Automatic Deep Sparse Multi-Trial Vector-based Differential Evolution clustering with manifold learning and incremental technique
•A novel deep evolutionary clustering (ADSMTDE) to overcome clustering drawbacks.•Improving the auto-encoder by applying sparsity constraint and manifold learning.•To enhance clustering, evolutionary algorithm is adopted to optimize solutions.•Employing an incremental clustering technique to perform...
Saved in:
Published in | Image and vision computing Vol. 136; p. 104712 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel deep evolutionary clustering (ADSMTDE) to overcome clustering drawbacks.•Improving the auto-encoder by applying sparsity constraint and manifold learning.•To enhance clustering, evolutionary algorithm is adopted to optimize solutions.•Employing an incremental clustering technique to perform clustering dynamically.•ADSMTDE is competitive and superior to over the latest deep clustering methods.
Most deep clustering methods despite utilizing complex networks to learn better from data, use a shallow clustering method. These methods have difficulty in finding good clusters due to the lack of ability to handle between local search and global search to prevent premature convergence. In other words, they do not consider different aspects of the search and it causes them to get stuck in the local optimum. In addition, the majority of existing deep clustering approaches perform clustering with the knowledge of the number of clusters, which is not practical in most real scenarios where such information is not available. To address these problems, this paper presents a novel automatic deep sparse clustering approach based on an evolutionary algorithm called Multi-Trial Vector-based Differential Evolution (MTDE). Sparse auto-encoder is first applied to extract embedded features. Manifold learning is then adopted to obtain representation and extract the spatial structure of features. Afterward, MTDE clustering is performed without prior information on the number of clusters to find the optimal clustering solution. The proposed approach was evaluated on various datasets, including images and time-series. The results demonstrate that the proposed method improved MTDE by 18.94% on average and compared to the most recent deep clustering algorithms, is consistently among the top three in the majority of datasets. |
---|---|
AbstractList | •A novel deep evolutionary clustering (ADSMTDE) to overcome clustering drawbacks.•Improving the auto-encoder by applying sparsity constraint and manifold learning.•To enhance clustering, evolutionary algorithm is adopted to optimize solutions.•Employing an incremental clustering technique to perform clustering dynamically.•ADSMTDE is competitive and superior to over the latest deep clustering methods.
Most deep clustering methods despite utilizing complex networks to learn better from data, use a shallow clustering method. These methods have difficulty in finding good clusters due to the lack of ability to handle between local search and global search to prevent premature convergence. In other words, they do not consider different aspects of the search and it causes them to get stuck in the local optimum. In addition, the majority of existing deep clustering approaches perform clustering with the knowledge of the number of clusters, which is not practical in most real scenarios where such information is not available. To address these problems, this paper presents a novel automatic deep sparse clustering approach based on an evolutionary algorithm called Multi-Trial Vector-based Differential Evolution (MTDE). Sparse auto-encoder is first applied to extract embedded features. Manifold learning is then adopted to obtain representation and extract the spatial structure of features. Afterward, MTDE clustering is performed without prior information on the number of clusters to find the optimal clustering solution. The proposed approach was evaluated on various datasets, including images and time-series. The results demonstrate that the proposed method improved MTDE by 18.94% on average and compared to the most recent deep clustering algorithms, is consistently among the top three in the majority of datasets. |
ArticleNumber | 104712 |
Author | Hadikhani, Parham Lai, Daphne Teck Ching Ong, Wee-Hong Nadimi-Shahraki, Mohammad H. |
Author_xml | – sequence: 1 givenname: Parham surname: Hadikhani fullname: Hadikhani, Parham email: 20h8561@ubd.edu.bn organization: School of Digital Science, Universiti Brunei Darussalam, Brunei – sequence: 2 givenname: Daphne Teck Ching surname: Lai fullname: Lai, Daphne Teck Ching email: daphne.lai@ubd.edu.bn organization: School of Digital Science, Universiti Brunei Darussalam, Brunei – sequence: 3 givenname: Wee-Hong surname: Ong fullname: Ong, Wee-Hong email: weehong.ong@ubd.edu.bn organization: School of Digital Science, Universiti Brunei Darussalam, Brunei – sequence: 4 givenname: Mohammad H. surname: Nadimi-Shahraki fullname: Nadimi-Shahraki, Mohammad H. organization: Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Iran |
BookMark | eNp9kMtKAzEUhoNUsK2-gYu8wNQkc81GKG29QMWFxW1IkxObMpOpSabi0jd3hnHt6hz-w_dz-GZo4loHCN1SsqCEFnfHhW3k2YYFIyzto6yk7AJNaVWypKJpNUFTwop-r_LiCs1COBJCSlLyKfpZdrFtZLQKrwFO-O0kfQD80tXRJjtvZY3fQcXWJ3sZQOO1NQY8uDhcNue27qJtHVZ1FyJ46z7wl40H3EhnTVtrXIP0boil09g65aHp4Z6NoA7OfnZwjS6NrAPc_M052j1sdqunZPv6-LxabhOV5iwmstSGpoQoVjFdFKWmvOI5AyjZnkstjUzTjHCTG8YrlmVc87zMFSeK52nF0jnKxlrl2xA8GHHyvTX_LSgRg0VxFKNFMVgUo8Ueux8x6F87W_AiKAtOgba-9yJ0a_8v-AUFD4Fw |
CitedBy_id | crossref_primary_10_1109_TMM_2023_3266603 crossref_primary_10_1016_j_measen_2024_101231 crossref_primary_10_1109_THMS_2023_3269047 |
Cites_doi | 10.1007/s11276-019-02157-6 10.1023/A:1008202821328 10.1109/CVPR52688.2022.00012 10.1016/0169-7439(87)80084-9 10.21105/joss.00861 10.1145/1541880.1541882 10.24963/ijcai.2017/273 10.1109/ICCV.2017.626 10.1080/00207543.2013.867085 10.1007/s12065-020-00384-x 10.1609/aaai.v35i10.17037 10.1016/j.patcog.2006.07.009 10.1007/978-3-030-01264-9_9 10.1109/TIT.1982.1056489 10.1080/03610927408827101 10.1137/1025116 10.1109/TPAMI.1979.4766909 10.1038/nature14544 10.1111/1467-9868.00293 10.1109/CVPR.2016.556 10.1109/TMM.2017.2745702 10.1023/B:VISI.0000022288.19776.77 10.1145/1007730.1007731 10.36227/techrxiv.19633869.v2 10.1016/j.patcog.2018.05.019 10.24963/ijcai.2017/243 10.1016/0377-0427(87)90125-7 10.1109/TFUZZ.2018.2796074 10.1109/THMS.2023.3269047 10.1109/5.726791 10.1080/01969727308546046 10.1109/34.1000236 10.1016/j.neucom.2012.02.008 10.1145/3520304.3528885 10.1109/CVPR42600.2020.00887 10.21437/Interspeech.2017-721 10.1109/TPAMI.2019.2962683 10.1109/ACCESS.2018.2855437 10.1016/j.margen.2019.100723 10.1109/ICCV.2017.612 10.1007/s10044-005-0015-5 10.1609/aaai.v33i01.33014610 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2023.104712 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
ExternalDocumentID | 10_1016_j_imavis_2023_104712 S0262885623000860 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c352t-a7df1300c282d667d198952ee72b9adafa33409f5f2982449d9575c90c953823 |
IEDL.DBID | AIKHN |
ISSN | 0262-8856 |
IngestDate | Thu Sep 26 16:32:05 EDT 2024 Fri Feb 23 02:33:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dimension reduction Auto-encoder Evolutionary algorithm Deep clustering Differential evolution Feature extraction Image clustering Unsupervised learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c352t-a7df1300c282d667d198952ee72b9adafa33409f5f2982449d9575c90c953823 |
OpenAccessLink | https://figshare.com/articles/preprint/Automatic_Deep_Sparse_Multi-Trial_Vector-based_Differential_Evolution_Clustering_with_Manifold_Learning_and_Incremental_Technique/22153805/1/files/39387455.pdf |
ParticipantIDs | crossref_primary_10_1016_j_imavis_2023_104712 elsevier_sciencedirect_doi_10_1016_j_imavis_2023_104712 |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Image and vision computing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xie, Girshick, Farhadi (b0090) 2016 Ng (b0095) 2011; 72 L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction, arXiv preprint Z. Jiang, Y. Zheng, H. Tan, B. Tang, H. Zhou, Variational deep embedding: An unsupervised and generative approach to clustering, arXiv preprint Hoffmann (b0080) 2007; 40 Niu, Zhang, Wang, Liang (b0220) 2020 2021. J. MacQueen, Classification and analysis of multivariate observations, in: 5th Berkeley Symp. Math. Statist. Probability, 1967, pp. 281–297. Reynolds (b0305) 2009; 741 Kao, Chen (b0315) 2014; 52 Pinto, Engel (b0340) 2015; 10 Davies, Bouldin (b0390) 1979; 2 Tanabe, Fukunaga (b0285) 2013 J. Yang, D. Parikh, D. Batra, Joint unsupervised learning of deep representations and image clusters, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5147–5156. Min, Guo, Liu, Zhang, Cui, Long (b0005) 2018; 6 Li, Qiao, Zhang (b0100) 2018; 83 Ji, Zhang, Li, Salzmann, Reid (b0245) 2017; 30 Parsons, Haque, Liu (b0270) 2004; 6 Omran, Salman, Engelbrecht (b0310) 2006; 8 A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm, in: Advances in neural information processing systems, 2002, pp. 849–856. Kumar, Reinartz (b0010) 2016 Cieslak, Castelfranco, Roncalli, Lenz, Hartline (b0085) 2020; 51 Eiben, Smith (b0415) 2015; 521 M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in: kdd, vol. 96, no. 34, 1996, pp. 226–231. Higuchi, Kinoshita, Delcroix, Zmolíková, Nakatani (b0265) 2017 Menapace, Lathuilière, Ricci (b0200) 2020 P. Hadikhani, D.T.C. Lai, W.-H. Ong, M.H. Nadimi-Shahraki, Improved data clustering using multi-trial vector-based differential evolution with gaussian crossover, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2022, pp. 487–490. 2022. Van Gansbeke, Vandenhende, Georgoulis, Proesmans, Van Gool (b0205) 2020 Felzenszwalb, Huttenlocher (b0025) 2004; 59 K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, H. Huang, Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 5736–5745. J. Huang, S. Gong, X. Zhu, Deep semantic clustering by partition confidence maximisation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8849–8858. Hadikhani, Eslaminejad, Yari, Ashoor Mahani (b0055) 2020; 26 Shi, Ji, Zhang, Miao (b0275) 2019; 16 Price (b0345) 2013 Jain, Dubes (b0015) 1988 Hadikhani, Lai, Ong (b0375) 2023 X. Guo, L. Gao, X. Liu, J. Yin, Improved deep embedded clustering with local structure preservation, in: Ijcai, 2017, pp. 1753–1759. U. Shaham, K. Stanton, H. Li, B. Nadler, R. Basri, Y. Kluger, Spectralnet: Spectral clustering using deep neural networks, arXiv preprint Hartigan (b0410) 1975 LeCun, Bottou, Bengio, Haffner (b0325) 1998; 86 2018. Tsai, Wu, Tsai (b0150) 2002 Lloyd (b0295) 1982; 28 Koren (b0050) 2008 Zhao, Lu, Ma, Zhang, Zheng (b0215) 2020 Yang, Fu, Sidiropoulos, Hong (b0105) 2017 McConville, Santos-Rodriguez, Piechocki, Craddock (b0240) 2021 P. Hadikhani, D.T.C. Lai, W.-H. Ong, Flexible multi-objective particle swarm optimization clustering with game theory to address human activity recognition fully unsupervised, 2022. Lei, Jia, Zhang, He, Meng, Nandi (b0170) 2018; 26 Yari, Hadikhani, Asgharzadeh (b0060) 2020; 8 Wold, Esbensen, Geladi (b0070) 1987; 2 Kaufman, Rousseeuw (b0135) 2009; vol. 344 Breunig, Kriegel, Ng, Sander (b0035) 2000 Zhang, Ji, Harandi, Hartley, Reid (b0250) 2018 Hadikhani, Hadikhani (b0160) 2020; 13 Murty, Murthy, Reddy, Naik, Satapathy (b0290) 2014 M. Caron, P. Bojanowski, A. Joulin, M. Douze, Deep clustering for unsupervised learning of visual features, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 132–149. Comaniciu, Meer (b0020) 2002; 24 Ricci, Rokach, Shapira (b0045) 2015 Li, Shi, Jiao, Liu (b0180) 2012; 87 P. Hadikhani, D.T.C. Lai, W.-H. Ong, A novel skeleton-based human activity discovery technique using particle swarm optimization with gaussian mutation, arXiv preprint Storn, Price (b0190) 1997; 11 S. Mukherjee, H. Asnani, E. Lin, S. Kannan, Clustergan: Latent space clustering in generative adversarial networks, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 4610–4617. A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny images, 2009. Peizhuang (b0155) 1983; 25 Y. Li, P. Hu, Z. Liu, D. Peng, J.T. Zhou, X. Peng, Contrastive clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021, pp. 8547–8555. Le, Yang (b0335) 2015; 7 J. McLachlan Geoffrey, The em algorithm and extensions/geoffrey j. mclachlan, thriyambakam krishnan, 1997. Guo, Liu, Zhu, Zhu, Li, Xu, Yin (b0370) 2019; 32 J.C. Dunn, A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters, 1973. Tibshirani, Walther, Hastie (b0400) 2001; 63 Chandola, Banerjee, Kumar (b0030) 2009; 41 M. Sadeghi, H. Hojjati, N. Armanfard, C3: Cross-instance guided contrastive clustering, arXiv preprint Astorga, Huijse, Protopapas, Estévez (b0210) 2020 Xanthopoulos, Pardalos, Trafalis (b0075) 2013 Rousseeuw (b0380) 1987; 20 J. Chang, L. Wang, G. Meng, S. Xiang, C. Pan, Deep adaptive image clustering, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 5879–5887. Hsu, Lin (b0125) 2017; 20 Hassan, Rashid, Mirjalili (b0175) 2021 Thorndike (b0405) 1953 Caliński, Harabasz (b0385) 1974; 3 Jabi, Pedersoli, Mitiche, Ayed (b0355) 2019; 43 M. Yari, P. Hadikhani, M. Yaghoubi, R. Nowrozy, Z. Asgharzadeh, An energy efficient routing algorithm for wireless sensor networks using mobile sensors, arXiv preprint 2016. Wang, Chang, Zhou, Wang, Huang (b0130) 2016 J. Cai, J. Fan, W. Guo, S. Wang, Y. Zhang, Z. Zhang, Efficient deep embedded subspace clustering, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1–10. 10.1016/j.imavis.2023.104712_b0040 Ricci (10.1016/j.imavis.2023.104712_b0045) 2015 10.1016/j.imavis.2023.104712_b0360 Storn (10.1016/j.imavis.2023.104712_b0190) 1997; 11 10.1016/j.imavis.2023.104712_b0280 Kao (10.1016/j.imavis.2023.104712_b0315) 2014; 52 Kumar (10.1016/j.imavis.2023.104712_b0010) 2016 Guo (10.1016/j.imavis.2023.104712_b0370) 2019; 32 Tsai (10.1016/j.imavis.2023.104712_b0150) 2002 Menapace (10.1016/j.imavis.2023.104712_b0200) 2020 Chandola (10.1016/j.imavis.2023.104712_b0030) 2009; 41 10.1016/j.imavis.2023.104712_b0365 10.1016/j.imavis.2023.104712_b0165 10.1016/j.imavis.2023.104712_b0320 10.1016/j.imavis.2023.104712_b0120 Lloyd (10.1016/j.imavis.2023.104712_b0295) 1982; 28 Davies (10.1016/j.imavis.2023.104712_b0390) 1979; 2 Yari (10.1016/j.imavis.2023.104712_b0060) 2020; 8 Shi (10.1016/j.imavis.2023.104712_b0275) 2019; 16 Felzenszwalb (10.1016/j.imavis.2023.104712_b0025) 2004; 59 Ng (10.1016/j.imavis.2023.104712_b0095) 2011; 72 10.1016/j.imavis.2023.104712_b0195 Thorndike (10.1016/j.imavis.2023.104712_b0405) 1953 Li (10.1016/j.imavis.2023.104712_b0100) 2018; 83 10.1016/j.imavis.2023.104712_b0235 10.1016/j.imavis.2023.104712_b0115 Lei (10.1016/j.imavis.2023.104712_b0170) 2018; 26 10.1016/j.imavis.2023.104712_b0110 10.1016/j.imavis.2023.104712_b0350 10.1016/j.imavis.2023.104712_b0230 10.1016/j.imavis.2023.104712_b0395 Xanthopoulos (10.1016/j.imavis.2023.104712_b0075) 2013 Zhao (10.1016/j.imavis.2023.104712_b0215) 2020 Hadikhani (10.1016/j.imavis.2023.104712_b0160) 2020; 13 Niu (10.1016/j.imavis.2023.104712_b0220) 2020 Hassan (10.1016/j.imavis.2023.104712_b0175) 2021 Ji (10.1016/j.imavis.2023.104712_b0245) 2017; 30 Zhang (10.1016/j.imavis.2023.104712_b0250) 2018 Jain (10.1016/j.imavis.2023.104712_b0015) 1988 10.1016/j.imavis.2023.104712_b0260 10.1016/j.imavis.2023.104712_b0140 Reynolds (10.1016/j.imavis.2023.104712_b0305) 2009; 741 LeCun (10.1016/j.imavis.2023.104712_b0325) 1998; 86 Wold (10.1016/j.imavis.2023.104712_b0070) 1987; 2 Hoffmann (10.1016/j.imavis.2023.104712_b0080) 2007; 40 10.1016/j.imavis.2023.104712_b0225 Rousseeuw (10.1016/j.imavis.2023.104712_b0380) 1987; 20 10.1016/j.imavis.2023.104712_b0145 10.1016/j.imavis.2023.104712_b0300 Hadikhani (10.1016/j.imavis.2023.104712_b0055) 2020; 26 10.1016/j.imavis.2023.104712_b0185 Tibshirani (10.1016/j.imavis.2023.104712_b0400) 2001; 63 Eiben (10.1016/j.imavis.2023.104712_b0415) 2015; 521 10.1016/j.imavis.2023.104712_b0065 Caliński (10.1016/j.imavis.2023.104712_b0385) 1974; 3 Wang (10.1016/j.imavis.2023.104712_b0130) 2016 Le (10.1016/j.imavis.2023.104712_b0335) 2015; 7 McConville (10.1016/j.imavis.2023.104712_b0240) 2021 Cieslak (10.1016/j.imavis.2023.104712_b0085) 2020; 51 Min (10.1016/j.imavis.2023.104712_b0005) 2018; 6 Hsu (10.1016/j.imavis.2023.104712_b0125) 2017; 20 Price (10.1016/j.imavis.2023.104712_b0345) 2013 Yang (10.1016/j.imavis.2023.104712_b0105) 2017 Peizhuang (10.1016/j.imavis.2023.104712_b0155) 1983; 25 Li (10.1016/j.imavis.2023.104712_b0180) 2012; 87 Koren (10.1016/j.imavis.2023.104712_b0050) 2008 Parsons (10.1016/j.imavis.2023.104712_b0270) 2004; 6 10.1016/j.imavis.2023.104712_b0255 Van Gansbeke (10.1016/j.imavis.2023.104712_b0205) 2020 10.1016/j.imavis.2023.104712_b0330 Xie (10.1016/j.imavis.2023.104712_b0090) 2016 Murty (10.1016/j.imavis.2023.104712_b0290) 2014 Astorga (10.1016/j.imavis.2023.104712_b0210) 2020 Jabi (10.1016/j.imavis.2023.104712_b0355) 2019; 43 Comaniciu (10.1016/j.imavis.2023.104712_b0020) 2002; 24 Kaufman (10.1016/j.imavis.2023.104712_b0135) 2009; vol. 344 Hartigan (10.1016/j.imavis.2023.104712_b0410) 1975 Hadikhani (10.1016/j.imavis.2023.104712_b0375) 2023 Breunig (10.1016/j.imavis.2023.104712_b0035) 2000 Higuchi (10.1016/j.imavis.2023.104712_b0265) 2017 Pinto (10.1016/j.imavis.2023.104712_b0340) 2015; 10 Tanabe (10.1016/j.imavis.2023.104712_b0285) 2013 Omran (10.1016/j.imavis.2023.104712_b0310) 2006; 8 |
References_xml | – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: b0020 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Meer – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: b0400 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) contributor: fullname: Hastie – start-page: 736 year: 2020 end-page: 752 ident: b0200 article-title: Learning to cluster under domain shift publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16 contributor: fullname: Ricci – volume: 59 start-page: 167 year: 2004 end-page: 181 ident: b0025 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. contributor: fullname: Huttenlocher – volume: 6 start-page: 90 year: 2004 end-page: 105 ident: b0270 article-title: Subspace clustering for high dimensional data: a review publication-title: Acm sigkdd Explor. Newslett. contributor: fullname: Liu – start-page: 27 year: 2013 end-page: 33 ident: b0075 article-title: Linear discriminant analysis publication-title: Robust data mining contributor: fullname: Trafalis – start-page: 93 year: 2000 end-page: 104 ident: b0035 article-title: Lof: Identifying density-based local outliers publication-title: Proceedings of the 2000 ACM SIGMOD international conference on Management of data contributor: fullname: Sander – volume: 87 start-page: 90 year: 2012 end-page: 98 ident: b0180 article-title: Quantum evolutionary clustering algorithm based on watershed applied to sar image segmentation publication-title: Neurocomputing contributor: fullname: Liu – volume: 28 start-page: 129 year: 1982 end-page: 137 ident: b0295 article-title: Least squares quantization in pcm publication-title: IEEE Trans. Inf. Theory contributor: fullname: Lloyd – volume: 83 start-page: 161 year: 2018 end-page: 173 ident: b0100 article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders publication-title: Pattern Recogn. contributor: fullname: Zhang – volume: 52 start-page: 3466 year: 2014 end-page: 3484 ident: b0315 article-title: Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation publication-title: Int. J. Prod. Res. contributor: fullname: Chen – volume: 40 start-page: 863 year: 2007 end-page: 874 ident: b0080 article-title: Kernel pca for novelty detection publication-title: Pattern Recogn. contributor: fullname: Hoffmann – volume: 26 start-page: 3027 year: 2018 end-page: 3041 ident: b0170 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. contributor: fullname: Nandi – volume: 13 start-page: 695 year: 2020 end-page: 703 ident: b0160 article-title: An adaptive hybrid algorithm for social networks to choose groups with independent members publication-title: Evol. Intel. contributor: fullname: Hadikhani – volume: 32 start-page: 1680 year: 2019 end-page: 1693 ident: b0370 article-title: Adaptive self-paced deep clustering with data augmentation publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Yin – start-page: 3861 year: 2017 end-page: 3870 ident: b0105 article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering publication-title: International conference on machine learning contributor: fullname: Hong – year: 1953 ident: b0405 article-title: Who belongs in the family publication-title: Psychometrika contributor: fullname: Thorndike – start-page: 658 year: 2020 end-page: 677 ident: b0210 article-title: Mpcc: Matching priors and conditionals for clustering publication-title: European Conference on Computer Vision contributor: fullname: Estévez – start-page: 268 year: 2020 end-page: 285 ident: b0205 article-title: Scan: Learning to classify images without labels publication-title: European Conference on Computer Vision contributor: fullname: Van Gool – volume: 26 start-page: 507 year: 2020 end-page: 519 ident: b0055 article-title: An energy-aware and load balanced distributed geographic routing algorithm for wireless sensor networks with dynamic hole publication-title: Wireless Netw. contributor: fullname: Ashoor Mahani – volume: 25 start-page: 442 year: 1983 ident: b0155 article-title: Pattern recognition with fuzzy objective function algorithms (james c. bezdek) publication-title: SIAM Rev. contributor: fullname: Peizhuang – volume: 2 start-page: 37 year: 1987 end-page: 52 ident: b0070 article-title: Principal component analysis publication-title: Chemometr. Intell. Lab. Syst. contributor: fullname: Geladi – volume: 11 start-page: 341 year: 1997 ident: b0190 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. contributor: fullname: Price – volume: 10 year: 2015 ident: b0340 article-title: A fast incremental gaussian mixture model publication-title: PloS One contributor: fullname: Engel – volume: 72 start-page: 1 year: 2011 end-page: 19 ident: b0095 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes contributor: fullname: Ng – volume: 521 start-page: 476 year: 2015 end-page: 482 ident: b0415 article-title: From evolutionary computation to the evolution of things publication-title: Nature contributor: fullname: Smith – volume: 8 start-page: 68 year: 2020 end-page: 84 ident: b0060 article-title: Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control publication-title: J. Telecommun. Digit. Econ. contributor: fullname: Asgharzadeh – start-page: 1 year: 2014 end-page: 10 ident: b0290 article-title: Homogeneity separateness: a new validity measure for clustering problems publication-title: ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol I contributor: fullname: Satapathy – volume: 7 start-page: 3 year: 2015 ident: b0335 article-title: Tiny imagenet visual recognition challenge publication-title: CS 231N contributor: fullname: Yang – start-page: 54 year: 2020 end-page: 70 ident: b0215 article-title: Deep image clustering with category-style representation publication-title: European Conference on Computer Vision contributor: fullname: Zheng – start-page: 369 year: 2016 end-page: 377 ident: b0130 article-title: Learning a task-specific deep architecture for clustering publication-title: Proceedings of the 2016 SIAM International Conference on Data Mining contributor: fullname: Huang – volume: 30 year: 2017 ident: b0245 article-title: Deep subspace clustering networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Reid – start-page: 466 year: 2018 end-page: 481 ident: b0250 article-title: Scalable deep k-subspace clustering publication-title: Asian Conference on Computer Vision contributor: fullname: Reid – start-page: 5145 year: 2021 end-page: 5152 ident: b0240 article-title: N2d:(not too) deep clustering via clustering the local manifold of an autoencoded embedding publication-title: 2020 25th International Conference on Pattern Recognition (ICPR) contributor: fullname: Craddock – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0325 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE contributor: fullname: Haffner – volume: 51 year: 2020 ident: b0085 article-title: t-distributed stochastic neighbor embedding (t-sne): A tool for eco-physiological transcriptomic analysis publication-title: Mar. Genomics contributor: fullname: Hartline – volume: 741 year: 2009 ident: b0305 article-title: Gaussian mixture models publication-title: Ency. Biom. contributor: fullname: Reynolds – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b0380 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. contributor: fullname: Rousseeuw – volume: 16 year: 2019 ident: b0275 article-title: Boosting sparsity-induced autoencoder: A novel sparse feature ensemble learning for image classification publication-title: Int. J. Adv. Rob. Syst. contributor: fullname: Miao – year: 1975 ident: b0410 article-title: Clustering algorithms contributor: fullname: Hartigan – year: 2016 ident: b0010 article-title: Customer Relationship Management: Concept, Strategy, and Tools contributor: fullname: Reinartz – start-page: 426 year: 2008 end-page: 434 ident: b0050 article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model publication-title: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining contributor: fullname: Koren – volume: 41 start-page: 15 year: 2009 ident: b0030 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. (CSUR) contributor: fullname: Kumar – start-page: 315 year: 2002 end-page: 320 ident: b0150 article-title: A new data clustering approach for data mining in large databases publication-title: Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN’02 contributor: fullname: Tsai – volume: vol. 344 year: 2009 ident: b0135 publication-title: Finding groups in data: an introduction to cluster analysis contributor: fullname: Rousseeuw – start-page: 735 year: 2020 end-page: 751 ident: b0220 article-title: Gatcluster: Self-supervised gaussian-attention network for image clustering publication-title: European Conference on Computer Vision contributor: fullname: Liang – volume: 8 start-page: 332 year: 2006 end-page: 344 ident: b0310 article-title: Dynamic clustering using particle swarm optimization with application in image segmentation publication-title: Pattern Anal. Appl. contributor: fullname: Engelbrecht – start-page: 71 year: 2013 end-page: 78 ident: b0285 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE congress on evolutionary computation contributor: fullname: Fukunaga – volume: 43 start-page: 1887 year: 2019 end-page: 1896 ident: b0355 article-title: Deep clustering: On the link between discriminative models and k-means publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Ayed – volume: 2 start-page: 224 year: 1979 end-page: 227 ident: b0390 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Bouldin – start-page: 1 year: 2021 end-page: 16 ident: b0175 article-title: Formal context reduction in deriving concept hierarchies from corpora using adaptive evolutionary clustering algorithm star publication-title: Complex Intell. Syst. contributor: fullname: Mirjalili – year: 1988 ident: b0015 article-title: Algorithms for Clustering Data contributor: fullname: Dubes – start-page: 1183 year: 2017 end-page: 1187 ident: b0265 article-title: Deep clustering-based beamforming for separation with unknown number of sources publication-title: Interspeech contributor: fullname: Nakatani – year: 2015 ident: b0045 article-title: Recommender Systems Handbook contributor: fullname: Shapira – volume: 20 start-page: 421 year: 2017 end-page: 429 ident: b0125 article-title: Cnn-based joint clustering and representation learning with feature drift compensation for large-scale image data publication-title: IEEE Trans. Multimed. contributor: fullname: Lin – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: b0385 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat.-Theory Methods contributor: fullname: Harabasz – volume: 6 start-page: 39 501 year: 2018 end-page: 39 514 ident: b0005 article-title: A survey of clustering with deep learning: From the perspective of network architecture publication-title: IEEE Access contributor: fullname: Long – year: 2023 ident: b0375 article-title: Human activity discovery with automatic multi-objective particle swarm optimization clustering with gaussian mutation and game theory publication-title: IEEE Trans. Multimed. contributor: fullname: Ong – start-page: 187 year: 2013 end-page: 214 ident: b0345 article-title: Differential evolution publication-title: Handbook of optimization contributor: fullname: Price – start-page: 478 year: 2016 end-page: 487 ident: b0090 article-title: Unsupervised deep embedding for clustering analysis publication-title: International conference on machine learning contributor: fullname: Farhadi – volume: 26 start-page: 507 issue: 1 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0055 article-title: An energy-aware and load balanced distributed geographic routing algorithm for wireless sensor networks with dynamic hole publication-title: Wireless Netw. doi: 10.1007/s11276-019-02157-6 contributor: fullname: Hadikhani – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.imavis.2023.104712_b0190 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 contributor: fullname: Storn – ident: 10.1016/j.imavis.2023.104712_b0255 doi: 10.1109/CVPR52688.2022.00012 – volume: 2 start-page: 37 issue: 1–3 year: 1987 ident: 10.1016/j.imavis.2023.104712_b0070 article-title: Principal component analysis publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/0169-7439(87)80084-9 contributor: fullname: Wold – ident: 10.1016/j.imavis.2023.104712_b0280 doi: 10.21105/joss.00861 – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 10.1016/j.imavis.2023.104712_b0030 article-title: Anomaly detection: A survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/1541880.1541882 contributor: fullname: Chandola – ident: 10.1016/j.imavis.2023.104712_b0115 doi: 10.24963/ijcai.2017/273 – ident: 10.1016/j.imavis.2023.104712_b0330 – ident: 10.1016/j.imavis.2023.104712_b0365 doi: 10.1109/ICCV.2017.626 – volume: 32 start-page: 1680 issue: 9 year: 2019 ident: 10.1016/j.imavis.2023.104712_b0370 article-title: Adaptive self-paced deep clustering with data augmentation publication-title: IEEE Trans. Knowl. Data Eng. contributor: fullname: Guo – ident: 10.1016/j.imavis.2023.104712_b0145 – start-page: 466 year: 2018 ident: 10.1016/j.imavis.2023.104712_b0250 article-title: Scalable deep k-subspace clustering contributor: fullname: Zhang – volume: 52 start-page: 3466 issue: 12 year: 2014 ident: 10.1016/j.imavis.2023.104712_b0315 article-title: Automatic clustering for generalised cell formation using a hybrid particle swarm optimisation publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2013.867085 contributor: fullname: Kao – year: 2016 ident: 10.1016/j.imavis.2023.104712_b0010 contributor: fullname: Kumar – volume: 13 start-page: 695 issue: 4 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0160 article-title: An adaptive hybrid algorithm for social networks to choose groups with independent members publication-title: Evol. Intel. doi: 10.1007/s12065-020-00384-x contributor: fullname: Hadikhani – start-page: 27 year: 2013 ident: 10.1016/j.imavis.2023.104712_b0075 article-title: Linear discriminant analysis contributor: fullname: Xanthopoulos – ident: 10.1016/j.imavis.2023.104712_b0065 – volume: 8 start-page: 68 issue: 3 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0060 article-title: Energy-efficient topology to enhance the wireless sensor network lifetime using connectivity control publication-title: J. Telecommun. Digit. Econ. contributor: fullname: Yari – start-page: 3861 year: 2017 ident: 10.1016/j.imavis.2023.104712_b0105 article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering contributor: fullname: Yang – ident: 10.1016/j.imavis.2023.104712_b0230 doi: 10.1609/aaai.v35i10.17037 – start-page: 426 year: 2008 ident: 10.1016/j.imavis.2023.104712_b0050 article-title: Factorization meets the neighborhood: A multifaceted collaborative filtering model contributor: fullname: Koren – volume: 40 start-page: 863 issue: 3 year: 2007 ident: 10.1016/j.imavis.2023.104712_b0080 article-title: Kernel pca for novelty detection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.07.009 contributor: fullname: Hoffmann – ident: 10.1016/j.imavis.2023.104712_b0260 – ident: 10.1016/j.imavis.2023.104712_b0350 doi: 10.1007/978-3-030-01264-9_9 – start-page: 187 year: 2013 ident: 10.1016/j.imavis.2023.104712_b0345 article-title: Differential evolution contributor: fullname: Price – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 10.1016/j.imavis.2023.104712_b0295 article-title: Least squares quantization in pcm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 contributor: fullname: Lloyd – volume: vol. 344 year: 2009 ident: 10.1016/j.imavis.2023.104712_b0135 contributor: fullname: Kaufman – start-page: 268 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0205 article-title: Scan: Learning to classify images without labels contributor: fullname: Van Gansbeke – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.imavis.2023.104712_b0385 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat.-Theory Methods doi: 10.1080/03610927408827101 contributor: fullname: Caliński – ident: 10.1016/j.imavis.2023.104712_b0140 – ident: 10.1016/j.imavis.2023.104712_b0235 – volume: 7 start-page: 3 issue: 7 year: 2015 ident: 10.1016/j.imavis.2023.104712_b0335 article-title: Tiny imagenet visual recognition challenge publication-title: CS 231N contributor: fullname: Le – start-page: 315 year: 2002 ident: 10.1016/j.imavis.2023.104712_b0150 article-title: A new data clustering approach for data mining in large databases contributor: fullname: Tsai – volume: 25 start-page: 442 issue: 3 year: 1983 ident: 10.1016/j.imavis.2023.104712_b0155 article-title: Pattern recognition with fuzzy objective function algorithms (james c. bezdek) publication-title: SIAM Rev. doi: 10.1137/1025116 contributor: fullname: Peizhuang – year: 2015 ident: 10.1016/j.imavis.2023.104712_b0045 contributor: fullname: Ricci – start-page: 736 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0200 article-title: Learning to cluster under domain shift contributor: fullname: Menapace – volume: 2 start-page: 224 year: 1979 ident: 10.1016/j.imavis.2023.104712_b0390 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 contributor: fullname: Davies – ident: 10.1016/j.imavis.2023.104712_b0320 – volume: 521 start-page: 476 issue: 7553 year: 2015 ident: 10.1016/j.imavis.2023.104712_b0415 article-title: From evolutionary computation to the evolution of things publication-title: Nature doi: 10.1038/nature14544 contributor: fullname: Eiben – start-page: 1 year: 2021 ident: 10.1016/j.imavis.2023.104712_b0175 article-title: Formal context reduction in deriving concept hierarchies from corpora using adaptive evolutionary clustering algorithm star publication-title: Complex Intell. Syst. contributor: fullname: Hassan – volume: 63 start-page: 411 issue: 2 year: 2001 ident: 10.1016/j.imavis.2023.104712_b0400 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00293 contributor: fullname: Tibshirani – ident: 10.1016/j.imavis.2023.104712_b0120 doi: 10.1109/CVPR.2016.556 – start-page: 71 year: 2013 ident: 10.1016/j.imavis.2023.104712_b0285 article-title: Success-history based parameter adaptation for differential evolution contributor: fullname: Tanabe – start-page: 54 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0215 article-title: Deep image clustering with category-style representation contributor: fullname: Zhao – start-page: 5145 year: 2021 ident: 10.1016/j.imavis.2023.104712_b0240 article-title: N2d:(not too) deep clustering via clustering the local manifold of an autoencoded embedding contributor: fullname: McConville – volume: 20 start-page: 421 issue: 2 year: 2017 ident: 10.1016/j.imavis.2023.104712_b0125 article-title: Cnn-based joint clustering and representation learning with feature drift compensation for large-scale image data publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2745702 contributor: fullname: Hsu – volume: 59 start-page: 167 issue: 2 year: 2004 ident: 10.1016/j.imavis.2023.104712_b0025 article-title: Efficient graph-based image segmentation publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000022288.19776.77 contributor: fullname: Felzenszwalb – volume: 6 start-page: 90 issue: 1 year: 2004 ident: 10.1016/j.imavis.2023.104712_b0270 article-title: Subspace clustering for high dimensional data: a review publication-title: Acm sigkdd Explor. Newslett. doi: 10.1145/1007730.1007731 contributor: fullname: Parsons – volume: 10 issue: 10 year: 2015 ident: 10.1016/j.imavis.2023.104712_b0340 article-title: A fast incremental gaussian mixture model publication-title: PloS One contributor: fullname: Pinto – year: 2023 ident: 10.1016/j.imavis.2023.104712_b0375 article-title: Human activity discovery with automatic multi-objective particle swarm optimization clustering with gaussian mutation and game theory publication-title: IEEE Trans. Multimed. contributor: fullname: Hadikhani – start-page: 369 year: 2016 ident: 10.1016/j.imavis.2023.104712_b0130 article-title: Learning a task-specific deep architecture for clustering contributor: fullname: Wang – ident: 10.1016/j.imavis.2023.104712_b0040 doi: 10.36227/techrxiv.19633869.v2 – year: 1988 ident: 10.1016/j.imavis.2023.104712_b0015 contributor: fullname: Jain – start-page: 93 year: 2000 ident: 10.1016/j.imavis.2023.104712_b0035 article-title: Lof: Identifying density-based local outliers contributor: fullname: Breunig – year: 1975 ident: 10.1016/j.imavis.2023.104712_b0410 contributor: fullname: Hartigan – start-page: 658 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0210 article-title: Mpcc: Matching priors and conditionals for clustering contributor: fullname: Astorga – volume: 83 start-page: 161 year: 2018 ident: 10.1016/j.imavis.2023.104712_b0100 article-title: Discriminatively boosted image clustering with fully convolutional auto-encoders publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.05.019 contributor: fullname: Li – volume: 741 issue: 659–663 year: 2009 ident: 10.1016/j.imavis.2023.104712_b0305 article-title: Gaussian mixture models publication-title: Ency. Biom. contributor: fullname: Reynolds – volume: 30 year: 2017 ident: 10.1016/j.imavis.2023.104712_b0245 article-title: Deep subspace clustering networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Ji – ident: 10.1016/j.imavis.2023.104712_b0300 – ident: 10.1016/j.imavis.2023.104712_b0195 doi: 10.24963/ijcai.2017/243 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.imavis.2023.104712_b0380 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 contributor: fullname: Rousseeuw – start-page: 1 year: 2014 ident: 10.1016/j.imavis.2023.104712_b0290 article-title: Homogeneity separateness: a new validity measure for clustering problems contributor: fullname: Murty – volume: 26 start-page: 3027 issue: 5 year: 2018 ident: 10.1016/j.imavis.2023.104712_b0170 article-title: Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2018.2796074 contributor: fullname: Lei – ident: 10.1016/j.imavis.2023.104712_b0165 doi: 10.1109/THMS.2023.3269047 – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.imavis.2023.104712_b0275 article-title: Boosting sparsity-induced autoencoder: A novel sparse feature ensemble learning for image classification publication-title: Int. J. Adv. Rob. Syst. contributor: fullname: Shi – year: 1953 ident: 10.1016/j.imavis.2023.104712_b0405 article-title: Who belongs in the family contributor: fullname: Thorndike – volume: 72 start-page: 1 issue: 2011 year: 2011 ident: 10.1016/j.imavis.2023.104712_b0095 article-title: Sparse autoencoder publication-title: CS294A Lect. Notes contributor: fullname: Ng – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.imavis.2023.104712_b0325 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 contributor: fullname: LeCun – ident: 10.1016/j.imavis.2023.104712_b0395 doi: 10.1080/01969727308546046 – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.imavis.2023.104712_b0020 article-title: Mean shift: A robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 contributor: fullname: Comaniciu – volume: 87 start-page: 90 year: 2012 ident: 10.1016/j.imavis.2023.104712_b0180 article-title: Quantum evolutionary clustering algorithm based on watershed applied to sar image segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.008 contributor: fullname: Li – start-page: 735 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0220 article-title: Gatcluster: Self-supervised gaussian-attention network for image clustering contributor: fullname: Niu – ident: 10.1016/j.imavis.2023.104712_b0185 doi: 10.1145/3520304.3528885 – ident: 10.1016/j.imavis.2023.104712_b0225 doi: 10.1109/CVPR42600.2020.00887 – start-page: 1183 year: 2017 ident: 10.1016/j.imavis.2023.104712_b0265 article-title: Deep clustering-based beamforming for separation with unknown number of sources publication-title: Interspeech doi: 10.21437/Interspeech.2017-721 contributor: fullname: Higuchi – volume: 43 start-page: 1887 issue: 6 year: 2019 ident: 10.1016/j.imavis.2023.104712_b0355 article-title: Deep clustering: On the link between discriminative models and k-means publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2962683 contributor: fullname: Jabi – volume: 6 start-page: 39 501 year: 2018 ident: 10.1016/j.imavis.2023.104712_b0005 article-title: A survey of clustering with deep learning: From the perspective of network architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2855437 contributor: fullname: Min – volume: 51 year: 2020 ident: 10.1016/j.imavis.2023.104712_b0085 article-title: t-distributed stochastic neighbor embedding (t-sne): A tool for eco-physiological transcriptomic analysis publication-title: Mar. Genomics doi: 10.1016/j.margen.2019.100723 contributor: fullname: Cieslak – start-page: 478 year: 2016 ident: 10.1016/j.imavis.2023.104712_b0090 article-title: Unsupervised deep embedding for clustering analysis contributor: fullname: Xie – ident: 10.1016/j.imavis.2023.104712_b0110 doi: 10.1109/ICCV.2017.612 – volume: 8 start-page: 332 issue: 4 year: 2006 ident: 10.1016/j.imavis.2023.104712_b0310 article-title: Dynamic clustering using particle swarm optimization with application in image segmentation publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-005-0015-5 contributor: fullname: Omran – ident: 10.1016/j.imavis.2023.104712_b0360 doi: 10.1609/aaai.v33i01.33014610 |
SSID | ssj0007079 |
Score | 2.4629712 |
Snippet | •A novel deep evolutionary clustering (ADSMTDE) to overcome clustering drawbacks.•Improving the auto-encoder by applying sparsity constraint and manifold... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 104712 |
SubjectTerms | Auto-encoder Deep clustering Differential evolution Dimension reduction Evolutionary algorithm Feature extraction Image clustering Unsupervised learning |
Title | Automatic Deep Sparse Multi-Trial Vector-based Differential Evolution clustering with manifold learning and incremental technique |
URI | https://dx.doi.org/10.1016/j.imavis.2023.104712 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdoEDjwFiPKYcuHZbsz6P0x4aIHbZQLtVbZKiotFV0HFE4p9jtykaEuLAsa0cVbFjf3b8ALgWnnKFbVlGT0VF6EYZfk9Q3IoL4fjKU0W8437mTB-s26W9rMGwqoWhtEqt-0udXmhr_aard7ObJUl3jt4D9zyy3wUwR7-9geaIe3VoDG7uprNvhUxN4MpQCx5-JKgq6Io0r-SFqvk7NEWc7jtdk_9uobaszuQQ9jVcZIPyj46gptImHGjoyPTBfGvC3lZfwWP4HGzyddGLlY2Uytg8Q_dVsaLY1liQyLHHIlpvkBGTbKSnpOT0ZfyupZGJ1YbaKOCSjMK1jFplxOuVZHrUxBMLU8mSVJQxRqT97gh7AovJeDGcGnrWgiEQguVG6MqYbrYEumDScVxJuVQ2V8rlkR_KMA77fXQFYzvmvoeQwJc-Aj2BfPVtuko8hXq6TtUZMEe6HDGB6HsoA5E0Q2FLxzVNaUn0tfq9FhjV9gZZ2VEjqFLNnoOSHQGxIyjZ0QK34kHwQzICVPp_Up7_m_ICdumpTPS7hHr-ulFXCD7yqA07nQ-zrUXsC2v32oE |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdgAGHgVEeXpgNW3zzlj1oZQ-lgbULUpsBwWVNIKUnX_OXeJURUIMrLHOinznu-_O9yDknjvS5qZhsI6MitCNZG6HY9xK49xypSOLeMdsbnlPxuPSXNZIv6qFwbRKpftLnV5oa_WlrU6znSVJewHeg-Y4aL8LYA5-ewPQgAu3s9EbT7z5ViFjE7gy1AKXHwiqCroizSt5w2r-B5wiju-ddlf73ULtWJ3RMTlUcJH2yj86ITWZNsmRgo5UXcyPJjnY6St4Sr56m3xd9GKlAykzusjAfZW0KLZlPoocfS6i9QyNmKADNSUlx5Xhp5JGylcbbKMAW1IM11JslRGvV4KqURMvNEwFTVJexhiBdtsR9oz4o6Hf95iatcA4QLCchbaI8WWLgwsmLMsWmEtlalLaWuSGIoxDXQdXMDZjzXUAErjCBaDHga-uiU-J56SerlN5QaglbA0wAdcdkIFIdENuCsvudoUhwNfSOy3CquMNsrKjRlClmr0GJTsCZEdQsqNF7IoHwQ_JCEDp_0l5-W_KO7Ln-bNpMB3PJ1dkH1fKpL9rUs_fN_IGgEge3SpB-wa3x9x1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Deep+Sparse+Multi-Trial+Vector-based+Differential+Evolution+clustering+with+manifold+learning+and+incremental+technique&rft.jtitle=Image+and+vision+computing&rft.au=Hadikhani%2C+Parham&rft.au=Lai%2C+Daphne+Teck+Ching&rft.au=Ong%2C+Wee-Hong&rft.au=Nadimi-Shahraki%2C+Mohammad+H.&rft.date=2023-08-01&rft.issn=0262-8856&rft.volume=136&rft.spage=104712&rft_id=info:doi/10.1016%2Fj.imavis.2023.104712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2023_104712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |