar S, Shahi A, Lee CO, Howe KJ. Mineral recovery enhanced desalination (MRED) process: an innovative technology for desalinating hard brackish water. Desalination. 2020;496:114761. WangHJungJTKimJFKimSDrioliELeeYMA novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)J Membr Sci20195744454 LowZ-XJiJBlumenstockDChewY-MWolversonDMattiaDFouling resistant 2D boron nitride nanosheet – PES nanofiltration membranesJ Membr Sci20185639499561:CAS:528:DC%2BC1cXht1yrs7rI Asadi TashvighAChungT-SRobust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltrationJ Membr Sci20195725805871:CAS:528:DC%2BC1cXitlyltbrI Sada Y, Yoshioka T, Nakagawa K, Shintani T, Iesako R, Kamio E, Matsuyama H. Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membr Sci. 2019;591:117304. CooperJYeYRazmjouAChenVHigh-value organic acid recovery from first-generation bioethanol dunder using nanofiltrationInd Eng Chem Res2020592611940119521:CAS:528:DC%2BB3cXhtVylu73O VatanpourVEsmaeiliMSafarpourMGhadimiAAdabiJSynergistic effect of carboxylated-MWCNTs on the performance of acrylic acid UV-grafted polyamide nanofiltration membranesReact Funct Polym201913474841:CAS:528:DC%2BC1cXit12lsLbL Otero-Fernández A, Díaz P, Otero JA, Ibáñez R, Maroto-Valiente A, Palacio L, Prádanos P, Carmona FJ, Hernández A. Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. Eur Polym J. 2020;126:109544. GiagnorioMRicceriFTiraferriADesalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recoveryWater Res20191531341431:CAS:528:DC%2BC1MXitF2lsbc%3D BagheripourEMoghadassiARParvizianFHosseiniSMVan der BruggenBTailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layerChem Eng Res Des20191444184281:CAS:528:DC%2BC1MXktFeiu7Y%3D Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer. Sep Purif Technol. 2021;270:118811. Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion. J Membr Sci. 2020;603:117921. Van GoethemCMertensMVankelecomIFJCrosslinked PVDF membranes for aqueous and extreme pH nanofiltrationJ Membr Sci2019572489495 HoffmanJRPhillipWADual-functional nanofiltration membranes exhibit multifaceted ion rejection and antifouling performanceACS Appl Mater Interfaces2020121719944199541:CAS:528:DC%2BB3cXmsFKksrg%3D Motta Cabrera S, Winnubst L, Richter H, Voigt I, Nijmeijer A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep Purif Technol. 2021;256:117821. Emonds S, Roth H, Wessling M. Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci. 2020;612:118325. GiagnorioMRicceriFTagliabueMZaninettaLTiraferriAHybrid forward osmosis– nanofiltration for wastewater reuse: system designMembranes (Basel)201995611:CAS:528:DC%2BC1MXht1Cit73L Casanova S, Liu T-Y, Chew Y-MJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Membr Sci. 2020;597:117749. QinHGuoWHuangXGaoPXiaoHPreparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatmentJ J Kamcev (208_CR8) 2014 208_CR83 208_CR82 L Santibáñez (208_CR152) 2019; 222 208_CR148 208_CR147 R Yang (208_CR175) 2018 H Li (208_CR98) 2017; 407 RR Nair (208_CR110) 2018; 8 NJ Roth (208_CR166) 2020; 60 R Nidhi Maalige (208_CR70) 2019; 358 AM Kapsch (208_CR164) 2020; 60 208_CR154 208_CR157 208_CR156 208_CR87 208_CR151 208_CR86 208_CR85 MBMY Ang (208_CR61) 2019; 224 208_CR92 208_CR90 A Schäfer (208_CR101) 2004 208_CR139 208_CR138 H Mahdavi (208_CR41) 2020; 69 SR Lakhotia (208_CR67) 2019; 211 N Misdan (208_CR84) 2019; 148 J López (208_CR143) 2019; 226 O Agboola (208_CR39) 2021; 43 S Poolachira (208_CR68) 2020; 27 J Aburabie (208_CR17) 2019; 304 M-J Tang (208_CR94) 2020; 20 208_CR144 208_CR13 208_CR12 208_CR99 208_CR145 208_CR10 MA Ashraf (208_CR64) 2020; 137 208_CR142 208_CR141 YM Averina (208_CR71) 2020; 77 208_CR125 208_CR128 208_CR127 FM Gunawan (208_CR25) 2019; 30 GM Urper-Bayram (208_CR95) 2019; 136 Y Roy (208_CR163) 2019; 5 H Zhang (208_CR80) 2019; 53 208_CR29 208_CR26 208_CR133 208_CR22 Y Zhao (208_CR28) 2018; 431 SM Hosseini (208_CR47) 2019; 147 H Abadikhah (208_CR54) 2019; 204 F Parvizian (208_CR89) 2020; 156 208_CR20 P Ortiz-Albo (208_CR118) 2019; 210 208_CR131 208_CR130 MBMY Ang (208_CR33) 2019; 210 208_CR115 208_CR114 Y-L Ji (208_CR36) 2019; 211 A Egea-Corbacho (208_CR159) 2019; 214 N Mohamad (208_CR170) 2019; 94 C Completo (208_CR153) 2019; 578 H Wang (208_CR15) 2019; 574 P Árki (208_CR96) 2019; 212 D Guo (208_CR19) 2020; 560 DT Yonge (208_CR91) 2018; 8 V Pathak (208_CR3) 2020; 137 208_CR38 JA Bush (208_CR171) 2019; 570 208_CR121 208_CR124 M Dipaola (208_CR31) 2019 208_CR123 208_CR32 OT Mahlangu (208_CR102) 2020; 31 Y Zhang (208_CR93) 2020; 81 NF Ghazali (208_CR113) 2021; 126 208_CR4 208_CR107 208_CR7 NE Pica (208_CR134) 2019; 53 208_CR109 208_CR9 208_CR103 Y Zhao (208_CR46) 2021; 55 208_CR105 O Jung (208_CR104) 2019; 9 Z-X Low (208_CR50) 2018; 563 M Giagnorio (208_CR136) 2019; 9 JR Hoffman (208_CR30) 2020; 12 J Cooper (208_CR122) 2020; 59 208_CR49 208_CR48 H Karimnezhad (208_CR126) 2019; 135 J Chau (208_CR77) 2019; 58 208_CR45 208_CR44 VS Kumar (208_CR119) 2013; 322 208_CR43 J Su (208_CR111) 2011; 376 208_CR40 YT Nam (208_CR59) 2019; 148 V Polisetti (208_CR35) 2020; 137 Y Yang (208_CR81) 2019; 364 V Vatanpour (208_CR78) 2019; 134 H Qin (208_CR76) 2020; 40 M Mulder (208_CR5) 1996 Z Yang (208_CR11) 2019; 11 S Chaudhury (208_CR97) 2020; 12 A Asadi Tashvigh (208_CR37) 2019; 572 JB Morales-Cuevas (208_CR34) 2019; 136 RM Rajendran (208_CR112) 2021; 28 AFS Foureaux (208_CR160) 2019; 212 HY Nguyen Thi (208_CR14) 2020; 11 RM DuChanois (208_CR21) 2019; 581 208_CR58 208_CR100 208_CR55 208_CR1 M Amirilargani (208_CR73) 2020; 13 208_CR53 208_CR52 208_CR51 PHH Duong (208_CR24) 2019; 35 R Epsztein (208_CR108) 2018; 52 BG Reis (208_CR146) 2019; 222 208_CR60 RM Rajendran (208_CR129) 2021; 75 DK Mahalingam (208_CR56) 2019; 58 TTV Tran (208_CR150) 2019; 575 Z Qiu (208_CR16) 2018; 360 P Pal (208_CR135) 2019; 127 208_CR169 A Werner (208_CR140) 2019; 224 JMM Peeters (208_CR116) 1998; 145 S Bajpai (208_CR117) 2019; 36 Y Roy (208_CR120) 2017; 420 M Giagnorio (208_CR137) 2019; 153 A Gil (208_CR2) 2019 T Tavangar (208_CR149) 2019; 216 LW Jye (208_CR6) 2017 MB Cristóvão (208_CR161) 2019; 224 208_CR66 S Beisl (208_CR69) 2019; 149 D Lin (208_CR106) 2019; 224 208_CR65 208_CR173 208_CR172 208_CR63 208_CR62 208_CR174 KM Cho (208_CR57) 2019; 11 208_CR72 SI Bouhadjar (208_CR132) 2019; 231 MH Abdellah (208_CR155) 2019; 573 C Van Goethem (208_CR42) 2019; 572 N Kyriakou (208_CR23) 2020; 12 A Giacobbo (208_CR158) 2020; 81 SK Das (208_CR27) 2019; 213 E Bagheripour (208_CR88) 2019; 144 T Turken (208_CR18) 2019; 136 208_CR79 208_CR165 208_CR168 208_CR167 208_CR162 208_CR75 208_CR74 |
References_xml | – reference: Vendrell-Puigmitja L, Abril M, Proia L, Espinosa Angona C, Ricart M, Oatley-Radcliffe DL, Williams PM, Zanain M, Llenas L. Assessing the effects of metal mining effluents on freshwater ecosystems using biofilm as an ecological indicator: comparison between nanofiltration and nanofiltration with electrocoagulation treatment technologies. Ecol Indic. 2020;113:106213. – reference: Nguyen ThiHYNguyenBTDKimJFSustainable fabrication of organic solvent nanofiltration membranesMembranes202011119 – reference: ZhangHQuanXFanXYiGChenSYuHChenYImproving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge densityEnviron Sci Technol20195328688771:CAS:528:DC%2BC1cXisVylsb3P – reference: Otero-Fernández A, Díaz P, Otero JA, Ibáñez R, Maroto-Valiente A, Palacio L, Prádanos P, Carmona FJ, Hernández A. Morphological, chemical and electrical characterization of a family of commercial nanofiltration polyvinyl alcohol coated polypiperazineamide membranes. Eur Polym J. 2020;126:109544. – reference: EpszteinRShaulskyEDizgeNWarsingerDMElimelechMRole of ionic charge density in Donnan exclusion of monovalent anions by nanofiltrationEnviron Sci Technol2018527410841161:CAS:528:DC%2BC1cXjvFGlsbo%3D – reference: ChauJSinghDSirkarKK110th anniversary: liquid separation membranes based on nanowire substrates for organic solvent nanofiltration and membrane distillationInd Eng Chem Res2019583114350143561:CAS:528:DC%2BC1MXhsVSjtr%2FJ – reference: Jeong K, Yoon N, Park S, Son M, Lee J, Park J, Cho KH. Optimization of a nanofiltration and membrane capacitive deionization (NF-MCDI) hybrid system: experimental and modeling studies. Desalination. 2020;493:114658. – reference: QinHGuoWHuangXGaoPXiaoHPreparation of yttria-stabilized ZrO2 nanofiltration membrane by reverse micelles-mediated sol-gel process and its application in pesticide wastewater treatmentJ Eur Ceram Soc20204011451541:CAS:528:DC%2BC1MXhvVSrurfP – reference: KyriakouNMerletRBWillottJDNijmeijerAWinnubstLPizzoccaro-ZilamyM-ANew method toward a robust covalently attached cross-linked nanofiltration membraneACS Appl Mater Interfaces2020124247948479561:CAS:528:DC%2BB3cXhvFaqs7bN – reference: Morales-CuevasJBPérez-SicairosSLinSWSalazar-GastélumMIEvaluation of a modified spray-applied interfacial polymerization method for preparation of nanofiltration membranesJ Appl Polym Sci20191364248129 – reference: Tham HM, Chung T-S. One-step cross-linking and tannic acid modification of polyacrylonitrile hollow fibers for organic solvent nanofiltration. J Membr Sci. 2020;610:118294. – reference: WernerARiegerAHelbigKBrixBZocherJHasenederRRepkeJ-UNanofiltration for the recovery of indium and germanium from bioleaching solutionsSep Purif Technol20192245435521:CAS:528:DC%2BC1MXhtVajsr7F – reference: Hou C, Wen Y, Liu X, Dong M. Impacts of regional water shortage information disclosure on public acceptance of recycled water—evidences from China’s urban residents. J Clean Prod. 2021;278:123965. – reference: WangHJungJTKimJFKimSDrioliELeeYMA novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)J Membr Sci20195744454 – reference: KamcevJFreemanBDKobayashiSMüllenKNanofiltration membranesEncyclopedia of polymeric nanomaterials2014BerlinSpringer, Berlin Heidelberg1910.1007/978-3-642-36199-9_160-1 – reference: Wang S, Li L, Yu S, Dong B, Gao N, Wang X. A review of advances in EDCs and PhACs removal by nanofiltration: mechanisms, impact factors and the influence of organic matter. Chem Eng J. 2021;406:126722. – reference: GiagnorioMRicceriFTiraferriADesalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recoveryWater Res20191531341431:CAS:528:DC%2BC1MXitF2lsbc%3D – reference: Malakian A, Husson SM. Understanding the roles of patterning and foulant chemistry on nanofiltration threshold flux. J Membr Sci. 2020;597:117746. – reference: Urper-BayramGMSayinliBSengur-TasdemirRTurkenTPekgencEGunesOAtes-GenceliETarabaraVVKoyuncuINanocomposite hollow fiber nanofiltration membranes: fabrication, characterization, and pilot-scale evaluation for surface water treatmentJ Appl Polym Sci20191364548205 – reference: NamYTKimSJKangKMJungW-BKimDWJungH-TEnhanced nanofiltration performance of graphene-based membranes on wrinkled polymer supportsCarbon20191483703771:CAS:528:DC%2BC1MXntFKmt70%3D – reference: AburabieJEmwasAHPeinemannKVSilane-crosslinked asymmetric polythiosemicarbazide membranes for organic solvent nanofiltrationMacromol Mater Eng201930411800551 – reference: Ideno S, Takahashi K, Yusa K, Sakai K. Quantitative PCR evaluation of parvovirus B19 removal via nanofiltration. J Virol Methods. 2020;275:113755. – reference: YangYYangXLiangLGaoYChengHLiXZouMMaRYuanQDuanXLarge-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltrationScience20193646445105710621:CAS:528:DC%2BC1MXhtFOit7%2FJ – reference: DuongPHHDaumannKHongP-YUlbrichtMNunesSPInterfacial polymerization of zwitterionic building blocks for high-flux nanofiltration membranesLangmuir2019355128412931:CAS:528:DC%2BC1cXht1yjsLrO – reference: Kunimatsu M, Nakagawa K, Yoshioka T, Shintani T, Yasui T, Kamio E, Tsang SCE, Li J, Matsuyama H. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. J Membr Sci. 2020;595:117598. – reference: Meschke K, Hansen N, Hofmann R, Haseneder R, Repke J-U. Influence of process parameters on separation performance of strategic elements by polymeric nanofiltration membranes. Sep Purif Technol. 2020;235:116186. – reference: Thomson BM, Tandukar S, Shahi A, Lee CO, Howe KJ. Mineral recovery enhanced desalination (MRED) process: an innovative technology for desalinating hard brackish water. Desalination. 2020;496:114761. – reference: Asadi TashvighAChungT-SRobust polybenzimidazole (PBI) hollow fiber membranes for organic solvent nanofiltrationJ Membr Sci20195725805871:CAS:528:DC%2BC1cXitlyltbrI – reference: Kramer FC, Shang R, Rietveld LC, Heijman SJG. Influence of pH, multivalent counter ions, and membrane fouling on phosphate retention during ceramic nanofiltration. Sep Purif Technol. 2019;227:115675. – reference: Ortiz-AlboPIbañezRUrtiagaAOrtizIPhenomenological prediction of desalination brines nanofiltration through the indirect determination of zeta potentialSep Purif Technol20192107467531:CAS:528:DC%2BC1cXhs1Klu7fO – reference: Anisah S, Kanezashi M, Nagasawa H, Tsuru T. Al2O3 nanofiltration membranes fabricated from nanofiber sols: preparation, characterization, and performance. J Membr Sci. 2020;611:118401. – reference: Ten Kate, AJB, Schutyser, MAI, Kuzmanovic, B, Westerink, JB, Manuhutu F, Bargeman G. Thermodynamic perspective on negative retention effects in nanofiltration of concentrated sodium chloride solutions. Sep Purif Technol. 2020;250:117242. – reference: YangZZhouYFengZRuiXZhangTZhangZA review on reverse osmosis and nanofiltration membranes for water purificationPolymers201911812521:CAS:528:DC%2BC1MXhsFyrs7vL – reference: GunawanFMMangindaanDKhoiruddinKWentenIGNanofiltration membrane cross-linked by m-phenylenediamine for dye removal from textile wastewaterPolym Adv Technol20193023603671:CAS:528:DC%2BC1cXhvVOqsrrF – reference: ChaudhurySWormserEHarariYEdriENirOTuning the ion-selectivity of thin-film composite nanofiltration membranes by molecular layer deposition of aluconeACS Appl Mater Interfaces2020124753356533641:CAS:528:DC%2BB3cXitlaisL7L – reference: CompletoCGeraldesVSemiãoVMateusMRodriguesMComparison between microfluidic tangential flow nanofiltration and centrifugal nanofiltration for the concentration of small-volume samplesJ Membr Sci201957827351:CAS:528:DC%2BC1MXjt1Wlt7o%3D – reference: Emonds S, Roth H, Wessling M. Chemistry in a spinneret – formation of hollow fiber membranes with a cross-linked polyelectrolyte separation layer. J Membr Sci. 2020;612:118325. – reference: JiY-LAngMBMYHuangS-HLuJ-YTsaiS-JDe GuzmanMRTsaiH-AHuC-CLeeK-RLaiJ-YPerformance evaluation of nanofiltration polyamide membranes based from 3,3′-diaminobenzidineSep Purif Technol20192111701781:CAS:528:DC%2BC1cXhvVChu7zL – reference: ParvizianFAnsariFBandehaliSOleic acid-functionalized TiO2 nanoparticles for fabrication of PES-based nanofiltration membranesChem Eng Res Des20201564334411:CAS:528:DC%2BB3cXjvFWiurk%3D – reference: Nativ P, Fridman-Bishop N, Nir O, Lahav O. Dia-nanofiltration-electrodialysis hybrid process for selective removal of monovalent ions from Mg2+ rich brines. Desalination. 2020;481:114357. – reference: MahdaviHMazinaniNHeidariAAPoly(vinylidene fluoride) (PVDF)/PVDF-g-polyvinylpyrrolidone (PVP)/TiO2 mixed matrix nanofiltration membranes: preparation and characterizationPolym Int20206912118711951:CAS:528:DC%2BB3cXhsVWru7jE – reference: Bahamonde Soria R, Zhu J, Gonza I, Van der Bruggen B, Luis P. Effect of (TiO2: ZnO) ratio on the anti-fouling properties of bio-inspired nanofiltration membranes. Sep Purif Technol. 2020;251:117280. – reference: Park MJ, Wang C, Seo DH, Gonzales RR, Matsuyama H, Shon HK. Inkjet printed single walled carbon nanotube as an interlayer for high performance thin film composite nanofiltration membrane. J Membr Sci. 2021;620:118901. – reference: Kim JH, Choi Y, Kang J, Choi E, Choi SE, Kwon O, Kim DW. Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating. J Membr Sci. 2020;612:118454. – reference: YongeDTBiscardiPGDuranceauSJModeling ionic strength effects on hollow-fiber nanofiltration membrane mass transferMembranes20188337 – reference: AbdellahMHLiuLScholesCAFreemanBDKentishSEOrganic solvent nanofiltration of binary vegetable oil/terpene mixtures: experiments and modellingJ Membr Sci20195736947031:CAS:528:DC%2BC1cXis1WhsbbP – reference: AbadikhahHKalaliENBehzadiSKhanSAXuXShabestariMEAgathopoulosSHigh flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltrationChem Eng Sci2019204991091:CAS:528:DC%2BC1MXnvFyhtb4%3D – reference: AverinaYMKurbatovAYSakharovDASubchevaENDevelopment of nanofiltration ceramic membrane production technologyGlass Ceram2020773–4981021:CAS:528:DC%2BB3cXhsVGjtL3L – reference: RajendranRMGargSBajpaiSEconomic feasibility of arsenic removal using nanofiltration membrane: a mini reviewChem Pap202175443144441:CAS:528:DC%2BB3MXhtFantL%2FL – reference: Pandey RP, Rasheed PA, Gomez T, Azam RS, Mahmoud KA. A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate. J Membr Sci. 2020;607:118139. – reference: DipaolaMWodajoFM3D printing in orthopaedic surgery2019St LouisElsevier – reference: Ang MBMY, Tang C-L, De Guzman MR, Maganto HLC, Caparanga AR, Huang S-H, Tsai H-A, Hu C-C, Lee K-R, Lai J-Y. Improved performance of thin-film nanofiltration membranes fabricated with the intervention of surfactants having different structures for water treatment. Desalination. 2020;481:114352. – reference: Priyadarshini A, Tay SW, Ng S, Hong L. Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. J Membr Sci. 2020;599:117714. – reference: Taheri E, Hadi S, Amin MM, Ebrahimi A, Fatehizadeh A, Aminabhavi TM. Retention of atenolol from single and binary aqueous solutions by thin film composite nanofiltration membrane: transport modeling and pore radius estimation. J Environ Manag. 2020;271:111005. – reference: BeislSMonteiroSSantosRFigueiredoASSánchez-LoredoMGLemosMALemosFMinhalmaMde PinhoMNSynthesis and bactericide activity of nanofiltration composite membranes – cellulose acetate/silver nanoparticles and cellulose acetate/silver ion exchanged zeolitesWater Res20191492252311:CAS:528:DC%2BC1cXit1WhsLzK – reference: FoureauxAFSReisEOLebronYMoreiraVSantosLVAmaralMSLangeLCRejection of pharmaceutical compounds from surface water by nanofiltration and reverse osmosisSep Purif Technol20192121711791:CAS:528:DC%2BC1cXit1SnsrrF – reference: Shi M, Yan W, Dong C, Liu L, Xie S, Gao C. Solvent activation before heat-treatment for improving reverse osmosis membrane performance. J Membr Sci. 2020;595:117565. – reference: AshrafMAWangJWuBCuiPXuBLiXEnhancement in Li+/Mg2+ separation from salt lake brine with PDA–PEI composite nanofiltration membraneJ Appl Polym Sci202013747495491:CAS:528:DC%2BB3cXhtlajsbzI – reference: TavangarTJalaliKAlaei ShahmirzadiMAKarimiMToward real textile wastewater treatment: membrane fouling control and effective fractionation of dyes/inorganic salts using a hybrid electrocoagulation – nanofiltration processSep Purif Technol20192161151251:CAS:528:DC%2BC1MXis1GlsL8%3D – reference: BouhadjarSIKoppHBritschPDeowanSAHoinkisJBundschuhJSolar powered nanofiltration for drinking water production from fluoride-containing groundwater – a pilot study towards developing a sustainable and low-cost treatment plantJ Environ Manag2019231126312691:CAS:528:DC%2BC1cXitlWntLvP – reference: Manorma, Ferreira I, Alves P, Gil MH, Gando-Ferreira LM. Lignin separation from black liquor by mixed matrix polysulfone nanofiltration membrane filled with multiwalled carbon nanotubes. Sep Purif Technol. 2021;260:118231. – reference: Almijbilee MMA, Wu X, Zhou A, Zheng X, Cao X, Li W. Polyetheramide organic solvent nanofiltration membrane prepared via an interfacial assembly and polymerization procedure. Sep Purif Technol. 2020;234116033. – reference: Yun T, Kwak S-Y. Recovery of hydrochloric acid using positively-charged nanofiltration membrane with selective acid permeability and acid resistance. J Environ Manag. 2020;260:110001. – reference: BajpaiSRajendranRMHoodaSModeling the performance of HPA membrane for sulfate ion removal from ternary ion systemKorean J Chem Eng20193610164816561:CAS:528:DC%2BC1MXhvFSns7fL – reference: VatanpourVEsmaeiliMSafarpourMGhadimiAAdabiJSynergistic effect of carboxylated-MWCNTs on the performance of acrylic acid UV-grafted polyamide nanofiltration membranesReact Funct Polym201913474841:CAS:528:DC%2BC1cXit12lsLbL – reference: Mahalingam DK, Falca G, Upadhya L, Abou-Hamad E, Batra N, Wang S, Musteata V, da Costa PM, Nunes SP. Spray-coated graphene oxide hollow fibers for nanofiltration. J Membr Sci. 2020;606:118006. – reference: QiuZJiXHeCFabrication of a loose nanofiltration candidate from polyacrylonitrile/graphene oxide hybrid membrane via thermally induced phase separationJ Hazard Mater20183601221311:CAS:528:DC%2BC1cXhsVOmsbfO – reference: ÁrkiPHeckerCTomandlGJosephYStreaming potential properties of ceramic nanofiltration membranes – importance of surface charge on the ion rejectionSep Purif Technol2019212660669 – reference: CooperJYeYRazmjouAChenVHigh-value organic acid recovery from first-generation bioethanol dunder using nanofiltrationInd Eng Chem Res2020592611940119521:CAS:528:DC%2BB3cXhtVylu73O – reference: Esteves T, Mota AT, Barbeitos C, Andrade K, Afonso CAM, Ferreira FC. A study on lupin beans process wastewater nanofiltration treatment and lupanine recovery. J Clean Prod. 2020;277:123349. – reference: MahlanguOTMambaBBVerliefdeARDEffect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranesPolym Adv Technol20203111258826001:CAS:528:DC%2BB3cXht1Cqu7%2FK – reference: Elshof MG, de Vos WM, de Grooth J, Benes NE. On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes. J Membr Sci. 2020;615:118532. – reference: NairRRProtasovaEStrandSBilstadTImplementation of Spiegler– Kedem and steric hindrance pore models for analyzing nanofiltration membrane performance for smart water productionMembranes20188378 – reference: LiHShiWDuQZhouRZhangHQinXImproved separation and antifouling properties of thin-film composite nanofiltration membrane by the incorporation of cGOAppl Surf Sci20174072602751:CAS:528:DC%2BC2sXjslWqu7o%3D – reference: Xu R, Zhou M, Wang H, Wang X, Wen X. Influences of temperature on the retention of PPCPs by nanofiltration membranes: experiments and modeling assessment. J Membr Sci. 2020;599:117817. – reference: Schmidt CM, Sprunk M, Löffler R, Hinrichs J. Relating nanofiltration membrane morphology to observed rejection of saccharides. Sep Purif Technol. 2020;239:116550. – reference: GilAGaleanoLAVicenteMÃApplications of advanced oxidation processes (AOPs) in drinking water treatment20191ChamSpringer International Publishing – reference: Gönder ZB, Balcıoğlu G, Vergili I, Kaya Y. An integrated electrocoagulation–nanofiltration process for carwash wastewater reuse. Chemosphere. 2020;253:126713. – reference: Park S, Jeong YD, Lee JH, Kim J, Jeong K, Cho KH. 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. J Membr Sci. 2021;620:118665. – reference: Van GoethemCMertensMVankelecomIFJCrosslinked PVDF membranes for aqueous and extreme pH nanofiltrationJ Membr Sci2019572489495 – reference: Egea-CorbachoAGutiérrez RuizSQuiroga AlonsoJMRemoval of emerging contaminants from wastewater using nanofiltration for its subsequent reuse: Full–scale pilot plantJ Clean Prod20192145145231:CAS:528:DC%2BC1MXotVCrtw%3D%3D – reference: Peydayesh M, Mohammadi T, Nikouzad SK. A positively charged composite loose nanofiltration membrane for water purification from heavy metals. J Membr Sci. 2020;611:118205. – reference: LópezJReigMGibertOCortinaJLIncreasing sustainability on the metallurgical industry by integration of membrane nanofiltration processes: acid recoverySep Purif Technol2019226267277 – reference: SantibáñezLCórdovaAAstudillo-CastroCIllanesAEffect of the lactose hydrolysis on galacto-oligosaccharides mixtures subjected to nanofiltration: a detailed fractionation analysisSep Purif Technol2019222342351 – reference: PalPSardarMPalMChakraborttySNayakJModelling forward osmosis-nanofiltration integrated process for treatment and recirculation of leather industry wastewaterComput Chem Eng2019127991101:CAS:528:DC%2BC1MXhtVSmsbjI – reference: SuJChungT-SSublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processesJ Membr Sci201137612142241:CAS:528:DC%2BC3MXmvFSqtrg%3D – reference: Mall NK, Herman JD. Water shortage risks from perennial crop expansion in California's Central Valley. Environ Res Lett. 2019;14(10):104014. – reference: Van Goethem C, Magboo MM, Mertens M, Thijs M, Koeckelberghs G, Vankelecom IFJ. A scalable crosslinking method for PVDF-based nanofiltration membranes for use under extreme pH conditions. J Membr Sci. 2020;611:118274. – reference: AmirilarganiMYokotaGNVermeijGHMerletRBDelenGMandemakerLDBWeckhuysenBMWinnubstLNijmeijerAde SmetLCPMSudhölterEJRMelamine-based microporous organic framework thin films on an alumina membrane for high-flux organic solvent nanofiltrationChemsuschem20201311361401:CAS:528:DC%2BC1MXhvF2rsbjK – reference: AngMBMYTrillesCADe GuzmanMRPereiraJMAquinoRRHuangS-HHuC-CLeeK-RLaiJ-YImproved performance of thin-film nanocomposite nanofiltration membranes as induced by embedded polydopamine-coated silica nanoparticlesSep Purif Technol20192241131201:CAS:528:DC%2BC1MXpsVWqur4%3D – reference: López J, Reig M, Vecino X, Gibert O, Cortina JL. Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waters treatment. Chem Eng J. 2020;382:122786. – reference: DasSKManchandaPPeinemannK-VSolvent-resistant triazine-piperazine linked porous covalent organic polymer thin-film nanofiltration membraneSep Purif Technol20192133483581:CAS:528:DC%2BC1MXnsFaj – reference: Kramer FC, Shang R, Rietveld LC, Heijman SJG. Fouling control in ceramic nanofiltration membranes during municipal sewage treatment. Sep Purif Technol. 2020;237:116373. – reference: Li Y, Qi B, Wan Y. Separation of monosaccharides from pretreatment inhibitors by nanofiltration in lignocellulosic hydrolysate: fouling mitigation by activated carbon adsorption. Biomass Bioenergy. 2020;136:105527. – reference: Echaide-Górriz C, Zapata JA, Etxeberría-Benavides M, Téllez C, Coronas J. Polyamide/MOF bilayered thin film composite hollow fiber membranes with tuned MOF thickness for water nanofiltration. Sep Purif Technol. 2020;236:116265. – reference: ReisBGAraújoALBVieiraCCAmaralMCSFerrazHCAssessing potential of nanofiltration for sulfuric acid plant effluent reclamation: operational and economic aspectsSep Purif Technol20192223693801:CAS:528:DC%2BC1MXnvFyrsrc%3D – reference: Motta Cabrera S, Winnubst L, Richter H, Voigt I, Nijmeijer A. Industrial application of ceramic nanofiltration membranes for water treatment in oil sands mines. Sep Purif Technol. 2021;256:117821. – reference: Ağtaş M, Yılmaz Ö, Dilaver M, Alp K, Koyuncu İ. Hot water recovery and reuse in textile sector with pilot scale ceramic ultrafiltration/nanofiltration membrane system. J Clean Prod. 2020;256:120359. – reference: ZhangYWangLSunWHuYTangHMembrane technologies for Li+/Mg2+ separation from salt-lake brines and seawater: a comprehensive reviewJ Ind Eng Chem2020817231:CAS:528:DC%2BC1MXhsl2gt7nK – reference: HoffmanJRPhillipWADual-functional nanofiltration membranes exhibit multifaceted ion rejection and antifouling performanceACS Appl Mater Interfaces2020121719944199541:CAS:528:DC%2BB3cXmsFKksrg%3D – reference: ChoKMLeeH-JNamYTKimY-JKimCKangKMRuiz TorresCAKimDWJungH-TUltrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbonsACS Appl Mater Interfaces2019113027004270101:CAS:528:DC%2BC1MXhtlWjtLrI – reference: LowZ-XJiJBlumenstockDChewY-MWolversonDMattiaDFouling resistant 2D boron nitride nanosheet – PES nanofiltration membranesJ Membr Sci20185639499561:CAS:528:DC%2BC1cXht1yrs7rI – reference: Davood Abadi Farahani MH, Chung T-S. A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Sep Purif Technol. 2019;209:182–92. – reference: Park SH, Kim JH, Moon SJ, Jung JT, Wang HH, Ali A, Quist-Jensen CA, Macedonio F, Drioli E, Lee YM. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration. J Membr Sci. 2020;598:117683. – reference: JungOSaraviaFWagnerMHeißlerSHornHQuantifying concentration polarization - Raman microspectroscopy for in-situ measurement in a flat sheet cross-flow nanofiltration membrane unitSci Rep20199115885 – reference: Ali MEA, Kotp YH, Bosela R, Samy A, Awad S, Du JR. Enhancing the performance of TFC nanofiltration membranes by adding organic acids in polysulfone support layer. Polym Test. 2020;91:106775. – reference: GiacobboASoaresEVBernardesAMRosaMJde PinhoMNAtenolol removal by nanofiltration: a case-specific mass transfer correlationWater Sci Technol20208122102161:CAS:528:DC%2BB3cXhvFOku73F – reference: Kamari S, Shahbazi A. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES–nanofiltration membrane matrix for salts, heavy metal ion and dye removal: long–term operation and reusability tests. Chemosphere (Oxford). 2020;243:125282. – reference: Agarwal P, Hefner RE, Ge S, Tomlinson I, Rao Y, Dikic T. Nanofiltration membranes from crosslinked Troger's base polymers of intrinsic microporosity (PIMs). J Membr Sci. 2020;595:117501. – reference: GiagnorioMRicceriFTagliabueMZaninettaLTiraferriAHybrid forward osmosis– nanofiltration for wastewater reuse: system designMembranes (Basel)201995611:CAS:528:DC%2BC1MXht1Cit73L – reference: PathakVAmbroseRPKStarch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortageJ Appl Polym Sci202013714485231:CAS:528:DC%2BC1MXhvVKku7%2FM – reference: TurkenTSengur-TasdemirRSayinliBUrper-BayramGMAtes-GenceliETarabaraVVKoyuncuIReinforced thin-film composite nanofiltration membranes: fabrication, characterization, and performance testingJ Appl Polym Sci20191363948001 – reference: Wang R, Lin S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J Membr Sci. 2021;620:118809. – reference: Izadmehr N, Mansourpanah Y, Ulbricht M, Rahimpour A, Omidkhah MR. TETA-anchored graphene oxide enhanced polyamide thin film nanofiltration membrane for water purification performance and antifouling properties. J Environ Manag. 2020;276:111299. – reference: RajendranRMGargSBajpaiSModelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale studyEnviron Sci Pollut Res Int2021281113886138991:CAS:528:DC%2BB3MXhtVertLjE – reference: PolisettiVRayPThin film composite nanofiltration membranes with polystyrene sodium sulfonate–polypiperazinetrimesamide semi-interpenetrating polymer network active layerJ Appl Polym Sci202013744493511:CAS:528:DC%2BB3cXnsFSgtL8%3D – reference: KapschAMFarcetMRWieserAAhmadMQMiyabayashiTBaylisSABlümelJKreilTRAntibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulinTransfusion20206011250025071:CAS:528:DC%2BB3cXis1erurfK – reference: AngMBMYPereiraJMTrillesCAAquinoRRHuangS-HLeeK-RLaiJ-YPerformance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheresSep Purif Technol20192105215291:CAS:528:DC%2BC1cXhs1eisrzM – reference: Muhammad Akhyar F. Nanofiltration. IntechOpen; 2018. – reference: Boussouga Y-A, Frey H, Schäfer AI. Removal of arsenic(V) by nanofiltration: impact of water salinity, pH and organic matter. J Membr Sci. 2021;618:118631. – reference: Fujioka T, Ngo MTT, Makabe R, Ueyama T, Takeuchi H, Nga TTV, Bui X-T, Tanaka H. Submerged nanofiltration without pre-treatment for direct advanced drinking water treatment. Chemosphere. 2021;265:129056. – reference: MisdanNRamleeNHairomNHHIkhsanSNWYusofNLauWJIsmailAFNordinNAHMCuBTC metal organic framework incorporation for enhancing separation and antifouling properties of nanofiltration membraneChem Eng Res Des20191482272391:CAS:528:DC%2BC1MXhtFyis7zO – reference: Heidari A, Abdollahi E, Mohammadi T, Asadi AA. Improving permeability, hydrophilicity and antifouling characteristic of PES hollow fiber UF membrane using carboxylic PES: a promising substrate to fabricate NF layer. Sep Purif Technol. 2021;270:118811. – reference: ZhaoYZhangZDaiLZhangSPreparation of a highly permeable nanofiltration membrane using a novel acyl chloride monomer with -PO(Cl)2 groupDesalination201843156651:CAS:528:DC%2BC2sXhvVSmtr%2FP – reference: Mehrjo F, Pourkhabbaz A, Shahbazi A. PMO synthesized and functionalized by p-phenylenediamine as new nanofiller in PES-nanofiltration membrane matrix for efficient treatment of organic dye heavy metal and salts from wastewater. Chemosphere. 2021;263:128088. – reference: MohamadNReigMVecinoXYongKCortinaJLPotential of nanofiltration and reverse osmosis processes for the recovery of high-concentrated furfural streamsJ Chem Technol Biotechnol2019949289929071:CAS:528:DC%2BC1MXht1Kktr7O – reference: Abdullah N, Yusof N, Ismail AF, Lau WJ. Insights into metal-organic frameworks-integrated membranes for desalination process: a review. Desalination. 2021;500:114867. – reference: Paseta L, Luque-Alled JM, Malankowska M, Navarro M, Gorgojo P, Coronas J, Téllez C. Functionalized graphene-based polyamide thin film nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol. 2020;247:116995. – reference: Ormanci-Acar T, Tas CE, Keskin B, Ozbulut EBS, Turken T, Imer D, Tufekci N, Menceloglu YZ, Unal S, Koyuncu I. Thin-film composite nanofiltration membranes with high flux and dye rejection fabricated from disulfonated diamine monomer. J Membr Sci. 2020;608:118172. – reference: Sigurdardottir SB, DuChanois RM, Epsztein R, Pinelo M, Elimelech M. Energy barriers to anion transport in polyelectrolyte multilayer nanofiltration membranes: role of intra-pore diffusion. J Membr Sci. 2020;603:117921. – reference: López J, Reig M, Vecino X, Gibert O, Cortina JL. From nanofiltration membrane permeances to design projections for the remediation and valorisation of acid mine waters. Sci Total Environ. 2020;738:139780. – reference: Aburabie JH, Puspasari T, Peinemann K-V. Alginate-based membranes: paving the way for green organic solvent nanofiltration. J Membr Sci. 2020;596:117615. – reference: RothNJDichtelmüllerHOFabbrizziFFlechsigEGrönerAGustafsonMJorqueraJIKreilTRMisztelaDMorettiEMoscardiniMPoelslerGMoreJRobertsPWieserAGajardoRNanofiltration as a robust method contributing to viral safety of plasma-derived therapeutics: 20 yearsʼ experience of the plasma protein manufacturersTransfusion20206011266126741:CAS:528:DC%2BB3cXis1erurbM – reference: BushJAVannesteJCathTYComparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated waterJ Membr Sci2019570258269 – reference: HosseiniSMAfshariMFazlaliARKoudzari FarahaniSBandehaliSVan der BruggenBBagheripourEMixed matrix PES-based nanofiltration membrane decorated by (Fe3O4–polyvinylpyrrolidone) composite nanoparticles with intensified antifouling and separation characteristicsChem Eng Res Des20191473903981:CAS:528:DC%2BC1MXhtVeisr3P – reference: LakhotiaSRMukhopadhyayMKumariPIron oxide (FeO) nanoparticles embedded thin-film nanocomposite nanofiltration (NF) membrane for water treatmentSep Purif Technol2019211981071:CAS:528:DC%2BC1cXhvVWhurnK – reference: Sada Y, Yoshioka T, Nakagawa K, Shintani T, Iesako R, Kamio E, Matsuyama H. Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membr Sci. 2019;591:117304. – reference: DuChanoisRMEpszteinRTrivediJAElimelechMControlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactionsJ Membr Sci20195814134201:CAS:528:DC%2BC1MXmslajsrk%3D – reference: Anisah S, Kanezashi M, Nagasawa H. Tsuru T. Hydrothermal stability and permeation properties of TiO2-ZrO2 (5/5) nanofiltration membranes at high temperatures. Sep Purif Technol. 2019;212:1001–12. – reference: Xiao Y, Zhang W, Jiao Y, Xu Y, Lin H. Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination. J Membr Sci. 2021;624:119101. – reference: Alhumaidi MS, Arshad F, Aubry C, Ravaux F, McElhinney J, Hasan A, Zou L. Electrostatically coupled SiO2 nanoparticles/poly (L-DOPA) antifouling coating on a nanofiltration membrane. Nanotechnology. 2020;31(27):275602. – reference: CristóvãoMBTorrejaisJJanssensRLuisPVan der BruggenBDubeyKKMandalMKBronzeMRCrespoJGPereiraVJTreatment of anticancer drugs in hospital and wastewater effluents using nanofiltrationSep Purif Technol2019224273280 – reference: AgboolaOFayomiOSISadikuRPopoolaPAlabaPAAdegbolaATPolymers blends for the improvement of nanofiltration membranes in wastewater treatment: a short reviewMater Today Proc202143336533681:CAS:528:DC%2BB3cXit1WntbvM – reference: Thombre NV, Gadhekar AP, Patwardhan AV, Gogate PR. Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrason Sonochem. 2020;62:104891. – reference: SchäferAAndritsosNKarabelasAJHoekEMVSchneiderRNyströmMFouling in nanofiltration2004EdinburghElsevier – reference: Caltran I, Rietveld LC, Shorney-Darby HL, Heijman SGJ. Separating NOM from salts in ion exchange brine with ceramic nanofiltration. Water Res. 2020;179:115894. – reference: Figoli A, Fuoco I, Apollaro C, Chabane M, Mancuso R, Gabriele B, Rosa RD, Vespasiano G, Barca D, Criscuoli A. Arsenic-contaminated groundwaters remediation by nanofiltration. Sep Purif Technol. 2020;238:116461. – reference: Cuhorka J, Wallace E, Mikulášek P. Removal of micropollutants from water by commercially available nanofiltration membranes. Sci Total Environ. 2020;720:137474. – reference: LinDTangXXingJZhaoJLiangHLiGApplication of peroxymonosulfate-based advanced oxidation process as a novel pretreatment for nanofiltration: comparison with conventional coagulationSep Purif Technol20192242552641:CAS:528:DC%2BC1MXpsVaktb0%3D – reference: MulderMBasic principles of membrane technology19962DordrechtSpringer, Netherlands – reference: TranTTVKumarSRLueSJSeparation mechanisms of binary dye mixtures using a PVDF ultrafiltration membrane: Donnan effect and intermolecular interactionJ Membr Sci201957538491:CAS:528:DC%2BC1MXnslelsA%3D%3D – reference: GuoDXiaoYLiTZhouQShenLLiRXuYLinHFabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assemblyJ Colloid Interface Sci20205602732831:CAS:528:DC%2BC1MXitVelurnM – reference: KumarVSHariharanKSMayyaKSHanSVolume averaged reduced order Donnan steric pore model for nanofiltration membranesDesalination201332221281:CAS:528:DC%2BC3sXhtVaitL7F – reference: PeetersJMMBoomJPMulderMHVStrathmannHRetention measurements of nanofiltration membranes with electrolyte solutionsJ Membr Sci199814521992091:CAS:528:DyaK1cXjsFOgs70%3D – reference: Arola K, Mänttäri M, Kallioinen M. Two-stage nanofiltration for purification of membrane bioreactor treated municipal wastewater – minimization of concentrate volume and simultaneous recovery of phosphorus. Sep Purif Technol. 2021;256:117255. – reference: YangRAnalytical methods for polymer characterization20181MiltonTaylor & Francis Group – reference: Hoang MT, Pham TD, Verheyen D, Nguyen MK, Pham TT, Zhu J, Van der Bruggen B. Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu(II) and Pb(II). Chem Eng Sci. 2020;228:115998. – reference: KarimnezhadHNavarchianAHTavakoli GheinaniTZinadiniSIncorporation of iron oxyhydroxide nanoparticles in polyacrylonitrile nanofiltration membrane for improving water permeability and antifouling propertyReact Funct Polym201913577931:CAS:528:DC%2BC1MXlsFWk – reference: Malhotra M, Pal M, Pal P. A response surface optimized nanofiltration-based system for efficient removal of selenium from drinking water. J Water Process Eng. 2020;33:101007. – reference: GhazaliNFRazakNDARecovery of saccharides from lignocellulosic hydrolysates using nanofiltration membranes: a reviewFood Bioprod Process20211262152331:CAS:528:DC%2BB3MXivVWhsLs%3D – reference: Álvarez-Quintana S, Carmona FJ, Palacio L, Hernández A, Prádanos P. Water viscosity in confined nanoporous media and flow through nanofiltration membranes. Microporous Mesoporous Mater. 2020;303:110289. – reference: Konca K, Çulfaz-Emecen PZ. Effect of carboxylic acid crosslinking of cellulose membranes on nanofiltration performance in ethanol and dimethylsulfoxide. J Membr Sci. 2019;587:117175. – reference: Nidhi MaaligeRAruchamyKMahtoASharmaVDeepikaDMondalDNatarajSKLow operating pressure nanofiltration membrane with functionalized natural nanoclay as antifouling and flux promoting agentChem Eng J20193588218301:CAS:528:DC%2BC1cXhvFajsrvK – reference: JyeLWIsmailAFNanofiltration membranes: synthesis, characterization, and applications2017Boca RatonCRC Press Taylor & Francis Group – reference: Rahimi Z, Zinatizadeh AA, Zinadini S, van Loosdrecht MCM. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol. 2020;247:116979. – reference: ZhaoYTongTWangXLinSReidEMChenYDifferentiating solutes with precise nanofiltration for next generation environmental separations: a reviewEnviron Sci Technol2021553135913761:CAS:528:DC%2BB3MXpvF2iug%3D%3D – reference: PoolachiraSVelmuruganSExfoliated hydrotalcite–modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutionsEnviron Sci Pollut Res Int2020272429725297361:CAS:528:DC%2BC1MXitF2qtrvP – reference: BagheripourEMoghadassiARParvizianFHosseiniSMVan der BruggenBTailoring the separation performance and fouling reduction of PES based nanofiltration membrane by using a PVA/Fe3O4 coating layerChem Eng Res Des20191444184281:CAS:528:DC%2BC1MXktFeiu7Y%3D – reference: Casanova S, Liu T-Y, Chew Y-MJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Membr Sci. 2020;597:117749. – reference: TangM-JLiuM-LWangD-AShaoD-DWangH-JCuiZCaoX-LSunS-PPrecisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol–water condensationNano Lett2020204271727231:CAS:528:DC%2BB3cXlsFahtbk%3D – reference: MahalingamDKWangSNunesSPStable graphene oxide cross-linked membranes for organic solvent nanofiltrationInd Eng Chem Res2019585123106231131:CAS:528:DC%2BC1MXitVOht7rN – reference: PicaNEFunkhouserJYinYZhangZCeresDMTongTBlotevogelJElectrochemical oxidation of hexafluoropropylene oxide dimer acid (GenX): mechanistic insights and efficient treatment train with nanofiltrationEnviron Sci Technol2019532112602126091:CAS:528:DC%2BC1MXhvFCjtbrN – reference: RoyYWarsingerDMLienhardJHEffect of temperature on ion transport in nanofiltration membranes: diffusion, convection and electromigrationDesalination20174202412571:CAS:528:DC%2BC2sXht12hu7%2FO – reference: RoyYLienhardJHA framework to analyze sulfate versus chloride selectivity in nanofiltrationEnviron Sci Water Res Technol2019535855981:CAS:528:DC%2BC1MXhsVSjtrs%3D – reference: Shin MG, Kwon SJ, Park H, Park Y-I, Lee J-H. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J Membr Sci. 2020;595:117590. – ident: 208_CR86 doi: 10.1016/j.ces.2020.115998 – volume: 60 start-page: 2500 issue: 11 year: 2020 ident: 208_CR164 publication-title: Transfusion doi: 10.1111/trf.16014 – volume: 148 start-page: 227 year: 2019 ident: 208_CR84 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.06.004 – volume: 137 start-page: 49351 issue: 44 year: 2020 ident: 208_CR35 publication-title: J Appl Polym Sci doi: 10.1002/app.49351 – ident: 208_CR165 doi: 10.1016/j.jviromet.2019.113755 – volume: 213 start-page: 348 year: 2019 ident: 208_CR27 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.12.046 – volume: 431 start-page: 56 year: 2018 ident: 208_CR28 publication-title: Desalination doi: 10.1016/j.desal.2017.11.022 – ident: 208_CR90 doi: 10.1016/j.memsci.2020.118325 – ident: 208_CR123 doi: 10.1016/j.watres.2020.115894 – volume: 59 start-page: 11940 issue: 26 year: 2020 ident: 208_CR122 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b06877 – volume: 11 start-page: 1252 issue: 8 year: 2019 ident: 208_CR11 publication-title: Polymers doi: 10.3390/polym11081252 – volume: 573 start-page: 694 year: 2019 ident: 208_CR155 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.12.026 – volume-title: Analytical methods for polymer characterization year: 2018 ident: 208_CR175 doi: 10.1201/9781351213158 – volume: 136 start-page: 48205 issue: 45 year: 2019 ident: 208_CR95 publication-title: J Appl Polym Sci doi: 10.1002/app.48205 – volume: 136 start-page: 48001 issue: 39 year: 2019 ident: 208_CR18 publication-title: J Appl Polym Sci doi: 10.1002/app.48001 – volume: 12 start-page: 47948 issue: 42 year: 2020 ident: 208_CR23 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c13339 – ident: 208_CR43 doi: 10.1016/j.memsci.2020.118274 – volume: 55 start-page: 1359 issue: 3 year: 2021 ident: 208_CR46 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c04593 – ident: 208_CR147 doi: 10.1016/j.seppur.2020.117821 – volume: 575 start-page: 38 year: 2019 ident: 208_CR150 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.12.070 – volume: 137 start-page: 48523 issue: 14 year: 2020 ident: 208_CR3 publication-title: J Appl Polym Sci doi: 10.1002/app.48523 – ident: 208_CR66 doi: 10.1016/j.chemosphere.2019.125282 – ident: 208_CR168 doi: 10.1016/j.seppur.2020.117255 – ident: 208_CR138 doi: 10.1016/j.chemosphere.2020.126713 – volume: 407 start-page: 260 year: 2017 ident: 208_CR98 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.02.204 – volume: 358 start-page: 821 year: 2019 ident: 208_CR70 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.10.087 – ident: 208_CR154 doi: 10.1016/j.seppur.2020.116550 – volume: 36 start-page: 1648 issue: 10 year: 2019 ident: 208_CR117 publication-title: Korean J Chem Eng doi: 10.1007/s11814-019-0357-0 – ident: 208_CR62 doi: 10.1016/j.memsci.2019.117746 – volume: 145 start-page: 199 issue: 2 year: 1998 ident: 208_CR116 publication-title: J Membr Sci doi: 10.1016/S0376-7388(98)00079-9 – ident: 208_CR55 doi: 10.1016/j.memsci.2020.118454 – ident: 208_CR38 doi: 10.1016/j.seppur.2018.07.026 – volume: 210 start-page: 746 year: 2019 ident: 208_CR118 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.08.066 – volume: 364 start-page: 1057 issue: 6445 year: 2019 ident: 208_CR81 publication-title: Science doi: 10.1126/science.aau5321 – volume-title: Applications of advanced oxidation processes (AOPs) in drinking water treatment year: 2019 ident: 208_CR2 doi: 10.1007/978-3-319-76882-3 – volume: 144 start-page: 418 year: 2019 ident: 208_CR88 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.02.028 – volume: 226 start-page: 267 year: 2019 ident: 208_CR143 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.100 – volume: 94 start-page: 2899 issue: 9 year: 2019 ident: 208_CR170 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.6093 – volume: 135 start-page: 77 year: 2019 ident: 208_CR126 publication-title: React Funct Polym doi: 10.1016/j.reactfunctpolym.2018.12.016 – volume: 222 start-page: 369 year: 2019 ident: 208_CR146 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.04.048 – volume: 81 start-page: 210 issue: 2 year: 2020 ident: 208_CR158 publication-title: Water Sci Technol doi: 10.2166/wst.2020.073 – volume: 578 start-page: 27 year: 2019 ident: 208_CR153 publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.02.022 – volume: 574 start-page: 44 year: 2019 ident: 208_CR15 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.12.051 – volume: 216 start-page: 115 year: 2019 ident: 208_CR149 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.01.070 – volume-title: Nanofiltration membranes: synthesis, characterization, and applications year: 2017 ident: 208_CR6 – ident: 208_CR145 doi: 10.1016/j.cej.2019.122786 – ident: 208_CR13 doi: 10.1016/j.memsci.2020.118139 – volume: 11 start-page: 19 issue: 1 year: 2020 ident: 208_CR14 publication-title: Membranes doi: 10.3390/membranes11010019 – volume: 149 start-page: 225 year: 2019 ident: 208_CR69 publication-title: Water Res doi: 10.1016/j.watres.2018.10.096 – volume: 156 start-page: 433 year: 2020 ident: 208_CR89 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2020.02.019 – volume: 12 start-page: 19944 issue: 17 year: 2020 ident: 208_CR30 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03075 – volume: 137 start-page: 49549 issue: 47 year: 2020 ident: 208_CR64 publication-title: J Appl Polym Sci doi: 10.1002/app.49549 – volume: 69 start-page: 1187 issue: 12 year: 2020 ident: 208_CR41 publication-title: Polym Int doi: 10.1002/pi.6061 – volume-title: 3D printing in orthopaedic surgery year: 2019 ident: 208_CR31 – volume: 8 start-page: 37 issue: 3 year: 2018 ident: 208_CR91 publication-title: Membranes doi: 10.3390/membranes8030037 – ident: 208_CR174 doi: 10.1016/j.seppur.2020.117242 – volume: 40 start-page: 145 issue: 1 year: 2020 ident: 208_CR76 publication-title: J Eur Ceram Soc doi: 10.1016/j.jeurceramsoc.2019.09.023 – ident: 208_CR169 doi: 10.1016/j.desal.2020.114761 – ident: 208_CR44 doi: 10.1016/j.memsci.2019.117615 – volume: 224 start-page: 273 year: 2019 ident: 208_CR161 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.016 – ident: 208_CR58 doi: 10.1016/j.memsci.2020.118006 – volume: 211 start-page: 98 year: 2019 ident: 208_CR67 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.09.034 – volume: 212 start-page: 660 year: 2019 ident: 208_CR96 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.11.054 – ident: 208_CR7 doi: 10.1016/j.memsci.2019.117590 – volume: 28 start-page: 13886 issue: 11 year: 2021 ident: 208_CR112 publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-020-11613-2 – ident: 208_CR75 doi: 10.1016/j.memsci.2019.117304 – ident: 208_CR10 doi: 10.1016/j.desal.2020.114867 – ident: 208_CR74 doi: 10.1016/j.seppur.2018.12.006 – volume: 204 start-page: 99 year: 2019 ident: 208_CR54 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2019.04.022 – volume: 304 start-page: 1800551 issue: 1 year: 2019 ident: 208_CR17 publication-title: Macromol Mater Eng doi: 10.1002/mame.201800551 – volume: 134 start-page: 74 year: 2019 ident: 208_CR78 publication-title: React Funct Polym doi: 10.1016/j.reactfunctpolym.2018.11.010 – ident: 208_CR103 doi: 10.1016/j.seppur.2019.116373 – volume: 13 start-page: 136 issue: 1 year: 2020 ident: 208_CR73 publication-title: Chemsuschem doi: 10.1002/cssc.201902341 – ident: 208_CR99 doi: 10.1016/j.seppur.2021.118811 – ident: 208_CR156 doi: 10.1016/j.scitotenv.2020.137474 – ident: 208_CR173 doi: 10.1016/j.desal.2020.114357 – volume: 9 start-page: 61 issue: 5 year: 2019 ident: 208_CR136 publication-title: Membranes (Basel) doi: 10.3390/membranes9050061 – volume: 5 start-page: 585 issue: 3 year: 2019 ident: 208_CR163 publication-title: Environ Sci Water Res Technol doi: 10.1039/C8EW00847G – ident: 208_CR100 – volume: 43 start-page: 3365 year: 2021 ident: 208_CR39 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.05.387 – volume: 53 start-page: 868 issue: 2 year: 2019 ident: 208_CR80 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b04268 – ident: 208_CR4 doi: 10.1088/1748-9326/ab4035 – ident: 208_CR124 doi: 10.1016/j.seppur.2019.116033 – ident: 208_CR128 doi: 10.1016/j.jwpe.2019.101007 – volume-title: Fouling in nanofiltration year: 2004 ident: 208_CR101 – ident: 208_CR157 doi: 10.1016/j.jenvman.2020.111005 – volume: 581 start-page: 413 year: 2019 ident: 208_CR21 publication-title: J Membr Sci doi: 10.1016/j.memsci.2019.03.077 – ident: 208_CR48 doi: 10.1016/j.seppur.2019.116265 – ident: 208_CR60 doi: 10.1088/1361-6528/ab8085 – volume: 214 start-page: 514 year: 2019 ident: 208_CR159 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.12.297 – volume: 126 start-page: 215 year: 2021 ident: 208_CR113 publication-title: Food Bioprod Process doi: 10.1016/j.fbp.2021.01.006 – volume: 60 start-page: 2661 issue: 11 year: 2020 ident: 208_CR166 publication-title: Transfusion doi: 10.1111/trf.16022 – ident: 208_CR162 doi: 10.1016/j.memsci.2020.117817 – ident: 208_CR109 doi: 10.1016/j.cej.2020.126722 – ident: 208_CR114 doi: 10.1016/j.polymertesting.2020.106775 – volume: 224 start-page: 255 year: 2019 ident: 208_CR106 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.011 – volume: 360 start-page: 122 year: 2018 ident: 208_CR16 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.08.004 – ident: 208_CR72 doi: 10.1016/j.memsci.2020.118401 – ident: 208_CR26 doi: 10.1016/j.memsci.2020.118172 – ident: 208_CR53 doi: 10.1016/j.memsci.2019.117598 – volume: 27 start-page: 29725 issue: 24 year: 2020 ident: 208_CR68 publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-019-06715-5 – volume: 58 start-page: 14350 issue: 31 year: 2019 ident: 208_CR77 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b02292 – ident: 208_CR12 doi: 10.1016/j.memsci.2019.117175 – volume: 376 start-page: 214 issue: 1 year: 2011 ident: 208_CR111 publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.04.031 – ident: 208_CR133 doi: 10.1016/j.chemosphere.2020.129056 – ident: 208_CR121 doi: 10.1016/j.memsci.2020.118809 – ident: 208_CR130 doi: 10.1016/j.memsci.2020.118631 – volume: 153 start-page: 134 year: 2019 ident: 208_CR137 publication-title: Water Res doi: 10.1016/j.watres.2019.01.014 – ident: 208_CR49 doi: 10.1016/j.memsci.2021.119101 – volume: 9 start-page: 15885 issue: 1 year: 2019 ident: 208_CR104 publication-title: Sci Rep doi: 10.1038/s41598-019-52369-1 – ident: 208_CR139 doi: 10.1016/j.ecolind.2020.106213 – volume: 570 start-page: 258 year: 2019 ident: 208_CR171 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.10.034 – volume: 58 start-page: 23106 issue: 51 year: 2019 ident: 208_CR56 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.9b05169 – ident: 208_CR107 doi: 10.1016/j.ultsonch.2019.104891 – volume: 420 start-page: 241 year: 2017 ident: 208_CR120 publication-title: Desalination doi: 10.1016/j.desal.2017.07.020 – volume: 136 start-page: 48129 issue: 42 year: 2019 ident: 208_CR34 publication-title: J Appl Polym Sci doi: 10.1002/app.48129 – volume-title: Basic principles of membrane technology year: 1996 ident: 208_CR5 doi: 10.1007/978-94-009-1766-8 – volume: 77 start-page: 98 issue: 3–4 year: 2020 ident: 208_CR71 publication-title: Glass Ceram doi: 10.1007/s10717-020-00248-x – ident: 208_CR127 doi: 10.1016/j.micromeso.2020.110289 – ident: 208_CR83 doi: 10.1016/j.seppur.2020.116979 – ident: 208_CR105 doi: 10.1016/j.biombioe.2020.105527 – ident: 208_CR125 doi: 10.1016/j.eurpolymj.2020.109544 – ident: 208_CR65 doi: 10.1016/j.seppur.2020.117280 – ident: 208_CR87 doi: 10.1016/j.chemosphere.2020.128088 – ident: 208_CR45 doi: 10.1016/j.memsci.2020.118294 – volume: 563 start-page: 949 year: 2018 ident: 208_CR50 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.07.003 – volume: 572 start-page: 580 year: 2019 ident: 208_CR37 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.11.048 – ident: 208_CR142 doi: 10.1016/j.scitotenv.2020.139780 – volume: 322 start-page: 21 year: 2013 ident: 208_CR119 publication-title: Desalination doi: 10.1016/j.desal.2013.04.030 – ident: 208_CR52 doi: 10.1016/j.seppur.2020.116995 – volume: 52 start-page: 4108 issue: 7 year: 2018 ident: 208_CR108 publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b06400 – volume: 147 start-page: 390 year: 2019 ident: 208_CR47 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.05.025 – volume: 224 start-page: 113 year: 2019 ident: 208_CR61 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.018 – volume: 224 start-page: 543 year: 2019 ident: 208_CR140 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.05.025 – volume: 8 start-page: 78 issue: 3 year: 2018 ident: 208_CR110 publication-title: Membranes doi: 10.3390/membranes8030078 – ident: 208_CR167 doi: 10.1016/j.seppur.2019.115675 – ident: 208_CR40 doi: 10.1016/j.desal.2020.114352 – ident: 208_CR144 doi: 10.1016/j.jenvman.2019.110001 – ident: 208_CR148 doi: 10.1016/j.jclepro.2020.123349 – volume: 560 start-page: 273 year: 2020 ident: 208_CR19 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.10.078 – volume: 31 start-page: 2588 issue: 11 year: 2020 ident: 208_CR102 publication-title: Polym Adv Technol doi: 10.1002/pat.4986 – ident: 208_CR85 doi: 10.1016/j.jenvman.2020.111299 – volume: 12 start-page: 53356 issue: 47 year: 2020 ident: 208_CR97 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c16569 – ident: 208_CR9 doi: 10.1016/j.memsci.2020.118205 – volume: 11 start-page: 27004 issue: 30 year: 2019 ident: 208_CR57 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b09037 – volume: 20 start-page: 2717 issue: 4 year: 2020 ident: 208_CR94 publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c00344 – ident: 208_CR82 doi: 10.1016/j.memsci.2020.118901 – volume: 30 start-page: 360 issue: 2 year: 2019 ident: 208_CR25 publication-title: Polym Adv Technol doi: 10.1002/pat.4473 – ident: 208_CR1 doi: 10.1016/j.jclepro.2020.123965 – volume: 212 start-page: 171 year: 2019 ident: 208_CR160 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.11.018 – volume: 148 start-page: 370 year: 2019 ident: 208_CR59 publication-title: Carbon doi: 10.1016/j.carbon.2019.03.090 – ident: 208_CR29 doi: 10.1016/j.memsci.2019.117565 – volume: 127 start-page: 99 year: 2019 ident: 208_CR135 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2019.05.018 – volume: 75 start-page: 4431 year: 2021 ident: 208_CR129 publication-title: Chem Pap doi: 10.1007/s11696-021-01694-9 – volume: 35 start-page: 1284 issue: 5 year: 2019 ident: 208_CR24 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00960 – ident: 208_CR92 doi: 10.1016/j.memsci.2019.117683 – volume: 53 start-page: 12602 issue: 21 year: 2019 ident: 208_CR134 publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b03171 – ident: 208_CR141 doi: 10.1016/j.seppur.2019.116186 – ident: 208_CR131 doi: 10.1016/j.seppur.2019.116461 – ident: 208_CR22 doi: 10.1016/j.memsci.2020.118532 – volume: 231 start-page: 1263 year: 2019 ident: 208_CR132 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2018.07.067 – volume: 81 start-page: 7 year: 2020 ident: 208_CR93 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2019.09.002 – volume: 211 start-page: 170 year: 2019 ident: 208_CR36 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.09.067 – ident: 208_CR20 doi: 10.1016/j.memsci.2019.117501 – ident: 208_CR79 doi: 10.1016/j.seppur.2020.118231 – volume: 222 start-page: 342 year: 2019 ident: 208_CR152 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.04.020 – start-page: 1 volume-title: Encyclopedia of polymeric nanomaterials year: 2014 ident: 208_CR8 doi: 10.1007/978-3-642-36199-9_160-1 – ident: 208_CR51 doi: 10.1016/j.memsci.2019.117749 – volume: 572 start-page: 489 year: 2019 ident: 208_CR42 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.11.036 – ident: 208_CR172 doi: 10.1016/j.desal.2020.114658 – ident: 208_CR115 doi: 10.1016/j.memsci.2020.117921 – ident: 208_CR151 doi: 10.1016/j.jclepro.2020.120359 – ident: 208_CR32 doi: 10.1016/j.memsci.2020.118665 – volume: 210 start-page: 521 year: 2019 ident: 208_CR33 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2018.08.037 – ident: 208_CR63 doi: 10.1016/j.memsci.2019.117714 |
SSID | ssj0002046597 |
Score | 2.4554777 |
SecondaryResourceType | review_article |
Snippet | Water is the material basis for living organisms and one of the primary resources to maintain the sustainable development of the earth’s ecological... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 51 |
SubjectTerms | Acids Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Boron Boron nitride Cellulose acetate Contact angle Dopamine Drinking water Earth and Environmental Science Energy consumption Environment Environmental Law/Policy/Ecojustice films (materials) Fouling Freshwater resources Graphene graphene oxide Groundwater High temperature Industrial Pollution Prevention Iron oxides Long-term effects Medical wastes Membrane processes Membrane separation Membranes Metal-organic frameworks Monitoring/Environmental Analysis Nanocomposites Nanofiltration Nanotechnology Pharmaceutical industry wastes Pollutants Pollution Polyethylene glycol Polymerization Polymers purification methods Section Editors Silicon dioxide Solvents Steric hindrance Surface water Sustainable development Textile industry wastewaters textile mill effluents Thin films Topical Collection on Water Pollution Waste Water Technology wastewater Wastewater treatment Water Management Water Pollution (G Toor and L Nghiem Water Pollution Control Water purification Water treatment |
Title | Recent Advances in the Theory and Application of Nanofiltration: a Review |
URI | https://link.springer.com/article/10.1007/s40726-021-00208-1 https://www.proquest.com/docview/2932831548 https://www.proquest.com/docview/2636849486 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e9EH8ROrc0TwTYtr2qadL7LJxhQcIg72VtKkAUG66bb_37s2a1Vwz00buKR3v_v6HcCVNN3I4x3jKm06FLrx3JQr4dKg7YBMHI-oG_l5LEaT4GkaTm3AbWHLKtc6sVDUeqYoRn6LZgktIQHs-_mnS1OjKLtqR2hsQxNVcIzOV7M_GL-8VlEWju4fQmbbLVP0zBEjGNXdohdNAypd77dFqmHmn8xoYXCG-7BnkSLrlUd7AFtZfgi7P_gDj-ARQR8aDdYrE_kL9p4zBHSsbLhnMtesVyeo2cwwVKY0o9ty5d4xycrkwDFMhoO3h5FrZyO4CiHT0pURakxfEdt8lgnDDboJwggdmpRzFaBbEutAZiF6X1J6OhR-INC7SzMdSip58E-gkc_y7BSYDnjHVyLuhh0dCJOmGiFLVxsvjiKNJs4Bby2fRFnicJpf8ZFUlMeFTBOUaVLINPEcuK7emZe0GRtXt9ZiT-wvtEjqA3fgsnqMl58yGjLPZitcI3wRE8GNcOBmfVz1J_7f8Wzzjueww6nNoag1a0Fj-bXKLhB8LNM2NHvDfn_ctjftG6qR1W8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB60HtSD-MT1GUFPutjN7mZbQaS-aNUWkRZ6W7ObBATZqq2If8rf6Mw-WhXsrefNJjCZZL7JzHwDsC9NNXB42dixMmV6unHsiMfCpkbbHpk4HlA1crMl6h3vput3p-CrqIWhtMriTkwvatWL6Y38GM0SWkIC2GcvrzZ1jaLoatFCI1OLW_35gS5b_7Rxift7wPn1VfuibuddBewYwcbAlgHeNW5MPO1aC8MNAmxhhPJNxHnsIaCvKE9qH_0WKR3lC9cT6BdFWvmSkgVcnHcaZjwXXZkSzJxfte4fhq86HN1NhOh5dU5ao0cMZJTni147NcS0nd8WcARr_0RiUwN3vQgLOTJltUyVlmBKJ8sw_4OvcAUaCDLRSLFaljjQZ08JQwDJsgJ_JhPFaqOAOOsZhpc39QTPuXlPmGRZMGIVOhOR2hqUkl6i14Epj5fdWFSqfll5wkSRQohUVcapBIFCk2qBU8gnjHOicuqX8RwOKZZTmYYo0zCVaehYcDj85yWj6Rg7eqsQe5gf2X44UjAL9oaf8bBRBEUmuveOY4QrKkSoIyw4KrZrNMX_K26MX3EXZuvt5l1412jdbsIcpxKLNM9tC0qDt3e9jcBnEO3k2sbgcdIK_g2QXBB5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Theory+and+Application+of+Nanofiltration%3A+a+Review&rft.jtitle=Current+pollution+reports&rft.au=DU%2C+Yuchen&rft.au=Pramanik%2C+Biplob+Kumar&rft.au=Zhang%2C+Yang&rft.au=Dum%C3%A9e%2C+Ludovic&rft.date=2022-03-01&rft.pub=Springer+Nature+B.V&rft.eissn=2198-6592&rft.volume=8&rft.issue=1&rft.spage=51&rft.epage=80&rft_id=info:doi/10.1007%2Fs40726-021-00208-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-6592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-6592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-6592&client=summon |